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Presentation based on 


‣ [CCS’2019] joint work with Barthe, Belaïd, Espitau, Fouque and Tibouchi 

‣ [PQCRYPTO'20] joint work with Howe, Prest and Ricosset

Isochrony

https://eprint.iacr.org/2019/511.pdf
https://eprint.iacr.org/2019/1411
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The execution time does not depend on the private key. 

➡ Not necessarily constant !

« Constant time »

+, − , × , / Constant time on integers
Assumption

« Constant time » is a confusing term

Constant time does not mean constant execution time

Better say isochronous ?
‣ Howe et al. (2019/1411)
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Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Hash and Sign
Family

✦ GPV 
✦ Falcon

✦ BLISS 
✦ Crystals-Dilithium  
✦ qTesla
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Schnorr-like signatures with aborts 

Public parameter:  
Secret key:  (short) 
Public key: 

a
s
t ← a ⋅ s mod q

Based on SIS, LWE or variants

Sign( ): 
1: do 
2:      
3:      
4:      
5: while Rejected( ) 
6: return ( )

s, m

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

Verify( ): 
1:  
2: return 1 if  and  is 
small else 0 

z, c, t, m
v ← a ⋅ z − c ⋅ t

c = H(v, m) z

‣  Lyubashevsky (EC’12)

Why ? 
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Also called Acceptance-Rejection method

To sample from a distribution , with density , one uses samples from the 
distribution , with density  as follows: 

(1) Get a sample  from distribution   

(2) Accept  as a sample drawn from  with probability  =  

reject otherwise

X f
Y g

y Y

y X
f(y)

M ⋅ g(y)
Target

M ⋅ Actual

(1) Get a sample  from distribution   

(2) Accept  with probability ,  

reject otherwise

x X

x
1
M

statistically close to 
(if )M ⋅ g(y) ≥ f(y) ∀y

Going from an actual distribution  to an ideal target distribution Y X

‣ Lyubashevsky (EUROCRYPT’12)
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Gaussian Distributions and Lattice Based signatures 1

Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Public parameter:  
Secret key:  
Public key: 

a
s
t ← a ⋅ s

Key generation: 

Public parameter:  
Secret key:  
Public key: 

a
s, e
t ← a ⋅ s + e

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( ) 
6: return ( )

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

They were originally used for two reasons:

Security reductions Performance
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Large Cumulative Distribution Tables  (CDT)
u

y

 uniform in [0,1], recover  with a table of the red curveu y

➡  How to sample ?

➡  How to evaluate them ?
by computing transcendental functions  and  exp( . ) cosh( . )

 Many possibilities, ex :

Side channel vulnerabilities

Binary search leaks  by memory access patterny

Timing vulnerabilities
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Many side channel attacks  
targeting Gaussian distributions (timing)

BLISS was the first practical implementation of a lattice based signature scheme.

‣ Bootle et al. ASIACRYPT’2018

‣ Groot Bruinderink et al. CHES’2016

‣ Espitau et al. ACM-CCS’2017
‣ Pessl et al. ACM-CCS'2017

‣ Barthe et al. ACM-CCS'2019

‣ Espitau et al. SAC’2016

BLISS 
Fiat-Shamir with aborts 
Bimodal Gaussians

‣ Ducas et al (CRYPTO’13)

Gaussians are now avoided in Fiat-Shamir 
with aborts lattice signature schemes 

… but there is a price to pay in terms of 
performance

Crystals-Dilithium: Only uniform distributions 

qTesla: Gaussian sampling only in the keygen

New designs:

‣ Ducas et al (NIST-PQC’17)

‣ Bindel et al (NIST-PQC’17)
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Signatures
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Gaussian distributions are not « implementation friendly »
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Side channel attacks 
targeting the Gaussian rejection sampling

‣ Fouque et al EUROCRYPT’2019
‣ Espitau et al. SAC’2016
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 Simpler to implement 
 Provably resistant to timing attacks

Gaussian distributions can actually be

Main takeaway of this presentation

1

2

3

Galactics: a polynomial approximation tool for Gaussians

Isochronous BLISS

Isochronous FALCON
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Approximation tool

➡ A tool to use a polynomials instead of (bimodal) Gaussians 

 Using Renyi divergence and Sobolev spaces 

 Proof of concept developed in sage8.3 

 Polynomials have integer coefficients (Lattice reduction) 

Evaluating a polynomial can be done isochronously
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Renyi divergence result

Take two cryptographic schemes 
- One with distribution  
- One with an approximate distribution  with the same support 
For keeping the ‘same’ bit security for both schemes with at most  
signature queries (NIST suggestion), 

𝒟
𝒟′ 

264

1 −
𝒟′ 

𝒟 ∞

≤ 2−45 .

‣ Prest ASIACRYPT’17
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Renyi divergence result

Take two cryptographic schemes 
- One with distribution  
- One with an approximate distribution  with the same support 
For keeping the ‘same’ bit security for both schemes with at most  
signature queries (NIST suggestion), 

𝒟
𝒟′ 

264

1 −
𝒟′ 

𝒟 ∞

≤ 2−45 .

‣ Prest ASIACRYPT’17

Goal :               (a transcendental function on an interval)𝒟 =

a polynomial𝒟′ =

exp( ⋅ ) cosh( ⋅ )

2 ⋅ λ
2 ⋅ (2 ⋅ λ + 1)2 ⋅ Q𝒟
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Other Polynomial Approximations

•Taylor development

Not precise enough

How to choose  ?𝒟′ 

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd
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Other Polynomial Approximations

• Padé approximants (rational function approximation) 
‣ Prest ASIACRYPT’17

•Taylor development

Not precise enough

Two polynomials, higher degrees

How to choose  ?𝒟′ 

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)
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Other Polynomial Approximations

• Minimax computations : Sollya software package

• Padé approximants (rational function approximation) 
‣ Prest ASIACRYPT’17

‣ Chevillard, Joldes and Lauter ICMS’10

‣ Zhao, Steinfeld and Sakzad 2018/1234

•Taylor development

Not precise enough

Two polynomials, higher degrees

Floating point arithmetics

How to choose  ?𝒟′ 

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)

𝒟′ = arg min
deg(P)≤d (sup

x∈I (1 −
P(x)
𝒟(x) ))

‣ Brisebarre and Chevillard IEEE’07
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Our alternative Polynomial Approximation

How to choose  ?𝒟′ 

exp( ⋅ )
cosh( ⋅ )
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Our alternative Polynomial Approximation

How to choose  ?𝒟′ 

Degree  polynomial in d ℝ[x] Degree  polynomial in  
with  bit coefficients

d ℤ[x]
η

Transcendent 
functions

exp( ⋅ )
cosh( ⋅ )
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Towards a polynomial approximation

We want  and 1 −
𝒟′ 

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of  in  for the  norm.  1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞
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Towards a polynomial approximation

We want  and 1 −
𝒟′ 

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of  in  for the  norm.  1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

In a first attempt, let us look for the closest element of  in  for the  norm.  1 ℝ[x]/𝒟(x) ∥ ⋅ ∥∞

An orthogonal projection could be great.  

The   norm is not Euclidean, no easy projection on a subspace. ∥ ⋅ ∥∞

Over-approximate  by a Euclidean norm. ∥ ⋅ ∥∞
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When functional analysis meets cryptography

For  and  differentiable functions on : 

 

Corresponding norm: 

u v I

⟨u, v⟩ =
1

| I | ∫I
uv + | I |∫I

u′ v′ 

|u |2
S =

1
| I | ∫I

u2 + | I |∫I
u′ 

2

Sobolev  norm𝖧2 ‣ Sobolev TAMS’1963

Equivalence with : ∥ ⋅ ∥∞
∥u∥∞ ≤ 2 ⋅ |u |S
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Proof of concept (Available on Github at https://github.com/espitau/GALACTICS)

https://github.com/espitau/GALACTICS
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Roadmap

1

2

3

Galactics: a polynomial approximation tool for Gaussians

Isochronous BLISS

Isochronous FALCON
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BLISS Signature Scheme
‣ Ducas et al (CRYPTO’13)

Sign ( ): 
1:     
2:     
3:     
4:    choose a random bit  
5:     
6:     
7:    restart except wp 

  

8:    return 

m, pk = a, sk = S = (s1, s2)
y1, y2 ← 𝒟ℤn,σ
u ← ζ ⋅ a ⋅ y1 + y2
c ← H(⌈u⌋d mod p, m)

b
z1 ← (−1)bcs1 + y1
z2 ← (−1)bcs2 + y2

1

M exp (− ∥Sc∥2

2σ2 ) cosh ( ⟨z, Sc⟩
σ2 )

(z1, z2, c)

ζ(q − 2) = 1 mod 2q

Elements are polynomials in ℛ =
ℤ[x]

xn + 1

We polynomially approximate  and  using the GALACTICS tool. 

➡ Also used for the Gaussian Sampling 
 

exp( . ) cosh( . )
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BLISS Signature Scheme
‣ Ducas et al (CRYPTO’13)

Sign ( ): 
1:     
2:     
3:     
4:    choose a random bit  
5:     
6:     
7:    restart except wp 

  

8:    return 

m, pk = a, sk = S = (s1, s2)
y1, y2 ← 𝒟ℤn,σ
u ← ζ ⋅ a ⋅ y1 + y2
c ← H(⌈u⌋d mod p, m)

b
z1 ← (−1)bcs1 + y1
z2 ← (−1)bcs2 + y2

1

M exp (− ∥Sc∥2

2σ2 ) cosh ( ⟨z, Sc⟩
σ2 )

(z1, z2, c)

Gaussian sampling

Bimodal Gaussian rejection sampling

ζ(q − 2) = 1 mod 2q

Elements are polynomials in ℛ =
ℤ[x]

xn + 1

We polynomially approximate  and  using the GALACTICS tool. 

➡ Also used for the Gaussian Sampling 
 

exp( . ) cosh( . )



Performance (in kcycles)

Crystals-Dilithium: Only uniform distributions 
qTesla: Gaussian sampling only in the keygen

Recall that:

 and they are more conservative than BLISS

Number of kilocycles for one signature
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300

450

600

Original BLISS Our isochronous 
BLISS

Dilithium ref 
(Isochronous)

Dilithium avx2 
(Isochronous)

qTesla-I ref
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Roadmap

1

3

2

Galactics: a polynomial approximation tool for Gaussians

Isochronous FALCON

Isochronous BLISS
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Falcon Gaussian sampler

Require:  
Ensure:  

1.  Basesampler() 
2.   uniformly 
3.   

4.   

5.  Accept with probability  
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

Algorithm SampleZ( )σ, μ
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Falcon Gaussian sampler
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0
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σ0
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3.

Algorithm SampleZ( )σ, μ

Paccept =
exp (− (z − μ)2

2σ2 )
exp (−

z2
0

2σ2
0 )

b = 0

σ0

b = 1

5.
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Constant time Falcon Gaussian sampler

Algorithm SampleZ( )σ, μ



Require:  
Ensure:  

1.  Basesampler() 
2.   uniformly 
3.   

4.   

5.  Accept with probability  
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

23

Constant time Falcon Gaussian sampler

Algorithm SampleZ( )σ, μ

(1) Basesampler with a CDT  
(2) Polynomial approximation for exp 
(3) Make the number of iterations 

independent from the secret

Isochrony and portability 
modifications
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Implementations

Recent implementations done by 
Thomas Pornin

Number of sig computed in one second

2500

5000

7500

10000

Ref round 1  
(not isochronous)

Our PoC  
(isochronous)

Optimized using plain 
double operations 

(isochronous)

AVX2 (isochronous)

N = 512
N = 1024

https://github.com/PQClean/PQClean/See
https://falcon-sign.info/falcon-impl-20190802.pdfAnd

https://github.com/PQClean/PQClean/
https://falcon-sign.info/falcon-impl-20190802.pdf
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Constant time and integers help Cortex M4 implementations

Falcon-512 (168 MHz) Dynamic signatures 
(in milliseconds)

Memory 
(in bytes of extra RAM, 
not counting the key)

First M4 implementation 
 (Oder et al. PQCRYPTO 2019) 479 50508

Recent Constant time and integers 
(Thomas Pornin) 

https://github.com/mupq/pqm4
243 36864

Implementations

25

https://github.com/mupq/pqm4
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Conclusion

From transcendant functions to polynomials with integer coefficients
GALACTICS:

 + Simple rejection techniques for diminishing the CDT sizes
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Conclusion

 Simpler to implement — portability 
 Provably resistant to timing attacks

Gaussian distributions can now be

From transcendant functions to polynomials with integer coefficients
GALACTICS:

Helps to make BLISS isochronous and portable 
Helps to make FALCON isochronous and portable 

Also helps for the masking countermeasure: 

See our CCS paper for the application to BLISS (without implementation) 
Ongoing work for Falcon  

Perspectives

 + Simple rejection techniques for diminishing the CDT sizes



Questions ?
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