
Correction of Exercise Sheet
Description Logics

Correction of Exercise 1: Modelisation

1. PhD students are students and researchers.
PhDStudent ⊑ Student ⊓ Researcher : in ALC

2. Professors are not PhD students.
Professor ⊑ ¬PhDStudent : in ALC

3. PhD students are employed by some university.
PhDStudent ⊑ ∃employedBy.University : in ALC

4. Those who are employed by some university are researchers, professors, administrative staff workers or
technical staff workers.
∃employedBy.University ⊑ Researcher ⊔ Professor ⊔ AdminStaff ⊔ TechnicalStaff : in ALC

5. Teachers are exactly the persons that teach some course.
Teacher ≡ Person ⊓ ∃teach.Course : in ALC

6. Professors teach at least two courses.
Professor ⊑≥ 2teach.Course : not in ALC (number restriction)

7. PhD students are supervised by a researcher.
PhDStudent ⊑ ∃supervise−.Researcher : not in ALC (inverse role)

8. PhD students teach only tutorials or hands-on-sessions.
PhDStudent ⊑ ∀teach.(Tutorial ⊔ HandsOnSession) : in ALC

9. Administrative staff workers do not supervise PhD students.
AdminStaff ⊑ ∀supervise.(¬PhDStudent) : in ALC

10. Researchers are members of a department which is part of a university.
Researcher ⊑ ∃memberOf.(Department ⊓ ∃partOf.University) : in ALC

11. Students that are not PhD students are not employed by a university.
Student ⊓ ¬PhDStudent ⊑ ¬(∃employedBy.University) : in ALC

12. Things that are taught are courses.
⊤ ⊑ ∀teach.Course : in ALC (equivalent to ∃teach−.⊤ ⊑ Course which is not in ALC)

13. Courses are attended by at most 50 students.
Course ⊑≤ 50attend−.Student : not in ALC (number restriction, inverse role)

14. Courses taught by Ana are not hands-on-sessions.
Course ⊓ ∃teach−.{ana} ⊑ ¬HandsOnSession : not in ALC (nomimals, inverse role)

15. Ana is a researcher.
Researcher(ana)

16. John is a PhD student who teaches logic and is supervised by Ana.
PhDStudent(john), teach(john, logic), supervise(ana, john)
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Can you express that PhD students are employed by the same university that the one the department
they are member of is part of ?

No. Best try: PhDStudent ⊑ ∃employedBy.(University⊓(∃partOf−.(Department⊓∃memberOf−.PhDStudent)))
but no way to say that the PhD student is the same.

Correction of Exercise 2: Interpretations

1. (A ⊓ ∃S.C)I = {b}

2. (B ⊔ (C ⊓ ∃S−.⊤))I = {b, c}

3. (∀R.C)I = {b, c, d}

4. (∀S.C)I = {b, c, d}

5. (A ⊓ ¬∃R.⊤)I = {b}

6. (∃R.∃S.⊤)I = {a}

1. No: I ̸|= A ⊑ B ⊔ C because {a, b} ̸⊆ {b, c, d}

2. Yes: I |= A ⊑ ∃S.⊤ because {a, b} ⊆ {a, b}

3. Yes: I |= ∃S−.B ⊑ C because {c} ⊆ {c, d}

4. Yes: I |= A ⊑ ¬C because {a, b} ⊆ {a, b}

Correction of Exercise 3: Basic reasoning

1. No. Consider the following interpretation I on domain ∆I = {a}: AI = {a}, BI = ∅, CI = ∅, RI = ∅.
I is a model of T and AI ̸⊆ CI so T ̸|= A ⊑ C.

2. Yes. Let I be a model of T and e be an element of ∆I such that e ∈ (A ⊓ ∃R.⊤)I = AI ∩ (∃R.⊤)I .
Since e ∈ (∃R.⊤)I , there exists d ∈ ∆I such that (e, d) ∈ RI . Since I is a model of T , I |= A ⊑ ∀R.B,
so e ∈ AI and (e, d) ∈ RI implies that d ∈ BI . Hence e ∈ (∃R.B)I . Since I |= ∃R.B ⊑ C, it follows
that e ∈ CI . Finally, since I |= B ⊑ ¬C, BI ⊆ ∆I \ CI so e /∈ BI . We have shown that for every
model I of T , (A ⊓ ∃R.⊤)I ⊆ ∆I \ BI , i.e. I |= A ⊓ ∃R.⊤ ⊑ ¬B. This is exactly the definition of
T |= A ⊓ ∃R.⊤ ⊑ ¬B.

3. No. Assume for a contradiction that there exists a model I of T such that (B ⊓ ∃R.B)I is non-empty
and let e ∈ (B ⊓ ∃R.B)I . Since I |= ∃R.B ⊑ C and e ∈ (∃R.B)I , then e ∈ CI . It follows that e
belongs to BI and to CI , so BI ̸⊆ ∆I \ CI , which contradicts T |= B ⊑ ¬C.

4. Yes. Consider the model I of T given in the correction of question 1. (A⊓∀R.C)I = {a} is non-empty.

5. Yes. We just need to extend the interpretation given in the correction of question 1 by setting aI = a
to obtain a model of ⟨T ,A1⟩.

6. Yes. Consider the following interpretation I on domain ∆I = {a, b}: aI = a, bI = b, AI = {a},
BI = {b}, CI = {a}, RI = {(a, b)}. I is a model of ⟨T ,A2⟩.

7. No. Assume for a contradiction that ⟨T ,A3⟩ has a model I. We must have aI ∈ AI and (aI , bI) ∈ RI

so since I |= A ⊑ ∀R.B, it follows that b ∈ BI . However, we also must have b ∈ CI , which contradicts
I |= B ⊑ ¬C.

8. No. The model of ⟨T ,A1⟩ given in question 5 does not satisfy C(a).

9. Yes. Let I be a model of ⟨T ,A2⟩. Since I |= A(a) and I |= R(a, b), then aI ∈ AI and (aI , bI) ∈ RI .
Since I |= A ⊑ ∀R.B, it follows that b ∈ BI . Hence aI ∈ (∃R.B)I , so since I |= ∃R.B ⊑ C,
aI ∈ CI . We have shown that for every model I of ⟨T ,A2⟩, aI ∈ CI . This is exactly the definition of
⟨T ,A2⟩ |= C(a).

10. Yes. Since ⟨T ,A3⟩ has no model, it is true that aI ∈ CI in every model of ⟨T ,A3⟩. An unsatisfiable
knowledge base entails every logical axiom.

2



Correction of Exercise 4: DL fragments

Minimal fragments of ALC: {⊓,¬, ∃}, {⊓,¬, ∀}, {⊔,¬, ∃}, {⊔,¬, ∀}.
Proof for the {⊓,¬, ∃} fragment:
Let C be an ALC concept. We first show by induction on the structure of C that there exists C ′ in the

{⊓,¬, ∃} fragment that is equivalent to C.
Base case: If C is an atomic concept, then C is in the {⊓,¬, ∃} fragment.

• If C = C1 ⊓C2, and C1, C2 are ALC concepts equivalent to C ′
1 and C ′

2 in the {⊓,¬, ∃} fragment, then
C is equivalent to C ′ = C ′

1 ⊓ C ′
2 which belongs to the fragment.

• If C = C1 ⊔C2, and C1, C2 are ALC concepts equivalent to C ′
1 and C ′

2 in the {⊓,¬, ∃} fragment, then
C is equivalent to C ′ = ¬(¬C ′

1 ⊓ ¬C ′
2) which belongs to the fragment.

• If C = ¬C1 and C1 is an ALC concept equivalent to C ′
1 in the {⊓,¬,∃} fragment, then C is equivalent

to C ′ = ¬C ′
1 which belongs to the fragment.

• If C = ∃R.C1 and C1 is an ALC concept equivalent to C ′
1 in the {⊓,¬,∃} fragment, then C is equivalent

to C ′ = ∃R.C ′
1 which belongs to the fragment.

• If C = ∀R.C1 and C1 is an ALC concept equivalent to C ′
1 in the {⊓,¬,∃} fragment, then C is equivalent

to C ′ = ¬(∃R.¬C ′
1) which belongs to the fragment.

We now show that every sub-fragment of the {⊓,¬,∃} fragment does not capture ALC. Let A and B be
atomic concepts.

• A ⊓B cannot be expressed on {¬,∃}

• ¬A cannot be expressed on {⊓, ∃}

• ∃R.A cannot be expressed on {⊓,¬}

Correction of Exercise 5: Translation to FOL

1. ∀x (∃y (R(x, y) ∧ ∃z S(y, z)) ⇒ B(x) ∨ C(x))

2. ∀x (A(x) ∧ ¬B(x) ⇒ ∀y (R(x, y) ⇒ C(y)))

3. ∀x (∃y (R(y, x) ∧A(y)) ⇒ ¬C(x))

4. ∀x (A(x) ∨ ∃y (R(x, y) ∧B(y)) ⇒ ∃z S(x, z))

Correction of Exercise 6: Negation normal form

1. nnf(¬(¬A ⊔ ∀R.(¬(B ⊓ ¬C)))) =nnf(¬(¬A) ⊓ nnf(¬(∀R.(¬(B ⊓ ¬C))))

=nnf(A) ⊓ ∃R.nnf(¬(¬(B ⊓ ¬C))))

=A ⊓ ∃R.nnf(B ⊓ ¬C)

=A ⊓ ∃R.(nnf(B) ⊓ nnf(¬C))

=A ⊓ ∃R.(B ⊓ ¬C)

2. nnf(¬(∃R.(¬∃S.A)) ⊓ ¬(∀R.B)) =nnf(¬(∃R.(¬∃S.A))) ⊓ nnf(¬(∀R.B))

=∀R.nnf(¬(¬∃S.A)) ⊓ ∃R.nnf(¬B)

=∀R.nnf(∃S.A) ⊓ ∃R.(¬B)

=∀R.∃S.nnf(A) ⊓ ∃R.(¬B)

=∀R.∃S.A ⊓ ∃R.(¬B)
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Correction of Exercise 7: Tableau algorithm for concept satisfiability

1. ∃R.∃S.A⊓∀R.∀S.¬A is not satisfiable. Indeed, every ABox generated by the tableau algorithm contains
a clash:
(∃R.∃S.A ⊓ ∀R.∀S.¬A)(a0)

(∃R.∃S.A)(a0)

(∀R.∀S.¬A)(a0)

R(a0, a1)

(∃S.A)(a1)

(∀S.¬A)(a1)

S(a1, a2)

A(a2)

¬A(a2)
✗

2. ∃R.B ⊓ ∀R.∀R.A ⊓ ∀R.¬A is satisfiable. The interpretation I defined by BI = {a1}, AI = ∅ and
RI = {(a0, a1)} is such that (∃R.B ⊓ ∀R.∀R.A ⊓ ∀R.¬A)I is non-empty.

(∃R.B ⊓ ∀R.∀R.A ⊓ ∀R.¬A)(a0)

(∃R.B)(a0)

(∀R.∀R.A ⊓ ∀R.¬A)(a0)

(∀R.∀R.A)(a0)

(∀R.¬A)(a0)

R(a0, a1)

B(a1)

∀R.A(a1)

¬A(a1)
✓

Correction of Exercise 8: Tableau algorithm for KB satisfiability

To decide whether T |= A ⊑ C with the tableau algorithm, we need to check whether {A⊓¬C} is satisfiable
w.r.t. T , i.e., whether ⟨T , {(A ⊓ ¬C)(a)}⟩ is satisfiable.

⟨T , {(A ⊓ ¬C)(a)}⟩ is satisfiable so T ̸|= A ⊑ C. A model of T that shows it is:

∆I ={a, a1}
AI ={a, a1}
BI ={a1}
CI =∅
RI ={(a, a1), (a1, a1)}
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(A ⊓ ¬C)(a)

(¬A ⊔ ∃R.(A ⊔ ¬B))(a)

(∀R.B ⊔ C)(a)

(∀R.(¬C) ⊔ C)(a)

A(a)

¬C(a)

(∃R.(A ⊔ ¬B))(a)

R(a, a1)

(A ⊔ ¬B)(a1)

(¬A ⊔ ∃R.(A ⊔ ¬B))(a1)

(∀R.B ⊔ C)(a1)

(∀R.(¬C) ⊔ C)(a1)

¬B(a1)

C(a)
✗

(∀R.B)(a)

B(a1)
✗

A(a1)

C(a)
✗

(∀R.B)(a)

B(a1)

C(a)
✗

(∀R.(¬C))(a)

¬C(a1)

(∃R.(A ⊔ ¬B))(a1)

R(a1, a2)

(A ⊔ ¬B)(a2)

(¬A ⊔ ∃R.(A ⊔ ¬B))(a2)

(∀R.B ⊔ C)(a2)

(∀R.(¬C) ⊔ C)(a2)

¬B(a2)

C(a1)
✗

(∀R.B)(a1)

B(a2)
✗

A(a2)

C(a1)
✗

(∀R.B)(a1)

B(a2)

C(a1)
✗

(∀R.(¬C))(a1)

¬C(a2)
a2 blocked by a1:✓

¬A(a1)
✗

¬A(a)
✗
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Correction of Exercise 9: Tableau algorithm for KB satisfiability – Optimization

T = {A ⊑ ∀R.B, B ⊑ ¬F, E ⊑ G, A ⊑ D ⊔ E, D ⊑ ∃R.F, ∃R.¬B ⊑ G}.

All axioms in T are inclusions with atomic left- or right-hand side.

• For inclusions A ⊑ D with atomic left-hand side, replace the TBox-rule by
TBox-atomic-left-rule: if A(a) ∈ A, a is not blocked, A ⊑ D ∈ T (A atomic), and D(a) /∈ A, replace
A with A ∪ {D(a)}.

• For inclusions D ⊑ A with atomic right-hand side, replace the TBox-rule by
TBox-atomic-right-rule: if ¬A(a) ∈ A, a is not blocked, D ⊑ A ∈ T (A atomic), and ¬D(a) /∈ A,
replace A with A ∪ {¬D(a)}.

1. T |= A ⊑ E

(A ⊓ ¬E)(a0)

A(a0)

¬E(a0)

(∀R.B)(a0)

(D ⊔ E)(a0)

E(a0)
✗

D(a0)

(∃R.F )(a0)

R(a0, a1)

F (a1)

B(a1)

¬F (a1)
✗

2. T ̸|= E ⊑ F

(E ⊓ ¬F )(a0)

E(a0)

¬F (a0)

G(a0)
✓

3. T |= A ⊑ G

(A ⊓ ¬G)(a0)

A(a0)

¬G(a0)

(∀R.B)(a0)

(D ⊔ E)(a0)

¬E(a0)

E(a0)
✗

D(a0)

(∃R.F )(a0)

R(a0, a1)

F (a1)

B(a1)

¬F (a1)
✗

4. T |= D ⊑ G

(D ⊓ ¬G)(a0)

D(a0)

¬G(a0)

(∃R.F )(a0)

¬E(a0)

(∀R.B)(a0)

R(a0, a1)

F (a1)

B(a1)

¬F (a1)
✗

5. T ̸|= G ⊑ F

(G ⊓ ¬F )(a0)

G(a0)

¬F (a0)
✓
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Correction of Exercise 10: Negation normal form algorithm

Let C be an ALC concept. We show by structural induction that

1. nnf(C) is in NNF;

2. for every interpretation I, CI = nnf(C)I ;

3. nnf(¬C) is in NNF;

4. for every interpretation I, nnf(¬C)I = (¬C)I .

In the base case, C is an atomic concept A or is of the form ¬A for an atomic concept A. In this case,
nnf(C) = C is in NNF, and for every interpretation I, CI = nnf(C)I holds trivially. Moreover, if C = A,
nnf(¬C) = ¬A and if C = ¬A, nnf(¬C) = nnf(¬(¬A)) = nnf(A) = A so in both cases, nnf(¬C) is in NNF
and for every interpretation I, nnf(¬C)I = (¬C)I .

• If C is of the form C1 ⊓ C2 with C1 and C2 two ALC concepts such that nnf(C1), nnf(C2), nnf(¬C1),
and nnf(¬C2) are in NNF and for every interpretation I, CI

i = nnf(Ci)
I and nnf(¬Ci)

I = (¬Ci)
I

(1 ≤ i ≤ 2) , then

1. nnf(C) = nnf(C1 ⊓ C2) = nnf(C1) ⊓ nnf(C2) is in NNF (since negation appears only in front of
atomic concepts in nnf(C1) and nnf(C2));

2. for every interpretation I, nnf(C)I = (nnf(C1) ⊓ nnf(C2))
I = nnf(C1)

I ∩ nnf(C2)
I = CI

1 ∩ CI
2 =

(C1 ⊓ C2)
I = CI ;

3. nnf(¬C) = nnf(¬(C1 ⊓ C2)) = nnf(¬C1) ⊔ nnf(¬C2) is in NNF (since negation appears only in
front of atomic concepts in nnf(¬C1) and nnf(¬C2));

4. for every interpretation I, nnf(¬C)I = (nnf(¬C1) ⊔ nnf(¬C2))
I = nnf(¬C1)

I ∪ nnf(¬C2)
I =

(¬CI
1 ) ∪ (¬CI

2 ) = (∆I \ CI
1 ) ∪ (∆I \ CI

2 ) = ∆I \ (CI
1 ∩ CI

2 ) = (¬(C1 ∩ C2))
I = (¬C)I .

• The case where C is of the form C1 ⊔ C2 is similar.

• If C is of the form ∃R.C ′ with C ′ an ALC concept such that nnf(C ′) and nnf(¬C ′) are in NNF and for
every interpretation I, C ′I = nnf(C ′)I and nnf(¬C ′)I = (¬C ′)I , then

1. nnf(C) = nnf(∃R.C ′) = ∃R.nnf(C ′) is in NNF (since negation appears only in front of atomic
concepts in nnf(C ′));

2. for every interpretation I, nnf(C)I = (∃R.nnf(C ′))I = {u | (u, v) ∈ RI , v ∈ nnf(C ′)I} = {u |
(u, v) ∈ RI , v ∈ C ′I} = (∃R.C ′)I = CI ;

3. nnf(¬C) = nnf(¬(∃R.C ′)) = ∀R.(nnf(¬C ′)) is in NNF (since negation appears only in front of
atomic concepts in nnf(¬C ′));

4. for every interpretation I, nnf(¬C)I = (∀R.(nnf(¬C ′)))I = {u | (u, v) ∈ RI =⇒ v ∈
nnf(¬C ′)I} = {u | (u, v) ∈ RI =⇒ v ∈ (¬C ′)I} = (¬(∃R.C ′))I = (¬C)I .

• The case where C is of the form ∀R.C ′ is similar.

• If C is of the form ¬C ′ with C ′ an ALC concept, such that nnf(C ′) is in NNF and for every interpretation
I, C ′I = nnf(C ′)I and nnf(¬C ′)I = (¬C ′)I , then

1. nnf(C) = nnf(¬C ′) is in NNF by assumption;

2. for every interpretation I, nnf(C)I = nnf(¬C ′)I = (¬C ′)I = CI ;

3. nnf(¬C) = nnf(¬(¬C ′)) = nnf(C ′) is in NNF by assumption;

4. for every interpretation I, nnf(¬C)I = nnf(C ′)I = C ′I = (¬C)I .

Hence, for every ALC concept C, nnf(C) is in NNF and for every interpretation I, CI = nnf(C)I .
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Correction of Exercise 11: Adapting tableau algorithm for another DL

Take as input ⟨T ,A⟩ where T is a TBox that contains only role inclusions of the form R ⊑ S or R ⊑ ¬S.

• Start with Ac = A.

• At each stage, apply to Ac one of the following rules that extends Ac with new assertions:

– If R(a, b) ∈ Ac, R ⊑ S ∈ T , and S(a, b) /∈ Ac, adds S(a, b) to Ac.

– If R(a, b) ∈ Ac, R ⊑ ¬S ∈ T , and ¬S(a, b) /∈ Ac, adds ¬S(a, b) to Ac.

• Stop applying rules when either:

1. Ac contains a clash, that is, a pair {R(a, b),¬R(a, b)}.
2. Ac is clash-free and complete, meaning that no rule can be applied to Ac.

• Return “yes” if Ac is clash-free, “no” otherwise.

The algorithm adds exactly one assertion of the form S(a, b) or ¬S(a, b) at each step and the number
of such assertions is bounded by 2 × r × i2 where r is the number of role names in T and i is the number
of individual names in A. Hence, Ac will contain a clash or be complete before 2 × r × i2 steps and the
algorithm terminates.

If the algorithm return “yes”, we define I by ∆I = {a | a individual in A}, AI = {a | A(a) ∈ A} for
every concept name A, RI = {(a, b) | R(a, b) ∈ Ac} for every role name R. It is clear that I is a model of
A. We show that it is a model of T :

• Let R ⊑ S ∈ T and (a, b) ∈ RI . By construction of I, R(a, b) ∈ Ac. Since Ac is complete, S(a, b) ∈ Ac

(otherwise the rule that adds it is applicable). It follows that (a, b) ∈ SI . Hence I |= R ⊑ S.

• Let R ⊑ S ∈ T and (a, b) ∈ RI . By construction of I, R(a, b) ∈ Ac. Since Ac is complete, ¬S(a, b) ∈ Ac

(otherwise the rule that adds it is applicable). Since Ac is clash-free, S(a, b) /∈ Ac. It follows that
(a, b) /∈ SI . Hence I |= R ⊑ ¬S.

It follows that I |= ⟨T ,A⟩, i.e., ⟨T ,A⟩ is satisfiable. Hence the algorithm is sound.

To show completeness, we show that the rules preserve the satisfiability of ⟨T ,Ac⟩. Assume that ⟨T ,Ac⟩
is satisfiable.

• If ⟨T ,Ac∪{S(a, b)}⟩ is obtained by applying the first rule, there is R(a, b) ∈ Ac and R ⊑ S ∈ T . Since
⟨T ,Ac⟩ is satisfiable, there is a model I of ⟨T ,Ac⟩. Since I |= R(a, b), then (aI , bI) ∈ RI , so since
I |= R ⊑ S, then (aI , bI) ∈ SI . Hence I |= ⟨T ,Ac ∪ {S(a, b)}⟩, i.e., ⟨T ,Ac ∪ {S(a, b)}⟩ is satisfiable.

• If ⟨T ,Ac ∪ {¬S(a, b)}⟩ is obtained by applying the first rule, there is R(a, b) ∈ Ac and R ⊑ ¬S ∈ T .
Since ⟨T ,Ac⟩ is satisfiable, there is a model I of ⟨T ,Ac⟩. Since I |= R(a, b), then (aI , bI) ∈ RI , so
since I |= R ⊑ ¬S, then (aI , bI) /∈ SI . Hence I |= ⟨T ,Ac ∪ {¬S(a, b)}⟩, i.e., ⟨T ,Ac ∪ {¬S(a, b)}⟩ is
satisfiable.

If ⟨T ,A⟩ is satisfiable, since applying the rules preserve satisfiability, the ABox obtained when the algorithm
terminates is clash-free, and the algorithm returns “yes”. Hence the algorithm is complete.

Correction of Exercise 12: Normal form of EL TBoxes

Normalize the following EL TBox.

T = {A ⊑ ∃R.∃S.C, A ⊓ ∃R.∃S.C ⊑ B ⊓ C, ∃R.⊤ ⊓B ⊑ ∃S.∃R.D}

The normalization step generates the following axioms:
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• A ⊑ ∃R.A1

• A1 ⊑ ∃S.C

• A ⊓ ∃R.∃S.C ⊑ A2

• A2 ⊑ B ⊓ C

• A ⊓A3 ⊑ A2

• ∃R.∃S.C ⊑ A3

• ∃R.A4 ⊑ A3

• ∃S.C ⊑ A4

• A2 ⊑ B

• A2 ⊑ C

• ∃R.⊤ ⊓B ⊑ A5

• A5 ⊑ ∃S.∃R.D

• ∃R.⊤ ⊑ A6

• A6 ⊓B ⊑ A5

• A5 ⊑ ∃S.A7

• A7 ⊑ ∃R.D

out of which only the axioms being in normal form are kept:

• A ⊑ ∃R.A1

• A1 ⊑ ∃S.C

• A ⊓A3 ⊑ A2

• ∃R.A4 ⊑ A3

• ∃S.C ⊑ A4

• A2 ⊑ B

• A2 ⊑ C

• ∃R.⊤ ⊑ A6

• A6 ⊓B ⊑ A5

• A5 ⊑ ∃S.A7

• A7 ⊑ ∃R.D

Correction of Exercise 13: Compact canonical model

T = { A ⊑ ∃R.B, B ⊑ ∃R.D, C ⊑ ∃S.C, A ⊓ C ⊑ D, B ⊓ C ⊑ D, ∃R.⊤ ⊑ C }
A = { A(a), R(b, a) }

eA

A,C,D
eB

B,C,D

eC C eD D

a

A,C,D
b

C

R

R

R

RS S

S S

S

It follows that T entails the following atomic concept inclusions (besides those that belong to T and the
trivial ones of the form X ⊑ X): A ⊑ C, A ⊑ D, B ⊑ C, B ⊑ D, and the following assertions (besides those
that belong to A): C(a), D(a) and C(b).

Correction of Exercise 14: Saturation algorithm

T = { A ⊑ B, ∃R.⊤ ⊑ D, H ⊑ ∃P.A, D ⊑ M,

B ⊑ ∃R.E, D ⊓M ⊑ H, A ⊑ ∃S.B, ∃S.M ⊑ G }
A = { D(a), S(a, b), R(b, a) }

1. We start by classifying T :

A⊑A B⊑B D⊑D E⊑E M⊑M G⊑G H⊑H

A⊑⊤ B⊑⊤ D⊑⊤ E⊑⊤ M⊑⊤ G⊑⊤ H⊑⊤
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B⊑∃R.E E⊑⊤ ∃R.⊤⊑D
B⊑D

A⊑B B⊑D
A⊑D

B⊑D D⊑M
B⊑M

A⊑B B⊑M
A⊑M

D⊑M D⊑D D⊓M⊑H
D⊑H

B⊑D D⊑H
B⊑H

A⊑B B⊑H
A⊑H

A⊑∃S.B B⊑M ∃S.M⊑G
A⊑G

We next find all assertions entailed by ⟨T ,A⟩:

⊤(a) ⊤(b)

D(a) D⊑M
M(a)

D(a) D⊑H
H(a)

R(b,a) ⊤(a) ∃R.⊤⊑D
D(b)

D(b) D⊑M
M(b)

D(b) D⊑H
H(b)

S(a,b) M(b) ∃S.M⊑G
G(a)

2. Compact canonical model:

a

D,M,H,G

b
D,M,H

eAA,B,D,M,H,G eD

D,M,H

eE

E

eG

G

eM

M

e⊤

eB

B,D,M,H

eH

H

S
R

P

P

P

P
P

P

R

R

S

Correction of Exercise 15: Properties of conservative extensions

1. If T2 is a conservative extension of T1 and T3 is a conservative extension of T2, then T3 is a conservative
extension of T1.
Let T1, T2 and T3 be three TBoxes such that T2 is a conservative extension of T1 and T3 is a conservative
extension of T2.

• Since T2 is a conservative extension of T1, then the signature of T1 is included in the signature of
T2. Since T3 is a conservative extension of T2, then the signature of T2 is included in the signature
of T3. Hence the signature of T1 is included in the signature of T3.

• Let I be a model of T3. Since T3 is a conservative extension of T2, then I is a model of T2. Since
T2 is a conservative extension of T1, it follows that I is a model of T1. Hence every model of T3
is a model of T1.

• Let I1 be a model of T1. Since T2 is a conservative extension of T1, then there is a model I2 of T2
such that
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– ∆I1 = ∆I2

– AI1 = AI2 for every atomic concept in the signature of T1
– RI1 = RI2 for every role in the signature of T1

Since T3 is a conservative extension of T2 and I2 is a model of T2, then there exists a model I3 of
T3 such that

– ∆I2 = ∆I3

– AI2 = AI3 for every atomic concept in the signature of T2
– RI2 = RI3 for every role in the signature of T2

Since the signature of T1 is included in the signature of T2, it follows that I3 is a model of T3 such
that

– ∆I1 = ∆I3

– AI1 = AI3 for every atomic concept in the signature of T1
– RI1 = RI3 for every role in the signature of T1

Hence T3 is a conservative extension of T1.

2. If T2 is a conservative extension of T1 and C and D are concepts containing only concept and role
names from T1, then it holds that T1 |= C ⊑ D if and only if T2 |= C ⊑ D.

Let T2 be a conservative extension of T1.

• Assume that T1 |= C ⊑ D. Let I be a model of T2. Since T2 is a conservative extension of T1,
then I is a model of T1. Hence, since T1 |= C ⊑ D, I |= C ⊑ D. Since this holds for every model
of T2, it follows that T2 |= C ⊑ D.

• Conversely, assume that T2 |= C ⊑ D. Let I1 be a model of T1. Since T2 is a conservative
extension of T1, there exists a model I2 of T2 such that

– ∆I1 = ∆I2

– AI1 = AI2 for every atomic concept in the signature of T1
– RI1 = RI2 for every role in the signature of T1

We show by structural induction that for every EL concept E such that E contains only concept
and role names from T1, EI1 = EI2 .

– Base case: E is an atomic concept in the signature of T1 so EI1 = EI2 .
– Induction step:

∗ Case E = ¬F , F contains only concept and role names from T1 and we assume by
induction that F I1 = F I2 . Thus EI1 = ∆I1 \ F I1 = ∆I2 \ F I2 = EI2 .

∗ Case E = F1⊓F2, F1 and F2 contain only concept and role names from T1 and we assume
by induction that F I1

1 = F I2
1 and F I1

2 = F I2
2 . Thus EI1 = F I1

1 ∩F I1
2 = F I2

1 ∩F I2
2 = EI2 .

∗ Case E = ∃R.F with R in the signature of T1, F contains only concept and role names
from T1 and we assume by induction that F I1 = F I2 . It holds that RI1 = RI2 so
EI1 = {u | (u, v) ∈ RI1 , v ∈ F I1} = {u | (u, v) ∈ RI2 , v ∈ F I2} = EI2 .

Since T2 |= C ⊑ D, then CI2 ⊆ DI2 . Since C and D are concepts containing only concept and
role names from T1, it follows that CI1 ⊆ DI1 , i.e., I1 |= C ⊑ D. Since this holds for every model
of T1, it follows that T1 |= C ⊑ D.

3. If T2 is a conservative extension of T1, then for every ABox A and assertion α that use only atomic
concepts and roles from T1, ⟨T1,A⟩ |= α iff ⟨T2,A⟩ |= α.

Let T2 be a conservative extension of T1 and A and α be an ABox and an assertion that use only
atomic concepts and roles from T1.

• Assume that ⟨T1,A⟩ |= α. Let I be a model of ⟨T2,A⟩. Since T2 is a conservative extension of T1
and I is a model of T2, then I is a model of T1. Since ⟨T1,A⟩ |= α and I is a model of A and T1,
then I |= α. Since this holds for every model of ⟨T2,A⟩, it follows that ⟨T2,A⟩ |= α.
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• Conversely, assume that ⟨T2,A⟩ |= α. Let I1 be a model of ⟨T1,A⟩. Since T2 is a conservative
extension of T1 and I1 is a model of T1, there exists a model I2 of T2 such that

– ∆I1 = ∆I2

– AI1 = AI2 for every atomic concept in the signature of T1
– RI1 = RI2 for every role in the signature of T1

Since I1 |= A and concepts and roles used in A are in the signature of T1, then I2 |= A. It follows
that I2 is a model of ⟨T2,A⟩, so I2 |= α. Since α is of the form A(a) or R(a, b) with A, R in the
signature of T1, it follows that I1 |= α. Since this holds for every model of ⟨T1,A⟩, it follows that
⟨T1,A⟩ |= α.

Correction of Exercise 16: Conservative extensions

T2 = T1 ∪ {A ⊑ C, D ⊑ B}

1. T2 is a conservative extension of T1:

• Since T1 ⊆ T2, the signature of T1 is included in the signature of T2.
• Since T1 ⊆ T2, every model of T2 is a model of T1.
• Let I1 be a model of T1. We define an interpretation I2 by

– ∆I2 = ∆I1

– EI2 = EI1 for every atomic concept in the signature of T1
– RI2 = RI1 for every role in the signature of T1
– AI2 = CI1

– BI2 = DI1

I2 is a model of T1 since it coincides with I1 on the signature of T1 and I2 |= A ⊑ C and
I2 |= D ⊑ B by construction of I2. Hence I2 is a model of T2.

2. T2∪{A ⊑ B} is a conservative extension of T1: The proof is similar to the previous question except that
we define BI2 = DI1 ∪ CI1 : It still holds that I2 |= A ⊑ C and I2 |= D ⊑ B (since DI1 ⊆ DI1 ∪ CI1)
and I2 |= A ⊑ B since CI1 ⊆ DI1 ∪ CI1 .

3. If T1 ̸|= D ⊑ C, then T2∪{B ⊑ A} is not a conservative extension of T1 because T2∪{B ⊑ A} |= D ⊑ C.
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