Description Logics and Reasoning on Data 4: Reasoning in \mathcal{EL}

C. Bourgaux, M. Thomazo

Outline

Lightweight Description Logics

- ightharpoonup Reasoning in \mathcal{ALC} and all its extensions is ExpTIME-hard
- ▶ ExpTIME-hardness already holds for \mathcal{FL}_0 , the \mathcal{ALC} fragment without \neg , \sqcup and \exists , whose concepts are built according to the following grammar: $C := \top \mid A \mid C \sqcap C \mid \forall R.C$
- ► Some applications require very large ontologies and/or data
 - ► SNOMED CT (medical ontology) > 350 000 concepts
 - lacktriangle NCI (National Cancer Institute Thesaurus) pprox 20 000 concepts
 - ► GO (Gene Ontology) ≈ 30 000 concepts
- ▶ Many of them do not require universal restrictions $(\forall R.C)$ but rather existential restrictions $(\exists R.C)$
- ► Since the mid 2000's, increasing interest in lightweight DLs
 - reasoning in polynomial time
 - expressivity sufficient for many applications
 - allow for existential restrictions

Lightweight Description Logics

- ► Two main families of lightweight DLs
 - ightharpoonup the \mathcal{EL} family
 - designed to allow efficient reasoning with large ontologies
 - core of the OWL 2 EL profile
 - ► the DL-Lite family
 - designed for ontology-mediated query answering
 - core of the OWL 2 QL profile
 - cf. course on query rewriting

The \mathcal{EL} Family

 ${\cal EL}$ concepts are built according to the following grammar:

$$C := \top \mid A \mid C \sqcap C \mid \exists R.C$$

and an \mathcal{EL} Tbox contains only concept inclusions $C_1 \sqsubseteq C_2$

- ▶ Fragment of \mathcal{ALC} without \neg , \sqcup and \forall
- ▶ Possible extensions that remain tractable
 - \triangleright \mathcal{EL}_{\perp} : \perp to express disjoint concepts
 - $\triangleright \mathcal{EL}^{dr}$: domain and range restrictions
 - ▶ dom(R) $\sqsubseteq C$ ($\equiv \exists R. \top \sqsubseteq C$, already in plain \mathcal{EL})
 - ▶ $ran(R) \sqsubseteq C \ (\equiv \exists R^-. \top \sqsubseteq C, \text{ not expressible in plain } \mathcal{EL})$
 - \triangleright \mathcal{ELO} : nominals $\{o\}$
 - ▶ (complex) role inclusions $R_1 \circ \cdots \circ R_n \sqsubseteq R_{n+1}$ (includes transitivity (trans R) $\equiv R \circ R \sqsubseteq R$)
- ▶ OWL 2 EL profile includes all these extensions
- ▶ Adding any of the constructors \neg , \sqcup , \forall , R^- makes reasoning EXPTIME-hard

Reasoning in \mathcal{EL}

Focus on plain \mathcal{EL} : the TBox contains concept inclusions $C_1 \sqsubseteq C_2$ with $C := \top \mid A \mid C \sqcap C \mid \exists R.C$

- ► Satisfiability is trivial
 - $I = (\{e\}, \cdot^{\mathcal{I}}), a^{\mathcal{I}} = e, A^{\mathcal{I}} = \{e\}, R^{\mathcal{I}} = \{(e, e)\}$
- ► Subsumption/classification or instance checking are not!
 - cannot be reduced to satisfiability
 - focus on these reasoning tasks

Reasoning in \mathcal{EL}

Subsumption: Given an \mathcal{EL} TBox \mathcal{T} and two \mathcal{EL} concepts \mathcal{C} and \mathcal{D} , decide whether $\mathcal{T} \models \mathcal{C} \sqsubseteq \mathcal{D}$

- ▶ We will assume that *C* and *D* are atomic concepts
 - ightharpoonup if C, D are \mathcal{EL} complex concepts,

$$\mathcal{T} \models C \sqsubseteq D \text{ iff } \mathcal{T} \cup \{A \sqsubseteq C, D \sqsubseteq B\} \models A \sqsubseteq B$$

where A, B are fresh concept names

Classification: Given an \mathcal{EL} TBox \mathcal{T} , find all atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

Instance checking: Given an \mathcal{EL} KB $\langle \mathcal{T}, \mathcal{A} \rangle$ and an \mathcal{EL} concept C, decide for every individual a from \mathcal{A} whether $\langle \mathcal{T}, \mathcal{A} \rangle \models C(a)$

- ▶ We will assume that *C* is an atomic concept

Normal Form of \mathcal{EL} TBoxes

An \mathcal{EL} TBox is in normal form if it contains only concept inclusions of one of the following forms:

$$A \sqsubseteq B$$
 $A_1 \sqcap A_2 \sqsubseteq B$ $A \sqsubseteq \exists R.B$ $\exists R.A \sqsubseteq B$

where A, A_1, A_2 and B are atomic concepts or \top

- For every \mathcal{EL} TBox \mathcal{T} , we can construct in polynomial time \mathcal{T}' in normal form (possibly using new concept names) such that
 - ▶ for every $C \sqsubseteq D$ which uses only concept names from \mathcal{T} , $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}' \models C \sqsubseteq D$
 - for every ABox \mathcal{A} and assertion α that uses atomic concepts from $\langle \mathcal{T}, \mathcal{A} \rangle$, $\langle \mathcal{T}, \mathcal{A} \rangle \models \alpha$ iff $\langle \mathcal{T}', \mathcal{A} \rangle \models \alpha$

We will assume that TBoxes are in normal form

Normalization algorithm

Exhaustively apply the following normalization rules to ${\mathcal T}$

NR_0	$\hat{C} \sqsubseteq \hat{D}$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqsubseteq \hat{D}$
$NR^{\ell,1}_\sqcap$	$C \sqcap \hat{D} \sqsubseteq B$	\rightarrow	$\hat{D} \sqsubseteq A$,	$C \sqcap A \sqsubseteq B$
$NR^{\ell,2}_\sqcap$	$\hat{C} \sqcap D \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$A \sqcap D \sqsubseteq B$
NR^ℓ_\exists	$\exists R.\hat{C} \sqsubseteq B$	\rightarrow	$\hat{C} \sqsubseteq A$,	$\exists R.A \sqsubseteq B$
NR_{\exists}^{r}	$B \sqsubseteq \exists R.\hat{C}$	\rightarrow	$A \sqsubseteq \hat{C}$,	$B \sqsubseteq \exists R.A$
NR_{\square}^{r}	$B \sqsubseteq D \sqcap E$	\rightarrow	$B \sqsubseteq D$,	$B \sqsubseteq E$

where

- ightharpoonup C, D, E are arbitrary \mathcal{EL} concepts
- $ightharpoonup \hat{C}, \hat{D}$ are \mathcal{EL} concepts that are neither atomic concepts nor \top
- ▶ B is an atomic concept
- ► A is a fresh atomic concept

Normalize
$$\mathcal{T} = \{\exists R.C \sqcap D \sqsubseteq \exists S.\exists R.C\}$$

Example

Normalize
$$\mathcal{T} = \{\exists R.C \sqcap D \sqsubseteq \exists S.\exists R.C\}$$

$$\exists R.C \sqcap D \sqsubseteq \exists S.\exists R.C \quad \rightarrow \quad \exists R.C \sqcap D \sqsubseteq A_1, \quad A_1 \sqsubseteq \exists S.\exists R.C \quad (NR_0)$$

$$\exists R.C \sqcap D \sqsubseteq A_1 \quad \rightarrow \quad \exists R.C \sqsubseteq A_2, \quad A_2 \sqcap D \sqsubseteq A_1 \quad (NR_{\sqcap}^{\ell,2})$$

$$A_1 \sqsubseteq \exists S.\exists R.C \quad \rightarrow \quad A_1 \sqsubseteq \exists S.A_3, \quad A_3 \sqsubseteq \exists R.C \quad (NR_{\exists}')$$

Normalized TBox:

$$\mathcal{T}' = \{\exists R.C \sqsubseteq A_2, \ A_2 \sqcap D \sqsubseteq A_1, \ A_1 \sqsubseteq \exists S.A_3, \ A_3 \sqsubseteq \exists R.C\}$$

Termination and complexity

For every input \mathcal{EL} TBox \mathcal{T} , the normalization algorithm terminates in linear time w.r.t. the size of \mathcal{T} .

- lacktriangle Proof based on abnormality degree of ${\mathcal T}$
- ightharpoonup Abnormal occurrence of a concept C within T:
 - $ightharpoonup C \sqsubseteq D$, where C, D are neither atomic concepts nor \top
 - C is neither an atomic concept nor ⊤, and is under a conjunction or an existential restriction
 - C is under a conjunction operator on the right hand side
- lacktriangle Abnormality degree of \mathcal{T} : number of abnormal occurrences
 - a TBox with abnormality degree 0 is in normal form
 - lacktriangle the abnormality degree is bounded by the size of ${\mathcal T}$
- lacktriangle Claim: Each rule decreases the abnormality degree of ${\mathcal T}$

- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀

 - decreases the abnormality degree by 1
 - ightharpoonup removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences

- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀
 - $\blacktriangleright \ \mathcal{T}' = \mathcal{T} \setminus \{\hat{C} \sqsubseteq \hat{D}\} \cup \{\hat{C} \sqsubseteq A, \ A \sqsubseteq \hat{D}\}\}$
 - decreases the abnormality degree by 1
 - removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences
- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying $\mathsf{NR}_{\sqcap}^{\ell,1}$
 - $\blacktriangleright \ \mathcal{T}' = \mathcal{T} \setminus \{C \sqcap \hat{D} \sqsubseteq B\} \cup \{\hat{D} \sqsubseteq A, \ C \sqcap A \sqsubseteq B\}$
 - decreases the abnormality degree by 1
 - removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
 - does not modify the number of other abnormal occurrences $(C \sqcap \hat{D})$ is an abnormal occurrence of $C \cap A$ is one

- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀

 - decreases the abnormality degree by 1
 - removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences
- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying $\mathsf{NR}^{\ell,1}_{\sqcap}$

 - decreases the abnormality degree by 1
 - removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
 - ▶ does not modify the number of other abnormal occurrences $(C \sqcap \hat{D})$ is an abnormal occurrence of $C \sqcap A$ is one)
- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR_{\exists}^r

 - decreases the abnormality degree by 1
 - removes abnormal occurrence $\exists R.\hat{C}$ of \hat{C}
 - does not modify other abnormal occurrences

- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR₀

 - lacktriangle decreases the abnormality degree by 1
 - removes abnormal occurrence $\hat{C} \sqsubseteq \hat{D}$ of \hat{C}
 - does not modify other abnormal occurrences
- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying $\mathsf{NR}^{\ell,1}_{\sqcap}$

 - decreases the abnormality degree by 1
 - removes abnormal occurrence $C \sqcap \hat{D}$ of \hat{D}
 - does not modify the number of other abnormal occurrences $(C \sqcap \hat{D})$ is an abnormal occurrence of $C \cap A$ is one)
- ▶ If \mathcal{T}' is obtained from \mathcal{T} by applying NR^r_\exists

 - decreases the abnormality degree by 1
 - removes abnormal occurrence $\exists R.\hat{C}$ of \hat{C}
 - does not modify other abnormal occurrences
- ▶ $NR_{\square}^{\ell,2}$, NR_{\exists}^{ℓ} , NR_{\square}^{r} : left as practice

Conservative Extensions

 \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 if:

- lacktriangle the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2
- ightharpoonup every model of \mathcal{T}_2 is a model of \mathcal{T}_1
- ▶ for every model \mathcal{I}_1 of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 with:
 - $ightharpoonup \Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
 - $lackbox{ }A^{\mathcal{I}_1}=A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
 - $ightharpoonup R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Conservative Extensions

 \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 if:

- lacktriangle the signature of \mathcal{T}_1 is included in the signature of \mathcal{T}_2
- ightharpoonup every model of \mathcal{T}_2 is a model of \mathcal{T}_1
- for every model \mathcal{I}_1 of \mathcal{T}_1 , there exists a model \mathcal{I}_2 of \mathcal{T}_2 with:
 - $ightharpoonup \Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$
 - $lacksquare{A}^{\mathcal{I}_1}=A^{\mathcal{I}_2}$ for every atomic concept in the signature of \mathcal{T}_1
 - $ightharpoonup R^{\mathcal{I}_1} = R^{\mathcal{I}_2}$ for every role in the signature of \mathcal{T}_1

Properties of conservative extensions

- ▶ Transitivity: If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 , and \mathcal{T}_3 is a conservative extension of \mathcal{T}_2 , then \mathcal{T}_3 is a conservative extension of \mathcal{T}_1
- ▶ If \mathcal{T}_2 is a conservative extension of \mathcal{T}_1
 - ▶ if C and D are concepts containing only concept and role names from \mathcal{T}_1 , then it holds that $\mathcal{T}_1 \models C \sqsubseteq D$ if and only if $\mathcal{T}_2 \models C \sqsubseteq D$
 - for every ABox \mathcal{A} and assertion α that use only atomic concepts and roles from \mathcal{T}_1 , $\langle \mathcal{T}_1, \mathcal{A} \rangle \models \alpha$ iff $\langle \mathcal{T}_2, \mathcal{A} \rangle \models \alpha$

Soundness and completeness

- T and T' need not be equivalent due to the introduction of new atomic concepts by the normalization rules
- ightharpoonup Claim: \mathcal{T}' is a conservative extension of \mathcal{T}

Show that if \mathcal{T}_2 is obtained from \mathcal{T}_1 by applying one of the normalization rules, then \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 . The claim follows by transitivity.

- ▶ If \mathcal{T}_2 is obtained from \mathcal{T}_1 by applying NR₀

 - ightharpoonup every model of \mathcal{T}_2 is a model of \mathcal{T}_1
 - for every model \mathcal{I}_1 of \mathcal{T}_1 , define \mathcal{I}_2
 - lacksquare $\Delta^{\mathcal{I}_2}=\Delta^{\mathcal{I}_1}$, $R^{\mathcal{I}_2}=R^{\mathcal{I}_1}$ for every role
 - ▶ $B^{\mathcal{I}_2} = B^{\mathcal{I}_1}$ for every atomic concept different from A
 - $A^{\mathcal{I}_2} = \hat{C}^{\mathcal{I}_1}$
 - $ightharpoonup \mathcal{I}_2 \models \mathcal{T}_2$
- Other rules left as practice

- ► To decide entailment of an axiom or assertion in DL, we normally need to consider all the models of the KB
- ▶ In \mathcal{EL} , for every KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, there exists a finite model $\mathcal{C}_{\mathcal{K}}$ which can be used to check whether an assertion or an inclusion between two atomic concepts is entailed
- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ is the compact canonical model of $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

Construction of $\mathcal{C}_{\mathcal{K}}$

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ with \mathcal{T} an \mathcal{EL} TBox in normal form

▶ Start with \mathcal{I}_0 defined by

$$\Delta^{\mathcal{I}_0} = \{a \mid a \text{ individual from } \mathcal{A}\} \cup \{e_A \mid A \text{ atomic concept}\} \cup \{e_\top\}$$

$$A^{\mathcal{I}_0} = \{a \mid A(a) \in \mathcal{A}\} \cup \{e_A\}$$

$$R^{\mathcal{I}_0} = \{(a,b) \mid R(a,b) \in \mathcal{A}\}$$

 $a^{\mathcal{I}_0}=a$ for every individual from \mathcal{A}

▶ \mathcal{I}_{n+1} is obtained from \mathcal{I}_n by applying one of the following rules (note that C can be an atomic concept A, $A_1 \sqcap A_2$ or $\exists R.A$)

$$\begin{aligned} &\mathsf{R}_1: \text{if } C \sqsubseteq B \in \mathcal{T}, x \in C^{\mathcal{I}_n} \text{ and } x \notin B^{\mathcal{I}_n}, \text{ then } B^{\mathcal{I}_{n+1}} = B^{\mathcal{I}_n} \cup \{x\} \\ &\mathsf{R}_2: \text{if } A \sqsubseteq \exists R.B \in \mathcal{T}, x \in A^{\mathcal{I}_n} \text{ and } (x, e_B) \notin R^{\mathcal{I}_n}, \text{ then } R^{\mathcal{I}_{n+1}} = R^{\mathcal{I}_n} \cup \{(x, e_B)\} \end{aligned}$$

▶ When we reach \mathcal{I}_k such that no more rules apply, set $\mathcal{C}_{\mathcal{K}} = \mathcal{I}_k$

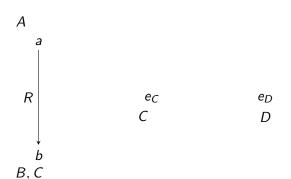
Example

$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$

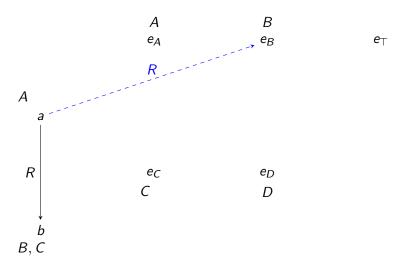
 e_A

B e_B

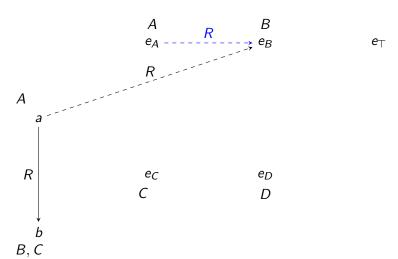
 e_{\top}



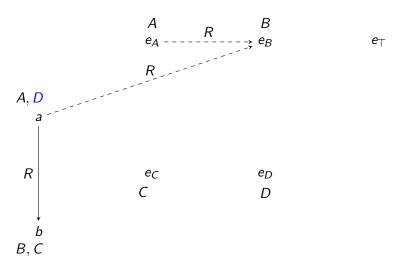
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



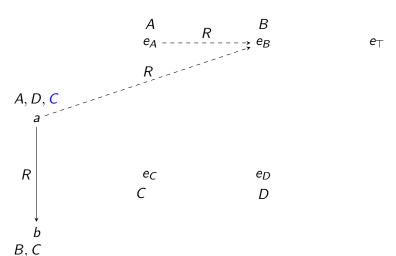
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



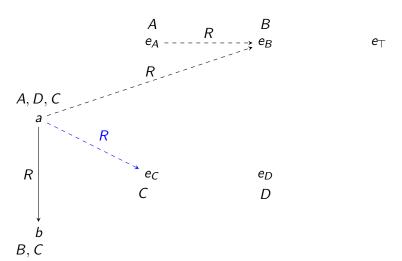
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



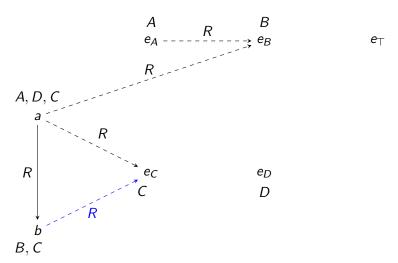
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



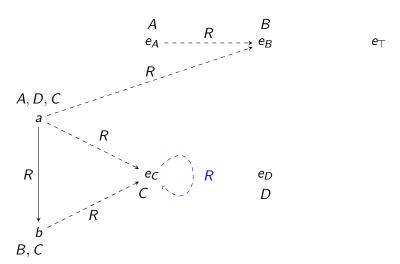
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



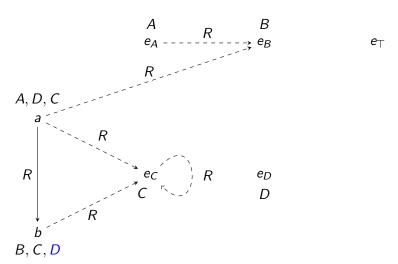
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



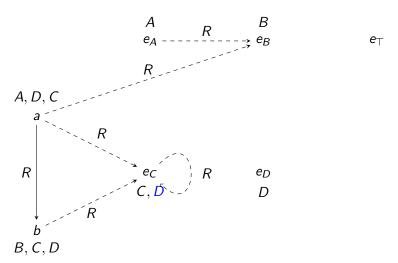
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



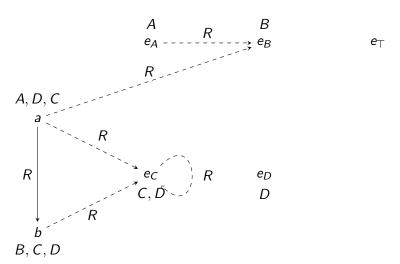
$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



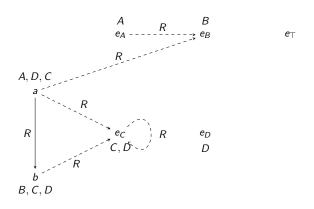
- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $ightharpoonup \Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - lacktriangle each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}

- $lackbox{}{\sim}$ $\mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $ightharpoonup \Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - $lackbox{ each rule application adds an element or pair of elements of } \Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
 - $ightharpoonup \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_1 would apply)
 - ▶ for every $A \sqsubseteq \exists R.B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}}$, $(x, e_B) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_2 would apply), and since $e_B \in B^{\mathcal{C}_{\mathcal{K}}}$, $x \in \exists R.B^{\mathcal{C}_{\mathcal{K}}}$
 - lacktriangle hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$

- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $ightharpoonup \Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - $lackbox{ each rule application adds an element or pair of elements of } \Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
 - $ightharpoonup \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_1 would apply)
 - ▶ for every $A \sqsubseteq \exists R.B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}}$, $(x, e_B) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_2 would apply), and since $e_B \in B^{\mathcal{C}_{\mathcal{K}}}$, $x \in \exists R.B^{\mathcal{C}_{\mathcal{K}}}$
 - ightharpoonup hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- ▶ for every concept inclusion between atomic concepts $A \sqsubseteq B$, $\mathcal{K} \models A \sqsubseteq B$ iff $\mathcal{C}_{\mathcal{K}} \models B(e_A)$
 - ▶ if $\mathcal{K} \models A \sqsubseteq B$, $\mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_A \in A^{\mathcal{C}_{\mathcal{K}}}$, $\mathcal{C}_{\mathcal{K}} \models B(e_A)$
 - ▶ Claim 1: if $\mathcal{C}_{\mathcal{K}} \models B(e_A)$, then $\mathcal{K} \models A \sqsubseteq B$

- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ can be constructed in polynomial time
 - $ightharpoonup \Delta^{\mathcal{C}_{\mathcal{K}}}$ is linear in the size of \mathcal{K}
 - lacktriangle each rule application adds an element or pair of elements of $\Delta^{\mathcal{C}_{\mathcal{K}}}$ to the interpretation of an atomic concept or role from \mathcal{K}
- $ightharpoonup \mathcal{C}_{\mathcal{K}}$ is a model of \mathcal{K}
 - $ightharpoonup \mathcal{I}_0 \models \mathcal{A} \text{ so } \mathcal{C}_{\mathcal{K}} \models \mathcal{A}$
 - ▶ for every $C \sqsubseteq B \in \mathcal{T}$, $C^{\mathcal{C}_{\mathcal{K}}} \subseteq B^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_1 would apply)
 - ▶ for every $A \sqsubseteq \exists R.B \in \mathcal{T}$ and $x \in A^{\mathcal{C}_{\mathcal{K}}}$, $(x, e_B) \in R^{\mathcal{C}_{\mathcal{K}}}$ (otherwise R_2 would apply), and since $e_B \in B^{\mathcal{C}_{\mathcal{K}}}$, $x \in \exists R.B^{\mathcal{C}_{\mathcal{K}}}$
 - hence $\mathcal{C}_{\mathcal{K}} \models \mathcal{T}$
- ▶ for every concept inclusion between atomic concepts $A \sqsubseteq B$, $\mathcal{K} \models A \sqsubseteq B$ iff $\mathcal{C}_{\mathcal{K}} \models B(e_A)$
 - ▶ if $\mathcal{K} \models A \sqsubseteq B$, $\mathcal{C}_{\mathcal{K}} \models A \sqsubseteq B$ so since $e_A \in A^{\mathcal{C}_{\mathcal{K}}}$, $\mathcal{C}_{\mathcal{K}} \models B(e_A)$
 - ▶ Claim 1: if $\mathcal{C}_{\mathcal{K}} \models B(e_A)$, then $\mathcal{K} \models A \sqsubseteq B$
- ▶ for every assertion α , $\mathcal{K} \models \alpha$ iff $\mathcal{C}_{\mathcal{K}} \models \alpha$
 - \blacktriangleright if $\mathcal{K} \models \alpha$, $\mathcal{C}_{\mathcal{K}} \models \alpha$
 - $ightharpoonup C_K \models R(a,b)$ with a,b individuals implies $R(a,b) \in \mathcal{A}$
 - ▶ Claim 2: if $\mathcal{C}_{\mathcal{K}} \models A(a)$ with a individual, then $\mathcal{K} \models A(a)$

$$\mathcal{T} = \{ A \sqsubseteq \exists R.B, \ \exists R.C \sqsubseteq D, \ A \sqcap D \sqsubseteq C, \ C \sqsubseteq \exists R.C \}$$
$$\mathcal{A} = \{ A(a), \ R(a,b), \ B(b), \ C(b) \}$$



$$\mathcal{C}_{\mathcal{K}} \models \mathcal{C}(a) \Rightarrow \mathcal{K} \models \mathcal{C}(a)$$
 $\mathcal{C}_{\mathcal{K}} \models \mathcal{D}(a) \Rightarrow \mathcal{K} \models \mathcal{D}(a)$ $\mathcal{C}_{\mathcal{K}} \models \mathcal{D}(b) \Rightarrow \mathcal{K} \models \mathcal{D}(b)$ $\mathcal{C}_{\mathcal{K}} \models \mathcal{D}(e_{\mathcal{C}}) \Rightarrow \mathcal{K} \models \mathcal{C} \sqsubseteq \mathcal{D}$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 1

For all atomic concepts A, B, $C_K \models B(e_A)$ implies $K \models A \sqsubseteq B$ Proof by induction on n such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- ▶ Induction hypothesis (IH): For every atomic concepts A and B, $e_A \in B^{\mathcal{I}_n}$ implies $\mathcal{K} \models A \sqsubseteq B$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 1

For all atomic concepts A, B, $C_K \models B(e_A)$ implies $K \models A \sqsubseteq B$ Proof by induction on n such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- ▶ Induction hypothesis (IH): For every atomic concepts A and B, $e_A \in B^{\mathcal{I}_n}$ implies $\mathcal{K} \models A \sqsubseteq B$
- ▶ Induction step: Assume that $e_A \in B^{\mathcal{I}_{n+1}}$
 - ▶ If $e_A \in B^{\mathcal{I}_n}$, $\mathcal{K} \models A \sqsubseteq B$ by IH
 - ▶ If $e_A \notin B^{\mathcal{I}_n}$, e_A has been added to $B^{\mathcal{I}_{n+1}}$ by applying rule R_1 : there exists $C \subseteq B \in \mathcal{T}$ such that $e_A \in C^{\mathcal{I}_n}$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 1

For all atomic concepts A, B, $C_K \models B(e_A)$ implies $K \models A \sqsubseteq B$ Proof by induction on n such that $e_A \in B^{\mathcal{I}_n}$

- ▶ Base case: $e_A \in B^{\mathcal{I}_0}$ implies that B = A and $\mathcal{K} \models A \sqsubseteq A$
- ▶ Induction hypothesis (IH): For every atomic concepts A and B, $e_A \in B^{\mathcal{I}_n}$ implies $\mathcal{K} \models A \sqsubseteq B$
- ▶ Induction step: Assume that $e_A \in B^{\mathcal{I}_{n+1}}$
 - ▶ If $e_A \in B^{\mathcal{I}_n}$, $\mathcal{K} \models A \sqsubseteq B$ by IH
 - ▶ If $e_A \notin B^{\mathcal{I}_n}$, e_A has been added to $B^{\mathcal{I}_{n+1}}$ by applying rule R_1 : there exists $C \sqsubseteq B \in \mathcal{T}$ such that $e_A \in C^{\mathcal{I}_n}$
 - ▶ case C atomic concept: $\mathcal{K} \models A \sqsubseteq C$ (by IH). It is then easy to check that $\mathcal{K} \models A \sqsubseteq B$
 - ▶ case $C = A_1 \sqcap A_2$: $e_A \in A_1^{\mathcal{I}_n}$ and $e_A \in A_2^{\mathcal{I}_n}$ so $\mathcal{K} \models A \sqsubseteq A_1$ and $\mathcal{K} \models A \sqsubseteq A_2$ (by IH). Since $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A \sqsubseteq B$
 - case $C = \exists R.D$: there exists $e_X \in D^{\mathcal{I}_n}$ s.t. $(e_A, e_X) \in R^{\mathcal{I}_n}$. $(e_A, e_X) \in R^{\mathcal{I}_n}$ has been added by rule R_2 so $E \sqsubseteq \exists R.X \in \mathcal{T}$ and $e_A \in E^{\mathcal{I}_n}$. $\mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models A \sqsubseteq E$ (by IH). Since $\mathcal{K} \models A \sqsubseteq E$, $\mathcal{K} \models E \sqsubseteq \exists R.X$, $\mathcal{K} \models X \sqsubseteq D$ and $\mathcal{K} \models \exists R.D \sqsubseteq B$, it is easy to check that $\mathcal{K} \models A \sqsubseteq B$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 2

For every concept assertion A(a), if $C_K \models A(a)$, then $K \models A(a)$

Proof by induction on n such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- ▶ Induction hypothesis (IH): For every atomic concept A and individual a, $a \in A^{\mathcal{I}_n}$ implies $\mathcal{K} \models A(a)$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 2

For every concept assertion A(a), if $\mathcal{C}_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$

Proof by induction on n such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- ▶ Induction hypothesis (IH): For every atomic concept A and individual a, $a \in A^{\mathcal{I}_n}$ implies $\mathcal{K} \models A(a)$
- ▶ Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$
 - ▶ If $a \in A^{\mathcal{I}_n}$, $\mathcal{K} \models A(a)$ by IH
 - ▶ If $a \notin A^{\mathcal{I}_n}$, a has been added to $A^{\mathcal{I}_{n+1}}$ by applying rule R_1 : there exists $C \sqsubseteq A \in \mathcal{T}$ such that $a \in C^{\mathcal{I}_n}$

Properties of $\mathcal{C}_{\mathcal{K}}$ – Proof of Claim 2

For every concept assertion A(a), if $\mathcal{C}_{\mathcal{K}} \models A(a)$, then $\mathcal{K} \models A(a)$

Proof by induction on n such that $a \in A^{\mathcal{I}_n}$

- ▶ Base case: $a \in A^{\mathcal{I}_0}$ implies $A(a) \in \mathcal{A}$
- ▶ Induction hypothesis (IH): For every atomic concept A and individual a, $a \in A^{\mathcal{I}_n}$ implies $\mathcal{K} \models A(a)$
- ▶ Induction step: Assume that $a \in A^{\mathcal{I}_{n+1}}$
 - ▶ If $a \in A^{\mathcal{I}_n}$, $\mathcal{K} \models A(a)$ by IH
 - ▶ If $a \notin A^{\mathcal{I}_n}$, a has been added to $A^{\mathcal{I}_{n+1}}$ by applying rule R_1 : there exists $C \sqsubseteq A \in \mathcal{T}$ such that $a \in C^{\mathcal{I}_n}$
 - ▶ case C atomic concept: $\mathcal{K} \models C(a)$ (by IH). It is then easy to check that $\mathcal{K} \models A(a)$
 - ▶ case $C = A_1 \sqcap A_2$: $\mathcal{K} \models A_1(a)$ and $\mathcal{K} \models A_2(a)$ (by IH). Since $A_1 \sqcap A_2 \sqsubseteq A \in \mathcal{T}$, it is then easy to check that $\mathcal{K} \models A(a)$
 - ► case $C = \exists R.D$: there exists $x \in D^{\mathcal{I}_n}$ s.t. $(a,x) \in R^{\mathcal{I}_n}$ - if x is an individual, $R(a,x) \in \mathcal{A}$ and $\mathcal{K} \models D(x)$ (by IH) so since $\exists R.D \sqsubseteq A \in \mathcal{T}$, it is easy to check that $\mathcal{K} \models A(a)$ - if $x = e_X$, $E \sqsubseteq \exists R.X \in \mathcal{T}$ and $a \in E^{\mathcal{I}_n}$ so $\mathcal{K} \models E(a)$ (by IH). By Claim 1, $\mathcal{K} \models X \sqsubseteq D$. It is then easy to check that $\mathcal{K} \models A(a)$

Exercise

Build the compact canonical model of $\langle \mathcal{T}, \mathcal{A} \rangle$ and use it to classify \mathcal{T} and find all assertions entailed by $\langle \mathcal{T}, \mathcal{A} \rangle$

$$\mathcal{T} = \{ A \sqcap B \sqsubseteq D, \quad B \sqcap D \sqsubseteq C, \quad \exists S.D \sqsubseteq D, \\ C \sqsubseteq \exists R.A, \quad C \sqsubseteq \exists R.B, \quad B \sqsubseteq \exists S.D \}$$
$$\mathcal{A} = \{ A(a), \quad B(a), \quad S(a,b), \quad D(b) \}$$

Given a TBox $\mathcal T$ in normal form, complete $\mathcal T$ using saturation rules

$$\mathsf{CR}_1^T \xrightarrow{A \sqsubseteq A} \qquad \mathsf{CR}_2^T \xrightarrow{A \sqsubseteq \top} \qquad \mathsf{CR}_3^T \xrightarrow{A_1 \sqsubseteq B} \xrightarrow{B \sqsubseteq A_2}$$

$$\mathsf{CR}_{4}^{\mathsf{T}} \xrightarrow{A \sqsubseteq A_{1}} \xrightarrow{A \sqsubseteq A_{2}} \xrightarrow{A_{1} \sqcap A_{2} \sqsubseteq B} \quad \mathsf{CR}_{5}^{\mathsf{T}} \xrightarrow{A \sqsubseteq \exists R.A_{1}} \xrightarrow{A_{1} \sqsubseteq B_{1}} \xrightarrow{\exists R.B_{1} \sqsubseteq B} \xrightarrow{A \sqsubseteq B}$$

- ▶ Instantiated rule: obtained by replacing A, A_1, A_2, B, B_1 by atomic concepts or \top and R by atomic role
- ▶ Instantiated rule with premises $\alpha_1, \ldots, \alpha_n$ and conclusion β is applicable if $\{\alpha_1, \ldots, \alpha_n\} \subseteq \mathcal{T}$ and $\beta \notin \mathcal{T}$.
 - premises: axioms above the line
 - conclusion: axiom below the line

Applying the rule adds β to \mathcal{T}

$$\mathsf{CR}_1^T \ \overline{A \sqsubseteq A} \qquad \mathsf{CR}_2^T \ \overline{A \sqsubseteq \top} \qquad \mathsf{CR}_3^T \ \overline{A_1 \sqsubseteq B \quad B \sqsubseteq A_2} \\ \mathsf{CR}_4^T \ \overline{A \sqsubseteq A_1} \quad A \sqsubseteq A_2 \quad A_1 \sqcap A_2 \sqsubseteq B \qquad \mathsf{CR}_5^T \ \overline{A \sqsubseteq \exists R.A_1} \quad A_1 \sqsubseteq B_1 \quad \exists R.B_1 \sqsubseteq B \\ \overline{A \sqsubseteq B}$$

Classify \mathcal{T} : find all atomic concepts A, B such that $\mathcal{T} \models A \sqsubseteq B$

- lacktriangle Exhaustively apply instantiated saturation rules to ${\mathcal T}$
 - the resulting TBox sat(T) is called the saturated TBox
- ▶ For every atomic concepts A and B, return that $\mathcal{T} \models A \sqsubseteq B$ iff $A \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$

Lemma

All exhaustive sequences of rule applications lead to a unique saturated TBox

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

$$\frac{D \sqsubseteq D \quad D \sqsubseteq C \quad D \sqcap C \sqsubseteq B}{D \sqsubseteq B}$$

$$\mathcal{T} = \{ A \sqsubseteq D, \quad C \sqcap D \sqsubseteq B, \quad D \sqsubseteq \exists R.D, \\ \exists R.E \sqsubseteq C, \quad \exists R.\top \sqsubseteq E \}$$

$$\frac{D \sqsubseteq D \quad D \sqsubseteq C \quad D \sqcap C \sqsubseteq B}{D \sqsubseteq B}$$

$$\frac{A \sqsubseteq D \quad D \sqsubseteq E}{A \sqsubseteq E} \qquad \frac{A \sqsubseteq D \quad D \sqsubseteq C}{A \sqsubseteq C} \qquad \frac{A \sqsubseteq D \quad D \sqsubseteq B}{A \sqsubseteq B}$$

Termination and complexity

Classification algorithm runs in polynomial time w.r.t. the size of ${\mathcal T}$

- ▶ Each rule application adds a concept inclusion of the form $A \sqsubseteq B$ with A and B atomic concepts from T or T
- ► The number of such concept inclusions is quadratic in the number of atomic concepts that occur in *T*

$$CR_1^T \frac{}{A \sqsubseteq A}$$

$$\mathsf{CR}_2^{\mathsf{T}} \ \overline{A \sqsubseteq \top}$$

Soundness
$$CR_1^T \xrightarrow{A \sqsubseteq A} CR_2^T \xrightarrow{A \sqsubseteq \top} CR_3^T \xrightarrow{A_1 \sqsubseteq B} \xrightarrow{B \sqsubseteq A_2} A_1 \sqsubseteq A_2$$

$$CR_4^T \xrightarrow{A \sqsubseteq A_1} \xrightarrow{A \sqsubseteq A_2} \xrightarrow{A_1 \sqcap A_2 \sqsubseteq B}$$

$$\mathsf{CR}_4^T \xrightarrow{A \sqsubseteq A_1} \xrightarrow{A \sqsubseteq A_2} \xrightarrow{A_1 \sqcap A_2 \sqsubseteq B} \qquad \mathsf{CR}_5^T \xrightarrow{A \sqsubseteq \exists R.A_1} \xrightarrow{A_1 \sqsubseteq B_1} \xrightarrow{\exists R.B_1 \sqsubseteq B}$$

If $A \sqsubseteq B \in \operatorname{sat}(\mathcal{T})$ then $\mathcal{T} \models A \sqsubseteq B$.

Show that if β is added to \mathcal{T} by applying a saturation rule whose premises are entailed by \mathcal{T} , then $\mathcal{T} \models \beta$

- $ightharpoonup CR_1^T$ or CR_2^T case: β is of the form $A \sqsubseteq A$ or $A \sqsubseteq \top$ and holds in every interpretation, so $\mathcal{T} \models \beta$
- $ightharpoonup \operatorname{CR}_{\mathfrak{F}}^{\mathcal{T}}$ case: $\beta = A_1 \sqsubseteq A_2$, $\mathcal{T} \models A_1 \sqsubseteq B$ and $\mathcal{T} \models B \sqsubseteq A_2$
 - let \mathcal{I} be a model of \mathcal{T} : $A_1^{\mathcal{I}} \subset B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subset A_2^{\mathcal{I}}$ so $A_1^{\mathcal{I}} \subset A_2^{\mathcal{I}}$, yielding $\mathcal{I} \models A_1 \sqsubseteq A_2$
 - ▶ hence $\mathcal{T} \models A_1 \sqsubseteq A_2$
- \triangleright CR₄^T and CR₅^T cases: left as practice

The property follows by induction on the number of rule applications before $A \sqsubseteq B$ has been added to sat (\mathcal{T})

Completeness

If
$$\mathcal{T} \models A \sqsubseteq B$$
 then $A \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$.

Show the contrapositive: if $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $\mathcal{T} \not\models A \sqsubseteq B$

- ▶ Define an interpretation $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ from $\mathsf{sat}(\mathcal{T})$
 - $lackbox{}\Delta^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}} = \{e_{\mathcal{A}} \mid \mathcal{A} \text{ is an atomic concept in } \mathcal{T}\} \cup \{e_{\top}\}$

 - $\blacktriangleright \ R^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}} = \{(e_A, e_B) \mid A \sqsubseteq C \in \mathsf{sat}(\mathcal{T}), C \sqsubseteq \exists R.B \in \mathsf{sat}(\mathcal{T})\}$
- ▶ Claim: $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ is a model of \mathcal{T} and $A \sqsubseteq B \not\in \mathsf{sat}(\mathcal{T})$ implies that $\mathcal{I}_{\mathsf{sat}(\mathcal{T})} \not\models A \sqsubseteq B$
- ▶ If $A \sqsubseteq B \notin sat(\mathcal{T})$, then $\mathcal{I}_{sat(\mathcal{T})} \not\models A \sqsubseteq B$, so $\mathcal{T} \not\models A \sqsubseteq B$

Remark: $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ is actually the compact canonical model of $\langle \mathcal{T}, \emptyset \rangle$

Completeness - Proof of the claim

$$\mathcal{I}_{\mathsf{sat}(\mathcal{T})} \models \mathcal{T} \text{ and } A \sqsubseteq B \not\in \mathsf{sat}(\mathcal{T}) \text{ implies that } \mathcal{I}_{\mathsf{sat}(\mathcal{T})} \not\models A \sqsubseteq B$$

- ▶ $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$ is a model of $\mathsf{sat}(\mathcal{T})$: let $\beta \in \mathsf{sat}(\mathcal{T})$
 - ► Case $\beta = A \sqsubseteq B$: if $e_D \in A^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$, then $D \sqsubseteq A \in \mathsf{sat}(\mathcal{T})$ By CR_2^T , $D \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$, so $e_D \in B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$
 - ► Case $\beta = A_1 \sqcap A_2 \sqsubseteq B$: if $e_D \in (A_1 \sqcap A_2)^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$, then $D \sqsubseteq A_1 \in \mathsf{sat}(\mathcal{T})$ and $D \sqsubseteq A_2 \in \mathsf{sat}(\mathcal{T})$ By $\mathsf{CR}_4^{\mathcal{T}}$, $D \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$, so $e_D \in B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$
 - ► Case $\beta = A \sqsubseteq \exists R.B$: if $e_D \in A^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$, then $D \sqsubseteq A \in \mathsf{sat}(\mathcal{T})$ By construction of $\mathcal{I}_{\mathsf{sat}(\mathcal{T})}$, it follows that $(e_D, e_B) \in R^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$ By $\mathsf{CR}_1^{\mathcal{T}}$, $B \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$ so $e_B \in B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$: $e_D \in \exists R.B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$
 - ► Case $\beta = \exists R.B \sqsubseteq A$: if $e_D \in \exists R.B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$, then there exists $e_C \in B^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$ such that $(e_D, e_C) \in R^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$ Hence $C \sqsubseteq B \in \mathsf{sat}(\mathcal{T})$ and $D \sqsubseteq \exists R.C \in \mathsf{sat}(\mathcal{T})$ By CR_5^T , $D \sqsubseteq A \in \mathsf{sat}(\mathcal{T})$, so $e_D \in A^{\mathcal{I}_{\mathsf{sat}(\mathcal{T})}}$
- ▶ Since $\mathcal{T} \subseteq \operatorname{sat}(\mathcal{T})$, it follows that $\mathcal{I}_{\operatorname{sat}(\mathcal{T})} \models \mathcal{T}$
- ▶ If $A \sqsubseteq B \notin \operatorname{sat}(\mathcal{T})$, then $e_A \notin B^{\mathcal{I}_{\operatorname{sat}(\mathcal{T})}}$ while $e_A \in A^{\mathcal{I}_{\operatorname{sat}(\mathcal{T})}}$ (since $A \sqsubseteq A \in \operatorname{sat}(\mathcal{T})$ by $\operatorname{CR}_1^{\mathcal{T}}$) so $\mathcal{I}_{\operatorname{sat}(\mathcal{T})} \not\models A \sqsubseteq B$

Instance Checking

Add rules to derive assertions to the saturation rules

$$\operatorname{CR}_1^T \overline{A \sqsubseteq A} \qquad \operatorname{CR}_2^T \overline{A \sqsubseteq \top} \qquad \operatorname{CR}_3^T \overline{A_1 \sqsubseteq B \ B \sqsubseteq A_2}$$

$$\mathsf{CR}_4^T \xrightarrow{A \sqsubseteq A_1} \xrightarrow{A \sqsubseteq A_2} \xrightarrow{A_1 \sqcap A_2 \sqsubseteq B} \qquad \mathsf{CR}_5^T \xrightarrow{A \sqsubseteq \exists R.A_1} \xrightarrow{A_1 \sqsubseteq B_1} \xrightarrow{\exists R.B_1 \sqsubseteq B}$$

$$CR_1^A \xrightarrow{\top(a)} CR_2^A \frac{A \sqsubseteq B \quad A(a)}{B(a)}$$

$$CR_3^A \xrightarrow{A_1 \sqcap A_2 \sqsubseteq B \quad A_1(a) \quad A_2(a)} CR_4^A \xrightarrow{\exists R.A \sqsubseteq B \quad R(a,b) \quad A(b)} B(a)$$

- ▶ Take as input an \mathcal{EL} KB $\langle \mathcal{T}, \mathcal{A} \rangle$ with \mathcal{T} in normal form and an atomic concept A
- ightharpoonup Exhaustively apply instantiated saturation rules to $\langle \mathcal{T}, \mathcal{A} \rangle$ ▶ the resulting KB sat(\mathcal{T}, \mathcal{A}) = $\langle \mathcal{T}^*, \mathcal{A}^* \rangle$ is the saturated KB
- ► For every individual a, return $\langle \mathcal{T}, \mathcal{A} \rangle \models A(a)$ iff $A(a) \in \mathcal{A}^*$

Instance Checking

- ► The instance checking algorithm adds a number of concept inclusions and concept assertions which is at most quadratic in the size of the KB, hence runs in polynomial time
- Soundness: left as practice
- ▶ Completeness: Show the contrapositive: if $A(a) \notin A^*$, then $\langle \mathcal{T}, \mathcal{A} \rangle \not\models A(a)$
 - ▶ Define an interpretation \mathcal{I}^* from sat $(\mathcal{T}, \mathcal{A}) = \langle \mathcal{T}^*, \mathcal{A}^* \rangle$
 - $\Delta^{\mathcal{I}^{\star}} = \{c \mid c \text{ individual from } \mathcal{A}\} \cup \\ \{e_A \mid A \text{ is an atomic concept in } \mathcal{T}\} \cup \{e_{\top}\}$
 - $ightharpoonup c^{\mathcal{I}^*} = c$ for every individual c from \mathcal{A}
 - $A^{\mathcal{I}^{\star}} = \{c \mid A(c) \in \mathcal{A}^{\star}\} \cup \{e_B \mid B \sqsubseteq A \in \mathcal{T}^{\star}\}$
 - $P^{\mathcal{I}^{\star}} = \{(c,d) \mid R(c,d) \in \mathcal{A}^{\star}\} \cup \{(a,e_B) \mid A \sqsubseteq \exists R.B \in \mathcal{T}^{\star}, A(a) \in \mathcal{A}^{\star}\} \cup \{(e_A,e_B) \mid A \sqsubseteq C \in \mathcal{T}^{\star}, C \sqsubseteq \exists R.B \in \mathcal{T}^{\star}\}$
 - ▶ Claim: \mathcal{I}^* is a model of $\langle \mathcal{T}, \mathcal{A} \rangle$ and $A(a) \notin \mathcal{A}^*$ implies that $\mathcal{I}^* \not\models A(a)$: left as practice

Exercise

Normalize $\mathcal T$ and apply the saturation algorithm to classify $\mathcal T$ and find the assertions entailed by $\langle \mathcal T, \mathcal A \rangle$

$$\mathcal{T} = \{ \exists S.B \sqsubseteq D, \ \exists R.D \sqsubseteq E, \ \exists R.A \sqsubseteq \exists R.\exists S.(B \sqcap C) \}$$
$$\mathcal{A} = \{ R(a,b), \ A(b) \}$$

 \triangleright $\mathcal{ELI} = \mathcal{EL} + \text{inverse roles}$

$$C := \top \mid A \mid C \sqcap C \mid \exists R.C \mid \exists R^{-}.C$$

- ► Axiom entailment is EXPTIME-complete
- ▶ However, \mathcal{ELI} retains some nice properties
 - canonical model (no case-based reasoning)
 - ightharpoonup can extend the saturation algorithm to handle \mathcal{ELI}
 - may produce an exponential number of concept inclusions
 - ▶ deduce $A \sqcap D \sqsubseteq \exists R.(B \sqcap E)$ from $A \sqsubseteq \exists R.B$ and $\exists R^-.D \sqsubseteq E$
- ▶ The same holds for $\mathcal{ELHI}_{\perp} = \mathcal{ELI} + \text{role inclusions} + \bot$

$$\operatorname{CR}_{1}^{T} \xrightarrow{A \sqsubseteq A} \operatorname{CR}_{2}^{T} \xrightarrow{A \sqsubseteq \top}$$

$$\operatorname{CR}_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \operatorname{CR}_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$\operatorname{CR}_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \operatorname{CR}_{6}^{T} \frac{M \sqsubseteq \exists S.N \quad \exists \operatorname{inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$\operatorname{CR}_{1}^{A} \xrightarrow{T(a)} \operatorname{CR}_{2}^{A} \frac{A_{1} \sqcap \cdots \sqcap A_{n} \sqsubseteq B \quad \{A_{i}(a)\}_{i=1}^{n}}{B(a)}$$

$$\operatorname{CR}_{3}^{A} \frac{\exists R.A \sqsubseteq B \quad R(a,b) \quad A(b)}{B(a)} \operatorname{CR}_{4}^{A} \frac{\exists R^{-}.A \sqsubseteq B \quad R(b,a) \quad A(b)}{B(a)}$$

- ightharpoonup R is an atomic role, $S := R \mid R^-$, $inv(R) = R^-$ and $inv(R^-) = R$
- ▶ A, B, A_i, B_i are atomic concepts or \top
- \triangleright M, N, N' are conjunctions of atomic concepts or \top , treated as sets (no repetition, the order does not matter)

$$\mathsf{CR}_{1}^{T} \xrightarrow{A \sqsubseteq A} \qquad \mathsf{CR}_{2}^{T} \xrightarrow{A \sqsubseteq \top}$$

$$\mathsf{CR}_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} \quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad \mathsf{CR}_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') \quad N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$\mathsf{CR}_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \quad \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad \mathsf{CR}_{6}^{T} \frac{M \sqsubseteq \exists S.N \quad \exists \mathsf{inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$\mathcal{T} = \{ A \sqsubseteq R.B, \ \exists R^{-}.C \sqsubseteq D, \ D \sqsubseteq E, \ \exists R.E \sqsubseteq F, \ G \sqsubseteq A, \ G \sqsubseteq C \}$$

nple
$$\operatorname{CR}_{1}^{T} \frac{}{A \sqsubseteq A} \qquad \operatorname{CR}_{2}^{T} \frac{}{A \sqsubseteq \top}$$

$$\operatorname{CR}_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad \operatorname{CR}_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$\operatorname{CR}_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad \operatorname{CR}_{6}^{T} \frac{M \sqsubseteq \exists S.N \exists \operatorname{inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$\mathcal{T} = \{A \sqsubseteq R.B, \exists R^{-}.C \sqsubseteq D, D \sqsubseteq E, \exists R.E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\}$$

$$\frac{A \sqsubseteq \exists R.B \exists R^{-}.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \qquad (\operatorname{CR}_{6}^{T})$$

nple
$$\operatorname{CR}_{1}^{T} \frac{}{A \sqsubseteq A} \qquad \operatorname{CR}_{2}^{T} \frac{}{A \sqsubseteq \top}$$

$$\operatorname{CR}_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad \operatorname{CR}_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$\operatorname{CR}_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad \operatorname{CR}_{6}^{T} \frac{M \sqsubseteq \exists S.N \exists \operatorname{inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$\mathcal{T} = \{A \sqsubseteq R.B, \exists R^{-}.C \sqsubseteq D, D \sqsubseteq E, \exists R.E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\}$$

$$\frac{A \sqsubseteq \exists R.B \exists R^{-}.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \qquad (\operatorname{CR}_{6}^{T})$$

$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D) D \sqsubseteq E}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)} \qquad (\operatorname{CR}_{4}^{T})$$

nple
$$\operatorname{CR}_{1}^{T} \frac{}{A \sqsubseteq A} \qquad \operatorname{CR}_{2}^{T} \frac{}{A \sqsubseteq \top}$$

$$\operatorname{CR}_{3}^{T} \frac{\{A \sqsubseteq B_{i}\}_{i=1}^{n} B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B}{A \sqsubseteq B} \qquad \operatorname{CR}_{4}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap N') N \sqsubseteq A}{M \sqsubseteq \exists S.(N \sqcap N' \sqcap A)}$$

$$\operatorname{CR}_{5}^{T} \frac{M \sqsubseteq \exists S.(N \sqcap A) \exists S.A \sqsubseteq B}{M \sqsubseteq B} \qquad \operatorname{CR}_{6}^{T} \frac{M \sqsubseteq \exists S.N \exists \operatorname{inv}(S).A \sqsubseteq B}{M \sqcap A \sqsubseteq \exists S.(N \sqcap B)}$$

$$\mathcal{T} = \{A \sqsubseteq R.B, \exists R^{-}.C \sqsubseteq D, D \sqsubseteq E, \exists R.E \sqsubseteq F, G \sqsubseteq A, G \sqsubseteq C\}$$

$$\frac{A \sqsubseteq \exists R.B \exists R^{-}.C \sqsubseteq D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \qquad (\operatorname{CR}_{6}^{T})$$

$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)} \qquad (\operatorname{CR}_{4}^{T})$$

$$\frac{A \sqcap C \sqsubseteq \exists R.(B \sqcap D \sqcap E)}{A \sqcap C \sqsubseteq F} \qquad (\operatorname{CR}_{5}^{T})$$

References

- Baader, Brandt, Lutz (IJCAI 2005): Pushing the EL Envelope (https://www.ijcai.org/Proceedings/05/Papers/0372.pdf).
- ▶ Baader, Brandt, Lutz (OWLED 2008): Pushing the EL Envelope Further (https://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf).
- ▶ Bienvenu and Ortiz (RW 2015): Ontology-Mediated Query Answering with Data-Tractable Description Logics (https://www.labri.fr/perso/meghyn/papers/BieOrt-RW15.pdf)
- Kontchakov, Zakharyaschev (RW 2014): An Introduction to Description Logics and Query Rewriting (https://www.dcs.bbk.ac.uk/~roman/papers/RW12014.pdf)
- ▶ Bienvenu (2022): Ontologies & Description Logics (lecture: https://www.labri.fr/perso/meghyn/teaching/lola-2022/ 3-lola-lightweight-el.pdf)
- ▶ Baader (2019): course on Description Logics (lecture: https://tu-dresden.de/ing/informatik/thi/lat/studium/lehrveranstaltungen/sommersemester-2019/description-logic)