
The signature The countermeasure and its proof Performances Future work

Masking the GLP Lattice-Based Signature Scheme at

anyOrder

Gilles Barthe (IMDEA Software Institute)
Sonia Belaïd (CryptoExperts)
Thomas Espitau (UPMC)

Pierre-Alain Fouque (Univ. Rennes I and IUF)
Benjamin Grégoire (INRIA Sophia Antipolis)

Mélissa Rossi (ENS Paris and Thales)
Mehdi Tibouchi (NTT Secure Platform Laboratories)

May 1st 2018 Eurocrypt



The signature The countermeasure and its proof Performances Future work

Masking a post-quantum signature

ó Numerous side channel attacks against lattice-based schemes (Gaussian

distributions, rejection sampling)

ó Few countermeasures exist, especially on signatures

ó Call for concrete implementations of post-quantum cryptography

Strong countermeasures needed



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm

Ishai, Sahai and Wagner model [ISW03] :

The attacker can access the exact values of at most

d intermediate values

Proof-Friendly



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm

Ishai, Sahai and Wagner model [ISW03] :

The attacker can access the exact values of at most

d intermediate values

Proof-Friendly

Noisy leakage model [CJRR99, PR13]:
The attacker can access the noisy values of all the

intermediate values

Realistic



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm

Security in the ISWmodel: d ordermasking
Each sensitive value is replaced by d+ 1 shares.



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm

Security in the ISWmodel: d ordermasking
Each sensitive value is replaced by d+ 1 shares.

Such that it is impossible to recover the value

without having all d+ 1 shares

+ + + + =



The signature The countermeasure and its proof Performances Future work

Leakagemodels andmasking

Input

Returned value

Algorithm

Security in the ISWmodel: d ordermasking
Each sensitive value is replaced by d+ 1 shares.

Such that it is impossible to recover the value

without having all d+ 1 shares

+ + + + =

Any strict subset of at most d shares is independant
from the sensitive value



The signature The countermeasure and its proof Performances Future work

Our contribution

The first provablemasked implementation of a lattice-based signature
scheme at any order

ó New techniques for masking lattice-based Fiat–Shamir with abort signatures

ó New proofs for masking probabilistic algorithms



The signature The countermeasure and its proof Performances Future work

1 The signature

1 WhyGLP signature scheme ?

2 GLP signature scheme

2 The countermeasure and its proof

1 Structure of the countermeasure and its proof

2 Masking GLP key generation

3 Masking GLP signature

4 Composition

5 Conversions Boolean to arithmetic

3 Performances



The signature The countermeasure and its proof Performances Future work

WhyGLP signature scheme ?

Introduced in [Lyu09, Lyu12]

Implemented byGüneysu, Lyubashevsky and Pöppelmann in [GLP12]

ó Ancestor of BLISS andDilithium

ó NoGaussians, only uniform distributions

But still some new difficulties

ó Probabilistic algorithm

ó Reliance on rejection sampling



The signature The countermeasure and its proof Performances Future work

WhyGLP signature scheme ?

Introduced in [Lyu09, Lyu12]

Implemented byGüneysu, Lyubashevsky and Pöppelmann in [GLP12]

ó Ancestor of BLISS andDilithium

ó NoGaussians, only uniform distributions

But still some new difficulties

ó Probabilistic algorithm

ó Reliance on rejection sampling



The signature The countermeasure and its proof Performances Future work

GLP Key derivation

R =
Zp[x]
(xn+1)

Rk : coefficients in the range [−k, k]

Algorithm 1GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

ó Based on the Decisional Compact Knapsack problem



The signature The countermeasure and its proof Performances Future work

GLP signature

ó Fiat–Shamir with abort signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk Random generation

2: c←H(r = ay1 + y2,m) Commitment and challenge

3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart Rejection Sampling

6: return σ = (z1, z2, c)

k = 214 α = 16 n = 512 p = 8383489

Verification : z1, z2 ∈ Rk−α and c = H(az1 + z2 − tc,m)



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each block is proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

Non interferent
Every set of at most d in-

termediate variables can

be perfectly simulated

with at most d shares of

each input.

Non interferent with
public outputs
Every set of at most d in-

termediate variables can

be perfectly simulated

with the public outputs
and at most d shares of

each input.

We give some values (called out-
puts) to theattacker andprove that
the countermeasure does not leak
more than the outputs.

3 A composition proof combines all the securities to the whole scheme



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

s1

trials

trials

s2

a

H1

t

s1

s2

FullAdd
t



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

s1

trials

trials

s2

a

H1

t

s1

s2

FullAdd
t



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

s1

trials

trials

s2

a

H1

t

s1

s2

FullAdd
t



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

s1

trials

trials

s2

a

H1

t

s1

s2

FullAdd
t



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

s1

trials

trials

s2

a

H1

t

s1

s2

FullAdd
t



The signature The countermeasure and its proof Performances Future work

Masking GLP key generation

Algorithm 1GLP key generation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←−R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←−R

3: t← as1 + s2
4: sk← (s1, s2)
5: pk← (a, t)

DG

DG

trials

trials

a

H1 FullAdd
t

Not masked Non interferent Non interferent with public output trials



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart

6: return σ = (z1, z2, c)



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 2GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then restart

6: return σ = (z1, z2, c)

Masking the commitment : unnecessary

Distinguishing (c, r) pairs from uniform is heuristically1 a hard problem even for re-

jected executions.

1Thanks’ to V. Lyubashevsky, we also provided a non heuristic approach which requires somes changes in

the algorithm



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r

FullAdd
r

Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r

Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a, t), sk = (s1, s2)
Ensure: Signature σ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2,m)
3: z1← s1c+ y1
4: z2← s2c+ y2
5: if z1 or z2 /∈ Rk−α then return⊥
6: return σ = (z1, z2, c)

DG

DG

trials

trials

y1

y2

H1

a

r
FullAdd

r
Hash

m

c

s1

s2

H1

H1

z1

z2

RS
RejSp

H2

H2

z1

z2

FullAdd

FullAdd

z1

z2

c



The signature The countermeasure and its proof Performances Future work

Composition

H1 FullAdd

DG

DG

trials

trials

RS

FullAdd

FullAdd

H2

Hash

H2

H1

H1

a

s1

s2

m

RejSp

r c

z1

z2

c

Not masked Non interferent Non interferent with public outputs trials and r



The signature The countermeasure and its proof Performances Future work

Conversions Boolean to arithmetic

Proving the non interference of certain blocks (Rejection Sampling, Data Generation)

was challenging

Algorithm 2GLP signature

Require: m,pk,sk
Ensure: Signatureσ

1: y1, y2
$←− Rk

2: c←H(r = ay1 + y2, m)

3: z1← s1c + y1
4: z2← s2c + y2
5: if z1 or z2 /∈ Rk−α then restart

6: returnσ = (z1, z2, c)

i=d∑
i=0

z1,i mod p ≤  k − α? (1)

We had to adapt arithmetic to Boolean conversions fromCoron, Großschädl and Vad-

nala in [CGV14].

i=d∑
i=0

z1,i mod p →
i=d⊕
i=0

z′1,i (2)



The signature The countermeasure and its proof Performances Future work

Performances

Table 1: Performances

Number of shares (d+ 1) Unprotected 2 3 4 5 6

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111

Penalty factor — ×15 ×30 ×73 ×115 ×206

Timings are provided for 100 executions of the signing algorithm, on one core of an Intel Core
i7-3770 CPU-based desktopmachine.

ó The code will be published soon

ó Quite promising in view of the lack of optimization



The signature The countermeasure and its proof Performances Future work

Future work

In a nutshell,

- Provable masked implementation ofGLP signature scheme

- New security notions adapted to Fiat–Shamir framework.

ó Can be applied directly toDilithium (implementation in progress, Vincent

Migliore)

BLISS andDilithium-G
ó Gaussians

ó Not sure the Hash function can be unmasked



The signature The countermeasure and its proof Performances Future work

Conclusion

Thank you for your attention

Questions ?

Blogarticleon theRISQprojectwebpage : http://risq.fr/?page_id=365&lang=en

Eprint : https://eprint.iacr.org/2018/381

http://risq.fr/?page_id=365&lang=en
https://eprint.iacr.org/2018/381


References

Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.

Secure conversion between Boolean and arithmetic masking of any order.

In Lejla Batina andMatthew Robshaw, editors, CHES 2014, volume 8731 of

LNCS, pages 188–205. Springer, Heidelberg, September 2014.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.

Towards sound approaches to counteract power-analysis attacks.

InMichael J.Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412.

Springer, Heidelberg, August 1999.

TimGüneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.

Practical lattice-based cryptography: A signature scheme for embedded systems.

In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428

of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

Yuval Ishai, Amit Sahai, and DavidWagner.

Private circuits: Securing hardware against probing attacks.

In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481.

Springer, Heidelberg, August 2003.

Vadim Lyubashevsky.

Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.

InMitsuruMatsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages

598–616. Springer, Heidelberg, December 2009.



References

Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,

volume 7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

Emmanuel Prouff andMatthieu Rivain.

Masking against side-channel attacks: A formal security proof.

In Thomas Johansson and PhongQ. Nguyen, editors, EUROCRYPT 2013,

volume 7881 of LNCS, pages 142–159. Springer, Heidelberg, May 2013.



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1

5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking

2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference

3 securely check themost significant bit



References

Conversions Boolean to arithmetic

ó DG: generation of sharings for coefficients x ∈ [−k, k] (k = 1)

1 generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2 (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3 b← unmask δ’s most significant bit
4 b equals 0 iff x ≥ 2k + 1
5 convert (xi)0≤i≤d to an arithmetic masking

ó Rejection Sampling: are coefficients of z1 in [−k + α, k − α]?

1 convert mod-p arithmetic sharing into Booleanmasking
2 as in Data Generation, compute themasked difference with k − α difference
3 securely check themost significant bit


	The signature
	Why GLP signature scheme ?
	GLP signature scheme

	The countermeasure and its proof
	Structure of the countermeasure and its proof
	Masking GLP key generation
	Masking GLP signature
	Composition
	Conversions Boolean to arithmetic

	Performances
	References

