
1

Workshop RISQ 24/03/2020

 Constant time techniques for lattice-based
signatures

Mélissa Rossi

1

Presentation based on

‣ [CCS’2019] joint work with Barthe, Belaïd, Espitau, Fouque and Tibouchi

‣ [PQCRYPTO'20] joint work with Howe, Prest and Ricosset

Isochrony

https://eprint.iacr.org/2019/511.pdf
https://eprint.iacr.org/2019/1411

2

« Constant time » is a confusing term

Constant time does not mean constant execution time

2

The execution time does not depend on the private key.

➡ Not necessarily constant !

« Constant time »

« Constant time » is a confusing term

Constant time does not mean constant execution time

2

The execution time does not depend on the private key.

➡ Not necessarily constant !

« Constant time »

« Constant time » is a confusing term

Constant time does not mean constant execution time

Better say isochronous ?
‣ Howe et al. (2019/1411)

2

The execution time does not depend on the private key.

➡ Not necessarily constant !

« Constant time »

+, − , × , / Constant time on integers
Assumption

« Constant time » is a confusing term

Constant time does not mean constant execution time

Better say isochronous ?
‣ Howe et al. (2019/1411)

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Hash and Sign
Family

✦ GPV
✦ Falcon

✦ BLISS
✦ Crystals-Dilithium
✦ qTesla

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

Based on SIS, LWE or variants
‣ Lyubashevsky (EC’12)

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

Public parameter:
Secret key: (short)
Public key:

a
s
t ← a ⋅ s mod q

Based on SIS, LWE or variants
‣ Lyubashevsky (EC’12)

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

Public parameter:
Secret key: (short)
Public key:

a
s
t ← a ⋅ s mod q

Based on SIS, LWE or variants

Sign():
1: do
2:
3:
4:
5: while Rejected()
6: return ()

s, m

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

‣ Lyubashevsky (EC’12)

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

Public parameter:
Secret key: (short)
Public key:

a
s
t ← a ⋅ s mod q

Based on SIS, LWE or variants

Sign():
1: do
2:
3:
4:
5: while Rejected()
6: return ()

s, m

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

Verify():
1:
2: return 1 if and is
small else 0

z, c, t, m
v ← a ⋅ z − c ⋅ t

c = H(v, m) z

‣ Lyubashevsky (EC’12)

3

Gaussian Distributions and Lattice Based signatures 1

Fiat-Shamir with aborts
Family

Schnorr-like signatures with aborts

Public parameter:
Secret key: (short)
Public key:

a
s
t ← a ⋅ s mod q

Based on SIS, LWE or variants

Sign():
1: do
2:
3:
4:
5: while Rejected()
6: return ()

s, m

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

Verify():
1:
2: return 1 if and is
small else 0

z, c, t, m
v ← a ⋅ z − c ⋅ t

c = H(v, m) z

‣ Lyubashevsky (EC’12)

Why ?

Rejection Sampling Lemma

Also called Acceptance-Rejection method

Going from an actual distribution to an ideal target distribution Y X

‣ Lyubashevsky (EUROCRYPT’12)

Rejection Sampling Lemma

Also called Acceptance-Rejection method

To sample from a distribution , with density , one uses samples from the
distribution , with density as follows:

(1) Get a sample from distribution

(2) Accept as a sample drawn from with probability =

reject otherwise

X f
Y g

y Y

y X
f(y)

M ⋅ g(y)
Target

M ⋅ Actual

Going from an actual distribution to an ideal target distribution Y X

‣ Lyubashevsky (EUROCRYPT’12)

Rejection Sampling Lemma

Also called Acceptance-Rejection method

To sample from a distribution , with density , one uses samples from the
distribution , with density as follows:

(1) Get a sample from distribution

(2) Accept as a sample drawn from with probability =

reject otherwise

X f
Y g

y Y

y X
f(y)

M ⋅ g(y)
Target

M ⋅ Actual

(1) Get a sample from distribution

(2) Accept with probability ,

reject otherwise

x X

x
1
M

statistically close to
(if)M ⋅ g(y) ≥ f(y) ∀y

Going from an actual distribution to an ideal target distribution Y X

‣ Lyubashevsky (EUROCRYPT’12)

1: do
2:
3:
4:
5: while Rejected()
6: return ()

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

Public parameter:
Secret key:
Public key:

a
s, e
t ← a ⋅ s + e

Public parameter:
Secret key:
Public key:

a
s
t ← a ⋅ s

5

Gaussian Distributions and Lattice Based signatures 1

Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Key generation:

Signature algorithm:

5

Gaussian Distributions and Lattice Based signatures 1

Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Public parameter:
Secret key:
Public key:

a
s
t ← a ⋅ s

Key generation:

Public parameter:
Secret key:
Public key:

a
s, e
t ← a ⋅ s + e

Signature algorithm:
1: do
2:
3:
4:
5: while Rejected()
6: return ()

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

5

Gaussian Distributions and Lattice Based signatures 1

Where are the Gaussian distributions in Fiat-Shamir with aborts signatures?

Public parameter:
Secret key:
Public key:

a
s
t ← a ⋅ s

Key generation:

Public parameter:
Secret key:
Public key:

a
s, e
t ← a ⋅ s + e

Signature algorithm:
1: do
2:
3:
4:
5: while Rejected()
6: return ()

y $ Y
c ← H(ay, m)
z ← c ⋅ s + y

z
z, c

They were originally used for two reasons:

Security reductions Performance

Gaussians lead to implementation vulnerabilities

Gaussians lead to implementation vulnerabilities

➡ How to evaluate them ?
by computing transcendental functions and exp(.) cosh(.)

Gaussians lead to implementation vulnerabilities

➡ How to evaluate them ?
by computing transcendental functions and exp(.) cosh(.)

Timing vulnerabilities

Gaussians lead to implementation vulnerabilities

Large Cumulative Distribution Tables (CDT)
u

y

 uniform in [0,1], recover with a table of the red curveu y

➡ How to sample ?

➡ How to evaluate them ?
by computing transcendental functions and exp(.) cosh(.)

 Many possibilities, ex :

Timing vulnerabilities

Gaussians lead to implementation vulnerabilities

Large Cumulative Distribution Tables (CDT)
u

y

 uniform in [0,1], recover with a table of the red curveu y

➡ How to sample ?

➡ How to evaluate them ?
by computing transcendental functions and exp(.) cosh(.)

 Many possibilities, ex :

Binary search leaks by memory access patterny

Timing vulnerabilities

Gaussians lead to implementation vulnerabilities

Large Cumulative Distribution Tables (CDT)
u

y

 uniform in [0,1], recover with a table of the red curveu y

➡ How to sample ?

➡ How to evaluate them ?
by computing transcendental functions and exp(.) cosh(.)

 Many possibilities, ex :

Side channel vulnerabilities

Binary search leaks by memory access patterny

Timing vulnerabilities

Gaussian distributions are hard to implement securely

7

BLISS was the first practical implementation of a lattice based signature scheme.

BLISS
Fiat-Shamir with aborts
Bimodal Gaussians

‣ Ducas et al (CRYPTO’13)

Gaussian distributions are hard to implement securely

7

Many side channel attacks
targeting Gaussian distributions (timing)

BLISS was the first practical implementation of a lattice based signature scheme.

‣ Bootle et al. ASIACRYPT’2018

‣ Groot Bruinderink et al. CHES’2016

‣ Espitau et al. ACM-CCS’2017
‣ Pessl et al. ACM-CCS'2017

‣ Barthe et al. ACM-CCS'2019

‣ Espitau et al. SAC’2016

BLISS
Fiat-Shamir with aborts
Bimodal Gaussians

‣ Ducas et al (CRYPTO’13)

Gaussian distributions are hard to implement securely

7

Many side channel attacks
targeting Gaussian distributions (timing)

BLISS was the first practical implementation of a lattice based signature scheme.

‣ Bootle et al. ASIACRYPT’2018

‣ Groot Bruinderink et al. CHES’2016

‣ Espitau et al. ACM-CCS’2017
‣ Pessl et al. ACM-CCS'2017

‣ Barthe et al. ACM-CCS'2019

‣ Espitau et al. SAC’2016

BLISS
Fiat-Shamir with aborts
Bimodal Gaussians

‣ Ducas et al (CRYPTO’13)

Gaussians are now avoided in Fiat-Shamir
with aborts lattice signature schemes

… but there is a price to pay in terms of
performance

New designs:

Gaussian distributions are hard to implement securely

7

Many side channel attacks
targeting Gaussian distributions (timing)

BLISS was the first practical implementation of a lattice based signature scheme.

‣ Bootle et al. ASIACRYPT’2018

‣ Groot Bruinderink et al. CHES’2016

‣ Espitau et al. ACM-CCS’2017
‣ Pessl et al. ACM-CCS'2017

‣ Barthe et al. ACM-CCS'2019

‣ Espitau et al. SAC’2016

BLISS
Fiat-Shamir with aborts
Bimodal Gaussians

‣ Ducas et al (CRYPTO’13)

Gaussians are now avoided in Fiat-Shamir
with aborts lattice signature schemes

… but there is a price to pay in terms of
performance

Crystals-Dilithium: Only uniform distributions

qTesla: Gaussian sampling only in the keygen

New designs:

‣ Ducas et al (NIST-PQC’17)

‣ Bindel et al (NIST-PQC’17)

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

Fiat-Shamir with abort
Signatures

8

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

‣ Gentry, Peikert and Vaikuntanathan (STOC’08)

8

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

1: Generate matrices A, B
BA = 0
B has small coefficients

2: pk ← A

3: sk ← B

KeyGen()

 such that {

‣ Gentry, Peikert and Vaikuntanathan (STOC’08)

8

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

1: Compute c such that cA = H(m)

2: v ← a vector in Λ(B) close to c

3: s ← c − v

Sign(m,sk)

1: Generate matrices A, B
BA = 0
B has small coefficients

2: pk ← A

3: sk ← B

KeyGen()

 such that {

‣ Gentry, Peikert and Vaikuntanathan (STOC’08)

8

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

1: Compute c such that cA = H(m)

2: v ← a vector in Λ(B) close to c

3: s ← c − v

Sign(m,sk)

1: Generate matrices A, B
BA = 0
B has small coefficients

2: pk ← A

3: sk ← B

KeyGen()

 such that {

s is short
sA = H(m)

Accept iff:

Verify(m,pk,s)

{

‣ Gentry, Peikert and Vaikuntanathan (STOC’08)

8

Gaussian Distributions and Lattice Based signatures 2

Hash and Sign
Signatures

1: Compute c such that cA = H(m)

2: v ← a vector in Λ(B) close to c

3: s ← c − v

Sign(m,sk)

1: Generate matrices A, B
BA = 0
B has small coefficients

2: pk ← A

3: sk ← B

KeyGen()

 such that {

s is short
sA = H(m)

Accept iff:

Verify(m,pk,s)

{

‣ Gentry, Peikert and Vaikuntanathan (STOC’08)

8

Gaussian distributions are not « implementation friendly »

9

Side channel attacks
targeting the Gaussian rejection sampling

‣ Fouque et al EUROCRYPT’2019
‣ Espitau et al. SAC’2016

10

 Simpler to implement
 Provably resistant to timing attacks

Gaussian distributions can actually be

Main takeaway of this presentation

10

 Simpler to implement
 Provably resistant to timing attacks

Gaussian distributions can actually be

Main takeaway of this presentation

1

2

3

Galactics: a polynomial approximation tool for Gaussians

Isochronous BLISS

Isochronous FALCON

11

Approximation tool

➡ A tool to use a polynomials instead of (bimodal) Gaussians

 Using Renyi divergence and Sobolev spaces

 Proof of concept developed in sage8.3

 Polynomials have integer coefficients (Lattice reduction)

Evaluating a polynomial can be done isochronously

12

Renyi divergence result

Take two cryptographic schemes
- One with distribution
- One with an approximate distribution with the same support
For keeping the ‘same’ bit security for both schemes with at most
signature queries (NIST suggestion),

𝒟
𝒟′

264

1 −
𝒟′

𝒟 ∞

≤ 2−45 .

‣ Prest ASIACRYPT’17

12

Renyi divergence result

Take two cryptographic schemes
- One with distribution
- One with an approximate distribution with the same support
For keeping the ‘same’ bit security for both schemes with at most
signature queries (NIST suggestion),

𝒟
𝒟′

264

1 −
𝒟′

𝒟 ∞

≤ 2−45 .

‣ Prest ASIACRYPT’17

2 ⋅ λ
2 ⋅ (2 ⋅ λ + 1)2 ⋅ Q𝒟

12

Renyi divergence result

Take two cryptographic schemes
- One with distribution
- One with an approximate distribution with the same support
For keeping the ‘same’ bit security for both schemes with at most
signature queries (NIST suggestion),

𝒟
𝒟′

264

1 −
𝒟′

𝒟 ∞

≤ 2−45 .

‣ Prest ASIACRYPT’17

Goal : (a transcendental function on an interval)𝒟 =

a polynomial𝒟′ =

exp(⋅) cosh(⋅)

2 ⋅ λ
2 ⋅ (2 ⋅ λ + 1)2 ⋅ Q𝒟

13

Other Polynomial Approximations

•Taylor development

Not precise enough

How to choose ?𝒟′

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

13

Other Polynomial Approximations

• Padé approximants (rational function approximation)
‣ Prest ASIACRYPT’17

•Taylor development

Not precise enough

Two polynomials, higher degrees

How to choose ?𝒟′

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)

13

Other Polynomial Approximations

• Minimax computations : Sollya software package

• Padé approximants (rational function approximation)
‣ Prest ASIACRYPT’17

‣ Chevillard, Joldes and Lauter ICMS’10

‣ Zhao, Steinfeld and Sakzad 2018/1234

•Taylor development

Not precise enough

Two polynomials, higher degrees

Floating point arithmetics

How to choose ?𝒟′

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)

𝒟′ = arg min
deg(P)≤d (sup

x∈I (1 −
P(x)
𝒟(x)))

‣ Brisebarre and Chevillard IEEE’07

14

Our alternative Polynomial Approximation

How to choose ?𝒟′

exp(⋅)
cosh(⋅)

14

Our alternative Polynomial Approximation

How to choose ?𝒟′

Degree polynomial in d ℝ[x] Degree polynomial in
with bit coefficients

d ℤ[x]
η

Transcendent
functions

exp(⋅)
cosh(⋅)

15

Towards a polynomial approximation

We want and 1 −
𝒟′

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of in for the norm. 1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

15

Towards a polynomial approximation

We want and 1 −
𝒟′

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of in for the norm. 1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

In a first attempt, let us look for the closest element of in for the norm. 1 ℝ[x]/𝒟(x) ∥ ⋅ ∥∞

15

Towards a polynomial approximation

We want and 1 −
𝒟′

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of in for the norm. 1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

In a first attempt, let us look for the closest element of in for the norm. 1 ℝ[x]/𝒟(x) ∥ ⋅ ∥∞

An orthogonal projection could be great.

15

Towards a polynomial approximation

We want and 1 −
𝒟′

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of in for the norm. 1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

In a first attempt, let us look for the closest element of in for the norm. 1 ℝ[x]/𝒟(x) ∥ ⋅ ∥∞

An orthogonal projection could be great.

The norm is not Euclidean, no easy projection on a subspace. ∥ ⋅ ∥∞

15

Towards a polynomial approximation

We want and 1 −
𝒟′

𝒟 ∞

≤ 2−45 𝒟′ ∈ ℤ[x] .

It corresponds to finding the closest element of in for the norm. 1 ℤ[x]/𝒟(x) ∥ ⋅ ∥∞

In a first attempt, let us look for the closest element of in for the norm. 1 ℝ[x]/𝒟(x) ∥ ⋅ ∥∞

An orthogonal projection could be great.

The norm is not Euclidean, no easy projection on a subspace. ∥ ⋅ ∥∞

Over-approximate by a Euclidean norm. ∥ ⋅ ∥∞

16

When functional analysis meets cryptography

For and differentiable functions on :

Corresponding norm:

u v I

⟨u, v⟩ =
1

| I | ∫I
uv + | I |∫I

u′ v′

|u |2
S =

1
| I | ∫I

u2 + | I |∫I
u′

2

Sobolev norm𝖧2 ‣ Sobolev TAMS’1963

Equivalence with : ∥ ⋅ ∥∞
∥u∥∞ ≤ 2 ⋅ |u |S

16

When functional analysis meets cryptography

For and differentiable functions on :

Corresponding norm:

u v I

⟨u, v⟩ =
1

| I | ∫I
uv + | I |∫I

u′ v′

|u |2
S =

1
| I | ∫I

u2 + | I |∫I
u′

2

Sobolev norm𝖧2 ‣ Sobolev TAMS’1963

Equivalence with : ∥ ⋅ ∥∞
∥u∥∞ ≤ 2 ⋅ |u |S

Let us look for the closest element of in for the norm. 1 ℝ[x]/𝒟(x) | ⋅ |S

17

Proof of concept (Available on Github at https://github.com/espitau/GALACTICS)

https://github.com/espitau/GALACTICS

17

Proof of concept (Available on Github at https://github.com/espitau/GALACTICS)

https://github.com/espitau/GALACTICS

18

Roadmap

1

2

3

Galactics: a polynomial approximation tool for Gaussians

Isochronous BLISS

Isochronous FALCON

19

BLISS Signature Scheme
‣ Ducas et al (CRYPTO’13)

Sign ():
1:
2:
3:
4: choose a random bit
5:
6:
7: restart except wp

8: return

m, pk = a, sk = S = (s1, s2)
y1, y2 ← 𝒟ℤn,σ
u ← ζ ⋅ a ⋅ y1 + y2
c ← H(⌈u⌋d mod p, m)

b
z1 ← (−1)bcs1 + y1
z2 ← (−1)bcs2 + y2

1

M exp (− ∥Sc∥2

2σ2) cosh (⟨z, Sc⟩
σ2)

(z1, z2, c)

ζ(q − 2) = 1 mod 2q

Elements are polynomials in ℛ =
ℤ[x]

xn + 1

We polynomially approximate and using the GALACTICS tool.

➡ Also used for the Gaussian Sampling

exp(.) cosh(.)

19

BLISS Signature Scheme
‣ Ducas et al (CRYPTO’13)

Sign ():
1:
2:
3:
4: choose a random bit
5:
6:
7: restart except wp

8: return

m, pk = a, sk = S = (s1, s2)
y1, y2 ← 𝒟ℤn,σ
u ← ζ ⋅ a ⋅ y1 + y2
c ← H(⌈u⌋d mod p, m)

b
z1 ← (−1)bcs1 + y1
z2 ← (−1)bcs2 + y2

1

M exp (− ∥Sc∥2

2σ2) cosh (⟨z, Sc⟩
σ2)

(z1, z2, c)

Gaussian sampling
ζ(q − 2) = 1 mod 2q

Elements are polynomials in ℛ =
ℤ[x]

xn + 1

We polynomially approximate and using the GALACTICS tool.

➡ Also used for the Gaussian Sampling

exp(.) cosh(.)

19

BLISS Signature Scheme
‣ Ducas et al (CRYPTO’13)

Sign ():
1:
2:
3:
4: choose a random bit
5:
6:
7: restart except wp

8: return

m, pk = a, sk = S = (s1, s2)
y1, y2 ← 𝒟ℤn,σ
u ← ζ ⋅ a ⋅ y1 + y2
c ← H(⌈u⌋d mod p, m)

b
z1 ← (−1)bcs1 + y1
z2 ← (−1)bcs2 + y2

1

M exp (− ∥Sc∥2

2σ2) cosh (⟨z, Sc⟩
σ2)

(z1, z2, c)

Gaussian sampling

Bimodal Gaussian rejection sampling

ζ(q − 2) = 1 mod 2q

Elements are polynomials in ℛ =
ℤ[x]

xn + 1

We polynomially approximate and using the GALACTICS tool.

➡ Also used for the Gaussian Sampling

exp(.) cosh(.)

Performance (in kcycles)

Crystals-Dilithium: Only uniform distributions
qTesla: Gaussian sampling only in the keygen

Recall that:

 and they are more conservative than BLISS

Number of kilocycles for one signature

150

300

450

600

Original BLISS Our isochronous
BLISS

Dilithium ref
(Isochronous)

Dilithium avx2
(Isochronous)

qTesla-I ref

20

Performance (in kcycles)

Crystals-Dilithium: Only uniform distributions
qTesla: Gaussian sampling only in the keygen

Recall that:

 and they are more conservative than BLISS

Number of kilocycles for one signature

150

300

450

600

Original BLISS Our isochronous
BLISS

Dilithium ref
(Isochronous)

Dilithium avx2
(Isochronous)

qTesla-I ref

The performance loss
for isochrony

is small

20

Performance (in kcycles)

Crystals-Dilithium: Only uniform distributions
qTesla: Gaussian sampling only in the keygen

Recall that:

 and they are more conservative than BLISS

Number of kilocycles for one signature

150

300

450

600

Original BLISS Our isochronous
BLISS

Dilithium ref
(Isochronous)

Dilithium avx2
(Isochronous)

qTesla-I ref

The performance loss
for isochrony

is small

20

21

Roadmap

1

3

2

Galactics: a polynomial approximation tool for Gaussians

Isochronous FALCON

Isochronous BLISS

22

Falcon Gaussian sampler

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

Algorithm SampleZ()σ, μ

22

Falcon Gaussian sampler

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

σ01.

Algorithm SampleZ()σ, μ

22

Falcon Gaussian sampler

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

σ01.

b = 0

σ0

b = 1

3.

Algorithm SampleZ()σ, μ

22

Falcon Gaussian sampler

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

σ01.

b = 0

σ0

b = 1

3.

Algorithm SampleZ()σ, μ

Paccept =
exp (− (z − μ)2

2σ2)
exp (−

z2
0

2σ2
0)

b = 0

σ0

b = 1

5.

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

23

Constant time Falcon Gaussian sampler

Algorithm SampleZ()σ, μ

Require:
Ensure:

1. Basesampler()
2. uniformly
3.

4.

5. Accept with probability
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

23

Constant time Falcon Gaussian sampler

Algorithm SampleZ()σ, μ

(1) Basesampler with a CDT
(2) Polynomial approximation for exp
(3) Make the number of iterations

independent from the secret

Isochrony and portability
modifications

24

Implementations

Recent implementations done by
Thomas Pornin

Number of sig computed in one second

2500

5000

7500

10000

Ref round 1
(not isochronous)

Our PoC
(isochronous)

Optimized using plain
double operations

(isochronous)

AVX2 (isochronous)

N = 512
N = 1024

https://github.com/PQClean/PQClean/See
https://falcon-sign.info/falcon-impl-20190802.pdfAnd

https://github.com/PQClean/PQClean/
https://falcon-sign.info/falcon-impl-20190802.pdf

24

Implementations

Recent implementations done by
Thomas Pornin

Number of sig computed in one second

2500

5000

7500

10000

Ref round 1
(not isochronous)

Our PoC
(isochronous)

Optimized using plain
double operations

(isochronous)

AVX2 (isochronous)

N = 512
N = 1024

https://github.com/PQClean/PQClean/See

The performance
loss for isochrony and

portability
do not change the
ranking of Falcon https://falcon-sign.info/falcon-impl-20190802.pdfAnd

https://github.com/PQClean/PQClean/
https://falcon-sign.info/falcon-impl-20190802.pdf

24

Implementations

Recent implementations done by
Thomas Pornin

Number of sig computed in one second

2500

5000

7500

10000

Ref round 1
(not isochronous)

Our PoC
(isochronous)

Optimized using plain
double operations

(isochronous)

AVX2 (isochronous)

N = 512
N = 1024

https://github.com/PQClean/PQClean/See

The performance
loss for isochrony and

portability
do not change the
ranking of Falcon https://falcon-sign.info/falcon-impl-20190802.pdfAnd

https://github.com/PQClean/PQClean/
https://falcon-sign.info/falcon-impl-20190802.pdf

Constant time and integers help Cortex M4 implementations

Falcon-512 (168 MHz) Dynamic signatures
(in milliseconds)

Memory
(in bytes of extra RAM,
not counting the key)

First M4 implementation
 (Oder et al. PQCRYPTO 2019) 479 50508

Recent Constant time and integers
(Thomas Pornin)

https://github.com/mupq/pqm4
243 36864

Implementations

25

https://github.com/mupq/pqm4

26

Conclusion

From transcendant functions to polynomials with integer coefficients
GALACTICS:

 + Simple rejection techniques for diminishing the CDT sizes

26

Conclusion

From transcendant functions to polynomials with integer coefficients
GALACTICS:

Helps to make BLISS isochronous and portable
Helps to make FALCON isochronous and portable

 + Simple rejection techniques for diminishing the CDT sizes

26

Conclusion

 Simpler to implement — portability
 Provably resistant to timing attacks

Gaussian distributions can now be

From transcendant functions to polynomials with integer coefficients
GALACTICS:

Helps to make BLISS isochronous and portable
Helps to make FALCON isochronous and portable

 + Simple rejection techniques for diminishing the CDT sizes

26

Conclusion

 Simpler to implement — portability
 Provably resistant to timing attacks

Gaussian distributions can now be

From transcendant functions to polynomials with integer coefficients
GALACTICS:

Helps to make BLISS isochronous and portable
Helps to make FALCON isochronous and portable

Also helps for the masking countermeasure:

See our CCS paper for the application to BLISS (without implementation)
Ongoing work for Falcon

Perspectives

 + Simple rejection techniques for diminishing the CDT sizes

Questions ?

27

