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Masking a post-quantum signature

= Numerous side channel attacks against lattice-based schemes (Gaussian
distributions, rejection sampling)

= Few countermeasures exist, especially on signatures
® (Call for concrete implementations of post-quantum cryptography

Strong countermeasures needed
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Leakage models and masking

Ishai, Sahai and Wagner model [ISWO03]:

Input The attacker can access the exact values of at most
l dintermediate values
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Noisy leakage model [CJRR99, PR13]:
The attacker can access the noisy values of all the
intermediate values
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Leakage models and masking

Input
Security in the ISW model: d order masking
Each sensitive value is replaced by d + 1 shares.
o% k@
Algorithm

Such that it is impossible to recover the value
without having all d 4+ 1 shares

A\~ -4

o O+0+0+0+0-=0

l Any strict subset of at most d shares is independant

from the sensitive value
Returned value



Our contribution

The first provable masked implementation of a lattice-based signature
scheme at any order

= New techniques for masking lattice-based Fiat-Shamir with abort signatures
= New proofs for masking probabilistic algorithms
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The signature
°

Why GLP signature scheme ?

Introduced in [Lyu09, Lyu12]
Implemented by Giineysu, Lyubashevsky and Péppelmannin [GLP12]

= Ancestor of BLISS and Dilithium
= No Gaussians, only uniform distributions
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°

Why GLP signature scheme ?

Introduced in [Lyu09, Lyu12]
Implemented by Giineysu, Lyubashevsky and Péppelmannin [GLP12]

= Ancestor of BLISS and Dilithium
= No Gaussians, only uniform distributions

But still some new difficulties
® Probabilistic algorithm
#r Reliance on rejection sampling



The signature
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GLP Key derivation

Zyp|z]

@ 1) Rk : coefficients in the range [k, k]

R —

Algorithm 1 GLP key derivation

Ensure: Signing key sk, verification key pk
1 51,52 & R1 //s1 and s, have coefficientsin {—1,0,1}
ad R
cteasy+ s
. sk <+ (51, 52)
: pk <+ (a,t)

SR NN

#» Based on the Decisional Compact Knapsack problem



The signature

oce

GLP signature

® Fiat-Shamir with abort signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (51,52)
Ensure: Signature o

1:

o U A wWwN

Y1, Y2 & R Random generation
: C< H(r=ayi+vy2,m) Commitment and challenge
1 Z1 4 5S1C+ VY1
1 Z2 4= S2C+ VY2
: ifzi0rzo ¢ Ri—o thenrestart Rejection Sampling
: returno = (z1,22,0)

E=2" a=16 n=>512 p=_8383489

Verification: 71,72 € Rk—o andc = H(azy + z2 — tc,m)
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Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks
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Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each blockis proven securely masked with one of the following properties

Unmasked
For non
parts.

sensitive

Non interferent

Every set of at most d in-
termediate variables can
be perfectly simulated
with at most d shares of
each input.

Non interferent with
public outputs

Every set of at most d in-
termediate variables can
be perfectly simulated
with the public outputs
and at most d shares of
eachinput.

We give some values (called out-
puts) to the attacker and prove that
the countermeasure does not leak

more than the outputs.

WA

3 A composition proof combines all the securities to the whole scheme
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Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1 51,50 < Ry //s1 and s, have coefficients in {-1,0,1}
aldR
cteas1+ 5o
. sk« (51,52)
: pk <+ (a,t)

SR NENEIN
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Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
ald R
cteast 4+ 5o
sk < (51,52)
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Algorithm 1 GLP key generation
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Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
ald R
cteas1+ 5o
. sk« (51,52)
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Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R+ //s1 and s, have coefficients in {—1,0, 1}
ad R
cteasy+ 52
. sk« (51, 52)
: pk <+ (a,t)

SR NN

Not masked Non interferent Non interferent with public output trials
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Masking the signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:

o AW N

Yi1,Y2 i R
: C H(r=ayi+vy2,m)
©Z1451C+Vy1
1 Z2 < S2C+ VY2
cifz10r zo ¢ Ri—o thenrestart
: returno = (z1,22,¢)
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Masking the signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (51,52)
Ensure: Signature o
1 yi,ye & Ry,
C+ H(r=ayi+vy2,m)
1 Z145S1C+ Y1
: Z2 ¢ SoC + Y2
. ifzi0rzo ¢ Ri—o thenrestart
:returno = (71,22, C)

o A W

Masking the commitment : unnecessary

Distinguishing (c,r) pairs from uniform is heuristically* a hard problem even for re-
jected executions.

"Thanks’ to V. Lyubashevsky, we also provided a non heuristic approach which requires somes changes in
the algorithm
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:

S

Vi Y2 € Ry

c+ H(r=ay; +yz,m)

71 4= S1C+ V1

Z9 <—S2C + Y2

ifz1 0r 7o & Ry_qo thenreturn L

returno = (z1,22,¢)
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +yz,m)

1 Z1451C+ V1

1 Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +yz,m)

P Z14¢S1C+ V1

1 Z2 < S2C+ Y2
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+ H(r=ay; +vyz,m)

P Z14¢S1C+ V1

1 Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +y2,m)
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Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1 y1,Y2 ﬁRk

C+ H(r =ay1 +y2,m)

71 4= S1C+ V1

Z9 <—S2C + Y2

ifz1 0rzo & Ry_qo thenreturn L

returno = (z1,22,¢)

S

FullAdd

FullAdd
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Composition

FullAdd

FullAdd

Not masked Non interferent Non interferent with public outputs trials and r
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Conversions Boolean to arithmetic

Proving the non interference of certain blocks (Rejection Sampling, Data Generation)
was challenging

Algorithm 2 GLP signature

Require: m, pk, sk
Ensure: Signature o

1:

$
Y1:v2 < Ry

D c H(r=ayy +vyp,m)
71 <s1c+ vy

2
3
4
5
6

79 «—S9C + Yo

Difzyorzg & Ry, thenrestart

. returno = (71,22, 0)

i=d
Zzu modp < k—a? (1)

=0

We had to adapt arithmetic to Boolean conversions from Coron, Grof3schadl and Vad-
nalain [CGV14].

d i=d

21, modp — @zil (2)

=0

K3

s
Il
o



Performances
o

Performances

Table 1: Performances

Number of shares (d + 1)  Unprotected 2 3 4 5 6
Total CPU time (s) 0.540 8.15 164 395 621 111
Penalty factor — x15 x30 x73 x115 x206

Timings are provided for 100 executions of the signing algorithm, on one core of an Intel Core
i7-3770 CPU-based desktop machine.

» The code will be published soon
»r Quite promising in view of the lack of optimization
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Future work

In a nutshell,
- Provable masked implementation of GLP signature scheme
- New security notions adapted to Fiat-Shamir framework.

= Can be applied directly to Dilithium (implementation in progress, Vincent
Migliore)

BLISS and Dilithium-G
= (Gaussians
= Not sure the Hash function can be unmasked



Future work
(]

Conclusion

Thank you for your attention

Questions ?

Blog article onthe RISQ project webpage : http://risq.fr/?page_id=365&lang=en

Eprint: https://eprint.iacr.org/2018/381


http://risq.fr/?page_id=365&lang=en
https://eprint.iacr.org/2018/381
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O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking

= Rejection Sampling: are coefficients of z1 in [k + o, k — o]?

@ convert mod-p arithmetic sharing into Boolean masking
® 3sin Data Generation, compute the masked difference with k — a difference
® sccurely check the most significant bit
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