
CNAM • ENS Rennes • University of Liverpool

Mathieu MARI

Study of greedy algorithm for solving
Maximum Independent Set problem

• Internship report for the Master MPRO •

Supervisor : Piotr Krysta

University of Liverpool

Victoria gallery.

Abstract.

The minimum degree greedy algorithm is a very natural algorithm to get a large independent set on a graph.
It consists in iteratively selecting a vertex with minimum degree, and removing its neighbours until there are
no remaining vertices. Bodlaender et al. showed that deciding whether this greedy algorithm outputs an

optimal solution or not is hard to decide. In this paper, we give a new simpler proof of their result, and extend
this result to the more rectrictive classes of bipartite graphs and cubic planar graphs. We also prove that the
problem of finding the biggest set produced by this algorithm can not be approximated within a ratio 8/7− ε.

April - July 2017



1 Introduction

Greedy algorithms are a general method to get a solution for some optimisation problems. It con-
sists in a sequence of optimal local moves, and builds the solution step by step. These algorithms
are usually fast, do not have a huge space complexity, and often produce very good solutions. For
some problems, such as finding a minimum proper colouring on interval graphs this is even optimal
[12]. In 1935, Hassler Whitney introduced the combinatorial notion of matroid, which describes a wide
class of problems for which greedy algorithms work optimally. Unfortunately, the matroid structure
is quite restrictive and a lot of optimisation problem can’t be studied with this theory. Even when
the greedy is not optimal, it can still be efficient in terms of approximation algorithms. Our general
goal in this internship was to understand how the greedy algorithm behaves for Maximum Indepen-
dent Set (MIS) which is one of the most important NP-complete problems in graph theory, and has a
wide range of applications in several areas, such as map labeling, scheduling, or even molecular biology.

Figure 1: Red nodes form an
independent set.

The basic idea to get a good independent set in a graph is to use a
greedy algorithm. At each step, we choose an available vertex, we put
it in the solution, and we remove this vertex and all of its neighbours
from the graph, until there are no remaining vertices in the graph. At
each step, one would like to find “the best vertex” to pick in order to
get a good independent set at the end. The less we delete neighbours
of the picked vertex, the best our solution will iteratively be, so it
seems natural to pick at each step the vertex with minimum degree
among all vertices.

In terms of worst case approximation, this very simple method (called Greedy) is actually one
of the best algorithms possible because it achieves a n-approximation ratio, while MIS can not be
approximated within a factor n1−ε, where n denotes the number of vertices and ε > 0, under widely
believed assumptions (see [9]). This algorithm has also a very good performance on random graphs,
because the size of the solution output by Greedy is the half of the optimal solution in expectation [4].

Our first goals were to understand when this greedy algorithm is actually efficient and when it
isn’t, what is the relation between the performance and differents parameters of the graphs (degrees,
connectivity, density, etc.), and try to find a wide class of graphs where this algorithm is efficient.

This is very interesting to see that this algorithm is non-deterministic. Indeed, at each step one
may find several vertices with minimum degree. Then, in order to mesure the performance of this
greedy algorithm, we have to find the proper parameter to use, the worst or the best execution, or
even the average size of a solution. For instance, the value of a smallest solution gives a bound on the
approximation ratio of any greedy algorithm for Maximum Independent Set. For a given k, we can
also ask the following question : Can this greedy algorithm produce a solution larger than k ? Since
independent sets produced by this algorithm (greedy sets) form a subset of all independent set, this
problem is closely related maximum independent set problem, but some interesting situations occur.
On some classes of graphs, Greedy can produce an optimal solution but it remains hard to find this
execution (see [3]). Interestingly enough, finding the best greedy set can be difficult even if finding the
best independent set is easy (e.g. bipartite graphs, Theorem 4).

Studying the structure formed by greedy sets of a graph or a class of graphs has its own interest
and could be useful in practice. For instance, in the area of combinatorial auctions, maximizing the
social welfare in the case of single-minded bidders is actually equivalent to MIS. A very interesting
approach when we want to get a incentive compatible (truthful) mechanism for Single-Minded bidders
is to use a greedy algorithm because it achieves a good approximation of the optimal social welfare
(for details read Algorithmic Game Theory [11], Chapter 11). In this greedy mechanism, the order on
which bidders can be selected is fixed at the beginning, and this order can not change even if the order
of preference on bidders becomes different because of the choices made by the mechanism. This fixed
order is important to guarantee the truthfulness property but at the same time if the distribution of

1



degrees of the graph is quite homogeneous, the algorithm can be as bad as random choices. This is
why we study in this paper the adaptative version the greedy algorithm, where nodes’ degrees change
during the execution. More generally, studying the efficiency of an algorithm relatively to its best
output instead of the optimal value of the basic problems can be meaningful in some settings. We
sometimes have few more assumptions about the instances of a problem which prevent us to use some
algorithms. In the area of mechanism designs we consider the case where instances depend on the
algorithm used (bidders may lie if it will increase their benefit). We can also cite the case of online
problems,where the data of an instance comes part by part so that the algorithm can not consider the
instance as a unique block.

1.1 Notations

Let G = (V,E) be a simple undirected graph. When V and E are not explicit, we denote by V (G) and
E(G) respectively the set of vertices and the set of edges of a graph G. The degree of a vertex v ∈ V in
G is denoted by d(v). If u and v are two adjacent vertices in G, the corresponding edge in E is written
(u, v) or just uv. The minimum degree in graph G is δ(G) := minv∈V d(v), and its maximum degree
is ∆(G) := maxv∈V d(v). The neighbourhood of a vertex v is the subset of vertices adjacent to v in G
and it is denoted by NG(v). The closed neighbourhood contains the vertex : NG[v] := {v} ∪ NG(v).
The subgraph of G induced by a subset W ⊆ V is denoted by G[W ]. A complete graph on n vertices
is denoted by Kn and a complete bipartite graph on n and m vertices is denoted by Kn,m.

For a given r ≥ 1, an algorithm A is an r-approximation algorithm for the maximisation (resp.
minimization) problem Π, if for any instance I of Π, any solution output by A with value A(I) respects
r ·A(I) ≥ OPTΠ(I) (resp. A(I)

r ≤ OPTΠ(I)) where OPTΠ(I) denotes the value of the optimal solution
of Π on instance I.

An independent set in G is a subset of pairwise non-adjacent vertices. An independent set is maxi-
mal if it is not included in a strictly larger independent set and maximum if it has maximum cardinality
among all independent sets. We denote by α(G) the cardinality of a maximum independent set, and
we call Maximum Independent Set, or simply MIS, the following decision problem :

Name : MIS
Instance : A graph G and an integer k
Question : Is there an independent set S in G with cardinality |S| ≥ k ?

The algorithm called Greedy is defined by the following procedure.

Algorithm 1 Greedy
Require: a graph G = (V,E)
W ← V
S ← ∅
while W 6= ∅ do
Find a vertex v ∈W with minimum degree in G[W ]
W ←W \NG[v]
S ← S ∪ {v}

end while
return S

An output S of Greedy is a greedy set and its elements are called picked or selected vertices. It is
easy to check that a greedy set is a maximal independent set.

We consider the following two decision problems that will later be associated with their correspond-
ing maximization versions.

2



Name : MaxGreedy Name : MinGreedy
Instance : A graph G and an integer k Instance : A graph G and an integer k
Question : Is there a greedy set S in G Question : Is there a greedy set S in G

with cardinality |S| ≥ k ? with cardinality |S| ≤ k ?

We denote by α+(G) (resp. α−(G)) the size of a maximum (resp. minimum) greedy set in G.

If a graph G has several connected components G1, . . . , Gk, then α(G) = α(G1) + · · · + α(Gk).
Greedy also behaves like that. This algorithm proceeds with some local modifications, hence running
the greedy algorithm on the whole graph or consecutively on all its connected components leads to the
same result. Therfore, without loss of generality, graphs will always be assumed to be connected.

2 Counter-examples

If one tries to draw some small random connected graphs to see what happens when we run the greedy
algorithm, then one will probably find that this algorithm returns each time a optimal solution. But we
can wisely suspect some counter-examples, because Maximum Independent Set is NP-hard, while
Greedy runs in polynomial time. The smallest graph for which Greedy can fail, i.e. there exists
a sequence of choices which lead to a non-optimal solution, has six vertices and is shown in Figure
2. The first real counter-example has seven vertices (see Figure 3) and any sequence of choices leads
Greedy to a non-optimal solution.

Figure 2: Smallest graph where Greedy can fail.
Picking � leads to a solution of size 2 while � gives
a solution of size 3.

Figure 3: Smallest graph where Greedy fails. Any
solution contains � and has size 2 while a optimal
solution has contain the 3 vertices �.

This is instructive to look at some well-known results about Maximum Independent Set prob-
lem, because we can deduce some propeties about such greedy algorithms. One important result about
maximum independent set problem is due to Håstad [9], who proved that there is no polynomial-time
(n1−ε)-approximation for MIS, for any ε > 0, where n denotes the number of vertices, unless P = NP .
In particular, this result holds for Greedy, so one should be able to find a family of graphs (Gn)n≥0

so that each graph Gn has O(n) vertices and α+(Gn)
α(Gn) = O(1/n). In the following section we describe

such a class.
Håstad’s theorem has another interesting consequences : Greedy is the best (among other) ap-

proximation algorithm for MIS ! Indeed, this algorithm will picked at least one vertex, so it is an
n-approximation algorithm.

2.1 Two important families of counter-examples

We now present two families of graphs on which Greedy is as bad as we want. These examples are
very useful because they will help later to design some gadgets used to prove some hardness results.
The first is composed of general graphs and the second is a subclass of the more restrictive bipatite
graphs.

3



Figure 4: Hard graphs for
Greedy

General graphs. For n ≥ 3, consider Gn = (V,E) such that
V = {x, v1, . . . , vn} ∪ V ′. V ′ is a complete graph on n ver-
tices, x is adjacent to every vi and vi is adjacent to all vertices
of V ′ (see Figure 4). This graph has 2n + 1 vertices, vertex x
has degree n and vertex vi degree n + 1, hence x is picked first
by the greedy algorithm, and the size of the solution produced is
2. But the optimal solution is {v1, . . . , vn} with n vertices. On
these graphs, Greedy becomes deterministic and we have α(Gn)

α+(Gn)
=

n
2 . Note that the graph drawn in Figure 3 is actually the graph
G3.

Remark. Interestingly enough, we could avoid this bad result by randomly choosing vertices during
the execution, eventually relatively to their respective degree. For example, if we set that the prob-
ability that v is picked by the greedy algorithm is d(v) ·

(∑
u∈V d(u)

)−1, thus the expected size of a
solution is 2n2+n3

3n2+n
∼∞ n

3 which gives an expected efficiency ratio of 1/3.

Bipartite graphs. For bipartite graphs, the greedy algorithm has also an unbounded approximation
ratio (see Figure 5). For n ≥ 3, let Bn = (U, V,E) be a bipartite graph. Suppose that U = U1∪· · ·∪Un
and V = {x1, . . . , xn} ∪ V ′, with |U1| = · · · = |Un| = |V ′| = n and

E =

n⋃
i=1

{
uv, u ∈ Ui, v ∈ V ′ ∪ {xi, . . . , xn}

}
It’s not very difficult to see that Greedy will pick all vertices in column V which gives an greedy

set of size 2 · n, while the maximum independent set in this graph has size at least n2 by choosing
column U . Then the gap is n/2.

Figure 5: Hard bipartite graphs for Greedy.

3 Positive results

3.1 Some graphs where Greedy is optimal

We now focus on finding some classes of graphs for which Greedy is optimal. For what type of graphs
picking the smallest degree vertex first always leads to an optimal solution ? Some properties about
independent set could help to identify such classes.

Proposition. Let G = (V,E) be a graph and x ∈ V such that G[NG[x]] is a clique. Then x belongs
to some maximum independent set.

4



Indeed, if G[NG[x]] is a clique, its intersection with any independent set contains at most one
vertex, and x can be added to any independent set in G[V \NG[x]].

In particular any vertex of degree one belongs to a maximum independent set. For this reason
Greedy will always produce an optimal solution on trees. We can prove using the same proposition
with |NG[x]| = 3 that Greedy is optimal for maximal outerplanar graphs, which is the class of graphs
which can drawn on a sphere with all vertices adjacent to the same face, and which are maximal for
graph inclusion.

There are other classes on which Greedy is optimal such as complete graphs, cycles, series-parallel
graphs, cographs, split graphs, k-regular bipartite graphs [7, 3].

Another important but non-explicit class of graph for which Greedy is optimal is the class of
well-covered graphs, introduced by Plummer [13], and widely studied (see [5] for a survey). A graph
is well-covered if all its maximal independent sets have the same size. In particular since any greedy
set is maximal, the greedy algorithm is optimal.

3.2 Greedy as an approximation algorithm for MIS

The first approach to understand the greedy algorithm is to consider it as an approximation algorithm
for Maximum Independent Set. Our previous counter-examples show that for general graphs,
Greedy is an n-approximation algorithm for MIS but this ratio can be improved for some subclasses.

One interesting remark about the two families of counter-examples in the previous section is that
the maximum degree goes to infinity when n grows. This observation leads to the following result
stated in [7].

Proposition 1. Let S be a greedy set on the graph G with n vertices. We have

|S| ≥ n

∆(G) + 1

Proof. Every time a vertex v is picked by Greedy, at most ∆(v) are removed, so at the end at most
|S|∆(G) vertices have been removed. Then G has at most |S|+∆(G)|S| vertices which can be rewritten
as n ≤ (∆(G) + 1)|S|. ♣

A direct consequence of this result is that Greedy becomes a (∆ + 1)-approximation algorithm for
graphs with degree at most ∆, and later this ratio has been improved to ∆+2

3 ([7]).
One can adapt this proof to see that this algorithm is a 6-approximation in planar graphs, using

the fact that one can always find a node with degree at most five in a planar graphs. This result can
also be seen as a consequence of the following theorem.

Theorem ([7]). Let S be a greedy set on a graph G with n vertices and average degree d̄. We have

|S| ≥ n

d̄+ 1

This gives the slightly better results that Greedy is an (d̄+ 1)-approximation algorithm for MIS,
a result which was later improved to 2d̄+3

5 ([7]). For lower degree graphs, some more precise bounds
are known such as 5/3 for graphs with degree at most three [7] and 3/2 for cubic graphs [8].

4 Negative results

The two following decision problems capture the question of the efficiency of the greedy algorithm i.e.
is Greedy good relatively to a ratio r ≥ 1 to compute a maximum independent set ? The first of these
problems is about the existence of at least one sequence of choices which leads to a good solution and
the other asks if all sequences of choices are good.

Name : GreedyOpt∃r Name : GreedyOpt∀r
Instance : A graph G Instance : A graph G
Question : r · α+(G) ≥ α(G) ? Question : r · α−(G) ≥ α(G) ?

5



Note that r is a parameter of the problem and should be a rational number otherwise these two
problems become undecidable [3]. GreedyOpt∀r belongs to class co-NP because an example of a
polynomial certificate of answer no would be a greedy set S and an independent set S′ such that
r · |S| < |S′|. Bodlaender et al. proved that this problem is difficult [3].

Theorem 1. GreedyOpt∀r is co-NP-complete.

Their proof is slighly difficult and we will give later a simple proof. This proof can be used exactly
in the same way to show that GreedyOpt∃r is co-NP-hard but this problem does not belong to co-NP
nor NP. They proved that this problem is actually DP-hard where the complexity class DP gathers
all decision problems which can be expressed as a conjonction of a NP and a co-NP problem. One
example of a DP problem is Exact Independent Set where given a graph and an integer k the goal
is to decide if the maximum independent set in G has size exactly k.

Let S1 be the class of all graphs G such that α+(G) = α(G). One useful result proved by Bodlaender
et al. states that MIS remains NP-hard on this class, i.e. assuming that Greedy can produce an
maximum independent set does not help to determine such a sequence of choices to lead the greedy
algorithm. For us it follows one important corollary.

Theorem 2. MaxGreedy is NP-complete.

We will show that this result remains true for the more restricted classes of bipartite graph and
cubic planar graphs.

4.1 Our results

We can now summerize our main results :

• We found a easier proof of Theorem 1 than the one given by Bodlaender et al. [3]

• We show that MaxGreedy is hard to approximate within a ratio 8/7− ε. (Corollary 1)

• We show that MaxGreedy and MinGreedy are NP-complete on bipartite graphs. (Theorem
4)

• We show that MaxGreedy is NP-complete on cubic planar graphs. (Theorem 5)

5 Hardness results for general graphs

In this section we design a new proof, easy to understand, for Theorem 1. We will reduce the comple-
mentary problem of MIS which is co-NP-complete to GreedyOpt∀r . More precisely, given a rational
number r, a connected graph G and an integer k, we build a graph G′ in polynomial-time such that
α(G) ≤ k if and only if r · α−(G′) ≥ α(G′). The idea for this construction is to keep control of the
size of the maximum indepedent set and at the same time force the greedy algorithm to be deterministic.

Let r = p
q ≥ 1 be a rational where p and q are positives. Let G = (V,E) be a graph and k an

integer : we build the graph G′ = (V ′, E′) shown in Figure 6, in the following way. First create p copies
G1, . . . , Gp of graph G i.e. |V (Gi)| = |V (G)| and (ui, vi) ∈ E(Gi)⇔ (u, v) ∈ E, for all i in {1, . . . , p}.
Create a complete graph Knp on n · p vertices. Then create l new vertices x1, . . . , xl where l = qk− 1.

V ′ := {x1, . . . , xl} ∪ V (Knp) ∪
p⋃
i=1

V (Gi)

Now, create new edges from all graphs Gi to Knp and vertices x1, . . . , xl, so that :

E′ =
{

(u, v), u ∈ V (Gi), 1 ≤ i ≤ p, v ∈ {x1, . . . , xl} ∪ V (Knp)
}
∪ E(Knp) ∪

p⋃
i=1

E(Gi)

6



Figure 6: The graph G′ used in the proof of Theorem 1

Claim. Using the same notations we have α(G) ≤ k if and only if r · α−(G′) ≥ α(G′)

Proof. Since G is connected, all its vertices have at least degree one, so the vertices with smallest
degree in G′ are x1, . . . , xl and thus the solution output by Greedy is {x1, . . . , xl, y} with size l + 1
where y is any vertex in Knp. Then we have α−(G′) = α+(G′) = l + 1. A maximum independent set
in G′ does not contain at the same time a vertex in Gi and a vertex in Knp or {x1, . . . , xl}. Thus, we
have α(G′) = max(p · α(G), l + 1).

• Suppose α(G) > k. We have p · α(G) > pk ≥ qk = l + 1, so α(G′) = pα(G). It follows that
r · α−(G′) = p

q (l + 1) = pk < p · α(G) = α(G′)

• Suppose α(G) ≤ k. We have r · α−(G′) = r(l + 1) ≥ l + 1 and r · α−(G′) = pk ≥ p · α(G). Then
r · α−(G′) ≥ max(p · α(G), l + 1) = α(G′). ♣

Note that sinceGreedy behaves deterministically onG′, this reduction also proves that GreedyOpt∃r
is co-NP-hard. Moreover, one can easily adapt this reduction for Exact Independence Number,
to show that this problem is also DP-hard.

6 Inapproximability

In this section, we show that MaxGreedy is hard to approximate for general graphs. To reach this
goal, we will present a way to simulate a 3-SAT formula by a graph, so that deciding the sequence of
choices on this graph corresponds exactly to choose the valuation of the variables of the formula. At
the end the size of the greedy set is almost proportional to the number of satisfied clauses on the given
formula. The hardness properties of Max-3-Sat (resp. Min-3-Sat) will imediately be translated to
MaxGreedy (resp. MinGreedy).

Theorem 3. If MaxGreedy admits a r-approximation algorithm, with r > 1 then, Max-3-Sat
admits a (r + ε)-approximation algorithm, for any ε > 0.

Figure 7: Gadget used in the proof of Theorem 3

Max-3-Sat is an NP-complete problem but also
APX-hard. It is known that for any ε > 0 there is no
(8/7− ε)-approximation algorithm for this problem
unless P=NP [10]. It directly follows an inapprox-
imability result for our problem.

Corollary 1. There’s no (8/7− ε)-approximation
algorithms for MaxGreedy, unless P=NP.

Proof of the Theorem. We suppose that there exists
a polynomial-time algorithm A such that, for any
graphG, the greedy set output byA has sizeA(G) ≥
α+(G)
r .
Let ε > 0 and let φ be a 3-SAT formula with n

variables x1, . . . , xn and m clauses C1, . . . , Cm.

7



We call the frequency of a literal li, denoted by f(li), the number of clauses in which it belongs to. By
changing the index of variables and switching literal li and l̄i, we can suppose w.l.o.g. that f(xi) ≥ f(x̄i)
for all 1 ≤ i ≤ n, and f(x1) ≤ · · · ≤ f(xn). Then we define fmax := f(xn) = max1≤i≤n f(xi) and K
an integer greater than 2fmax + 3. We build a graph Gφ as follows :

1. For each variable xi, create two adjacent literal nodes xi and x̄i corresponding to each of its
literals.

2. For each clause Cj create a gadget as shown in Figure 7. Each gadget contains K − 1 central
nodes forming a clique KK−1 and 3K intermediate nodes divided into three groups of K vertices.
Any intermediate node is adjacent in this gadget to all central nodes. Finally, for each group of
intermediate nodes there are two end nodes which form with their corresponding intermediate
nodes a complete bipartite graph on 2 and K vertices. Each pair of end nodes is associated to
one of the three literals of the corresponding clause.

3. If a clause contains a literal xi (resp. x̄i), create two edges between an available pair of end nodes
of the corresponding gadget and the literal node xi (resp. x̄i).

4. For each variable xi such that ∆i := f(xi)− f(x̄i) > 0, create 2∆i new vertices pi1, . . . , pi2∆i
, all

adjacent to the literal node x̄i. This step ensures that xi and x̄i have exactly the same degree
2f(xi) + 1 in Gφ, then Greedy will have to choose between xi and x̄i.

5. Finally add some edges and 2fmax + 3 new vertices such that the vertices created at step 4. form
a clique with more than 2fmax + 3 vertices. We call this clique K∗.

We now study the behaviour of the greedy algorithm on the graph Gφ which can be decomposed
into two phases. The first one lasts n turns and consists of choosing a valuation for the formula. During
the second phase Greedy has to pick vertices on the remaining connected components. This phase
is deterministic i.e. the size of the greedy set produced at the end only depends on the choices made
during the first phase. We give more details below.

First phase : choice of a valuation. In this graph, for a given variable xi, its corresponding literal
nodes have same degree 2f(xi) + 1 and any other nodes have degree at least 2fmax + 2, even when
some end nodes have been removed. In particular, Greedy will first pick x1 or x̄1. For instance if
x1 is chosen, then x̄1 is removed and vice versa, some end nodes of some gadgets are removed and
also eventually some nodes in K∗. One can easily check that the degree of other literal nodes have
not changed, any gadget has minimun degree at least 2fmax + 2 and K∗ still contains more than
2fmax + 2 vertices, and hence, x2 and x̄2 are minimum degree vertices of the graph, etc. Greedy will
consecutively choose non-deterministically between all xi and x̄i for i from 1 to n. We associate a
valuation ν : {x1, . . . , xn} → {0, 1} to this choice such that ν(xi) = 1 if and only if literal node xi is
picked by the greedy algorithm.

Second phase : build the solution. After the first phase the remaining graph has m + 1 con-
nected components corresponding to the m clauses and the remaining nodes of K∗. since the graph is
disconnected, we can look at every connected components separately.

We claim that Greedy will pick exactly seven nodes on a given gadget if the corresponding clause
Cj = l1 ∨ l2 ∨ l3 is not satified by ν, and 3K nodes if at least one literal is satisfied. Indeed,

• If Cj is not satisfied, ν(l1) = ν(l2) = ν(l3) = 0, which means that l̄1, l̄2 and l̄3 have been picked
during the first phase, and then l1, l2 and l3 have been removed. Then the minimum degree
vertices in the gadget are the end nodes with degree K. Then, Greedy will pick each pair of
end nodes plus one central node, and remove all intermediate nodes. So exactly seven nodes are
picked in this gadget.

8



• If Cj is satified, we can suppose w.l.o.g. that ν(l1) = 1, so the literal node l1 has been picked
and all of its neighbours removed, including the corresponding end nodes of the gadget. Then
there are some intermediate nodes with degree K − 1, which are now the smallest degree nodes
of this gadget. In this situation, Greedy will pick all intermediate nodes and remove all others
so at the end 3K nodes will be picked.

At the very end, Greedy picks one vertex in K∗ and removes all other vertices.

Let cν be the number of clauses satisfied by ν. The size of the solution output is

n+ cν · (3K) + (m− cν) · 7 + 1 = (n+ 1 + 7m) + (3K − 7)cν

and reciprocally, if there exists a greedy set C with size M on this graph then the valuation ν defined
by

ν(xi) = 1 if and only if xi ∈ C (1)

then exacly M−n−1−7m
3K−7 clauses are satisfied by ν. In particular, if c∗ denotes the maximum number

of clause of φ simultaneously satisfied by a valuation, we have

α+(Gφ) = (n+ 1 + 7m) + (3K − 7)c∗

If there exists a polynomial time r-approximation algorithm A for MaxGreedy, then we should
find on Gφ a greedy set C with size M ≥ α+(Gφ)

r and the corresponding valuation ν defined as in (1)
should satisfy cν clauses such that

c∗/cν =
α+(Gφ)− n− 1− 7m

M − n− 1− 7m

≤
α+(Gφ)

M − (n+ 1 + 7m)

≤
α+(Gφ)

α+(Gφ)
r − (n+ 1 + 7m)

= r · 1

1− r(n+1+7m)
α+(Gφ)

≤ r + ε

for K big enouph. Indeed for any formula, at least one clause is satisfiable so c∗ ≥ 1 and it follows
that α+(Gφ) ≥ 3K. Therefore, when K goes to infinity, the ratio r(n+1+7m)

α+(Gφ)
goes to zero. This graph

Gφ has size O(m(n+K)), and a suitable value of K depends polynomialy on n and m, so the graph
Gφ can be computed in polynomial time.

♣

Remark. This reduction from Max-3-Sat is an other proof that MaxGreedy is NP-Hard. More-
over, since Min-3-Sat (find the valuation which satifies the minimum of clauses) is co-NP-Hard, we can
easily prove that finding the minimum greedy sequence (we remind that the independent set should be
maximal) is co-NP-hard and even APX-hard based on the fact that Min-3-Sat can not be approximate
within a factor 7/6− ε [2].

7 Bipartite graphs

In this section we adapt the reduction from Max-3-Sat used in section 6 to prove that MaxGreedy
remains a hard problem for bipartite graphs. This is an interesting result, because a maximum indepen-
dent set can be computed in polynomial time in bipartite graphs using for example linear programming.
For this reason, restricted to bipartite graphs, GreedyOpt∃r now belongs to class NP. A polynomial
length certificate is a sequence of choices for the greedy algorithm. Then we compare the size of the
greedy set with the size of a maximum independent set that we can compute in polynomial time.

9



Theorem 4. MaxGreedy is NP-complete on bipartite graphs

The idea for this proof is almost the same as the reduction used to show the inapproximability for
general graphs, but we should garantee that the graph Gφ built during this reduction is bipartite.

The difficulty comes from the connection between the literal nodes and the gadgets. If we look at
a bipartite graph as a 2-colourable graph, then all end nodes should have the same colour and positive
literal nodes should have a different colour than negative ones. If a clause contains a positive and
a negative literal at the same time, then it becomes impossible to colour this graph with only two
colours. Therefore, we will make sure that clauses contains only positive or only negative literals.

The second difficulty comes from the clique K∗. To avoid this clique, we will ensure that both
literals associated to any variable have the same frenquency. We now define a variant of the satisfaction
problem called Var-Sat, satisfying our criteria.

Definition. A logic formula in CNF form is a Var-Sat formula if

Bounded clauses. Each clause contains two or three literals.

Monotony. All clauses are monotone, i.e. contains only positive literals or only negative literals.

Same frequency. For each variable, its positive and negative literals both appear exactly one or two
times, i.e. f(x) = f(x̄) ∈ {1, 2} for all variables x.

Example. xyz ∧ ȳz̄ ∧ zw ∧ x̄z̄w̄ is an example of Var-Sat formula.

The decision problem Var-Sat is : given a var-SAT formula, is there a valuation which satisfies
simultaneously all of its clauses ?

Lemma 1. Var-Sat is NP-complete.

A formula of Var-Sat can be got from a formula of 3-Sat using some of the equisatisfiable-
preserving reductions described below.

Frequency at most three. If a variable x appears in more than three clauses, say k clauses, then
add k new variables denoted by x1, . . . , xk, replace x in the i-th clause by xi, add the new clauses
x̄i ∨ xi+1 for 1 ≤ i ≤ k − 1 and x̄k ∨ x1. The k new clauses are simultaneously satisfied if and
only if all xi get the same value. Therefore, these formula are equisatisfiable, and each variable
xi appears now at most three times.

Monotonicity. If a clause C is not monotone, then denote C+ and C− respectively the positive
and negative literals of C = C+ ∨ C−. Then, add a new variable u and transform C into
(C+ ∨ u)∧ (C− ∨ ū). These two clauses are both monotone and equivalent to C. Note that, if C
has size two or three, then these new clauses have still size two or three.

Equal frequency. If there exists a variable x such that its positive and negative literals do not have
the same frequency, for instance if x appears once and x̄ appears twice, then add two new variables
u and v and add two new monotone clauses, x ∨ u ∨ v and ū ∨ v̄.

The technique used to reduce the frequency is inspired from [15].

Proof. To show that Var-Sat remains NP-hard, we prove that, given any formula φ of 3-SAT, we
can compute in polynomial time a formula φ′ such that these two formula are equisatisfiable.

We can construct φ′ from φ using the following algorithm.

1. If there exists a variable x such that only its positive (or only negative) literals appear, then
remove all the clauses in which x (or x̄) appears.

2. For all variables which appears (both positive and negative literals) more that three time, apply
the frequency at most three reduction.

10



3. Apply the monotonicity reduction to any clause which is not monotone.

4. For any variable x, for which x and x̄ do not appear the same number of times, apply the equal
frequency reduction.

One can check that at the end, the formula contains only clauses of size two or three and that the
last step preserves monotonicity. Since after Step 2, variables have frequency three, if there exists a
variable x such that x and x̄ do not appear the same number of times, one should appear once and
the other twice.

♣

Figure 8: Bipartite gadget associated
with a clause with three literals

Let φ be a Var-Sat formula with n variables m2 clauses of
size two and m3 clauses of size three, and k an integer. The
construction of Gφ is the same than the one described in Section
6 except that the gadgets are slightly different :

• Since the maximum frequency of any variable is two, it is
sufficient to fix K = 7 for all gadgets.

• We replace the clique formed by the central nodes by 6
isolated vertices to get the gadgets bipartite.

• We remove a group of intermediate nodes and end nodes
for gadgets associated with a clause containing only two
literals.

To summarize, the gadget corresponding to a clause of size
three (resp. two) has 6 central nodes, three (resp. two) groups of seven intermediate nodes which form
with the central a complete bipartite graph K6,7 and three (resp. two) pairs of end nodes forming with
their corresponding intermediate nodes a complete bipartite graph K2,7. See Figure 8.

Then, graph Gφ is bipartite. Indeed, all its components are bipartite and the clauses are monotone
so that the edges created between the literal nodes and the gadgets have not created some odd cycles.
This graph has 2n+ 24m2 + 33m3 vertices so it can be made in polynomial time.

Claim. φ is satisfiable if and only if α+(Gφ) ≥ n+ 14m2 + 21m3

Proof. The behaviour of Greedy can be decomposed exactly in the same way than in Section 6. Then
φ is satisfiable if and only if there exists a greedy set which contains all the intermediate nodes plus n
literal nodes, i.e., at least n+ 14m2 + 21m3 vertices. ♣

Remark. The graph Gφ has a maximum degree bounded by 21 (central nodes), and this proof was
designed is order to be easy checkable so one can easily prove that the problem is still hard for bipartite
graphs with degree bounded by d, for some 3 ≤ d ≤ 21.

8 Cubic planar graphs

A cubic graph is a graph where any vertex has degree exactly three. In this section we prove that
finding a maximum greedy set is NP-complete even on the very restricted class of cubic planar graphs.
We know that MIS is NP-hard in this class [6], and even APX-hard for cubic graphs [1].

An easy way to prove that MaxGreedy is hard would be to prove that α(G) = α+(G) when G
is planar and cubic. But Halldorson et al. [8] proved that it is not always the case (see Figure 9).
One reason for that difference is that the only vertex of degree three picked by Greedy is the first
one. After that, there always exists a vertex with degree one or two which is a 2-neighbour of an other
vertex previously picked. Then sometimes a neighbour of a removed vertex is forced to be picked even
if it is not supposed to belong to the maximum solution.

11



Figure 9: The only maxi-
mum independent set (square
nodes) has size 12 but any
greedy set contains a or a′.

To reach our goal, we will design a reduction from MIS in planar cubic
graphs and for that, we first introduce some gadget on the edges which
will help to avoid these forced moves.

Theorem 5. MaxGreedy is NP-complete for planar cubic graphs.

Proof. Let G = (V,E) be a cubic planar graph with m edges. Let us
construct a graph G′ by replacing each edge uv ∈ E by the structure Huv
described in Figure 10. We call

V ′ := V (G′) = V ∪
⋃
e∈E

V (He)

and
E′ := E(G′) =

⋃
uv∈E

(E(He) ∪ {au, gv})

where au and gv correspond to the edges connecting u and v to the graph Huv.

Figure 10: Each edge e = uv is replaced by this gadget He

G′ has order |V |+ 22m and can be computed in polynomial time.

Claim. Let S′ ⊆ V ′ be an independent set in G′ and e = uv ∈ E. Then, |V (He)
⋂
S′| ≤ 9. Moreover,

if both u and v belong to S′ then |V (He)
⋂
S′| ≤ 8.

We can easily check that |A ∩ S′| ≤ 2, |D ∩ S′| ≤ 2, |C ∩ S′| ≤ 3 and |{a, b, d, g} ∩ S′| ≤ 2.
Thus, |V (He)

⋂
S′| ≤ 9. Moreover, if both u and v belong to S′ then {a, g} ∩ S′ = ∅ and then

|{a, b, d, g} ∩ S′| ≤ 1 which gives |V (He)
⋂
S′| ≤ 8.

Claim. α(G′) ≤ α(G) + 9m

Let S′ ⊆ V ′ be an independent set in G′. Denote by F the set of edges of G which have both end
nodes in S′. We have

|S′ ∩ V | − |F | ≤ α(G)

Indeed, (S′ ∩ V ) \ {xe, e ∈ F} is a independent set in G where ue is one of the two vertices incident to
an edge e ∈ F . Then,

|S′ ∩ V | − |F | ≤ |(S′ ∩ V ) \ {xe, e ∈ F}| ≤ α(G)

12



It follows that

|S′| = |S′ ∩ V |+
∑
e∈E
|He ∩ S′|

≤ (α(G) + |F |) + (
∑
e∈F
|He ∩ S′|+

∑
e/∈F

|He ∩ S′|)

≤ (α(G) + |F |) + (
∑
e∈F

8 +
∑
e/∈F

9)

= (α(G) + |F |) + (
∑
e∈E

9−
∑
e∈F

1)

= α(G) + 9m

Because this inequality is true for any independent set S′, we have α(G′) ≤ α(G) + 9m.

Claim. There exists a greedy set S′ in G′ of size α(G) + 9m.

Let S be a maximum independent set in G. Construct the set S′ as follows

• While there exists some unpicked nodes in G′ do

1. If there exists an unpicked vertex u ∈ S with minimum degree, add u to S′ and nodes b and
g in all adjacent gadgets Huv (see Figure 10)

2. Otherwise, there exists a vertex of type a with minimum degree in some gadget Huv.
– If v ∈ S, add a and d to S′

– If v /∈ S, add a and g to S′

• Run Greedy on the remaining connected components A,D and C of graphs He which have not
been picked yet.

At the end, we have S′ ∩ V = S and |S′ ∩ V (He)| = 9 for all e in E. Then the greedy set S′ has the
desired size.

Therefore, α+(G′) = α(G′) = α(G) + 9m and then for any integer k we have

α+(G′) ≥ k + 9m if and only if α(G) ≥ k

.
♣

8.1 Approximation algorithms in cubic graphs

Halldorsson et al. proved that the performance ratio of Greedy in cubic graphs is 3/2 [8]. In a
more precised greedy algorithm called MoreEdges, Greedy should always select a vertex which has
a neighbour with degree three if he has to choose among several degree two vertices.

The performance ratio of MoreEdges is improved to 17/12. It imediately follows thatMoreEdges
is a 17

12 -approximation algorithm for MaxGreedy in cubic graphs, because this algorithm outputs a
greedy set. Even if Halldorsson et al. proved that this ratio is tight for MIS, it might be possible that
this ratio is even better for MaxGreedy.

9 Further work

We give a list of questions and thoughts which could be some interesting directions for future researchs.

• Vertex Cover and more generally Set Cover are minimization problems for whichGreedy is
an interesting approach. For instance, in the general setting it produces a O(log n)-approximation
[16]. Is it hard to decide if Greedy can produce an optimal solution for these problems ?

13



• The proof of inapproximability in the general case and the proof of hardness for bipartite graphs
are very similar in the structure. Unfortunately, we do not know if the special case Var-Sat
is hard to approximate or not that’s why we only get a NP-hardness result. We think that
MaxGreedy is hard to approximate even in bipartite graphs.

• An interesting property of degree at most three graphs and more generally bounded degree
graphs is that there is a finite number of k-neighbouroods (nodes at distance at most k from a
given root). In [8], Halldorsson and Yoshihara look at the 2-neighbourhood to help the greedy
algorithm to choose when two nodes have minimum degree (see MoreEdges). This leads to a
stricly better approximation ratio. More generally, is it possible to explore the k-neighbourhood
to help Greedy in its choices to get a better ratio depending on k ?

• What about the non-adaptative version of Greedy where the order of choosing vertices is fixed
from the beginning ?

10 Acknowledgments

I was very glad to have Piotr Krysta as a supervisor during this internship, and I am very grateful for
his kindness and friendship. I really appreciate to be considered as another researcher and not just as
a student. I thank Nan Zhi for the pleasant moments of research we had together (with Piotr too). I
thank the people of the department of computer science of the university of Liverpool for welcoming
me and helping me during this internship. I also thank Sang-Ki, Tom and Reino for nice coffees and
football games.

References

[1] Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical
Computer Science, 237(1):123 – 134, 2000. 11

[2] Adi Avidor and Uri Zwick. Approximating min 2-sat and min 3-sat. Theory of Computing Systems,
38(3):329–345, May 2005. 9

[3] Hans L Bodlaender, Dimitrios M Thilikos, and Koichi Yamazaki. It is hard to know when greedy
is good for finding independent sets. Information Processing Letters, 61(2):101–106, 1997. 1, 5, 6

[4] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Struct. Algorithms, 47(3):436–486, 2015. 1

[5] Michael D. Plummer. Well-covered graphs: A survey. 16:253–287, 07 1993. 5

[6] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete graph problems.
Theoretical Computer Science, 1(3):237 – 267, 1976. 11

[7] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent sets in
sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, May 1997. 5

[8] Magnús M. Halldórsson and Kiyohito Yoshihara. Greedy approximations of independent sets in
low degree graphs, pages 152–161. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. 5, 11, 13,
14

[9] Johan Hastad. Clique is hard to approximate within n1 – e. 0:627, 01 1996. 1, 3

[10] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001. 7

[11] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007. 1

14



[12] Stephan Olariu. An optimal greedy heuristic to color interval graphs. Information Processing
Letters, 37(1):21 – 25, 1991. 1

[13] Michael D. Plummer. Some covering concepts in graphs. Journal of Combinatorial Theory, 8(1):91
– 98, 1970. 5

[14] Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. 41:265–
273, 12 1983.

[15] Craig A Tovey. A simplified np-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984. 10

[16] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York, NY,
USA, 2001. 13

15


	Introduction
	Notations

	Counter-examples
	Two important families of counter-examples

	Positive results
	Some graphs where Greedy is optimal
	Greedy as an approximation algorithm for MIS

	Negative results
	Our results

	Hardness results for general graphs
	Inapproximability
	Bipartite graphs
	Cubic planar graphs
	Approximation algorithms in cubic graphs

	Further work
	Acknowledgments

