Correction of Exercise Sheet Description Logics

Correction of Exercise 1: Modelisation

- 1. PhD students are students and researchers. PhDStudent \sqsubseteq Student \sqcap Researcher : in ALC
- 2. Professors are not PhD students. Professor $\sqsubseteq \neg \mathsf{PhDStudent} : \text{ in } \mathcal{ALC}$
- 3. PhD students are employed by some university. PhDStudent $\sqsubseteq \exists employedBy.University : in ALC$
- 4. Those who are employed by some university are researchers, professors, administrative staff workers or technical staff workers.
 ∃employedBy.University ⊑ Researcher ⊔ Professor ⊔ AdminStaff ⊔ TechnicalStaff : in ALC
- 5. Teachers are exactly the persons that teach some course. Teacher \equiv Person $\sqcap \exists$ teach.Course : in ALC
- 6. Professors teach at least two courses. Professor $\sqsubseteq \ge 2$ teach.Course : not in ALC (number restriction)
- 7. PhD students are supervised by a researcher. PhDStudent $\sqsubseteq \exists supervise^-.Researcher : not in ALC (inverse role)$
- 8. PhD students teach only tutorials or hands-on-sessions. PhDStudent $\sqsubseteq \forall$ teach.(Tutorial \sqcup HandsOnSession) : in ALC
- 9. Administrative staff workers do not supervise PhD students. AdminStaff $\sqsubseteq \forall supervise.(\neg PhDStudent) : in ALC$
- 10. Researchers are members of a department which is part of a university. Researcher $\sqsubseteq \exists \mathsf{memberOf.}(\mathsf{Department} \sqcap \exists \mathsf{partOf.University}) : in \mathcal{ALC}$
- 11. Students that are not PhD students are not employed by a university. Student $\sqcap \neg \mathsf{PhDStudent} \sqsubseteq \neg (\exists \mathsf{employedBy.University}) : in \mathcal{ALC}$
- 12. Things that are taught are courses. $\top \sqsubseteq \forall \mathsf{teach}.\mathsf{Course} : \text{ in } \mathcal{ALC} \text{ (equivalent to } \exists \mathsf{teach}^-.\top \sqsubseteq \mathsf{Course} \text{ which is not in } \mathcal{ALC} \text{)}$
- 13. Courses are attended by at most 50 students. Course $\sqsubseteq \leq 50$ attend⁻.Student : not in ALC (number restriction, inverse role)
- 14. Courses taught by Ana are not hands-on-sessions. Course $\sqcap \exists teach^-. \{ana\} \sqsubseteq \neg HandsOnSession : not in ALC (nomimals, inverse role)$
- Ana is a researcher. Researcher(ana)
- John is a PhD student who teaches logic and is supervised by Ana. PhDStudent(*john*), teach(*john*, *logic*), supervise(*ana*, *john*)

Can you express that PhD students are employed by the same university that the one the department they are member of is part of ?

No. Best try: PhDStudent $\sqsubseteq \exists employedBy.(University \sqcap (\exists partOf^-.(Department \sqcap \exists memberOf^-.PhDStudent)))$ but no way to say that the PhD student is the same.

Correction of Exercise 2: Interpretations

- 1. $(A \sqcap \exists S.C)^{\mathcal{I}} = \{b\}$ 3. $(\forall R.C)^{\mathcal{I}} = \{b, c, d\}$ 5. $(A \sqcap \neg \exists R.\top)^{\mathcal{I}} = \{b\}$
- 2. $(B \sqcup (C \sqcap \exists S^-.\top))^{\mathcal{I}} = \{b, c\}$ 4. $(\forall S.C)^{\mathcal{I}} = \{b, c, d\}$ 6. $(\exists R.\exists S.\top)^{\mathcal{I}} = \{a\}$
- 1. No: $\mathcal{I} \not\models A \sqsubseteq B \sqcup C$ because $\{a, b\} \not\subseteq \{b, c, d\}$
- 2. Yes: $\mathcal{I} \models A \sqsubseteq \exists S. \top$ because $\{a, b\} \subseteq \{a, b\}$
- 3. Yes: $\mathcal{I} \models \exists S^- . B \sqsubseteq C$ because $\{c\} \subseteq \{c, d\}$
- 4. Yes: $\mathcal{I} \models A \sqsubseteq \neg C$ because $\{a, b\} \subseteq \{a, b\}$

Correction of Exercise 3: Basic reasoning

- 1. No. Consider the following interpretation \mathcal{I} on domain $\Delta^{\mathcal{I}} = \{a\}$: $A^{\mathcal{I}} = \{a\}$, $B^{\mathcal{I}} = \emptyset$, $C^{\mathcal{I}} = \emptyset$, $R^{\mathcal{I}} = \emptyset$. \mathcal{I} is a model of \mathcal{T} and $A^{\mathcal{I}} \not\subseteq C^{\mathcal{I}}$ so $\mathcal{T} \not\models A \sqsubseteq C$.
- 2. Yes. Let \mathcal{I} be a model of \mathcal{T} and e be an element of $\Delta^{\mathcal{I}}$ such that $e \in (A \sqcap \exists R.\top)^{\mathcal{I}} = A^{\mathcal{I}} \cap (\exists R.\top)^{\mathcal{I}}$. Since $e \in (\exists R.\top)^{\mathcal{I}}$, there exists $d \in \Delta^{\mathcal{I}}$ such that $(e, d) \in R^{\mathcal{I}}$. Since \mathcal{I} is a model of $\mathcal{T}, \mathcal{I} \models A \sqsubseteq \forall R.B$, so $e \in A^{\mathcal{I}}$ and $(e, d) \in R^{\mathcal{I}}$ implies that $d \in B^{\mathcal{I}}$. Hence $e \in (\exists R.B)^{\mathcal{I}}$. Since $\mathcal{I} \models \exists R.B \sqsubseteq C$, it follows that $e \in C^{\mathcal{I}}$. Finally, since $\mathcal{I} \models B \sqsubseteq \neg C$, $B^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ so $e \notin B^{\mathcal{I}}$. We have shown that for every model \mathcal{I} of $\mathcal{T}, (A \sqcap \exists R.\top)^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \setminus B^{\mathcal{I}}$, i.e. $\mathcal{I} \models A \sqcap \exists R.\top \sqsubseteq \neg B$. This is exactly the definition of $\mathcal{T} \models A \sqcap \exists R.\top \sqsubseteq \neg B$.
- 3. No. Assume for a contradiction that there exists a model \mathcal{I} of \mathcal{T} such that $(B \sqcap \exists R.B)^{\mathcal{I}}$ is non-empty and let $e \in (B \sqcap \exists R.B)^{\mathcal{I}}$. Since $\mathcal{I} \models \exists R.B \sqsubseteq C$ and $e \in (\exists R.B)^{\mathcal{I}}$, then $e \in C^{\mathcal{I}}$. It follows that ebelongs to $B^{\mathcal{I}}$ and to $C^{\mathcal{I}}$, so $B^{\mathcal{I}} \not\subseteq \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$, which contradicts $\mathcal{T} \models B \sqsubseteq \neg C$.
- 4. Yes. Consider the model \mathcal{I} of \mathcal{T} given in the correction of question 1. $(A \sqcap \forall R.C)^{\mathcal{I}} = \{a\}$ is non-empty.
- 5. Yes. We just need to extend the interpretation given in the correction of question 1 by setting $a^{\mathcal{I}} = a$ to obtain a model of $\langle \mathcal{T}, \mathcal{A}_1 \rangle$.
- 6. Yes. Consider the following interpretation \mathcal{I} on domain $\Delta^{\mathcal{I}} = \{a, b\}$: $a^{\mathcal{I}} = a, b^{\mathcal{I}} = b, A^{\mathcal{I}} = \{a\}, B^{\mathcal{I}} = \{b\}, C^{\mathcal{I}} = \{a\}, R^{\mathcal{I}} = \{(a, b)\}$. \mathcal{I} is a model of $\langle \mathcal{T}, \mathcal{A}_2 \rangle$.
- 7. No. Assume for a contradiction that $\langle \mathcal{T}, \mathcal{A}_3 \rangle$ has a model \mathcal{I} . We must have $a^{\mathcal{I}} \in A^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$ so since $\mathcal{I} \models A \sqsubseteq \forall R.B$, it follows that $b \in B^{\mathcal{I}}$. However, we also must have $b \in C^{\mathcal{I}}$, which contradicts $\mathcal{I} \models B \sqsubseteq \neg C$.
- 8. No. The model of $\langle \mathcal{T}, \mathcal{A}_1 \rangle$ given in question 5 does not satisfy C(a).
- 9. Yes. Let \mathcal{I} be a model of $\langle \mathcal{T}, \mathcal{A}_2 \rangle$. Since $\mathcal{I} \models A(a)$ and $\mathcal{I} \models R(a, b)$, then $a^{\mathcal{I}} \in A^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$. Since $\mathcal{I} \models A \sqsubseteq \forall R.B$, it follows that $b \in B^{\mathcal{I}}$. Hence $a^{\mathcal{I}} \in (\exists R.B)^{\mathcal{I}}$, so since $\mathcal{I} \models \exists R.B \sqsubseteq C$, $a^{\mathcal{I}} \in C^{\mathcal{I}}$. We have shown that for every model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_2 \rangle$, $a^{\mathcal{I}} \in C^{\mathcal{I}}$. This is exactly the definition of $\langle \mathcal{T}, \mathcal{A}_2 \rangle \models C(a)$.
- 10. Yes. Since $\langle \mathcal{T}, \mathcal{A}_3 \rangle$ has no model, it is true that $a^{\mathcal{I}} \in C^{\mathcal{I}}$ in every model of $\langle \mathcal{T}, \mathcal{A}_3 \rangle$. An unsatisfiable knowledge base entails every logical axiom.

Correction of Exercise 4: DL fragments

 $\begin{array}{l} \text{Minimal fragments of } \mathcal{ALC}: \ \{\Box, \neg, \exists\}, \ \{\Box, \neg, \forall\}, \ \{\sqcup, \neg, \exists\}, \ \{\sqcup, \neg, \forall\}. \\ \text{Proof for the } \{\Box, \neg, \exists\} \text{ fragment:} \end{array}$

Let C be an \mathcal{ALC} concept. We first show by induction on the structure of C that there exists C' in the $\{\Box, \neg, \exists\}$ fragment that is equivalent to C.

Base case: If C is an atomic concept, then C is in the $\{\Box, \neg, \exists\}$ fragment.

- If $C = C_1 \sqcap C_2$, and C_1 , C_2 are \mathcal{ALC} concepts equivalent to C'_1 and C'_2 in the $\{\sqcap, \neg, \exists\}$ fragment, then C is equivalent to $C' = C'_1 \sqcap C'_2$ which belongs to the fragment.
- If $C = C_1 \sqcup C_2$, and C_1 , C_2 are \mathcal{ALC} concepts equivalent to C'_1 and C'_2 in the $\{\Box, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg(\neg C'_1 \Box \neg C'_2)$ which belongs to the fragment.
- If $C = \neg C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\Box, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg C'_1$ which belongs to the fragment.
- If $C = \exists R.C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\Box, \neg, \exists\}$ fragment, then C is equivalent to $C' = \exists R.C'_1$ which belongs to the fragment.
- If $C = \forall R.C_1$ and C_1 is an \mathcal{ALC} concept equivalent to C'_1 in the $\{\Box, \neg, \exists\}$ fragment, then C is equivalent to $C' = \neg(\exists R.\neg C'_1)$ which belongs to the fragment.

We now show that every sub-fragment of the $\{\Box, \neg, \exists\}$ fragment does not capture \mathcal{ALC} . Let A and B be atomic concepts.

- $A \sqcap B$ cannot be expressed on $\{\neg, \exists\}$
- $\neg A$ cannot be expressed on $\{\Box, \exists\}$
- $\exists R.A$ cannot be expressed on $\{\Box, \neg\}$

Correction of Exercise 5: Translation to FOL

- 1. $\forall x \; (\exists y \; (R(x,y) \land \exists z \; S(y,z)) \Rightarrow B(x) \lor C(x))$
- 2. $\forall x \ (A(x) \land \neg B(x) \Rightarrow \forall y \ (R(x,y) \Rightarrow C(y)))$
- 3. $\forall x \ (\exists y \ (R(y,x) \land A(y)) \Rightarrow \neg C(x))$
- 4. $\forall x \ (A(x) \lor \exists y \ (R(x,y) \land B(y)) \Rightarrow \exists z \ S(x,z))$

Correction of Exercise 6: Negation normal form

$$\begin{array}{ll} 1. & \operatorname{nnf}(\neg(\neg A \sqcup \forall R.(\neg(B \sqcap \neg C)))) = \operatorname{nnf}(\neg(\neg A) \sqcap \operatorname{nnf}(\neg(\forall R.(\neg(B \sqcap \neg C)))) \\ & = \operatorname{nnf}(A) \sqcap \exists R.\operatorname{nnf}(\neg(\neg(B \sqcap \neg C))) \\ & = A \sqcap \exists R.\operatorname{nnf}(B \sqcap \neg C) \\ & = A \sqcap \exists R.(\operatorname{nnf}(B) \sqcap \operatorname{nnf}(\neg C)) \\ & = A \sqcap \exists R.(B \sqcap \neg C) \\ 2. & \operatorname{nnf}(\neg(\exists R.(\neg \exists S.A)) \sqcap \neg(\forall R.B)) = \operatorname{nnf}(\neg(\exists R.(\neg \exists S.A))) \sqcap \operatorname{nnf}(\neg(\forall R.B)) \\ & = \forall R.\operatorname{nnf}(\neg(\neg \exists S.A)) \sqcap \exists R.\operatorname{nnf}(\neg B) \\ & = \forall R.\operatorname{nnf}(\exists S.A) \sqcap \exists R.(\neg B) \\ & = \forall R.\exists S.\operatorname{nnf}(A) \sqcap \exists R.(\neg B) \\ & = \forall R.\exists S.A \sqcap \exists R.(\neg B) \\ & = \forall R.(\neg B)$$

Correction of Exercise 7: Tableau algorithm for concept satisfiability

1. $\exists R. \exists S. A \sqcap \forall R. \forall S. \neg A$ is not satisfiable. Indeed, every ABox generated by the tableau algorithm contains a clash:

$$\begin{array}{c} (\exists R. \exists S.A \sqcap \forall R. \forall S. \neg A)(a_0) \\ & | \\ (\exists R. \exists S.A)(a_0) \\ & | \\ (\forall R. \forall S. \neg A)(a_0) \\ & | \\ R(a_0, a_1) \\ & | \\ R(a_0, a_1) \\ & | \\ (\exists S.A)(a_1) \\ & | \\ (\exists S.A)(a_1) \\ & | \\ (\forall S. \neg A)(a_1) \\ & | \\ S(a_1, a_2) \\ & | \\ A(a_2) \\ & \neg A(a_2) \\ & \times \end{array}$$

2. $\exists R.B \sqcap \forall R.\forall R.A \sqcap \forall R.\neg A$ is satisfiable. The interpretation \mathcal{I} defined by $B^{\mathcal{I}} = \{a_1\}, A^{\mathcal{I}} = \emptyset$ and $R^{\mathcal{I}} = \{(a_0, a_1)\}$ is such that $(\exists R.B \sqcap \forall R.\forall R.A \sqcap \forall R.\neg A)^{\mathcal{I}}$ is non-empty.

```
(\exists R.B \sqcap \forall R.\forall R.A \sqcap \forall R.\neg A)(a_0)
(\exists R.B)(a_0)
(\forall R.\forall R.A \sqcap \forall R.\neg A)(a_0)
(\forall R.\forall R.A)(a_0)
(\forall R.\neg A)(a_0)
I
R(a_0, a_1)
I
B(a_1)
(\forall R.A(a_1))
```

Correction of Exercise 8: Tableau algorithm for KB satisfiability

To decide whether $\mathcal{T} \models A \sqsubseteq C$ with the tableau algorithm, we need to check whether $\{A \sqcap \neg C\}$ is satisfiable w.r.t. \mathcal{T} , i.e., whether $\langle \mathcal{T}, \{(A \sqcap \neg C)(a)\} \rangle$ is satisfiable.

 $\langle \mathcal{T}, \{(A \sqcap \neg C)(a)\}\rangle$ is satisfiable so $\mathcal{T} \not\models A \sqsubseteq C$. A model of \mathcal{T} that shows it is:

$$\Delta^{\mathcal{I}} = \{a, a_1\}$$

$$A^{\mathcal{I}} = \{a, a_1\}$$

$$B^{\mathcal{I}} = \{a_1\}$$

$$C^{\mathcal{I}} = \emptyset$$

$$R^{\mathcal{I}} = \{(a, a_1), (a_1, a_1)\}$$

Correction of Exercise 9: Tableau algorithm for KB satisfiability – Optimization

$$\mathcal{T} = \{ A \sqsubseteq \forall R.B, \ B \sqsubseteq \neg F, \ E \sqsubseteq G, \ A \sqsubseteq D \sqcup E, \ D \sqsubseteq \exists R.F, \ \exists R.\neg B \sqsubseteq G \}.$$

All axioms in \mathcal{T} are inclusions with atomic left- or right-hand side.

- For inclusions $A \sqsubseteq D$ with atomic left-hand side, replace the TBox-rule by TBox-atomic-left-rule: if $A(a) \in \mathcal{A}$, a is not blocked, $A \sqsubseteq D \in \mathcal{T}$ (A atomic), and $D(a) \notin \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{D(a)\}$.
- For inclusions $D \sqsubseteq A$ with atomic right-hand side, replace the TBox-rule by TBox-atomic-right-rule: if $\neg A(a) \in \mathcal{A}$, *a* is not blocked, $D \sqsubseteq A \in \mathcal{T}$ (*A* atomic), and $\neg D(a) \notin \mathcal{A}$, replace \mathcal{A} with $\mathcal{A} \cup \{\neg D(a)\}$.

2.
$$\mathcal{T} \not\models E \sqsubseteq F$$

 $(E \sqcap \neg F)(a_0)$
 \downarrow
 $E(a_0)$
 $\neg F(a_0)$
 $G(a_0)$
 \checkmark
 \mathcal{I}
 \mathcal{I}

Correction of Exercise 10: Negation normal form algorithm

Let C be an \mathcal{ALC} concept. We show by structural induction that

- 1. $\operatorname{nnf}(C)$ is in NNF;
- 2. for every interpretation $\mathcal{I}, C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}};$
- 3. $\operatorname{nnf}(\neg C)$ is in NNF;
- 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

In the base case, C is an atomic concept A or is of the form $\neg A$ for an atomic concept A. In this case, $\mathsf{nnf}(C) = C$ is in NNF, and for every interpretation \mathcal{I} , $C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}}$ holds trivially. Moreover, if C = A, $\mathsf{nnf}(\neg C) = \neg A$ and if $C = \neg A$, $\mathsf{nnf}(\neg C) = \mathsf{nnf}(\neg(\neg A)) = \mathsf{nnf}(A) = A$ so in both cases, $\mathsf{nnf}(\neg C)$ is in NNF and for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

- If C is of the form $C_1 \sqcap C_2$ with C_1 and C_2 two \mathcal{ALC} concepts such that $\mathsf{nnf}(C_1)$, $\mathsf{nnf}(C_2)$, $\mathsf{nnf}(\neg C_1)$, and $\mathsf{nnf}(\neg C_2)$ are in NNF and for every interpretation \mathcal{I} , $C_i^{\mathcal{I}} = \mathsf{nnf}(C_i)^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C_i)^{\mathcal{I}} = (\neg C_i)^{\mathcal{I}}$ $(1 \le i \le 2)$, then
 - 1. $\operatorname{nnf}(C) = \operatorname{nnf}(C_1 \sqcap C_2) = \operatorname{nnf}(C_1) \sqcap \operatorname{nnf}(C_2)$ is in NNF (since negation appears only in front of atomic concepts in $\operatorname{nnf}(C_1)$ and $\operatorname{nnf}(C_2)$);
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = (\mathsf{nnf}(C_1) \sqcap \mathsf{nnf}(C_2))^{\mathcal{I}} = \mathsf{nnf}(C_1)^{\mathcal{I}} \cap \mathsf{nnf}(C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} = (C_1 \sqcap C_2)^{\mathcal{I}} = C_1^{\mathcal{I}};$
 - 3. $\operatorname{nnf}(\neg C) = \operatorname{nnf}(\neg (C_1 \sqcap C_2)) = \operatorname{nnf}(\neg C_1) \sqcup \operatorname{nnf}(\neg C_2)$ is in NNF (since negation appears only in front of atomic concepts in $\operatorname{nnf}(\neg C_1)$ and $\operatorname{nnf}(\neg C_2)$);
 - 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = (\mathsf{nnf}(\neg C_1) \sqcup \mathsf{nnf}(\neg C_2))^{\mathcal{I}} = \mathsf{nnf}(\neg C_1)^{\mathcal{I}} \cup \mathsf{nnf}(\neg C_2)^{\mathcal{I}} = (\neg C_1^{\mathcal{I}}) \cup (\neg C_2^{\mathcal{I}}) = (\Delta^{\mathcal{I}} \setminus C_1^{\mathcal{I}}) \cup (\Delta^{\mathcal{I}} \setminus C_2^{\mathcal{I}}) = \Delta^{\mathcal{I}} \setminus (C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}) = (\neg (C_1 \cap C_2))^{\mathcal{I}} = (\neg C)^{\mathcal{I}}.$
- The case where C is of the form $C_1 \sqcup C_2$ is similar.
- If C is of the form $\exists R.C'$ with C' an \mathcal{ALC} concept such that $\mathsf{nnf}(C')$ and $\mathsf{nnf}(\neg C')$ are in NNF and for every interpretation $\mathcal{I}, C'^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}}$, then
 - 1. $nnf(C) = nnf(\exists R.C') = \exists R.nnf(C')$ is in NNF (since negation appears only in front of atomic concepts in nnf(C'));
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = (\exists R.\mathsf{nnf}(C'))^{\mathcal{I}} = \{u \mid (u,v) \in R^{\mathcal{I}}, v \in \mathsf{nnf}(C')^{\mathcal{I}}\} = \{u \mid (u,v) \in R^{\mathcal{I}}, v \in C'^{\mathcal{I}}\} = (\exists R.C')^{\mathcal{I}} = C^{\mathcal{I}};$
 - 3. $\operatorname{nnf}(\neg C) = \operatorname{nnf}(\neg(\exists R.C')) = \forall R.(\operatorname{nnf}(\neg C'))$ is in NNF (since negation appears only in front of atomic concepts in $\operatorname{nnf}(\neg C')$);
 - 4. for every interpretation \mathcal{I} , $\operatorname{nnf}(\neg C)^{\mathcal{I}} = (\forall R.(\operatorname{nnf}(\neg C')))^{\mathcal{I}} = \{u \mid (u,v) \in R^{\mathcal{I}} \implies v \in \operatorname{nnf}(\neg C')^{\mathcal{I}}\} = \{u \mid (u,v) \in R^{\mathcal{I}} \implies v \in (\neg C')^{\mathcal{I}}\} = (\neg (\exists R.C'))^{\mathcal{I}} = (\neg C)^{\mathcal{I}}.$
- The case where C is of the form $\forall R.C'$ is similar.
- If C is of the form $\neg C'$ with C' an \mathcal{ALC} concept, such that $\mathsf{nnf}(C')$ is in NNF and for every interpretation $\mathcal{I}, C'^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}}$ and $\mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}}$, then
 - 1. $\operatorname{nnf}(C) = \operatorname{nnf}(\neg C')$ is in NNF by assumption;
 - 2. for every interpretation \mathcal{I} , $\mathsf{nnf}(C)^{\mathcal{I}} = \mathsf{nnf}(\neg C')^{\mathcal{I}} = (\neg C')^{\mathcal{I}} = C^{\mathcal{I}};$
 - 3. $\operatorname{nnf}(\neg C) = \operatorname{nnf}(\neg(\neg C')) = \operatorname{nnf}(C')$ is in NNF by assumption;
 - 4. for every interpretation \mathcal{I} , $\mathsf{nnf}(\neg C)^{\mathcal{I}} = \mathsf{nnf}(C')^{\mathcal{I}} = C'^{\mathcal{I}} = (\neg C)^{\mathcal{I}}$.

Hence, for every \mathcal{ALC} concept C, $\mathsf{nnf}(C)$ is in NNF and for every interpretation \mathcal{I} , $C^{\mathcal{I}} = \mathsf{nnf}(C)^{\mathcal{I}}$.

Correction of Exercise 11: Adapting tableau algorithm for another DL

Take as input $\langle \mathcal{T}, \mathcal{A} \rangle$ where \mathcal{T} is a TBox that contains only role inclusions of the form $R \sqsubseteq S$ or $R \sqsubseteq \neg S$.

- Start with $\mathcal{A}_c = \mathcal{A}$.
- At each stage, apply to \mathcal{A}_c one of the following rules that extends \mathcal{A}_c with new assertions:
 - If $R(a,b) \in \mathcal{A}_c$, $R \sqsubseteq S \in \mathcal{T}$, and $S(a,b) \notin \mathcal{A}_c$, adds S(a,b) to \mathcal{A}_c .
 - If $R(a,b) \in \mathcal{A}_c$, $R \sqsubseteq \neg S \in \mathcal{T}$, and $\neg S(a,b) \notin \mathcal{A}_c$, adds $\neg S(a,b)$ to \mathcal{A}_c .
- Stop applying rules when either:
 - 1. \mathcal{A}_c contains a clash, that is, a pair $\{R(a,b), \neg R(a,b)\}$.
 - 2. \mathcal{A}_c is clash-free and complete, meaning that no rule can be applied to \mathcal{A}_c .
- Return "yes" if \mathcal{A}_c is clash-free, "no" otherwise.

The algorithm adds exactly one assertion of the form S(a,b) or $\neg S(a,b)$ at each step and the number of such assertions is bounded by $2 \times r \times i^2$ where r is the number of role names in \mathcal{T} and i is the number of individual names in \mathcal{A} . Hence, \mathcal{A}_c will contain a clash or be complete before $2 \times r \times i^2$ steps and the algorithm terminates.

If the algorithm return "yes", we define \mathcal{I} by $\Delta^{\mathcal{I}} = \{a \mid a \text{ individual in } \mathcal{A}\}, A^{\mathcal{I}} = \{a \mid A(a) \in \mathcal{A}\}$ for every concept name $A, R^{\mathcal{I}} = \{(a, b) \mid R(a, b) \in \mathcal{A}_c\}$ for every role name R. It is clear that \mathcal{I} is a model of \mathcal{A} . We show that it is a model of \mathcal{T} :

- Let $R \sqsubseteq S \in \mathcal{T}$ and $(a,b) \in R^{\mathcal{I}}$. By construction of \mathcal{I} , $R(a,b) \in \mathcal{A}_c$. Since \mathcal{A}_c is complete, $S(a,b) \in \mathcal{A}_c$ (otherwise the rule that adds it is applicable). It follows that $(a,b) \in S^{\mathcal{I}}$. Hence $\mathcal{I} \models R \sqsubseteq S$.
- Let $R \sqsubseteq S \in \mathcal{T}$ and $(a, b) \in R^{\mathcal{I}}$. By construction of \mathcal{I} , $R(a, b) \in \mathcal{A}_c$. Since \mathcal{A}_c is complete, $\neg S(a, b) \in \mathcal{A}_c$ (otherwise the rule that adds it is applicable). Since \mathcal{A}_c is clash-free, $S(a, b) \notin \mathcal{A}_c$. It follows that $(a, b) \notin S^{\mathcal{I}}$. Hence $\mathcal{I} \models R \sqsubseteq \neg S$.

It follows that $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A} \rangle$, i.e., $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable. Hence the algorithm is sound.

To show completeness, we show that the rules preserve the satisfiability of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Assume that $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable.

- If $\langle \mathcal{T}, \mathcal{A}_c \cup \{S(a, b)\}\rangle$ is obtained by applying the first rule, there is $R(a, b) \in \mathcal{A}_c$ and $R \sqsubseteq S \in \mathcal{T}$. Since $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable, there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Since $\mathcal{I} \models R(a, b)$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$, so since $\mathcal{I} \models R \sqsubseteq S$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in S^{\mathcal{I}}$. Hence $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A}_c \cup \{S(a, b)\}\rangle$, i.e., $\langle \mathcal{T}, \mathcal{A}_c \cup \{S(a, b)\}\rangle$ is satisfiable.
- If $\langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a, b)\}\rangle$ is obtained by applying the first rule, there is $R(a, b) \in \mathcal{A}_c$ and $R \sqsubseteq \neg S \in \mathcal{T}$. Since $\langle \mathcal{T}, \mathcal{A}_c \rangle$ is satisfiable, there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A}_c \rangle$. Since $\mathcal{I} \models R(a, b)$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$, so since $\mathcal{I} \models R \sqsubseteq \neg S$, then $(a^{\mathcal{I}}, b^{\mathcal{I}}) \notin S^{\mathcal{I}}$. Hence $\mathcal{I} \models \langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a, b)\}\rangle$, i.e., $\langle \mathcal{T}, \mathcal{A}_c \cup \{\neg S(a, b)\}\rangle$ is satisfiable.

If $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable, since applying the rules preserve satisfiability, the ABox obtained when the algorithm terminates is clash-free, and the algorithm returns "yes". Hence the algorithm is complete.

Correction of Exercise 12: Normal form of \mathcal{EL} TBoxes

Normalize the following \mathcal{EL} TBox.

$$\mathcal{T} = \{ A \sqsubseteq \exists R. \exists S. C, \quad A \sqcap \exists R. \exists S. C \sqsubseteq B \sqcap C, \quad \exists R. \top \sqcap B \sqsubseteq \exists S. \exists R. D \}$$

The normalization step generates the following axioms:

• $A \sqsubseteq \exists R.A_1$	• $A_2 \sqsubseteq B$
• $A_1 \sqsubseteq \exists S.C$	• $A_2 \sqsubseteq C$
• $A \sqcap \exists R. \exists S. C \sqsubseteq A_2$	• $\exists R. \top \sqcap B \sqsubseteq A_5$
• $A_2 \sqsubseteq B \sqcap C$	• $A_5 \sqsubseteq \exists S. \exists R. D$
• $A \sqcap A_3 \sqsubseteq A_2$	• $\exists R.\top \sqsubseteq A_6$
• $\exists R. \exists S. C \sqsubseteq A_3$	• $A_6 \sqcap B \sqsubseteq A_5$
• $\exists R.A_4 \sqsubseteq A_3$	• $A_5 \sqsubseteq \exists S.A_7$
• $\exists S.C \sqsubseteq A_4$	• $A_7 \sqsubseteq \exists R.D$

out of which only the axioms being in normal form are kept:

• $A \sqsubseteq \exists R.A_1$	• $\exists R.A_4 \sqsubseteq A_3$	• $A_2 \sqsubseteq C$	• $A_5 \sqsubseteq \exists S.A_7$
• $A_1 \sqsubseteq \exists S.C$	• $\exists S.C \sqsubseteq A_4$	• $\exists R. \top \sqsubseteq A_6$	• $A_7 \sqsubseteq \exists R.D$
• $A \sqcap A_3 \sqsubseteq A_2$	• $A_2 \sqsubseteq B$	• $A_6 \sqcap B \sqsubseteq A_5$	

Correction of Exercise 13: Compact canonical model

 $\mathcal{T} = \{ A \sqsubseteq \exists R.B, \quad B \sqsubseteq \exists R.D, \quad C \sqsubseteq \exists S.C, \quad A \sqcap C \sqsubseteq D, \quad B \sqcap C \sqsubseteq D, \quad \exists R.\top \sqsubseteq C \} \\ \mathcal{A} = \{ A(a), \quad R(b,a) \}$

It follows that \mathcal{T} entails the following atomic concept inclusions (besides those that belong to \mathcal{T} and the trivial ones of the form $X \sqsubseteq X$): $A \sqsubseteq C$, $A \sqsubseteq D$, $B \sqsubseteq C$, $B \sqsubseteq D$, and the following assertions (besides those that belong to \mathcal{A}): C(a), D(a) and C(b).

Correction of Exercise 14: Saturation algorithm

$$\mathcal{T} = \{ A \sqsubseteq B, \exists R. \top \sqsubseteq D, H \sqsubseteq \exists P.A, D \sqsubseteq M, \\ B \sqsubseteq \exists R.E, D \sqcap M \sqsubseteq H, A \sqsubseteq \exists S.B, \exists S.M \sqsubseteq G \} \\ \mathcal{A} = \{ D(a), S(a, b), R(b, a) \}$$

1. We start by classifying \mathcal{T} :

We next find all assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$:

$$\overline{\top(a)} \quad \overline{\top(b)}$$

$$\underline{D(a)} \quad \underline{D \sqsubseteq M} \qquad \underline{D(a)} \quad \underline{D \sqsubseteq H} \\
\underline{M(a)} \quad \overline{\top(a)} \quad \exists R. \top \sqsubseteq D \qquad \underline{D(b)} \quad \underline{D \sqsubseteq M} \qquad \underline{D(b)} \quad \underline{D \sqsubseteq H} \\
\underline{R(b,a)} \quad \overline{\top(a)} \quad \exists R. \top \sqsubseteq D \qquad \underline{D(b)} \quad \underline{D \sqsubseteq M} \qquad \underline{D(b)} \quad \underline{D \sqsubseteq H} \\
\underline{M(b)} \quad \underline{J(b)} \quad \underline{S(a,b)} \quad \underline{M(b)} \quad \exists S. M \sqsubseteq G \\
\underline{G(a)} \quad \underline{G(a)} \quad \underline{M(b)} \quad \underline{$$

2. Compact canonical model:

Correction of Exercise 15: Properties of conservative extensions

1. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then \mathcal{T}_3 is a conservative extension of \mathcal{T}_1 .

Let \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 be three TBoxes such that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 .

- Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 . Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then the signature of \mathcal{T}_2 is included in the signature of \mathcal{T}_3 . Hence the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_3 .
- Let \mathcal{I} be a model of \mathcal{T}_3 . Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then \mathcal{I} is a model of \mathcal{T}_2 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , it follows that \mathcal{I} is a model of \mathcal{T}_1 . Hence every model of \mathcal{T}_3 is a model of \mathcal{T}_1 .
- Let \mathcal{I}_1 be a model of \mathcal{T}_1 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then there is a model \mathcal{I}_2 of \mathcal{T}_2 such that

 $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$

- $-A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
- $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Since \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 and \mathcal{I}_2 is a model of \mathcal{T}_2 , then there exists a model \mathcal{I}_3 of \mathcal{T}_3 such that

- $-\Delta^{\mathcal{I}_2} = \Delta^{\mathcal{I}_3}$
- $-A^{\mathcal{I}_2} = A^{\mathcal{I}_3}$ for every atomic concept in the signature of \mathcal{T}_2
- $R^{\mathcal{I}_2} = R^{\mathcal{I}_3}$ for every role in the signature of \mathcal{T}_2

Since the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 , it follows that \mathcal{I}_3 is a model of \mathcal{T}_3 such that

 $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_3}$

 $-A^{\mathcal{I}_1} = A^{\mathcal{I}_3}$ for every atomic concept in the signature of \mathcal{T}_1

 $- R^{\mathcal{I}_1} = R^{\mathcal{I}_3}$ for every role in the signature of \mathcal{T}_1

Hence \mathcal{T}_3 is a conservative extension of \mathcal{T}_1 .

2. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and C and D are concepts containing only concept and role names from \mathcal{T}_1 , then it holds that $\mathcal{T}_1 \models C \sqsubseteq D$ if and only if $\mathcal{T}_2 \models C \sqsubseteq D$.

Let \mathcal{T}_2 be a conservative extension of \mathcal{T}_1 .

- Assume that $\mathcal{T}_1 \models C \sqsubseteq D$. Let \mathcal{I} be a model of \mathcal{T}_2 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then \mathcal{I} is a model of \mathcal{T}_1 . Hence, since $\mathcal{T}_1 \models C \sqsubseteq D$, $\mathcal{I} \models C \sqsubseteq D$. Since this holds for every model of \mathcal{T}_2 , it follows that $\mathcal{T}_2 \models C \sqsubseteq D$.
- Conversely, assume that $\mathcal{T}_2 \models C \sqsubseteq D$. Let \mathcal{I}_1 be a model of \mathcal{T}_1 . Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that
 - $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
 - $-A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
 - $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

We show by structural induction that for every \mathcal{EL} concept E such that E contains only concept and role names from \mathcal{T}_1 , $E^{\mathcal{I}_1} = E^{\mathcal{I}_2}$.

- Base case: E is an atomic concept in the signature of \mathcal{T}_1 so $E^{\mathcal{I}_1} = E^{\mathcal{I}_2}$.
- Induction step:
 - * Case $E = \neg F$, F contains only concept and role names from \mathcal{T}_1 and we assume by induction that $F^{\mathcal{I}_1} = F^{\mathcal{I}_2}$. Thus $E^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \setminus F^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2} \setminus F^{\mathcal{I}_2} = E^{\mathcal{I}_2}$.
 - * Case $E = F_1 \sqcap F_2$, F_1 and F_2 contain only concept and role names from \mathcal{T}_1 and we assume by induction that $F_1^{\mathcal{I}_1} = F_1^{\mathcal{I}_2}$ and $F_2^{\mathcal{I}_1} = F_2^{\mathcal{I}_2}$. Thus $E^{\mathcal{I}_1} = F_1^{\mathcal{I}_1} \cap F_2^{\mathcal{I}_1} = F_1^{\mathcal{I}_2} \cap F_2^{\mathcal{I}_2} = E^{\mathcal{I}_2}$.
 - * Case $E = \exists R.F$ with R in the signature of \mathcal{T}_1 , F contains only concept and role names from \mathcal{T}_1 and we assume by induction that $F^{\mathcal{I}_1} = F^{\mathcal{I}_2}$. It holds that $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ so $E^{\mathcal{I}_1} = \{u \mid (u, v) \in R^{\mathcal{I}_1}, v \in F^{\mathcal{I}_1}\} = \{u \mid (u, v) \in R^{\mathcal{I}_2}, v \in F^{\mathcal{I}_2}\} = E^{\mathcal{I}_2}$.

Since $\mathcal{T}_2 \models C \sqsubseteq D$, then $C^{\mathcal{I}_2} \subseteq D^{\mathcal{I}_2}$. Since C and D are concepts containing only concept and role names from \mathcal{T}_1 , it follows that $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1}$, i.e., $\mathcal{I}_1 \models C \sqsubseteq D$. Since this holds for every model of \mathcal{T}_1 , it follows that $\mathcal{T}_1 \models C \sqsubseteq D$.

3. If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , then for every ABox \mathcal{A} and assertion α that use only atomic concepts and roles from \mathcal{T}_1 , $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$ iff $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$.

Let \mathcal{T}_2 be a conservative extension of \mathcal{T}_1 and \mathcal{A} and α be an ABox and an assertion that use only atomic concepts and roles from \mathcal{T}_1 .

• Assume that $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$. Let \mathcal{I} be a model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$. Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{I} is a model of \mathcal{T}_2 , then \mathcal{I} is a model of \mathcal{T}_1 . Since $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$ and \mathcal{I} is a model of \mathcal{A} and \mathcal{T}_1 , then $\mathcal{I} \models \alpha$. Since this holds for every model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$, it follows that $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$.

- Conversely, assume that $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$. Let \mathcal{I}_1 be a model of $\langle \mathcal{T}_1, \mathcal{A} \rangle$. Since \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 and \mathcal{I}_1 is a model of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that
 - $-\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$ - $A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1 - $R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Since $\mathcal{I}_1 \models \mathcal{A}$ and concepts and roles used in \mathcal{A} are in the signature of \mathcal{T}_1 , then $\mathcal{I}_2 \models \mathcal{A}$. It follows that \mathcal{I}_2 is a model of $\langle \mathcal{T}_2, \mathcal{A} \rangle$, so $\mathcal{I}_2 \models \alpha$. Since α is of the form A(a) or R(a, b) with \mathcal{A} , R in the signature of \mathcal{T}_1 , it follows that $\mathcal{I}_1 \models \alpha$. Since this holds for every model of $\langle \mathcal{T}_1, \mathcal{A} \rangle$, it follows that $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$.

Correction of Exercise 16: Conservative extensions

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{A \sqsubseteq C, \ D \sqsubseteq B\}$

- 1. \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 :
 - Since $\mathcal{T}_1 \subseteq \mathcal{T}_2$, the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2 .
 - Since $\mathcal{T}_1 \subseteq \mathcal{T}_2$, every model of \mathcal{T}_2 is a model of \mathcal{T}_1 .
 - Let \mathcal{I}_1 be a model of \mathcal{T}_1 . We define an interpretation \mathcal{I}_2 by

$$-\Delta^{\mathcal{I}_2} = \Delta^{\mathcal{I}}$$

 $- E^{\mathcal{I}_2} = E^{\mathcal{I}_1}$ for every atomic concept in the signature of \mathcal{T}_1

 $- R^{\mathcal{I}_2} = R^{\mathcal{I}_1}$ for every role in the signature of \mathcal{T}_1

$$-A^{\mathcal{I}_2} = C^{\mathcal{I}_1}$$

$$- B^{\mathcal{I}_2} = D^{\mathcal{I}_2}$$

 \mathcal{I}_2 is a model of \mathcal{T}_1 since it coincides with \mathcal{I}_1 on the signature of \mathcal{T}_1 and $\mathcal{I}_2 \models A \sqsubseteq C$ and $\mathcal{I}_2 \models D \sqsubseteq B$ by construction of \mathcal{I}_2 . Hence \mathcal{I}_2 is a model of \mathcal{T}_2 .

- 2. $\mathcal{T}_2 \cup \{A \sqsubseteq B\}$ is a conservative extension of \mathcal{T}_1 : The proof is similar to the previous question except that we define $B^{\mathcal{I}_2} = D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$: It still holds that $\mathcal{I}_2 \models A \sqsubseteq C$ and $\mathcal{I}_2 \models D \sqsubseteq B$ (since $D^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$) and $\mathcal{I}_2 \models A \sqsubseteq B$ since $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1} \cup C^{\mathcal{I}_1}$.
- 3. If $\mathcal{T}_1 \not\models D \sqsubseteq C$, then $\mathcal{T}_2 \cup \{B \sqsubseteq A\}$ is not a conservative extension of \mathcal{T}_1 because $\mathcal{T}_2 \cup \{B \sqsubseteq A\} \models D \sqsubseteq C$.