A Side-Channel Assisted Cryptanalytic Attack Against **QcBits**

Mélissa Rossi · Mike Hamburg · Michael Hutter · Mark E. Marson

Quantum computers may threaten the mathematical problems on which public key algorithms are currently based.

 \Rightarrow Call for the standardization and transition to post-quantum public key algorithms in the near future

- · National Institute of Standards and Technology (NIST)
- · European Initiative PQCRYPTO and SAFECRYPTO

Quantum computers may threaten the mathematical problems on which public key algorithms are currently based.

 \Rightarrow Call for the standardization and transition to post-quantum public key algorithms in the near future

- · National Institute of Standards and Technology (NIST)
- · European Initiative PQCRYPTO and SAFECRYPTO

Possible path for post-quantum security

• Error-correcting codes

A binary linear code is a **linear subspace of** \mathbb{F}_2^n

A binary linear code is a **linear subspace of** \mathbb{F}_2^n

A binary linear code is a **linear subspace of** \mathbb{F}_2^n

Several possibilities for choosing an appropriate code structure

Family of codes	Proposed by	Attacked by
Binary Goppa	original proposition (78)	
Reed Solomon	Niederreiter (86)	Sidelnikov et al (92)
Concatenated	Niederreiter (86)	Sendrier (98)
Reed Muller	Sidelnikov (94)	Minder et al (07)
Algebraic Geometric	Janwa et al(96)	Faure et al (08) Couvreur et al (14)
LDPC	Monico et al (00)	Monico et al (00)
Convolutional	Londahl et al (12)	Landais et al (13)
Wild Goppa	Bernstein et al (10)	Couvreur et al (14) Faugère et al (14)

Several possibilities for choosing an appropriate code structure

Family of codes	Proposed by	Attacked by
Binary Goppa	original proposition (78)	
Reed Solomon	Niederreiter (86)	Sidelnikov et al (92)
Concatenated	Niederreiter (86)	Sendrier (98)
Reed Muller	Sidelnikov (94)	Minder et al (07)
Algebraic Geometric	Janwa et al(96)	Faure et al (08) Couvreur et al (14)
LDPC	Monico et al (00)	Monico et al (00)
Convolutional	Londahl et al (12)	Landais et al (13)
Wild Goppa	Bernstein et al (10)	Couvreur et al (14) Faugère et al (14)
QC MDPC	Misoczki et al (13)	

DESCRIPTION OF QCBITS ALGORITHM

Tung Chou, QcBits: Constant-Time Small-Key Code-Based Cryptography CHES 2016

- Very fast
- Small key sizes
- · Protected against one type of side channel attacks : timing attacks
- \cdot 2 sets of parameters : 80 bits and 128 bits security

Size (r)	Hamming weight(<i>w</i>)	Bits of Security
4801	90	80
9857	142	128

Secret key : a QC MDPC matrix H Public key : a matrix P

 $\boldsymbol{H} = (\boldsymbol{H}_0, \boldsymbol{H}_1)$

	Size (r) Hammi			ing ۱	weigl	ht(w)	Bits	s of	Seci	urity	_	
	480	1			90)				8	0		
	985	7			14	2				1:	28		
Secret key : a QC MDPC matrix H Public key : a matrix P													
					H =	= (H	l ₀ , F	$\mathbf{I}_1)$					
	$()^{0}$	0	1	0	0	1		(1	0	1	0	0	0 ک
	1	0	0	1	0	0		0	1	0	1	0	0
и	0	1	0	0	1	0		0	0	1	0	1	0
н =	0	0	1	0	0	1		0	0	0	1	0	1
	1	0	0	1	0	0		1	0	0	0	1	0
	(0)	1	0	0	1	0/		$\setminus 0$	1	0	0	0	1//

QCBITS : A QC MDPC MCELIECE IMPLEMENTATION

Size (r)	Hamming weight(<i>w</i>)	Bits of Security
4801	90	80
9857	142	128

Secret key : a QC MDPC matrix H Public key : a matrix P

 $\boldsymbol{H} = (\boldsymbol{H}_0, \boldsymbol{H}_1)$

	1	/0	0	1	0	0	1	/1	0	1	0	0	0))
		1	0	0	1	0	0	0	1	0	1	0	0
ц		0	1	0	0	1	0	0	0	1	0	1	0
п =		0	0	1	0	0	1	0	0	0	1	0	1
		1	0	0	1	0	0	1	0	0	0	1	0
		$\setminus 0$	1	0	0	1	0/	$\setminus 0$	1	0	0	0	1//

Quasi Cyclic Moderate Density Parity Check means :

- \cdot H_0 and $H_1 \in \mathbb{F}_2^{r \cdot r}$ are circulant
- H_0 and H_1 have sparse rows : only $\frac{w}{2}$ ones
- The codewords **x** are all the vectors in the right nullspace of **H** ie $\mathbf{H} \cdot \mathbf{x}^T = \mathbf{0}$

Size (r)	Hamming weight(<i>w</i>)	Bits of Security
4801	90	80
9857	142	128

Secret key : a QC MDPC matrix H Public key : a matrix P

 $\boldsymbol{H} = (\boldsymbol{H}_0, \boldsymbol{H}_1)$

$$\mathbf{P} = \mathbf{H}_1^{-1} \mathbf{H}_0$$

P is circulant too P is dense

Secret key : a QC MDPC matrix $H = (H_0, H_1)$ Public key : a matrix $P = H_1^{-1}H_0$

- We want to know the secret key H
- \cdot We know the public key ${\it P}$
- $\cdot\,$ We know some ciphertexts previously sent
- $\cdot\,$ We have access to the power traces

QCBITS : A QC MDPC MCELIECE IMPLEMENTATION

QCBITS : A QC MDPC MCELIECE IMPLEMENTATION

Bit Flipping

Algorithm 1: Bit Flipping

Data: $H \in \mathbb{F}_2^{r.n}, x \in \mathbb{F}_2^n$ Result: Corrected codeword v1 $v \leftarrow x$; 2 $S \leftarrow H \cdot v^T$ // Syndrome computation 3 ... 4 Computation of the error e5 ... 6 Return the codeword $v = x \oplus e$

$\cdot\,$ New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$\boldsymbol{H} = (H_0, H_1)$$

\cdot New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$H = \left(\begin{pmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \quad \begin{pmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \right)$$

\cdot New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$H = \begin{pmatrix} 0 & * & * & 0 & * & * \\ * & \cdots & & & * \\ \vdots & & & & \vdots \\ * & & \cdots & & * \end{pmatrix} \quad \begin{pmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \end{pmatrix}$$

$\cdot\,$ New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$H = \begin{pmatrix} 0 & * & * & 0 & * & * \\ * & 0 & * & * & 0 & * \\ * & * & 0 & * & * & 0 \\ 0 & * & * & 0 & * & * \\ * & 0 & * & * & 0 & * \\ * & * & 0 & * & * & 0 \end{pmatrix} \qquad \begin{pmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \end{pmatrix}$$

\cdot New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$H = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} \end{pmatrix}$$

$\cdot\,$ New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery

$$H = \left(\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \right)$$

\cdot New classical key recovery attack

- 1. Differential Power Analysis (DPA)
- 2. Mathematical key recovery
- · Our countermeasure

DIFFERENTIAL POWER ANALYSIS

Syndrome calculation inside the Bit Flipping

$$\mathbf{H} \cdot \begin{pmatrix} \mathbf{c}^T \\ \mathbf{0} \end{pmatrix} = (\mathbf{H}_0, \mathbf{H}_1) \cdot \begin{pmatrix} \mathbf{c}^T \\ \mathbf{0} \end{pmatrix} = \mathbf{H}_0 \cdot \mathbf{c}^T$$

 H_0 is a sparse circulant matrix.

 H_0 is uniquely defined by $\{x_0, ..., x_{44}\}$, the unknown indices of the nonzero elements of its first row.

Recovering the $\{x_0, ..., x_{44}\}$ means recovering the whole matrix H_0 .

$$H_{0} = \begin{pmatrix} x_{0} & x_{1} \\ \downarrow & \downarrow \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$\pmb{H}_0\cdot \pmb{C}^T$

During the multiplication, H_0 is decomposed as a sum of 45 rotation matrices

$$H_0 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$\pmb{H}_0\cdot \pmb{C}^T$

The multiplication algorithm runs through all the rotations composing H_0 and computes the intermediate rotated ciphertexts $r_{x_i}(c)^T$

$$H_0 \cdot \boldsymbol{c}^T = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \boldsymbol{c}^T + \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \cdot \boldsymbol{c}^T$$

$$\boldsymbol{H}_0 \cdot \boldsymbol{c}^T = \boldsymbol{r}_{x_0}(\boldsymbol{c})^T + \boldsymbol{r}_{x_1}(\boldsymbol{c})^T$$

The final value of the multiplication is the xor of all the $r_{x_i}(c)^T$

ChipWhisperer Lite

- · Original code
- · Programmable chip (Atmel AVR XMEGA128)
- $\cdot\,$ Easy to use : On-board power-measurement circuit
- · Easily reproducible

Target : The storing into local memory of each $r_{x_i}(c)^T$

Power trace of a rotation computation

Power trace of a rotation computation

Power trace of a rotation computation

Let's look at the leak in time.

Leakage model 1

$$y_i = \lfloor \frac{(x_i - 1) \mod r}{64} \rfloor \cdot 64 + 1$$

If we combine leakage models 1 and 2 \rightarrow only 8 possible values for x_i

$$x_i \in Z_i = [y_i + 8(7 - q_i), y_i + 8(7 - q_i) + 7]$$

In our example, we measured $(y_i, q_i) = (1985, 6)$ and therefore deduce that $Z_i = [1993, 2000]$. If we combine leakage models 1 and 2 \rightarrow only 8 possible values for x_i

$$x_i \in Z_i = [y_i + 8(7 - q_i), y_i + 8(7 - q_i) + 7]$$

In our example, we measured $(y_i, q_i) = (1985, 6)$ and therefore deduce that $Z_i = [1993, 2000]$.

 $\alpha \leftarrow \text{length of index search intervals } Z_i$.

 $\beta \leftarrow$ total number of unique search intervals Z_i .

 α represents DPA attack accuracy

KEY RECOVERY

Recall that the public key is $P = H_1^{-1} \cdot H_0$. Setting $Q = P^{-T}$ we rearrange and write

$$\boldsymbol{Q}\cdot\boldsymbol{h}_0^T = \boldsymbol{h}_1^T$$

where

- **Q** is dense and known
- \cdot **h**₀ (the first row of **H**₀) is sparse and partially known
- \cdot **h**₁ (the first row of **H**₁) is sparse and unknown.

Recall that the public key is $\mathbf{P} = \mathbf{H}_1^{-1} \cdot \mathbf{H}_0$. Setting $\mathbf{Q} = \mathbf{P}^{-T}$ we rearrange and write

$$\boldsymbol{Q}\cdot\boldsymbol{h}_{0}^{T}=\boldsymbol{h}_{1}^{T}$$

STEP 1: Remove columns of Q

Recall that the public key is $P = H_1^{-1} \cdot H_0$. Setting $Q = P^{-T}$ we rearrange and write

$$\boldsymbol{Q}\cdot\boldsymbol{h}_{0}^{T}=\boldsymbol{h}_{1}^{T}$$

STEP 1: Remove columns of Q

STEP 2 : Add parity equations

 $\mathsf{DPA}
ightarrow \mathsf{number}$ of nonzero values of each interval Z_i of h_0

STEP 2 : Add parity equations

 $\mathsf{DPA}
ightarrow \mathsf{number}$ of nonzero values of each interval Z_i of $m{h}_0$

STEP 2 : Guess some zeros of h_1

 h_1 is an extremely sparse vector. Its entries are zero with probability $1-rac{w}{2r}>0.99$

STEP 2 : Guess some zeros of h_1

We create a square system of equations by randomly selecting entries from h_1 , and keeping the corresponding rows of Q'.

STEP 2 : Guess some zeros of h_1

 $h_0'^T$

Average number of attempts (= $\frac{1}{p}$) before getting a correct system

DPA accuracy ($lpha$)	8	16	32	64
80-bit	22	950	2^{23}	2^{58}
128-bit	40	3500	2^{26}	2^{64}

Average number of attempts (= $\frac{1}{p}$) before getting a correct system

DPA accuracy ($lpha$)	8	16	32	64
80-bit	22	950	2^{23}	2^{58}
128-bit	40	3500	2^{26}	2^{64}

Total complexity in terms of multiplications in \mathbb{F}_2

1	r	w	Bits of Security
$\frac{1}{p} \cdot \left(\frac{w\alpha}{2}\right)^{2.8}$	4801 9857	90 142	80 128

Average number of attempts (= $\frac{1}{p}$) before getting a correct system

DPA accuracy ($lpha$)	8	16	32	64
80-bit	22	950	2^{23}	2^{58}
128-bit	40	3500	2^{26}	2^{64}

Total complexity in terms of multiplications in \mathbb{F}_2

1 9 0	r	w	Bits of Security
$\frac{1}{p} \cdot \left(\frac{w\alpha}{2}\right)^{2.8}$	4801 9857	90 142	80 128
	0001		120

In our device ($\alpha = 8$), we have

	80-bit	128-bit	
Complexity	2^{28}	2^{31}	

SAGE on one core of a 2.9GHz Core i5 MacBook Pro ¹

DPA accuracy $(lpha)$	8	16	32	64
80-bit	0.4 sec	15 sec	16 hours	\geq 600 years
128-bit	2 sec	4 min	7 days	\geq 800,000 years


```
<sup>1</sup>https://www.di.ens.fr/~mrossi/
```

SAGE on one core of a 2.9GHz Core i5 MacBook Pro ¹

DPA accuracy $(lpha)$	8	16	32	64
80-bit	0.4 sec	15 sec	16 hours	\geq 600 years
128-bit	2 sec	4 min	7 days	\geq 800,000 years

SAGE on one core of a 2.9GHz Core i5 MacBook Pro ¹

DPA accuracy $(lpha)$	8	16	32	64
80-bit	0.4 sec	15 sec	16 hours	\geq 600 years
128-bit	2 sec	4 min	7 days	\geq 800,000 years

COUNTERMEASURE

ightarrow Let's mask the corrupted codeword ($c \mid 0$) by XORing it with a random codeword c_m

$$H \cdot ((\mathbf{c}|\mathbf{0}) \oplus \mathbf{c}_m)^T = H \cdot (\mathbf{c} \mid \mathbf{0})^T \oplus H \cdot \mathbf{c}_m^T = H \cdot (\mathbf{c} \mid \mathbf{0})^T$$

Maximum of the Difference Of Means with the countermeasure enabled (500 traces)

QcBits

Advantages	Drawbacks
 Post Quantum candidate Small key sizes Very efficient Quite easy to protect against DPA 	 Sparseness of the secret keys can be a weakness Non negligible failure rate ⇒ Attack in the non ephemeral case Guo et al (Asiacrypt 2016)

QcBits

Advantages	Drawbacks
 Post Quantum candidate Small key sizes Very efficient Quite easy to protect against DPA 	 Sparseness of the secret keys can be a weakness Non negligible failure rate ⇒ Attack in the non ephemeral case Guo et al (Asiacrypt 2016)

Thank you for your attention !