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Falcon in a nutshell 

ℤq[x] 
ℛ = 

xn + 1 

Generate matrices A, B with coefficients in ℛ 

BA = 0 

B has small coefficients 
pk ← A 

sk ← B 

KeyGen() 

such that { 

Compute c such that cA = H(m) 

v ← a vector in Λ(B) close to c 

s ← c − v 

Sign(m,sk) 

s is short 
sA = H(m) 

Accept iff: 

Verify(m,pk,s) 

{ 
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 Round 1 Falcon 

Advantages 

 Compact 
  Fast 
  GPV framework proved secure in the ROM and QROM (Boneh et al. ASIACRYPT 2011) 
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This work 
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  Theoretically studied constant time  
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Compute c such that cA = H(m) 
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+, − , × , / Constant time on integers 
Assumption 
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Constant time Gaussian sampling 

Some literature on Gaussian Samplers: 

Sinha Roy, Vercauteren and 
Verbauwhede SAC 2013 

Hulsing, Lange and Smeets PKC 2018 
Micciancio and Walter CRYPTO 2017 

Karmakar et al. DAC IEEE 2019 
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dedicated to Falcon 



 

 The sampling distribution 

1.31 = σmin ≤ σ ≤ σ0 = 1.82 μ ∈ [0,1) 
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The technique 

1 Draw an element  z0 from a centered half Gaussian of standard deviation σ0 

0 1 

σ0 
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The technique 

2 Draw  b uniformly at random in {0,1} and compute z ← (2b − 1) ⋅ z0 + b 
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σ0 
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The technique 

3 Rejection Sampling (Lyubashevsky EC 2012) Accept with probability "Paccept ∝ 
Dσ,μ(z) 
Gℤ,σ0

(z) 

0 1 

b = 0 

σ0 

b = 1 
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Falcon Gaussian sampler 

Require: " 
Ensure: " 

1. " Basesampler() 
2. "  uniformly 
3. " 

4. " 

5.  Accept with probability "   
Restart to 1. otherwise 

μ ∈ [0,1), σ ≤ σ0 

z ∼ Dℤ,σ,μ 

z0 ← 
b ← {0,1} 
z ← (2b − 1) ⋅ z0 + b 

x ← − 
(z − μ)2 

2σ2 
+ 

z2 
0 

2σ2
0 

exp(x) 

Algorithm SampleZ(" ) σ, μ 
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Falcon Gaussian sampler 

Require: " 
Ensure: " 

1. " Basesampler() 
2. "  uniformly 
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z2 
0 

2σ2
0 

exp(x) 

Algorithm SampleZ(" ) σ, μ 

1. σ0 

b = 0 

σ0 

b = 1 

3. 

b = 0 

σ0 

b = 1 

5. 
exp (− 

(z 

2
− 

σ
μ
2 

)2 ) 
" = Paccept 

exp (− 
z2

0 

2σ2
0 ) 
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Constant time Falcon Gaussian sampler 

Algorithm SampleZ(" σ, μ ) 

Require: " μ ∈ [0,1), σ ≤ σ0 

Ensure: " z ∼ Dℤ,σ,μ 

1. " z0 ← Basesampler() 
2. "b ← {0,1}  uniformly 
3. " z ← (2b − 1) ⋅ z0 + b 

(z − μ)2 z2 
0 4. " x ← − + 

2σ2 2σ2
0 

5. Accept with probability " exp(x)   
Restart to 1. otherwise 

If all the distributions and computations are perfect (Basesampler(), uniform and exp()),  
SampleZ"(μ, σ) = Dℤ,σ,μ 

10 



 
 

 
 
  

  

 

 

Constant time Falcon Gaussian sampler 

Constant time and portability 
modifications 
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Ensure: " 

1. " Basesampler() 
2. "  uniformly 
3. " 

4. " 

5.  Accept with probability "   
Restart to 1. otherwise 
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(z − μ)2 z2 

2σ2 
+ 0 

2σ2
0 

exp(x) 

Algorithm SampleZ(" σ, μ ) 

1) Basesampler with a table  
2) Polynomial approximation for exp 
3) Make the number of iterations 

independent from the secret 

If all the distributions and computations are perfect (Basesampler(), uniform and exp()),  
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Rényi divergence result 

SampleZ" (μ, σ) = Dℤ,σ,μ Yes as long as the number of queries is bounded 

Security loss theorem 
264 For at most "  signature queries,  

if BaseSampler is « close » to " Dℤ+,σ0 

and  
"exp()  replaced by a polynomial "P  that is also « close » to "exp()  on " [0, ln(2)] 

"⟹  The security is preserved: 
One cannot notice the changes with the output distribution 
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Rényi divergence result 

SampleZ" (μ, σ) = Dℤ,σ,μ Yes as long as the number of queries is bounded 

Security loss theorem 
264 For at most "  signature queries,  

" Ra (BaseSampler(), Dℤ+,σ0) ≤ 1 + 2−80 

and "exp()  replaced by a polynomial P "  such that 
P(x) − exp(x) 

≤ 2−44 " ∀x ∈ [0, ln(2)] 
exp(x) 

"⟹  at most 2 bits of security are lost. 

See paper for the proof. 
    Application of Bai et al. ASIACRYPT 2015, Prest ASIACRYPT 2017 
    Parameterized by the number of queries to the sampler 
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The constant time sampler 

Basesampler with a table  

Polynomial approximation for exp 

Make the number of iterations independent from the secret 



 

   

     

" "
" "" " "

We provide a script that generates  and the  table 
for a given target precision  and 

w CDT
ϵ = 2−80 θ

1) Sampling with a table 

BaseSampler() close to Dℤ+,σ0 

Cumulative Distribution Table ( ) with  elements of  bits CDT w θ 

CDT sampling can be done in constant time if the algorithm reads the 
entire table each time and carry out each comparison 
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" "
" "

CDT sampling can be done in constant time if the algorithm reads the 
entire table each time and carry out each comparison

Require: " 
Ensure: " , the "  table 

1. " Smallest tailcut such that " 

2.  Compute the table values with a « clever » rounding 
1. For " , " 

2. " 

3.  Recompute Rényi divergence and return the new precision, "  and " 

σ, ϵ ≤ 0,θ 
w CDT 

w ← Ra (D[w],σ0
, Dℤ+,σ0) ≤ 1 + ϵ 

z ≥ 1 CDT(z) ← 2−θ ⌊2θ ⋅ D[w],σ0
(z)⌋ 

CDT(0) ← 1 − ∑ 
z≥1 

CDT(z) 

w CDT 

1) Sampling with a table 

BaseSampler() close to Dℤ+,σ0 

We provide a script that generates w  and the CDT  table 
for a given target precision ϵ = 2−80  and θ 

Algorithm Renyification"(σ, ϵ, θ) 
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 " " "

1) CDT Sampling 

R∞ (BaseSampler(), Dℤ+,σ0) ≤ 1 + 2−80 

For " σ0 = 1.8205 , our script gave 

elements 
w = 19

���(�) = �−�� × ���������������������� 

���(�) = �−�� × ���������������������� 

���(�) = �−�� × ��������������������� 

���(�) = �−�� × ��������������������� 

���(�) = �−�� × ��������������������� 

���(�) = �−�� × �������������������� 

���(�) = �−�� × ������������������� 

���(�) = �−�� × ������������������� 

���(�) = �−�� × ������������������ 

 bits θ = 72 ϵ = 80 

���(�) = �−�� × ���������������� 

���(��) = �−�� × ��������������� 

���(��) = �−�� × �������������� 

���(��) = �−�� × ������������ 

���(��) = �−�� × ���������� 

���(��) = �−�� × ��������� 

���(��) = �−�� × ������� 

���(��) = �−�� × ����� 

���(��) = �−�� × ��� 

���(��) = �−�� × � 
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Make the number of iterations independent from the secret 



 

  

 

2) Polynomial approximation 

P(x) − exp(x) 
≤ 2−44 Find "P  such that   " ∀x ∈ [0, ln(2)]

exp(x) 

Polynomial approximation tools 

 Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234 
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P(x) − exp(x) 
≤ 2−44 Find "P  such that   " ∀x ∈ [0, ln(2)]

exp(x) 

Polynomial approximation tools 
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Depending on the architecture, several tradeoffs 

Degree Size Depth 

16 



The constant time sampler 

Basesampler with a table  

Polynomial approximation for exp 

Make the number of iterations independent from the secret 
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?  Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret? 

2 ⋅ ρσ0
(ℤ+) 

The number of iterations follows a geometric distribution of average " 
ρσ,μ(ℤ)
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3) Number of iterations of the while loop 

?  Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret? 

2 ⋅ ρσ0
(ℤ+) 

The average number of iterations is   " σmin ρσ,μ(ℤ)σ 

The acceptance probability "  is scaled by a factor " Paccept 
σmin 

σ 

σmin ≤ 
σmax 

≈ 0.73 

Tweak for Falcon’s sampler 

Indeed, with a Poisson summation (under a Rényi divergence argument), 
" 2π ρσ,μ(ℤ) ≈ σ 

2 ⋅ ρσ0
(ℤ+) 2 ⋅ ρσ0

(ℤ+) 2 ⋅ ρσ0
(ℤ+) 

So,   " ≈ = σmin σmin 

σ 
ρσ,μ(ℤ) 

σ σ 2π σmin 2π 

✓  Independent from "μ 

✓  Independent from "σ 
✓  Independent from "z 
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The whole algorithm  
is constant time 



 

Implementations 

Number of sig computed in one second 
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Ref round 1 Our PoC Optimized using plain  AVX2 (CT) 
(not CT) (CT) double operations  

(CT) 
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Implementations 

Number of sig computed in one second 

2500 

5000 

7500 

10000 
N = 512 
N = 1024 

The performance loss 
for constant time and 

portability  
is acceptable 

Ref round 1 Our PoC Optimized using plain  AVX2 (CT) 
(not CT) (CT) double operations  

(CT) 

Very recent implementations done 
by Thomas Pornin 
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Implementations 

Constant time and integers help Cortex M4 implementations 

Falcon-512 (168 MHz) Dynamic signatures 
(in milliseconds) 

Memory 
(in bytes of extra RAM, 
not counting the key) 

First M4 implementation 
 (Oder et al. PQCRYPTO 2019) 479 50508 

Recent Constant time and integers 
(Thomas Pornin) 

https://github.com/mupq/pqm4 
243 36864 
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Conclusion 

Credits Fabrice Mouhartem 

  Compact 
  Fast 
  GPV framework proved secure 

  Constant time and still fast 
  Integer arithmetic and still fast 
  Solid implementations available 
(Thanks to Thomas Pornin) 

Currently studied: masking protection

Paper available at: 
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-
Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf
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