Masking the GLP Lattice-Based Signature Scheme at
any Order

Gilles Barthe (IMDEA Software Institute)
Sonia Belaid (CryptoExperts)
Thomas Espitau (UPMCQC)

Pierre-Alain Fougue (Univ. Rennes | and IUF)
Benjamin Grégoire (INRIA Sophia Antipolis)
Meélissa Rossi (ENS Paris and Thales)

Mehdi Tibouchi (NTT Secure Platform Laboratories)

Ll PS|L %
THALES ENS wwlumm

SUPERIEURE

May 1st 2018 Eurocrypt

Masking a post-quantum signature

= Numerous side channel attacks against lattice-based schemes (Gaussian
distributions, rejection sampling)

= Few countermeasures exist, especially on signatures
® (Call for concrete implementations of post-quantum cryptography

Strong countermeasures needed

Leakage models and masking

Input

Algorithm

J

Returned value

The signatul The counterm
[e]e]e} 0000000

Leakage models and masking

Input

@)

Algorithm
O O

J

Returned value

[e] (oo}

Ishai, Sahai and Wagner model [ISWO03]:
The attacker can access the exact values of at most
dintermediate values

Proof-Friendly

The signature The countermeast nd its f Performances utul
[e]e]e} 0000000 [e] (oo}

Leakage models and masking

Ishai, Sahai and Wagner model [ISWO03]:

Input The attacker can access the exact values of at most
l dintermediate values
\
\
[]
Proof-Friendl
Algorithm L

Noisy leakage model [CJRR99, PR13]:
The attacker can access the noisy values of all the
intermediate values

l

Returned value Realistic

Leakage models and masking

Input

Security in the ISW model: d order masking
Each sensitive value is replaced by d + 1 shares.

hcid
J

Returned value

Leakage models and masking

Input
Security in the ISW model: d order masking
Each sensitive value is replaced by d + 1 shares.
Algorithm o O O O

Such that it is impossible to recover the value

w without having all d 4 1 shares

©)
J O+ 0O+ O+ O+ O =0

Returned value

Leakage models and masking

Input
Security in the ISW model: d order masking
Each sensitive value is replaced by d + 1 shares.
o% k@
Algorithm

Such that it is impossible to recover the value
without having all d 4+ 1 shares

A\~ -4

o O+0+0+0+0-=0

l Any strict subset of at most d shares is independant

from the sensitive value
Returned value

Our contribution

The first provable masked implementation of a lattice-based signature
scheme at any order

= New techniques for masking lattice-based Fiat-Shamir with abort signatures
= New proofs for masking probabilistic algorithms

[e]e]e} 0000000 [e]

@ The signature
@ Why GLP signature scheme ?
(@ GLP signature scheme

@ The countermeasure and its proof
(® Structure of the countermeasure and its proof
(® Masking GLP key generation
(® Masking GLP signature
@ Composition
® Conversions Boolean to arithmetic

@ Performances

(oo}

The signature
°

Why GLP signature scheme ?

Introduced in [Lyu09, Lyu12]
Implemented by Giineysu, Lyubashevsky and Péppelmannin [GLP12]

= Ancestor of BLISS and Dilithium
= No Gaussians, only uniform distributions

The signature
°

Why GLP signature scheme ?

Introduced in [Lyu09, Lyu12]
Implemented by Giineysu, Lyubashevsky and Péppelmannin [GLP12]

= Ancestor of BLISS and Dilithium
= No Gaussians, only uniform distributions

But still some new difficulties
® Probabilistic algorithm
#r Reliance on rejection sampling

The signature
@O0

GLP Key derivation

Zyp|z]

@ 1) Rk : coefficients in the range [k, k]

R —

Algorithm 1 GLP key derivation

Ensure: Signing key sk, verification key pk
1 51,52 & R1 //s1 and s, have coefficientsin {—1,0,1}
ad R
cteasy+ s
. sk <+ (51, 52)
: pk <+ (a,t)

SR NN

#» Based on the Decisional Compact Knapsack problem

The signature

oce

GLP signature

® Fiat-Shamir with abort signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (51,52)
Ensure: Signature o

1:

o U A wWwN

Y1, Y2 & R Random generation
: C< H(r=ayi+vy2,m) Commitment and challenge
1 Z1 4 5S1C+ VY1
1 Z2 4= S2C+ VY2
: ifzi0rzo ¢ Ri—o thenrestart Rejection Sampling
: returno = (z1,22,0)

E=2" a=16 n=>512 p=_8383489

Verification: 71,72 € Rk—o andc = H(azy + z2 — tc,m)

T The countermeasure and its proof !
[e]e]e} ®000000 [e]

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

The countermeasure and its proof
©000000

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks
2 Each blockis proven securely masked with one of the following properties

The countermeasure and its proof
°

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks
2 Each blockis proven securely masked with one of the following properties

Unmasked
For non sensitive

parts.

The countermeasure and its proof
°

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks
2 Each blockis proven securely masked with one of the following properties

Unmasked Non interferent
For non sensitive Every set of at most d in-
parts. termediate variables can

be perfectly simulated
with at most d shares of
each input.

The countermeasure and its proof

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks
2 Each blockis proven securely masked with one of the following properties

Unmasked
For non
parts.

sensitive

Non interferent

Every set of at most d in-
termediate variables can
be perfectly simulated
with at most d shares of
each input.

Non interferent with
public outputs

Every set of at most d in-
termediate variables can
be perfectly simulated
with the public outputs
and at most d shares of

eachinput. a: E

The countermeasure and its proof

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each blockis proven securely masked with one of the following properties

Unmasked
For non
parts.

sensitive

Non interferent

Every set of at most d in-
termediate variables can
be perfectly simulated
with at most d shares of
each input.

Non interferent with
public outputs

Every set of at most d in-
termediate variables can
be perfectly simulated
with the public outputs
and at most d shares of
eachinput.

We give some values (called out-
puts) to the attacker and prove that
the countermeasure does not leak

more than the outputs.

The countermeasure and its proof

Structure of the countermeasure and its proof

1 The signature and key derivation algorithms are divided in blocks

2 Each blockis proven securely masked with one of the following properties

Unmasked
For non
parts.

sensitive

Non interferent

Every set of at most d in-
termediate variables can
be perfectly simulated
with at most d shares of
each input.

Non interferent with
public outputs

Every set of at most d in-
termediate variables can
be perfectly simulated
with the public outputs
and at most d shares of
eachinput.

We give some values (called out-
puts) to the attacker and prove that
the countermeasure does not leak

more than the outputs.

WA

3 A composition proof combines all the securities to the whole scheme

The countermeasure and its proof
e0

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1 51,50 < Ry //s1 and s, have coefficients in {-1,0,1}
aldR
cteas1+ 5o
. sk« (51,52)
: pk <+ (a,t)

SR NENEIN

The countermeasure and its proof
e0

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
al R
cteas1+ 5o
. sk« (51,52)
: pk <+ (a,t)

[S RN

The countermeasure and its proof
e0

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
ald R
cteast 4+ 5o
sk < (51,52)
: pk <+ (a,t)

bW N

The countermeasure and its proof
e0

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
ald R
cteas1+ 5o
. sk« (51. 52)
: pk <+ (a,t)

[SIENENEIN

-
DG
S1
\--4
-
DG
S2

The countermeasure and its proof
e0

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R1//s1 and s, have coefficients in {—1,0, 1}
ald R
cteas1+ 5o
. sk« (51,52)
: pk <+ (a,t)

s W N

-
DG
S1
-
DG
S2

The countermeasure and its proof
oe

Masking GLP key generation

Algorithm 1 GLP key generation

Ensure: Signing key sk, verification key pk
1: S1,52 & R+ //s1 and s, have coefficients in {—1,0, 1}
ad R
cteasy+ 52
. sk« (51, 52)
: pk <+ (a,t)

SR NN

Not masked Non interferent Non interferent with public output trials

The countermeasure and its proof
e0

Masking the signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:

o AW N

Yi1,Y2 i R
: C H(r=ayi+vy2,m)
©Z1451C+Vy1
1 Z2 < S2C+ VY2
cifz10r zo ¢ Ri—o thenrestart
: returno = (z1,22,¢)

The countermeasure and its proof
e0

Masking the signature

Algorithm 2 GLP sign

Require: m,pk = (a,t), sk = (51,52)
Ensure: Signature o
1 yi,ye & Ry,
C+ H(r=ayi+vy2,m)
1 Z145S1C+ Y1
: Z2 ¢ SoC + Y2
. ifzi0rzo ¢ Ri—o thenrestart
:returno = (71,22, C)

o A W

Masking the commitment : unnecessary

Distinguishing (c,r) pairs from uniform is heuristically* a hard problem even for re-
jected executions.

"Thanks’ to V. Lyubashevsky, we also provided a non heuristic approach which requires somes changes in
the algorithm

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:

S

Vi Y2 € Ry

c+ H(r=ay; +yz,m)

71 4= S1C+ V1

Z9 <—S2C + Y2

ifz1 0r 7o & Ry_qo thenreturn L

returno = (z1,22,¢)

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +yz,m)

1 Z1451C+ V1

1 Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN

$
Y1,Y2 < Ry

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +yz,m)

P Z14¢S1C+ V1

1 Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN

$
Y1,Y2 < Ry

t

t

)

a
G
Y1
heacd
H? - —
G
Y2

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+ H(r=ay; +vyz,m)

P Z14¢S1C+ V1

1 Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN

$
Y1,Y2 Ry

t

t

)

a
s ! m
s !

Y1

heacd c
H? T —>| Hash

G

Y2

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1:
D C+H(r=ay; +y2,m)

L Z14S1C+ V1

D Z2 < S2C+ Y2

ifzyorze ¢ Ri—_q thenreturn L

c returne = (21, 22,0)

oA WN

$
Y1,Y2 < Ry

The countermeasure and its proof
oe

Masking the signature

Algorithm 3 Tweaked GLP sign

Require: m, pk = (a,t), sk = (s1,52)
Ensure: Signature o

1 y1,Y2 ﬁRk

C+ H(r =ay1 +y2,m)

71 4= S1C+ V1

Z9 <—S2C + Y2

ifz1 0rzo & Ry_qo thenreturn L

returno = (z1,22,¢)

S

FullAdd

FullAdd

The countermeasure and its proof
L]

Composition

FullAdd

FullAdd

Not masked Non interferent Non interferent with public outputs trials and r

The countermeasure and its proof
L]

Conversions Boolean to arithmetic

Proving the non interference of certain blocks (Rejection Sampling, Data Generation)
was challenging

Algorithm 2 GLP signature

Require: m, pk, sk
Ensure: Signature o

1:

$
Y1:v2 < Ry

D c H(r=ayy +vyp,m)
71 <s1c+ vy

2
3
4
5
6

79 «—S9C + Yo

Difzyorzg & Ry, thenrestart

. returno = (71,22, 0)

i=d
Zzu modp < k—a? (1)

=0

We had to adapt arithmetic to Boolean conversions from Coron, Grof3schadl and Vad-
nalain [CGV14].

d i=d

21, modp — @zil (2)

=0

K3

s
Il
o

Performances
o

Performances

Table 1: Performances

Number of shares (d + 1) Unprotected 2 3 4 5 6
Total CPU time (s) 0.540 8.15 164 395 621 111
Penalty factor — x15 x30 x73 x115 x206

Timings are provided for 100 executions of the signing algorithm, on one core of an Intel Core
i7-3770 CPU-based desktop machine.

» The code will be published soon
»r Quite promising in view of the lack of optimization

Future work
°

Future work

In a nutshell,
- Provable masked implementation of GLP signature scheme
- New security notions adapted to Fiat-Shamir framework.

= Can be applied directly to Dilithium (implementation in progress, Vincent
Migliore)

BLISS and Dilithium-G
= (Gaussians
= Not sure the Hash function can be unmasked

Future work
(]

Conclusion

Thank you for your attention

Questions ?

Blog article onthe RISQ project webpage : http://risq.fr/?page_id=365&lang=en

Eprint: https://eprint.iacr.org/2018/381

http://risq.fr/?page_id=365&lang=en
https://eprint.iacr.org/2018/381

References

[e]

Jean-Sébastien Coron, Johann Grof3schadl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 188-205. Springer, Heidelberg, September 2014.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.

Towards sound approaches to counteract power-analysis attacks.

In Michael J. Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages 398-412.
Springer, Heidelberg, August 1999.

Tim Guneysu, Vadim Lyubashevsky, and Thomas Péppelmann.
Practical lattice-based cryptography: A signature scheme for embedded systems.

In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530-547. Springer, Heidelberg, September 2012.

Yuval Ishai, Amit Sahai, and David Wagner.

Private circuits: Securing hardware against probing attacks.

In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463-481.
Springer, Heidelberg, August 2003.

Vadim Lyubashevsky.

Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
598-616. Springer, Heidelberg, December 2009.

References
°

Vadim Lyubashevsky.
Lattice signatures without trapdoors.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 738-755. Springer, Heidelberg, April 2012.

Emmanuel Prouff and Matthieu Rivain.
Masking against side-channel attacks: Aformal security proof.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 142-159. Springer, Heidelberg, May 2013.

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
Y0 <i<d, z; + [0,2¥0 — 1]
where 2%wo > 2k 41 > 2wo—1

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]

where 2%wo > 2k 41 > 2wo—1
@ (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a

® b < unmask §'s most significant bit
@ bequalsOiffz > 2k + 1

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a
® b < unmask §'s most significant bit

O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a
® b < unmask §'s most significant bit

O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking

= Rejection Sampling: are coefficients of z1 in [k + o, k — o]?

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a
® b < unmask §'s most significant bit
O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking
= Rejection Sampling: are coefficients of z1 in [k + o, k — o]?

@ convert mod-p arithmetic sharing into Boolean masking

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a
® b < unmask §'s most significant bit
O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking
= Rejection Sampling: are coefficients of z1 in [k + o, k — o]?

@ convert mod-p arithmetic sharing into Boolean masking
® 3sin Data Generation, compute the masked difference with k — a difference

References
°

Conversions Boolean to arithmetic

DG: generation of sharings for coefficients z € [—k, k] (k = 1)
@ generate a Boolean sharing of x:
V0 <i<d, z; « [0,2%0 — 1]
where 2w0 > 2k + 1 > 2wo—1
O (5:)o<i<a + (Xi)o<i<a — (Ki)o<i<a
® b < unmask §'s most significant bit

O bequalsOiffz > 2k + 1
©® convert (X:)o<i<aq to an arithmetic masking

= Rejection Sampling: are coefficients of z1 in [k + o, k — o]?

@ convert mod-p arithmetic sharing into Boolean masking
® 3sin Data Generation, compute the masked difference with k — a difference
® sccurely check the most significant bit

	The signature
	Why GLP signature scheme ?
	GLP signature scheme

	The countermeasure and its proof
	Structure of the countermeasure and its proof
	Masking GLP key generation
	Masking GLP signature
	Composition
	Conversions Boolean to arithmetic

	Performances
	References

