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KeyGen()

/0 Generate matrices A, B with coefficients in

/

7

such that { BA =0
B has small coefficients
® pk< A
k sk — B
Sign(m,sk)

® Compute c such that cA = H(m)

® v < avectorin A(B) close to c

® S<C—YV

Verify(m,pk,s)
Accept iff:
{ s is short

SA = H(m)
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Advantages

M Compact
M Fast
M GPV framework proved secure in the ROM and QROM (Boneh et al. ASIACRYPT 2011)



Limitations

J Non Trivial to understand and implement

[d Floating point arithmetic
[d Side channel resistance not very studied
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This work

™ Integer arithmetic
M Theoretically studied constant time
M Implementations
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over Z
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/A\ The execution time does not depend on the private key B
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Sign(m,sk)
® Compute c such that cA = H(m) \ _ _
0 v < a vector in A(B) close to ¢ » ffsampling —p» Gaussian Sampling
O —— J over 7

Except Gaussian sampling, other operations do not use conditional branching

Assumption
( +,—, X,/ Constant time on integers )




Some literature on Gaussian Samplers:

Sinha Roy, Vercauteren and
Verbauwhede SAC 2013
Hulsing, Lange and Smeets PKC 2018
Micciancio and Walter CRYPTO 2017
Karmakar et al. DAC IEEE 2019
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Sinha Roy, Vercauteren and
Verbauwhede SAC 2013
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This work: a simple alternative

dedicated to Falcon
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The technique

a Draw an element 7, from a centered half Gaussian of standard deviation O,
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The technique

D, ,(2)
e Rejection Sampling (Lyubashevsky EC 2012) Accept with probability P o,

X
accept
P GZ,GO(Z)




Algorithm SampleZ(o, ()
/Require: u € [0,1),6 <oy \

Ensure: z ~ D5, ,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. 7 «— (2[7— 1)'Z()+b
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$ = <
4.x<——( #) +—O
20?2 203

5. Accept with probability exp(x)

\ Restart to 1. otherwise /
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Algorithm SampleZ(o, ()
/Require: u € [0,1),6 <oy \

Ensure: 2 ~ D5 .,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. { € (2[7— I)Zo+b

2 2

$ = <
4.x<——( #) +—0
20?2 203

5. Accept with probability exp(x)
\ Restart to 1. otherwise

P accept

Y
wo(5)



/Algorithm SampleZ(o, 1) \
R

equire: 4 € [0,1),0 < g

Ensure: z ~ D .,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. 7 « (2[9— 1)‘Z0+b

2 2

<= <
4.x<——( #) +—O
202 203

5. Accept with probability exp(x)
Restart to 1. otherwise

\_ /

If all the distributions and computations are perfect (Basesampler(), uniform and exp()),
SampleZ(y, 0) = Dy, ,
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3) Make the number of iterations
iIndependent from the secret
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SampleZ(y,0) = Dy, Yes as long as the number of queries is bounded



SampleZ(y,0) = Dy, Yes as long as the number of queries is bounded

Security loss theorem
/ For at most 2°* signature queries, \
if BaseSampler is « close » to Dz, .
and
exp() replaced by a polynomial P that is also « close » to exp() on [0, In(2)]

—> The security is preserved:
\ One cannot notice the changes with the output distribution /
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SampleZ(y,0) = Dy, Yes as long as the number of queries is bounded

Security loss theorem
/ For at most 2% signature queries, \

R, (BaseSampIer(),DZ+,00) <1+27%

and exp() replaced by a polynomial P such that

P(x) —
Vi€ [0.In(2)] | ) TSXPW | oad
exp(x)
\ —> at most 2 bits of security are lost. /

See paper for the proof.
Application of Bai et al. ASIACRYPT 2015, Prest ASIACRYPT 2017
Parameterized by the number of queries to the sampler



The constant time sampler

[ Basesampler with a table
[J Polynomial approximation for exp

] Make the number of iterations independent from the secret



BaseSampler() close to Dy. ,

Cumulative Distribution Table (CDT) with w elements of & bits

CDT sampling can be done in constant time if the algorithm reads the
entire table each time and carry out each comparison
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BaseSampler() close to Dy. ,

We provide a script that generates w and the CDT table

for a given target precision ¢ = 27" and 9

Algorithm Renyification(o, €, 0)
/ Require: o0, ¢ < 0,0 \
Ensure: w, the CDT table

1. w < Smallest tailcut such that R, <D[W],GO, DZ+,00> <l+e
2. Compute the table values with a « clever » rounding

1.Forz > 1, CDT(z) « 277 Pe ' D[W],GO(Z)J
2. CDT(0) « 1 — Z CDT(2)

z>1

\ 3. Recompute Rényi divergence and return the new precision, w and CDT /

|3



R.. (BaseSampler(), D, ) < 1+27*

For 6, = 1.82035, our script gave

elements

CDT(0) = 27 7% x 1697680241746640300030
CDT(1) = 277 x 1459943456642912959616
CDT(2) = 27"? x 928488355018011056515
CDT(3) = 277 x 436693944817054414619
CDT(4) = 277? x 151893140790369201013
CDT(5) = 277 x 39071441848292237840
CDT(6) = 27 "% x 7432604049020375675
CDT(7) = 27 7% x 1045641569992574730
CDT(8) = 277% x 108788995549429682

|4

CDT(9) = 2772 x 8370422445201343
CDT(10) = 277? x 476288472308334
CDT(11) = 277% x 20042553305308
CDT(12) = 277 x 623729532807
CDT(13) = 277? x 4354889437
CDT(14) = 2772 x 244322621
CDT(15) = 277? x 3075302

CDT(16) = 277 x 28626

CDT(17) = 2772 x 197

CDT(18) =27 x 1



The constant time sampler

M Basesampler with a table
[ Polynomial approximation for exp

] Make the number of iterations independent from the secret
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Polynomial approximation tools
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degree 10
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The constant time sampler

M Basesampler with a table
M Polynomial approximation for exp

[ Make the number of iterations independent from the secret
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® ) Could the number of iterations leak the secret?

2 po(Z7)
Po(L)

The number of iterations follows a geometric distribution of average

18



Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® ) Could the number of iterations leak the secret?

2 po(Z7)
Omin po.,'u(Z)

o

The average number of iterations is

O O

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

18



Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® ) Could the number of iterations leak the secret?

2- po'O(Z+)
Omin po.,ﬂ(Z)

o

The average number of iterations is

O O

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),

p(w(Z) ~ 0\/%

2 pa(ZF) 2epn(ZH) 2 p(ZH)

oD IEo\2E Gn/2R

So,
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® ) Could the number of iterations leak the secret?

2- po'O(Z+)
Omin pa,ﬂ(Z)

o

The average number of iterations is

0]

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),
p. (7))~ o\ 21
i // Independent from ,u\

7. pao(z+) 7. pao(z+) 7. pao(Z+) v Independent from o
N = v Independent from z
Po,(Z) o\ 2x CrminV 27 \_ /

o

So,

Onmin

o
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® ) Could the number of iterations leak the secret?

2- po'O(Z+)
Omin po.,'u(Z)

o

The average number of iterations is

Tweak for Falcon’s sampler

0]

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),
p. (7))~ o\ 21
i /s/ Independent from ,u\

7. pao(z+) 7. PGO(Z+) 7. pao(Z+) v Independent from o
N = v Independent from z
Po,(Z) o\ 2x CrminV 27 \_ /

o

So,

Onmin

o

The whole algorithm
Is constant time
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Number of sig computed in one second
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. N=512
B N=1024
7500
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R I I I I
Ref round 1 Our PoC Optimized using plain AVX2 (CT)
(not CT) (CT) double operations
(CT)
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Number of sig computed in one second

10000
" N=512
M N=1024
7500 The performance loss
for constant time and
portability
5000 IS acceptable
B I I II I
Ref round 1 Our PoC Optimized using plain AVX2 (CT)
(not CT) (CT) double operations
(CT) *

a Very recent implementations done
by Thomas Pornin

See https://github.com/PQClean/PQClean/
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Constant time and integers help Cortex M4 implementations

Falcon-512 (168 MHz)

Dynamic signatures
(in milliseconds)

Memory
(in bytes of extra RAM,
not counting the key)

First M4 implementation

(Oder et al. PQCRYPTO 2019) 479 °0508
Recent Constant time and integers
(Thomas Pornin) 243 36864

https://github.com/mupqg/pgm4

20



https://github.com/mupq/pqm4

M Compact
M Fast
M GPV framework proved secure
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M Compact
M Fast
M GPV framework proved secure

M Constant time and still fast

4 Integer arithmetic and still fast

M Solid implementations available
(Thanks to Thomas Pornin)

[J Currently studied: masking protection

Paper available at:
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-
Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf

21


https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf

