Correction of Exercise Sheet
Description Logics

Correction of Exercise 1: Modelisation

1.

10.

11.

12.

13.

14.

15.

16.

PhD students are students and researchers.
PhDStudent C Student M Researcher : in ALC

. Professors are not PhD students.

Professor T —PhDStudent : in ALC

PhD students are employed by some university.
PhDStudent C JemployedBy.University : in ALC

Those who are employed by some university are researchers, professors, administrative staff workers or
technical staff workers.
JemployedBy.University C Researcher U Professor LI AdminStaff LI TechnicalStaff : in ALC

Teachers are exactly the persons that teach some course.
Teacher = Person M Jteach.Course : in ALC

Professors teach at least two courses.
Professor C> 2teach.Course : not in ALC (number restriction)

PhD students are supervised by a researcher.
PhDStudent C Jsupervise™.Researcher : not in ALC (inverse role)

PhD students teach only tutorials or hands-on-sessions.
PhDStudent C Vteach.(Tutorial LU HandsOnSession) : in ALC

Administrative staff workers do not supervise PhD students.
AdminStaff C Vsupervise.(=PhDStudent) : in ALC

Researchers are members of a department which is part of a university.
Researcher C ImemberOf.(Department M IpartOf.University) : in ALC

Students that are not PhD students are not employed by a university.
Student M —=PhDStudent = —(JemployedBy.University) : in ALC

Things that are taught are courses.
T C Vteach.Course : in ALC (equivalent to Jteach™. T C Course which is not in ALC)

Courses are attended by at most 50 students.
Course C< 50attend ™ .Student : not in ALC (number restriction, inverse role)

Courses taught by Ana are not hands-on-sessions.
Course M Jteach™.{ana} C —HandsOnSession : not in ALC (nomimals, inverse role)

Ana is a researcher.
Researcher(ana)

John is a PhD student who teaches logic and is supervised by Ana.
PhDStudent(john), teach(john, logic), supervise(ana, john)



Can you express that PhD students are employed by the same university that the one the department
they are member of is part of 7

No. Best try: PhDStudent = JemployedBy.(University1(3partOf —.(Department13ImemberOf ~.PhDStudent)))
but no way to say that the PhD student is the same.

Correction of Exercise 2: Interpretations

1.

2.

(An3S8.0)t = {b} 3. (VR.C)T = {b,c,d} 5. (AN-3R.T)L = {b}
(BUu(Cn3s—T)r={bc} 4. (¥S.0)f ={b,c,d} 6. (3R3IS.T) = {a}

. No: Z £ AC BUC because {a,b} € {b,c,d}

Yes: Z = A C 3S.T because {a,b} C {a,b}
Yes: Z =3S57.B C C because {c} C {c,d}

. Yes: 7 = A C =C because {a,b} C {a,b}

Correction of Exercise 3: Basic reasoning

1.

10.

No. Consider the following interpretation Z on domain AT = {a}: AT = {a}, BL =0, C% =0, R = ().
T is amodel of T and AT Z CT so T AC C.

Yes. Let Z be a model of 7 and e be an element of A” such that e € (AM3IR.T)Z = AT N (3IR.T)L.
Since e € (3R.T)Z, there exists d € AT such that (e,d) € RZ. Since T is a model of T, Z = A C VR.B,
so e € AT and (e,d) € R implies that d € BZ. Hence e € (3R.B)%. Since T |= 3R.B C C, it follows
that e € CZ. Finally, since Z = B C -C, B C AT\ C? so e ¢ BY. We have shown that for every
model Z of T, (AN 3R.T)E C AT\ B%,ie. T}= AN3IR.T C -B. This is exactly the definition of
TEAMN3IRTLC -B.

No. Assume for a contradiction that there exists a model Z of 7 such that (B M 3R.B)? is non-empty
and let e € (BM3R.B)%. Since Z = IR.B C C and e € (3R.B)%, then e € CT. It follows that e
belongs to BT and to CZ, so BT ¢ AT\ CZ, which contradicts 7 = B € —C.

Yes. Consider the model Z of T given in the correction of question 1. (AMVR.C)* = {a} is non-empty.

Yes. We just need to extend the interpretation given in the correction of question 1 by setting a’ = a
to obtain a model of (T, .A;1).

Yes. Consider the following interpretation Z on domain AT = {a,b}: o = a, V¥ = b, AT = {a},
BT = {b}, CF = {a}, RT = {(a,b)}. T is a model of (T, As).

No. Assume for a contradiction that (7, .43) has a model Z. We must have a* € AT and (a?,b?) € R?
so since Z = A C VR.B, it follows that b € BT, However, we also must have b € CZ, which contradicts
IE=BLC-C.

No. The model of (T, .A;) given in question 5 does not satisfy C(a).

Yes. Let T be a model of (T, Az). Since Z = A(a) and T |= R(a,b), then a* € A? and (a®,b%) € RT.
Since Z = A C VR.B, it follows that b € BZ. Hence a € (IR.B)%, so since T = IR.B C C,
a® € C%. We have shown that for every model Z of (T, A2), aZ € CT. This is exactly the definition of

(T, A2) = C(a).

Yes. Since (T, A3) has no model, it is true that aZ € CT in every model of (7,.A3). An unsatisfiable
knowledge base entails every logical axiom.



Correction of Exercise 4: DL fragments

Minimal fragments of ALC: {M,—,3}, {N,—,V}, {U,—, 3}, {U,~, v}

Proof for the {M, -, 3} fragment:

Let C be an ALC concept. We first show by induction on the structure of C' that there exists C’ in the
{M, =, 3} fragment that is equivalent to C.

Base case: If C is an atomic concept, then C'is in the {1, -, 3} fragment.

o If C = C1MCy, and Cy, Cy are ALC concepts equivalent to C] and C% in the {1, —, 3} fragment, then
C' is equivalent to C" = C M CY which belongs to the fragment.

o If C =C1UCy, and Cq, Cy are ALC concepts equivalent to C] and C) in the {M, -, 3} fragment, then
C is equivalent to C" = —=(—C7 M —C%) which belongs to the fragment.

e If C = —C; and C is an ALC concept equivalent to C7 in the {M, -, 3} fragment, then C is equivalent
to ¢’ = =C] which belongs to the fragment.

e If C = 3JR.C; and C} is an ALC concept equivalent to C] in the {1, =, 3} fragment, then C is equivalent
to ¢/ = 3R.C| which belongs to the fragment.

e If C =VR.C} and C} is an ALC concept equivalent to C] in the {M, =, 3} fragment, then C is equivalent
to C" = =(3R.—C7) which belongs to the fragment.

We now show that every sub-fragment of the {M,—, 3} fragment does not capture ALC. Let A and B be
atomic concepts.

e A B cannot be expressed on {—, 3}
e —A cannot be expressed on {M, 3}

e JR.A cannot be expressed on {1, -}

Correction of Exercise 5: Translation to FOL
1. Y (3y (R(z,y) A3z S(y, 2)) = Bx) v C(z))
2. Yz (A(z) A —B(z) = Yy (R(z,y) = C(y)))
3. Vo (Jy (R(y,z) N Aly)) = ~C())
4. Yz (A(z) V 3y (R(z,y) A B(y)) = 3z S(z, 2))

Correction of Exercise 6: Negation normal form

L. nnf(=(mAUVR.(-(B M1 -=C)))) =nnf(=(=A) M nnf(=(VR.(-(B 1 -C))))
=nnf(A) N 3R.nnf(=(=(BMN-=C))))
=AN3R.nnf(B 11 -C)
=AM 3R.(nnf(B) M nnf(-C))
=AN3R.(BN-C)

2. nnf(=(3R.(-35.4)) N ~(VR.B)) =nnf(—~(3R.(=35.4))) N nnf(~(VR.B))
=VR.nnf(—(—35.4)) N IR.nnf(—-B)
=VR.nnf(3S.4) N IR.(-B)
—VR.3S.nnf(A) N 3R.(-B)
=VR.3S.AM3R.(-B)



Correction of Exercise 7: Tableau algorithm for concept satisfiability

1. dR.3S.ANVR.VS.—A is not satisfiable. Indeed, every ABox generated by the tableau algorithm contains
a clash:

(3R.35.AMVR.VS.~A)(ap)
(HR.HS‘.A)(aO)
(VR.VS.LA)(aD)
R(ag, az)
(HS./‘l)(al)
(VS.—\Ll)(al)
S(an,a
A(az)

—A(az)

X

2. IR.BMYRVYR.ATIVR.-A is satisfiable. The interpretation Z defined by BY = {a1}, AZ = 0 and
RT = {(ag,a1)} is such that (AR.BMVYRVR.ANMVR.~A)T is non-empty.

(3R.BMVYR.YR.AMYR.~A)(ao)
(aR.é)(aO)

(VR.YR.A H‘VR.ﬁA)(aO)
(VR.VR‘.A)(aO)
(VR.JA)(aO)

R(ao‘v ar)

B(‘al)

VR./‘l(al)

—\A(al)
v

Correction of Exercise 8: Tableau algorithm for KB satisfiability

To decide whether 7 = A C C with the tableau algorithm, we need to check whether {AM—C'} is satisfiable
w.r.t. T, i.e.,, whether (7, {(AM~C)(a)}) is satisfiable.
(T,{(AM=C)(a)}) is satisfiable so T = A C C. A model of T that shows it is:

AT ={a,a1}

AT ={a,a,}

BT ={a1}

ct =0

R* ={(a,a1), (a1,a1)}

4



(A1 -C)(a)

|
(FAU3IR.(AU-B))(a)

(3R.(AU-B))(a)
R(a‘, ap)
(AU ﬂ‘B)(al)
(mAU HR.(Jl U=B))(a1)
(VR.B u‘ C)(ar)

|
(VR.(=C) L C)(ay)

e
(VR.B)(a) C)(<a) (VR'm@
(VR.(=C))(a) C)(‘a)
)
—|A)((a1) (3R.(A U‘_‘B))(al)
R(ar, az)
(AU -B)(ao)
(AU 33.()1 U —B))(az)
(VR.B ¥ C)(as)
(VR.(ﬁC)‘ L C)(az)
e
VR, Bml) (VR.Bﬂl)
o) e
T C)
(VR.(-C)) ) .
~C(az)

as blocked by a;:v'



Correction of Exercise 9: Tableau algorithm for KB satisfiability — Optimization
T={ACVRB, BC-F, ECG, ACDUE, DC3R.F, 3R~BLCG}.
All axioms in 7T are inclusions with atomic left- or right-hand side.

e For inclusions A C D with atomic left-hand side, replace the TBox-rule by
TBox-atomic-left-rule: if A(a) € A, a is not blocked, A T D € T (A atomic), and D(a) ¢ A, replace
A with AU {D(a)}.

e For inclusions D C A with atomic right-hand side, replace the TBox-rule by
TBox-atomic-right-rule: if =A(a) € A, a is not blocked, D T A € T (A atomic), and ~D(a) ¢ A,
replace A with AU {=D(a)}.

. TEACE 3. TEACG 4 TEDCG
(AN =E)(ao) (A =G)(ao) (D1 =G)(ao)
\ \ \
A(ao) A(ao) D(ao)
\ \ \
—\E(ao) —\G(ao) _\G(ao)
\ \ \
(VR.B)(ap) (VR.B)(ap) (3R.F)(ag)
\ \ \
(DU E)(ao) (DU E)(ao) —E(ag)
_— \ \
D) T (;LO) ~E(ap) (VR.B)(ao)
(3R.F)(ao) Dl B Rlap.a)
. | agp ‘CL(] X aﬂ‘a ai
R(ao, al) (HRF) (ao) F(al)
\ \ \
F(al) R(ao, al) B(al)
\ \ ‘
Bla) F(a) e
—\F(al) B(‘al)
X ‘
—F'(a1)
X
2. TEECF 5. TEGCEF
(EM=F)(ao) (G =F)(ao)
\ \
E(aop) G(ao)
\
ﬁF(ao) —|F§a0)
G(ao)
v



Correction of Exercise 10: Negation normal form algorithm

Let C be an ALC concept. We show by structural induction that
1. nnf(C) is in NNF;
2. for every interpretation Z, CT = nnf(C)Z;
3. nnf(=C) is in NNF;
4. for every interpretation Z, nnf(-C)% = (-=C)~.

In the base case, C' is an atomic concept A or is of the form —A for an atomic concept A. In this case,
nnf(C) = C is in NNF, and for every interpretation Z, CZ = nnf(C)? holds trivially. Moreover, if C' = A,
nnf(—C) = = A and if C = = A, nnf(=C) = nnf(=(=A4)) = nnf(A) = A so in both cases, nnf(=C) is in NNF
and for every interpretation Z, nnf(-C)% = (-=C)Z.

e If C is of the form C; M Cy with C; and C two ALC concepts such that nnf(Cy), nnf(C2), nnf(=C1),
and nnf(—=C3) are in NNF and for every interpretation Z, CZ = nnf(C;)? and nnf(=C;)% = (=C;)*
(1 <i<2), then

1. nnf(C) = nnf(Cy M Cy) = nnf(Cy) M nnf(Cs) is in NNF (since negation appears only in front of
atomic concepts in nnf(C}) and nnf(Cs));

2. for every interpretation Z, nnf(C)% = (nnf(C7) M nnf(C2))t = nnf(C1)% Nnnf(C2)t = CENCT =
(01 1 CQ)I = CI;

3. nnf(=C) = nnf(=(Cy M C2)) = nnf(=C1) Unnf(=C3) is in NNF (since negation appears only in
front of atomic concepts in nnf(=C1) and nnf(=C%));

4. for every interpretation Z, nnf(=C)Z = (nnf(=Cj) U nnf(=C3))% = nnf(=C1)% U nnf(=Cy)T =
(-CT) U (=C3) = (AT\ CT) U (AT\ CF) = AT\ (CT N C3) = (=(C1 N C2))* = (=C)*.
e The case where C is of the form Cq U C5 is similar.

e If C is of the form JR.C’ with C" an ALC concept such that nnf(C”") and nnf(—C") are in NNF and for
every interpretation Z, C*Z = nnf(C’)? and nnf(=C’)* = (=C’)%, then

1. nnf(C) = nnf(3R.C’) = FR.nnf(C’) is in NNF (since negation appears only in front of atomic

concepts in nnf(C"));

2. for every interpretation Z, nnf(C)? = (IR.nnf(C"))? = {u | (u,v) € RT,v € nnf(C")’} = {u |
(u,v) € Rt,v € O} = (3R.C")T = C7;

3. nnf(=C) = nnf(=(3R.C")) = VR.(nnf(=C")) is in NNF (since negation appears only in front of
atomic concepts in nnf(—C"));

4. for every interpretation Z, nnf(=C)t = (VR.(nnf(=C))) = {u | (u,v) € RT — v €
nnf(=C"2} = {u | (u,v) € RT = v € (-C")*} = (-(3R.C"))* = (-C)L.

e The case where C is of the form VR.C’ is similar.

e If C is of the form ~C’ with C" an ALC concept, such that nnf(C”) is in NNF and for every interpretation
Z, C'F = nnf(C")* and nnf(=C")% = (=C")%, then
1. nnf(C) = nnf(=C") is in NNF by assumption;
2. for every interpretation Z, nnf(C) = nnf(=C")? = (-C")* = C7;
3. nnf(=C) = nnf(=(=C")) = nnf(C”) is in NNF by assumption;
4. for every interpretation Z, nnf(-~C)% = nnf(C’)t = C"* = (-C)L.

Hence, for every ALC concept C, nnf(C) is in NNF and for every interpretation Z, CZ = nnf(C)~.



Correction of Exercise 11: Adapting tableau algorithm for another DL

Take as input (7,.4) where T is a TBox that contains only role inclusions of the foorm R C S or R C —S.
e Start with A, = A.
e At each stage, apply to A. one of the following rules that extends .A. with new assertions:

— If R(a,b) € A;, RC S €T, and S(a,b) ¢ A., adds S(a,b) to A..
— If R(a,b) € A;, RC =S € T, and =S(a,b) ¢ A, adds =S(a,b) to A..

e Stop applying rules when either:

1. A, contains a clash, that is, a pair {R(a,b), "R(a,b)}.

2. A, is clash-free and complete, meaning that no rule can be applied to A..
e Return “yes” if A, is clash-free, “no” otherwise.

The algorithm adds exactly one assertion of the form S(a,b) or =S(a,b) at each step and the number
of such assertions is bounded by 2 x r x i2 where r is the number of role names in 7 and 4 is the number
of individual names in A. Hence, A, will contain a clash or be complete before 2 x r x i? steps and the
algorithm terminates.

If the algorithm return “yes”, we define Z by A? = {a | a individual in A}, A = {a | A(a) € A} for
every concept name A, RT = {(a,b) | R(a,b) € A.} for every role name R. It is clear that Z is a model of
A. We show that it is a model of T

e Let RC S €T and (a,b) € RT. By construction of Z, R(a,b) € A.. Since A, is complete, S(a,b) € A,
(otherwise the rule that adds it is applicable). It follows that (a,b) € ST. Hence Z = RC S.

e Let RC S € T and (a,b) € RY. By construction of Z, R(a, b) € A.. Since A, is complete, S (a,b) € A
(otherwise the rule that adds it is applicable). Since A, is clash-free, S(a,b) ¢ A.. It follows that
(a,b) ¢ ST. Hence T = R C —S.

It follows that Z = (T, A), i.e., (T,.A) is satisfiable. Hence the algorithm is sound.

To show completeness, we show that the rules preserve the satisfiability of (7,.A.). Assume that (T, .A.)
is satisfiable.

o If (T, A.U{S(a,b)}) is obtained by applying the first rule, there is R(a,b) € A. and RC S € 7. Since
(T, A.) is satisfiable, there is a model Z of (T, A.). Since Z = R(a,b), then (a,b?) € RT, so since
ZE RLC S, then (a,b%) € ST. Hence T = (T, A. U {S(a,b)}), i.e., (T, A.U{S(a,b)}) is satisfiable.

o If (T, A.U{=S(a,b)}) is obtained by applying the first rule, there is R(a,b) € A. and RC =S € T.
Since (T, A.) is satisfiable, there is a model Z of (T, A.). Since T = R(a,b), then (a,b?) € RZ, so
since Z = R C 9, then (a?,b?) ¢ ST. Hence T |= (T, A. U {=S(a,b)}), ie., (T, AU {=S(a,b)}) is
satisfiable.

If (T, A) is satisfiable, since applying the rules preserve satisfiability, the ABox obtained when the algorithm
terminates is clash-free, and the algorithm returns “yes”. Hence the algorithm is complete.

Correction of Exercise 12: Normal form of ££ TBoxes

Normalize the following £L£ TBox.
T={AC3R3S.C, AnNIR3ISCCBNC, FJRTNBLCISIR.D}

The normalization step generates the following axioms:



.AEHRAl .AQEB

e A, C3SC o« AL C

e AM3IRIS.CLC A, e BRTNBC A
e AL,CBNC e A5 C3S.3R.D
o AMA;C A, e JR.T C Ag

e JR3S.CLC A, e AgNBLC A;

o JR.A, C As o A; C 3S.4;

o 3S.CC Ay e A;C3R.D

out of which only the axioms being in normal form are kept:

o A E E|RA1 [ ] E|RA4 EAg [ ] AQ E C o A5 E 35147
e A C3S.C e JS.CC Ay e JR.T C Ag e A; C3IR.D
o ATTA3C Ay e AL B e AgM B L A;

Correction of Exercise 13: Compact canonical model

T={AC3RB, BC3IRD, CC3SC, ANCCD, BNCCD, IRTCC}
A={A(a), R(b,a)}

A,C,D B,C,D
CA-------=--=->5 > €ER
I LA
I A
I s L I
s 8. R
- ! Pid / |
VRN | P , |
/ N Yy R/ Y
s, eC €p D
\ //)‘\ K\ ;
- ! \/\,\
I AERN
\S / \\S
| // \\
| <
0 R \\\
a b
A, C,D C

It follows that 7 entails the following atomic concept inclusions (besides those that belong to 7 and the
trivial ones of the form X C X): AC C, AC D, BC C, B C D, and the following assertions (besides those
that belong to A): C(a), D(a) and C(b).

Correction of Exercise 14: Saturation algorithm

T={ACB, 3RTCD, HC3PA, DCM,
BC3RE, DNMCH, AC3SB, 3SMCG}
A={D(a), S(a,b), R(b,a)}

1. We start by classifying 7

ACA BCB DCD FECE MCM GCG HCH

ACT BCT DCT  ECT MCT GCT HCT



BCIR.E FECT 3JRTCD ACB  BCD

BCD ACD
BCD DCM ACB  BCM
BCM ACM
DCM DCD DNMCH BCD DCH ACB  BCH
DCH BCH ACH
AC3S.B BCM  3S.MLCG
ACG

We next find all assertions entailed by (7, .A):

T(a)  T(b)
D(a) DCM  D(a) DCH
M (a) H(a)
R(ba) T() 3RTCD D() DCM  D(Ob) DCH
D(b) M (b) H(b)
S(ab) M(b) 3S.MCG
G(a)

2. Compact canonical model:

P

G

STe

D,M,H,G .-~

eM

S M

D, M, H
eT

Correction of Exercise 15: Properties of conservative extensions

1. If7T5 is a conservative extension of T1 and T3 is a conservative extension of Ta, then T3 is a conservative
extension of T1.

Let 71, T2 and 73 be three TBoxes such that 75 is a conservative extension of 77 and 73 is a conservative
extension of 7s.

e Since 75 is a conservative extension of 77, then the signature of 77 is included in the signature of
T3. Since T3 is a conservative extension of 7a, then the signature of 7 is included in the signature
of T3. Hence the signature of 77 is included in the signature of 7s.

e Let Z be a model of 73. Since T3 is a conservative extension of 75, then Z is a model of 75. Since
T3 is a conservative extension of 77, it follows that Z is a model of 7;. Hence every model of T3
is a model of 7;.

e Let Z; be a model of 77. Since 75 is a conservative extension of 77, then there is a model Zy of 7T
such that

10



— AT = A2

— AT = A™ for every atomic concept in the signature of 73

— RT = R”2 for every role in the signature of 73
Since 73 is a conservative extension of 75 and Zy is a model of 75, then there exists a model Z3 of
T3 such that

— A2 — AT

— AT2 = A® for every atomic concept in the signature of 75

— R™2 = R?5 for every role in the signature of 75
Since the signature of 77 is included in the signature of 75, it follows that Z3 is a model of T3 such
that

— ATt = AT

— ATt = AT for every atomic concept in the signature of 7;

— RT1 = R® for every role in the signature of 77

Hence 73 is a conservative extension of 77.

2. If T2 is a conservative extension of Ty and C and D are concepts containing only concept and role
names from Ty, then it holds that T = C T D if and only if To = C C D.

Let 75 be a conservative extension of 77.

e Assume that 73 = C C D. Let Z be a model of 72. Since T3 is a conservative extension of 7,
then Z is a model of 7;. Hence, since 71 = C C D, Z = C C D. Since this holds for every model
of T, it follows that 7o = C C D.

e Conversely, assume that 7o = C C D. Let Z; be a model of 77. Since 73 is a conservative
extension of 77, there exists a model Zy of 75 such that

— AT — AT
— ATt = A™ for every atomic concept in the signature of 73
— RT = R”2 for every role in the signature of 73
We show by structural induction that for every ££ concept E such that E contains only concept
and role names from 7;, EXt = E%2.
— Base case: F is an atomic concept in the signature of 77 so BTt = E%2,
— Induction step:
x Case £ = —F, F contains only concept and role names from 7; and we assume by
induction that F7t = FZ2, Thus EZt = AT\ F71 = A2\ F22 = FT2,
x Case F = F1MFy, Fy and F3 contain only concept and role names from 77 and we assume
by induction that F{* = F{2 and Ff' = Ff2. Thus ET' = FP N FP = FRnFR = B
x Case F = JR.F with R in the signature of 77, F' contains only concept and role names
from 77 and we assume by induction that FZ' = FZ2. It holds that RT* = R”? so
ET = {u| (u,v) € R\,v € FI'} = {u | (u,v) € R®2,v € F2} = ET2,
Since T3 = C C D, then C*2 C D*2. Since C and D are concepts containing only concept and
role names from 71, it follows that C7 C D%t ie., Z; = C C D. Since this holds for every model
of 71, it follows that 7; = C C D.

3. If 75 is a conservative extension of T1, then for every ABox A and assertion « that use only atomic

concepts and roles from Tr, (T1, A) = a iff (T2, A) E «a.

Let 75 be a conservative extension of 77 and A and « be an ABox and an assertion that use only
atomic concepts and roles from 77.

e Assume that (71, A) = «. Let Z be a model of (72,.A). Since T3 is a conservative extension of 7y
and Z is a model of 73, then Z is a model of 7. Since (71,.A4) = « and Z is a model of A and 77,
then Z |= a. Since this holds for every model of (73, .A), it follows that (72, A) = a.

11



e Conversely, assume that (72, 4) = a. Let Z; be a model of (77,.4). Since 73 is a conservative
extension of 7; and Z; is a model of 77, there exists a model Zy of 75 such that

— AL = AL
— AT = A% for every atomic concept in the signature of 7;
— RT' = R™2 for every role in the signature of T;

Since Z; | A and concepts and roles used in A are in the signature of 77, then Zy = A. It follows
that Z is a model of (72,.4), so Iy = . Since « is of the form A(a) or R(a,b) with A, R in the
signature of 7y, it follows that Z; = «. Since this holds for every model of (77,.4), it follows that

(T, A) = o

Correction of Exercise 16: Conservative extensions

T:=TiU{ACC, DC B}
1. 75 is a conservative extension of 7Ti:

e Since 71 C 7o, the signature of 77 is included in the signature of 7.
e Since 71 C 73, every model of 75 is a model of 77.
e Let 77 be a model of 77. We define an interpretation Zy by
— AL — AT
— ET2 = ET for every atomic concept in the signature of 7T;
— R™2 = R for every role in the signature of Ty
— A2 = T
— BZ: — p°
Ty is a model of 7; since it coincides with Z; on the signature of 73 and Zo = A C C and
7y = D C B by construction of Zy. Hence Zy is a model of 75.

2. ToU{A C B} is a conservative extension of 7;: The proof is similar to the previous question except that
we define B¥2 = D%t U C*1: Tt still holds that Zy = AC C and Z, = D C B (since DT € D% U CT)
and Zy = A C B since ch c phhych,

3. If Th £ D C C, then TU{B C A} is not a conservative extension of 71 because ToU{B C A} = D C C.
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