Isochrony
Constant-time techniques for lattice-based signatures

Mélissa Rossi

Presentation based on

- [CCS’2019] joint work with Barthe, Belaïd, Espitau, Fouque and Tibouchi
- [PQCRYPTO’20] joint work with Howe, Prest and Ricosset
«Constant time» is a confusing term

Constant time does not mean constant execution time
Constant time does not mean constant execution time

« Constant time »

The execution time does not depend on the private key.

⇒ Not necessarily constant!
The execution time does not depend on the private key.

« Constant time »

The execution time does not depend on the private key.

Not necessarily constant!

Better say isochronous?

Howe et al. (2019/1411)
The execution time does not depend on the private key.

« Constant time » is a confusing term

Constant time does not mean constant execution time

Better say isochronous?

Assumption

+ , − , × , / Constant time on integers

Howe et al. (2019/1411)
Gaussian Distributions and Lattice Based signatures

Fiat-Shamir with aborts Family
- BLISS
- Crystals-Dilithium
- qTesla

Hash and Sign Family
- GPV
- Falcon
Fiat-Shamir with aborts
Family
Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

- Lyubashevsky (EC’12)
 Based on SIS, LWE or variants
Schnorr-like signatures with aborts

- Lyubashevsky (EC’12)
 Based on SIS, LWE or variants

Public parameter: a

Secret key: s (short)

Public key: $t \leftarrow a \cdot s \mod q$
Schnorr-like signatures with aborts

- Lyubashevsky (EC’12)
 Based on SIS, LWE or variants

Public parameter: \(a\)
Secret key: \(s\) (short)
Public key: \(t \leftarrow a \cdot s \mod q\)

\(\text{Sign}(s, m):\)
1: do
2: \(y \leftarrow Y\)
3: \(c \leftarrow H(ay, m)\)
4: \(z \leftarrow c \cdot s + y\)
5: while Rejected\((z)\)
6: return \((z, c)\)
Gaussian Distributions and Lattice Based signatures

Fiat-Shamir with aborts Family

Schnorr-like signatures with aborts
 - Lyubashevsky (EC’12)

 Based on SIS, LWE or variants

Public parameter: \(a \)
Secret key: \(s \) (short)
Public key: \(t \leftarrow a \cdot s \mod q \)

\[
\text{Sign}(s, m):
\begin{align*}
1: & \text{do} \\
2: & y \leftarrow Y \\
3: & c \leftarrow H(ay, m) \\
4: & z \leftarrow c \cdot s + y \\
5: & \text{while Rejected}(z) \\
6: & \text{return } (z, c)
\end{align*}
\]

\[
\text{Verify}(z, c, t, m):
\begin{align*}
1: & v \leftarrow a \cdot z - c \cdot t \\
2: & \text{return } 1 \text{ if } c = H(v, m) \text{ and } z \text{ is small} \text{ else } 0
\end{align*}
\]
Gaussian Distributions and Lattice Based signatures

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

- Lyubashevsky (EC’12)
 Based on SIS, LWE or variants

Public parameter: \(a\)
Secret key: \(s\) (short)
Public key: \(t \leftarrow a \cdot s \mod q\)

Sign\((s, m)\):
1: do
2: \(y \leftarrow Y\)
3: \(c \leftarrow H(ay, m)\)
4: \(z \leftarrow c \cdot s + y\)
5: **while** Rejected\((z)\)
6: return \((z, c)\)

Verify\((z, c, t, m)\):
1: \(v \leftarrow a \cdot z - c \cdot t\)
2: return 1 if \(c = H(v, m)\) and \(z\) is small else 0

Why?
Rejection Sampling Lemma

- Lyubashevsky (EUROCRYPT'12)

Also called Acceptance-Rejection method

Going from an actual distribution Y to an ideal target distribution X
Rejection Sampling Lemma

Also called Acceptance-Rejection method

Going from an actual distribution Y to an ideal target distribution X

To sample from a distribution X, with density f, one uses samples from the distribution Y, with density g as follows:

1. Get a sample y from distribution Y
2. Accept y as a sample drawn from X with probability $\frac{f(y)}{M \cdot g(y)} = \frac{f(y)}{M \cdot \text{Actual}}$ target
 reject otherwise
Rejection Sampling Lemma

Also called Acceptance-Rejection method

Going from an actual distribution Y to an ideal target distribution X

To sample from a distribution X, with density f, one uses samples from the distribution Y, with density g as follows:

1. Get a sample y from distribution Y
2. Accept y as a sample drawn from X with probability \[\frac{f(y)}{M \cdot g(y)} = \text{Target} \]
 reject otherwise

statistically close to

\((\text{if } M \cdot g(y) \geq f(y) \ \forall y) \)

1. Get a sample x from distribution X
2. Accept x with probability \[\frac{1}{M}, \]
 reject otherwise

Lyubashevsky (EUROCRYPT'12)
Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Key generation:

- Public parameter: a
- Secret key: s
- Public key: $t \leftarrow a \cdot s$

- Public parameter: a
- Secret key: s, e
- Public key: $t \leftarrow a \cdot s + e$

Signature algorithm:

1: do
2: $y \leftarrow Y$
3: $c \leftarrow H(ay, m)$
4: $z \leftarrow c \cdot s + y$
5: while $\text{Rejected}(z)$
6: return (z, c)
Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Key generation:

Public parameter: \(a\)
Secret key: \(s\)
Public key: \(t \leftarrow a \cdot s\)

Public parameter: \(a\)
Secret key: \(s, e\)
Public key: \(t \leftarrow a \cdot s + e\)

Signature algorithm:

1: do
2: \(y \leftarrow Y\)
3: \(c \leftarrow H(ay, m)\)
4: \(z \leftarrow c \cdot s + y\)
5: while Rejected(\(z\))
6: return \((z, c)\)
Gaussian Distributions and Lattice Based signatures 1

Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Key generation:

Public parameter: \(a \)
Secret key: \(s \)
Public key: \(t \leftarrow a \cdot s \)

Public parameter: \(a \)
Secret key: \(s, e \)
Public key: \(t \leftarrow a \cdot s + e \)

Signature algorithm:

1: do
2: \(y \leftarrow Y \)
3: \(c \leftarrow H(ay, m) \)
4: \(z \leftarrow c \cdot s + y \)
5: while Rejected(\(z \))
6: return \((z, c) \)

They were originally used for two reasons:

Security reductions
Performance
Gaussians lead to implementation vulnerabilities
Gaussians lead to implementation vulnerabilities

How to evaluate them?

by computing transcendental functions $\exp(.)$ and $\cosh(.)$
Gaussians lead to implementation vulnerabilities

➡ How to evaluate them?

by computing transcendental functions $\exp(.)$ and $\cosh(.)$
Gaussians lead to implementation vulnerabilities

How to evaluate them?
by computing transcendental functions $exp(.)$ and $cosh(.)$

How to sample?
Many possibilities, ex:
Large Cumulative Distribution Tables (CDT)
u uniform in [0,1], recover y with a table of the red curve
Gaussians lead to implementation vulnerabilities

How to evaluate them?
by computing transcendental functions \(\exp(\cdot) \) and \(\cosh(\cdot) \)

How to sample?
Many possibilities, ex:
Large Cumulative Distribution Tables (CDT)
\(u \) uniform in \([0,1]\), recover \(y \) with a table of the red curve
Binary search leaks \(y \) by memory access pattern
Gaussians lead to implementation vulnerabilities

⇒ How to evaluate them?
 by computing transcendental functions \(\exp(\cdot) \) and \(\cosh(\cdot) \)

⇒ How to sample?
 Many possibilities, ex :
 Large Cumulative Distribution Tables (CDT)
 \(u \) uniform in [0,1], recover \(y \) with a table of the red curve
 Binary search leaks \(y \) by memory access pattern
Gaussian distributions are hard to implement securely.

BLISS was the first practical implementation of a lattice based signature scheme.

BLISS
Fiat-Shamir with aborts
Bimodal Gaussians

» Ducas et al (CRYPTO’13)
Gaussian distributions are hard to implement securely.

BLISS was the first practical implementation of a lattice based signature scheme.

- Fiat-Shamir with aborts
- Bimodal Gaussians
- Ducas et al (CRYPTO’13)

Many side channel attacks targeting Gaussian distributions (timing)

- Groot Bruinderink et al. CHES’2016
- Espitau et al. SAC’2016
- Pessl et al. ACM-CCS'2017
- Espitau et al. ACM-CCS’2017
- Bootle et al. ASIACRYPT’2018
- Barthe et al. ACM-CCS’2019
Gaussian distributions are hard to implement securely.

BLISS was the first practical implementation of a lattice based signature scheme.

- BLISS
- Fiat-Shamir with aborts
- Bimodal Gaussians

Many side channel attacks targeting Gaussian distributions (timing)

- Groot Bruinderink et al. CHES’2016
- Espitau et al. SAC’2016
- Pessl et al. ACM-CCS’2017
- Espitau et al. ACM-CCS’2017
- Bootle et al. ASIACRYPT’2018
- Barthe et al. ACM-CCS’2019

New designs:

Gaussians are now avoided in Fiat-Shamir with aborts lattice signature schemes... but there is a price to pay in terms of performance

- Ducas et al. (CRYPTO’13)
Gaussian distributions are hard to implement securely

BLISS was the first practical implementation of a lattice based signature scheme.

- BLISS
 - Fiat-Shamir with aborts
 - Bimodal Gaussians

Many side channel attacks targeting Gaussian distributions (timing)

- Groot Bruinderink et al. CHES’2016
- Espitau et al. SAC’2016
- Pessl et al. ACM-CCS'2017
- Espitau et al. ACM-CCS’2017
- Bootle et al. ASIACRYPT’2018
- Barthe et al. ACM-CCS’2019

New designs:

Gaussians are now avoided in Fiat-Shamir with aborts lattice signature schemes... but there is a price to pay in terms of performance

- Crystals-Dilithium: Only uniform distributions
 - Ducas et al (NIST-PQC’17)
- qTesla: Gaussian sampling only in the keygen
 - Bindel et al (NIST-PQC’17)
Gaussian Distributions and Lattice Based signatures 2

- Fiat-Shamir with abort Signatures
- Hash and Sign Signatures
Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

- Gentry, Peikert and Vaikuntanathan (STOC'08)
Gaussian Distributions and Lattice Based signatures 2

Hash and Sign Signatures

- Gentry, Peikert and Vaikuntanathan (STOC’08)

KeyGen()

1: Generate matrices A, B
 - such that \(BA = 0 \)
 - B has small coefficients

2: \(pk \leftarrow A \)

3: \(sk \leftarrow B \)
Gaussian Distributions and Lattice Based signatures

Hash and Sign Signatures

- Gentry, Peikert and Vaikuntanathan (STOC'08)

KeyGen()
1: Generate matrices A, B
 such that $BA = 0$
 B has small coefficients
2: $pk \leftarrow A$
3: $sk \leftarrow B$

Sign(m, sk)
1: Compute c such that $cA = H(m)$
2: $v \leftarrow$ a vector in $\Lambda(B)$ close to c
3: $s \leftarrow c - v$
Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

- Gentry, Peikert and Vaikuntanathan (STOC’08)

KeyGen()

1: Generate matrices A, B
 such that
 \[
 BA = 0
 \]
 B has small coefficients
2: $pk \leftarrow A$
3: $sk \leftarrow B$

Sign(m,sk)

1: Compute c such that $cA = H(m)$
2: $v \leftarrow$ a vector in $\Lambda(B)$ close to c
3: $s \leftarrow c - v$

Verify(m,pk,s)

Accept iff:

\[
\begin{align*}
\text{s is short} \\
\text{sA} = H(m)
\end{align*}
\]
KeyGen()
1: Generate matrices A, B such that \(BA = 0 \) and B has small coefficients
2: \(pk \leftarrow A \)
3: \(sk \leftarrow B \)

Sign(m,sk)
1: Compute c such that \(cA = H(m) \)
2: \(v \leftarrow \) a vector in \(\Lambda(B) \) close to c
3: \(s \leftarrow c - v \)

Verify(m,pk,s)
Accept iff:
\[
\begin{align*}
\{ & s \text{ is short} \\
& sA = H(m)
\}
\]
Gaussian distributions are not « implementation friendly »

Side channel attacks targeting the Gaussian rejection sampling

- Espitau et al. SAC’2016
- Fouque et al EUROCRYPT’2019
Main takeaway of this presentation

Gaussian distributions can actually be

- ✔ Simpler to implement
- ✔ Provably resistant to timing attacks
Main takeaway of this presentation

Gaussian distributions can actually be

- ✔ Simpler to implement
- ✔ Provably resistant to timing attacks

1. Galactics: a polynomial approximation tool for Gaussians
2. Isochronous BLISS
3. Isochronous FALCON
Approximation tool

A tool to use polynomials instead of (bimodal) Gaussians

- Using Renyi divergence and Sobolev spaces
- Proof of concept developed in sage8.3
- Polynomials have integer coefficients (Lattice reduction)
Take two cryptographic schemes
- One with distribution \mathcal{D}
- One with an approximate distribution \mathcal{D}' with the same support

For keeping the ‘same’ bit security for both schemes with at most 2^{64} signature queries (NIST suggestion),

$$\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45}.$$
Renyi divergence result

- Prest ASIACRYPT’17

Take two cryptographic schemes
- One with distribution \mathcal{D}
- One with an approximate distribution \mathcal{D}' with the same support

For keeping the ‘same’ bit security for both schemes with at most 2^{64} signature queries (NIST suggestion),

$$\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45} \cdot \sqrt{\frac{2 \cdot \lambda}{2 \cdot (2 \cdot \lambda + 1)^2 \cdot Q_{\mathcal{D}'}}}$$
Renyi divergence result

Take two cryptographic schemes
- One with distribution \mathcal{D}
- One with an approximate distribution \mathcal{D}' with the same support

For keeping the ‘same’ bit security for both schemes with at most 2^{64} signature queries (NIST suggestion),

$$\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45}. \sqrt{\frac{2 \cdot \lambda}{2 \cdot (2 \cdot \lambda + 1)^2 \cdot Q_{ss}}}$$

$\exp(\cdot)$ $\cosh(\cdot)$

Goal: $\mathcal{D} =$ (a transcendental function on an interval)

$\mathcal{D}' =$ a polynomial
Other Polynomial Approximations

How to choose \mathcal{D}'?

- **Taylor development**

 Not precise enough

\[
\mathcal{D}'(x) = \mathcal{D}(0) + \mathcal{D}'(0) \cdot x + \cdots + \frac{\mathcal{D}^{(d)}(0)}{d!} \cdot x^d
\]
Other Polynomial Approximations

How to choose \mathcal{D}'?

- **Taylor development**

 Not precise enough

- **Padé approximants** (rational function approximation)
 - Prest ASIACRYPT’17

 Two polynomials, higher degrees

$$
\mathcal{D}'(x) = \mathcal{D}(0) + \mathcal{D}^{(1)}(0) \cdot x + \cdots + \frac{\mathcal{D}^{(d)}(0)}{d!} \cdot x^d
$$

$$
\mathcal{D}'(x) = \frac{P(x)}{Q(x)}
$$
Other Polynomial Approximations

How to choose \mathcal{D}' ?

• Taylor development
 Not precise enough

• Padé approximants (rational function approximation)
 › Prest ASIACRYPT’17

 Two polynomials, higher degrees

• Minimax computations : Sollya software package
 › Brisebarre and Chevillard IEEE’07
 › Chevillard, Joldes and Lauter ICMS’10
 › Zhao, Steinfeld and Sakzad 2018/1234

Floating point arithmetics

$$\mathcal{D}'(x) = \mathcal{D}(0) + \mathcal{D}^{(1)}(0) \cdot x + \cdots + \frac{\mathcal{D}^{(d)}(0)}{d!} \cdot x^d$$

$$\mathcal{D}'(x) = \frac{P(x)}{Q(x)}$$

$$\mathcal{D}' = \arg \min_{\deg(P) \leq d} \left(\sup_{x \in I} \left(1 - \frac{P(x)}{\mathcal{D}(x)} \right) \right)$$
Our alternative Polynomial Approximation

How to choose \mathcal{D}'?

\[
\exp(\cdot) \quad \cosh(\cdot)
\]
Our alternative Polynomial Approximation

How to choose D'?

Transcendent functions $\exp(\cdot)$, $\cosh(\cdot)$ → Degree d polynomial in $\mathbb{R}[x]$ → Degree d polynomial in $\mathbb{Z}[x]$ with η bit coefficients
Towards a polynomial approximation

We want
\[
\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45} \text{ and } \mathcal{D}' \in \mathbb{Z}[x].
\]

It corresponds to finding the closest element of 1 in $\mathbb{Z}[x]/\mathcal{D}(x)$ for the $\| \cdot \|_\infty$ norm.
Towards a polynomial approximation

We want \[\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45} \] and \(\mathcal{D}' \in \mathbb{Z}[x] \).

It corresponds to finding the closest element of 1 in \(\mathbb{Z}[x]/\mathcal{D}(x) \) for the \(\| \cdot \|_\infty \) norm.

In a first attempt, let us look for the closest element of 1 in \(\mathbb{R}[x]/\mathcal{D}(x) \) for the \(\| \cdot \|_\infty \) norm.
Towards a polynomial approximation

We want
\[
\left\| 1 - \frac{D'}{D} \right\|_{\infty} \leq 2^{-45} \text{ and } D' \in \mathbb{Z}[x].
\]

It corresponds to finding the closest element of 1 in \(\mathbb{Z}[x]/D(x)\) for the \(\| \cdot \|_{\infty}\) norm.

In a first attempt, let us look for the closest element of 1 in \(\mathbb{R}[x]/D(x)\) for the \(\| \cdot \|_{\infty}\) norm.

An orthogonal projection could be great.
Towards a polynomial approximation

We want \[\left\| 1 - \frac{D'}{D} \right\|_\infty \leq 2^{-45} \text{ and } D' \in \mathbb{Z}[x]. \]

It corresponds to finding the closest element of 1 in \(\mathbb{Z}[x]/D(x) \) for the \(\| \cdot \|_\infty \) norm.

In a first attempt, let us look for the closest element of 1 in \(\mathbb{R}[x]/D(x) \) for the \(\| \cdot \|_\infty \) norm.

An orthogonal projection could be great.

The \(\| \cdot \|_\infty \) norm is not Euclidean, no easy projection on a subspace.
Towards a polynomial approximation

We want \(\left\| 1 - \frac{\mathcal{D}'}{\mathcal{D}} \right\|_\infty \leq 2^{-45} \) and \(\mathcal{D}' \in \mathbb{Z}[x] \).

It corresponds to finding the closest element of 1 in \(\mathbb{Z}[x]/\mathcal{D}(x) \) for the \(\| \cdot \|_\infty \) norm.

In a first attempt, let us look for the closest element of 1 in \(\mathbb{R}[x]/\mathcal{D}(x) \) for the \(\| \cdot \|_\infty \) norm.

An orthogonal projection could be great.

The \(\| \cdot \|_\infty \) norm is not Euclidean, no easy projection on a subspace.

Over-approximate \(\| \cdot \|_\infty \) by a Euclidean norm.
When functional analysis meets cryptography

Sobolev H^2 norm

For u and v differentiable functions on I:

$$\langle u, v \rangle = \frac{1}{|I|} \int_I uv + |I| \int_I u'v'$$

Corresponding norm:

$$|u|^2_S = \frac{1}{|I|} \int_I u^2 + |I| \int_I u'^2$$

Equivalence with $\| \cdot \|_\infty$:

$$\|u\|_\infty \leq \sqrt{2} \cdot |u|_S$$
When functional analysis meets cryptography

Sobolev H^2 norm

For u and v differentiable functions on I:

$$\langle u, v \rangle = \frac{1}{|I|} \int_I uv + |I| \int_I u'v'$$

Corresponding norm:

$$|u|^2_S = \frac{1}{|I|} \int_I u^2 + |I| \int_I u'^2$$

Equivalence with $\| \cdot \|_\infty$:

$$\|u\|_\infty \leq \sqrt{2} \cdot |u|^1_S$$

Let us look for the closest element of 1 in $\mathbb{R}[x]/\mathcal{D}(x)$ for the $| \cdot |_S$ norm.
Proof of concept (Available on Github at https://github.com/espitau/GALACTICS)
Proof of concept (Available on Github at https://github.com/espitau/GALACTICS)
Galactics: a polynomial approximation tool for Gaussians

Isochronous BLISS

Isochronous FALCON
BLISS Signature Scheme

- Ducas et al (CRYPTO’13)

Elements are polynomials in $\mathcal{R} = \frac{\mathbb{Z}[x]}{x^n + 1}$

Sign ($m, pk = \mathbf{a}, sk = S = (s_1, s_2)$):

1. $y_1, y_2 \leftarrow \mathcal{D}_{\mathbb{Z}_n, \sigma}$
2. $u \leftarrow \zeta \cdot \mathbf{a} \cdot y_1 + y_2$
3. $c \leftarrow H(\lceil u \rceil_d \mod p, m)$
4. choose a random bit b
5. $z_1 \leftarrow (-1)^b cs_1 + y_1$
6. $z_2 \leftarrow (-1)^b cs_2 + y_2$
7. restart except wp

$$\frac{1}{M \exp \left(-\frac{\|S c\|^2}{2\sigma^2} \right) \cosh \left(\frac{\langle z, Sc \rangle}{\sigma^2} \right)}$$
8. return (z_1, z_2, c)

We polynomially approximate $\exp(\)$ and $\cosh(\)$ using the GALACTICS tool.

⇒ Also used for the Gaussian Sampling
BLISS Signature Scheme

- Ducas et al (CRYPTO’13)

Elements are polynomials in $\mathcal{R} = \frac{\mathbb{Z}[x]}{x^n + 1}$

Sign $(m, pk = a, sk = S = (s_1, s_2))$:

1. $y_1, y_2 \leftarrow \mathcal{D}_{\mathbb{Z}^n, \sigma}$
2. $u \leftarrow \zeta \cdot a \cdot y_1 + y_2$
3. $c \leftarrow H([u]_d \mod p, m)$
4. choose a random bit b
5. $z_1 \leftarrow (-1)^b cs_1 + y_1$
6. $z_2 \leftarrow (-1)^b cs_2 + y_2$
7. restart except wp

 $$
 M \exp\left(-\frac{\|Sc\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle z, Sc \rangle}{\sigma^2}\right)
 $$

8. return (z_1, z_2, c)

We polynomially approximate $\exp(\cdot)$ and $\cosh(\cdot)$ using the GALACTICS tool.

⇒ Also used for the Gaussian Sampling
BLISS Signature Scheme

- Ducas et al (CRYPTO’13)

Elements are polynomials in $\mathcal{R} = \frac{\mathbb{Z}[x]}{x^n + 1}$

Sign ($m, pk = a, sk = S = (s_1, s_2)$):

1. $y_1, y_2 \leftarrow \mathcal{D}_{\mathbb{Z}^n, \sigma}$
2. $u \leftarrow \zeta \cdot a \cdot y_1 + y_2$
3. $c \leftarrow H([u]_d \mod p, m)$
4. choose a random bit b
5. $z_1 \leftarrow (-1)^b cs_1 + y_1$
6. $z_2 \leftarrow (-1)^b cs_2 + y_2$
7. restart except wp

 $\frac{1}{M \exp \left(-\frac{\|Sc\|^2}{2\sigma^2}\right) \cosh \left(\frac{\langle z, Sc \rangle}{\sigma^2}\right)}$

8. return (z_1, z_2, c)

We polynomially approximate $\exp(\)$ and $\cosh(\)$ using the GALACTICS tool.

Also used for the Gaussian Sampling
Performance (in kcycles)

Recall that:
- and they are more conservative than BLISS

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of kilocycles for one signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original BLISS</td>
<td>150</td>
</tr>
<tr>
<td>Our isochronous BLISS</td>
<td>300</td>
</tr>
<tr>
<td>Dilithium ref</td>
<td>450</td>
</tr>
<tr>
<td>Dilithium avx2</td>
<td>600</td>
</tr>
<tr>
<td>qTesla-I ref</td>
<td>20</td>
</tr>
</tbody>
</table>
Performance (in kcycles)

Number of kilocycles for one signature

The performance loss for isochrony is small
Recall that:

Crystals-Dilithium: Only uniform distributions
qTesla: Gaussian sampling only in the keygen
and they are more conservative than BLISS.
Roadmap

1. Galactics: a polynomial approximation tool for Gaussians
2. Isochronous BLISS
3. Isochronous FALCON
Falcon Gaussian sampler

Algorithm SampleZ(σ, μ)

Require: \(μ ∈ [0,1), σ ≤ σ_0 \)
Ensure: \(z ∼ D_{\mathbb{Z},σ,μ} \)

1. \(z_0 ← \text{Basesampler()} \)
2. \(b ← \{0,1\} \text{ uniformly} \)
3. \(z ← (2b - 1) \cdot z_0 + b \)
4. \(x ← -\frac{(z - μ)^2}{2σ^2} + \frac{z_0^2}{2σ_0^2} \)
5. Accept with probability \(\exp(x) \)
 Restart to 1. otherwise
Falcon Gaussian sampler

Algorithm SampleZ(\(\sigma, \mu\))

Require: \(\mu \in [0,1), \sigma \leq \sigma_0\)
Ensure: \(z \sim D_{\mathbb{Z}, \sigma, \mu}\)

1. \(z_0 \leftarrow \text{Basesampler()}\)
2. \(b \leftarrow \{0,1\} \text{ uniformly}\)
3. \(z \leftarrow (2b - 1) \cdot z_0 + b\)
4. \(x \leftarrow - \frac{(z - \mu)^2}{2\sigma^2} + \frac{z_0^2}{2\sigma_0^2}\)
5. Accept with probability \(\exp(x)\)
 Restart to 1. otherwise
Algorithm SampleZ(σ, μ)

Require: $\mu \in [0,1), \sigma \leq \sigma_0$

Ensure: $z \sim D_{\mathbb{Z}, \sigma, \mu}$

1. $z_0 \leftarrow$ Basesampler()
2. $b \leftarrow \{0,1\}$ uniformly
3. $z \leftarrow (2b - 1) \cdot z_0 + b$
4. $x \leftarrow -\frac{(z - \mu)^2}{2\sigma^2} + \frac{z^2}{2\sigma_0^2}$
5. Accept with probability $\exp(x)$
 Restart to 1. otherwise

1. σ_0
3. $b = 0, \; b = 1$
Falcon Gaussian sampler

Algorithm SampleZ(σ, μ)

Require: μ ∈ [0,1), σ ≤ σ₀
Ensure: z ~ D_{Z,σ,μ}

1. z₀ ← Basesampler()
2. b ← {0,1} uniformly
3. z ← (2b − 1) · z₀ + b
4. x ← − \frac{(z − μ)^2}{2σ^2} + \frac{z_0^2}{2σ_0^2}
5. Accept with probability \exp(x)
 Restart to 1. otherwise

\[
P_{\text{accept}} = \frac{\exp \left(-\frac{(z − μ)^2}{2σ^2} \right)}{\exp \left(-\frac{z_0^2}{2σ_0^2} \right)}
\]
Algorithm SampleZ(\(\sigma, \mu\))

Require: \(\mu \in [0,1), \sigma \leq \sigma_0\)
Ensure: \(z \sim D_{z,\sigma,\mu}\)

1. \(z_0 \leftarrow \text{Basesampler}()\)
2. \(b \leftarrow \{0,1\} \text{ uniformly}\)
3. \(z \leftarrow (2b - 1) \cdot z_0 + b\)
4. \(x \leftarrow -\frac{(z - \mu)^2}{2\sigma^2} + \frac{z_0^2}{2\sigma_0^2}\)
5. Accept with probability \(\exp(x)\)
 Restart to 1. otherwise
Algorithm SampleZ(σ, μ)

Require: μ ∈ [0, 1), σ ≤ σ₀
Ensure: z ∼ D_{z, σ, μ}

1. \(z_0 \leftarrow \text{Basesampler}() \)
2. \(b \leftarrow \{0, 1\} \) uniformly
3. \(z \leftarrow (2b - 1) \cdot z_0 + b \)
4. \(x \leftarrow -\frac{(z - μ)^2}{2σ^2} + \frac{z_0^2}{2σ_0^2} \)
5. Accept with probability \(\exp(x) \)

Restart to 1. otherwise

 Isochrony and portability modifications

(1) Basesampler with a CDT
(2) Polynomial approximation for \(\exp \)
(3) Make the number of iterations independent from the secret
Implementations

Number of sig computed in one second

Ref round 1 (not isochronous) vs Our PoC (isochronous)

- N = 512
- N = 1024

See https://falcon-sign.info/falcon-impl-20190802.pdf
Implementations

Number of sig computed in one second

- Ref round 1 (not isochronous)
- Our PoC (isochronous)

The performance loss for isochrony and portability do not change the ranking of Falcon

https://github.com/PQClean/PQClean/

https://falcon-sign.info/falcon-impl-20190802.pdf
Implementations

The performance loss for isochrony and portability do not change the ranking of Falcon

Recent implementations done by Thomas Pornin

See https://github.com/PQClean/PQClean/
And https://falcon-sign.info/falcon-impl-20190802.pdf
Implementations

Constant time and integers help Cortex M4 implementations

<table>
<thead>
<tr>
<th>Falcon-512 (168 MHz)</th>
<th>Dynamic signatures (in milliseconds)</th>
<th>Memory (in bytes of extra RAM, not counting the key)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First M4 implementation (Oder et al. PQCRYPTO 2019)</td>
<td>479</td>
<td>50508</td>
</tr>
<tr>
<td>Recent Constant time and integers (Thomas Pornin) https://github.com/mupq/pqm4</td>
<td>243</td>
<td>36864</td>
</tr>
</tbody>
</table>
GALACTICS:

From transcendant functions to polynomials with integer coefficients

+ Simple rejection techniques for diminishing the CDT sizes
GALACTICS:

From transcendant functions to polynomials with integer coefficients

+ Simple rejection techniques for diminishing the CDT sizes

Helps to make BLISS isochronous and portable
Helps to make FALCON isochronous and portable
Conclusion

GALACTICS:

From transcendant functions to polynomials with integer coefficients

+ Simple rejection techniques for diminishing the CDT sizes

Helps to make BLISS isochronous and portable
Helps to make FALCON isochronous and portable

Gaussian distributions can now be

☑ Simpler to implement — portability
☑ Provably resistant to timing attacks
Conclusion

GALACTICS:

- From transcendant functions to polynomials with integer coefficients

 + Simple rejection techniques for diminishing the CDT sizes

Helps to make BLISS isochronous and portable

Helps to make FALCON isochronous and portable

Gaussian distributions can now be

- Simpler to implement — portability
- Provably resistant to timing attacks

Perspectives

Also helps for the **masking** countermeasure:

- ✓ See our CCS paper for the application to BLISS (without implementation)
- □ Ongoing work for Falcon