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Masking a post-quantum signature

ó Numerous side channel attacks against lattice-based schemes (Gaussian

distributions, rejection sampling)

ó Few countermeasures exist, especially on signatures

ó Call for concrete implementations of post-quantum cryptography

Strong countermeasures needed
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Returned value

Algorithm

Ishai, Sahai and Wagner model [ISW03] :

The attacker can access the exact values of at most

d intermediate values

Proof-Friendly

Noisy leakage model [CJRR99, PR13]:
The attacker can access the noisy values of all the

intermediate values

Realistic
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Leakagemodels andmasking

Input

Returned value

Algorithm

Security in the ISWmodel: d ordermasking
Each sensitive value is replaced by d+ 1 shares.

Such that it is impossible to recover the value

without having all d+ 1 shares

+ + + + =

Any strict subset of at most d shares is independant
from the sensitive value
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Our contribution

The first provablemasked implementation of a lattice-based signature
scheme at any order

ó New techniques for masking lattice-based Fiat–Shamir with abort signatures

ó New proofs for masking probabilistic algorithms
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GLP Key derivation

R =
Zp[x]
(xn+1)

Rk : coefficients in the range [−k, k]

Algorithm 1GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

ó Based on the Decisional Compact Knapsack problem
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GLP signature

ó Fiat–Shamir with abort signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk Random generation

2: c←H(r = ay1 + y2,m) Commitment and challenge

3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart Rejection Sampling

6: return σ = (z1, z2, c)

k = 214 α = 16 n = 512 p = 8383489

Verification : z1, z2 ∈ Rk−α and c = H(az1 + z2 − tc,m)
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Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme
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Masking GLP key generation

Algorithm 1GLP key generation
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Masking the signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart

6: return σ = (z1, z2, c)



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart

6: return σ = (z1, z2, c)

Masking the commitment : unnecessary

Distinguishing (c, r) pairs from uniform is heuristically1 a hard problem even for re-

jected executions.

1Thanks’ to V. Lyubashevsky, we also provided a non heuristic approach which requires somes changes in

the algorithm
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r

FullAdd
r

Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r

Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Composition
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Conversions Boolean to arithmetic

Proving the non interference of certain blocks (Rejection Sampling, Data Generation)

was challenging

Algorithm 2GLP signature

Require: m,pk,sk
Ensure: Signatureσ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2, m)

3: z1← s1c + y1
4: z2← s2c + y2
5: if z1 or z2 /∈ Rk−α then restart

6: returnσ = (z1, z2, c)

i=d∑
i=0

z1,i mod p ≤  k − α? (1)

We had to adapt arithmetic to Boolean conversions fromCoron, Großschädl and Vad-

nala in [CGV14].

i=d∑
i=0

z1,i mod p →
i=d⊕
i=0

z′1,i (2)
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Performances

Table 1: Performances

Number of shares (d+ 1) Unprotected 2 3 4 5 6

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111

Penalty factor — ×15 ×30 ×73 ×115 ×206

Timings are provided for 100 executions of the signing algorithm, on one core of an Intel Core
i7-3770 CPU-based desktopmachine.

ó The code will be published soon

ó Quite promising in view of the lack of optimization
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Future work

In a nutshell,

- Provable masked implementation ofGLP signature scheme

- New security notions adapted to Fiat–Shamir framework.

ó Can be applied directly toDilithium (implementation in progress, Vincent

Migliore)

BLISS andDilithium-G
ó Gaussians

ó Not sure the Hash function can be unmasked
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Conclusion

Thank you for your attention

Questions ?

Blogarticleon theRISQprojectwebpage : http://risq.fr/?page_id=365&lang=en

Eprint : https://eprint.iacr.org/2018/381

http://risq.fr/?page_id=365&lang=en
https://eprint.iacr.org/2018/381
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Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit
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