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Abstract
The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem
and various natural resource allocation settings. We are given a path with a demand on each edge
and a set of tasks, each task being defined by a subpath and a size. The goal is to select a subset
of the tasks of minimum cardinality such that on each edge e the total size of the selected tasks
using e is at least the demand of e. There is a polynomial time 4-approximation for the problem
[Bar-Noy et al., STOC 2000] and also a QPTAS [Höhn et al., ICALP 2014]. In this paper we study
fixed-parameter algorithms for the problem. We show that it is W[1]-hard but it becomes FPT if we
can slighly violate the edge demands (resource augmentation) and also if there are at most k different
task sizes. Then we present a parameterized approximation scheme (PAS), i.e., an algorithm with a
running time of f(k) · nOε(1) that outputs a solution with at most (1 + ε)k tasks or assert that there
is no solution with at most k tasks. In this algorithm we use a new trick that intuitively allows us
to pretend that we can select tasks from OPT multiple times.
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1 Introduction

In the Unsplittable Flow Cover problem (UFP-cover) we are given a path G = (V,E) where
each edge e has a demand ue ∈ N, and a set of tasks T where each task i ∈ T has a start
vertex si ∈ V and an end vertex ti ∈ V , defining a path P (i), and a size pi ∈ N. The
goal is to select a subset of the tasks T ′ ⊆ T of minimum cardinality |T ′| that covers the
demand of each edge, i.e., such that

∑
i∈T ′∩Te pi ≥ ue for each edge e where Te denotes

the set of tasks i ∈ T for which e lies on P (i). It is the natural covering version of the
well-studied Unsplittable Flow on a Path problem (UFP), see e.g., [22, 21, 9] and references
therein. Also, it is a generalization of the knapsack cover problem [11] and it can model
general caching in the fault model where we have a cache of fixed size and receive requests
for non-uniform size pages, the goal being to minimize the total number of cache misses
(see [1, 5, 16] and Appendix A). Caching and generalizations of it have been studied for
several decades in computer science, see e.g., [1, 8, 20, 24]. Also, UFP-cover is motivated by
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40:2 Fixed-parameter algorithms for Unsplittable Flow Cover

many resource allocation settings in which for instance the path specifies a time interval and
the edge demands represent minimum requirements for some resource like energy, bandwidth,
or number of available machines at each point in time.

UFP-cover is strongly NP-hard, since it generalizes general caching in the fault model [16],
and the best known polynomial time approximation algorithm for it is a 4-approximation [5]
with no improvement in almost 20 years. However, the problem admits a QPTAS for the case
of quasi-polynomial input data [23] which suggests that better polynomial time approximation
ratios are possible.

In this paper, we study the problem for the first time under the angle of fixed parameter
tractability (FPT). We define our parameter k to be the number of tasks in the desired
solution and seek algorithms with a running time of f(k)nO(1) for some function f . We show
that by allowing such a running time we can compute solutions that are almost optimal.

1.1 Our contribution
First, we prove that UFP-cover is W[1]-hard which makes it unlikely that it admits an
FPT-algorithm. In particular, this motivates studying FPT-approximation algorithms or
other relaxations of the problem. We first show that under slight resource augmentation the
problem becomes FPT. We define an additional parameter δ > 0 controlling the amount of
resource augmentation and we compute either a solution that is feasible if we decrease the
demand of each edge e to ue/(1 + δ), or we assert that there is no solution of size k for the
original edge demands. Key to our result is to prove that due to the resource augmentation
we can assume that each edge e is completely covered by tasks whose size is comparable to
ue or it is covered by at least one task whose size is much larger than ue. Based on this we
design an algorithm that intuitively sweeps the path from left to right and on each uncovered
edge e we guess which of the two cases applies. In the former case, we show that due to the
resource augmentation we can restrict ourselves to only f(k, δ) many guesses for the missing
tasks using e. In the latter case e belongs to a subpath in which each edge is covered by a
task that is much larger than the demand of e. We guess the number of tasks in this subpath
and select tasks to maximize the length of the latter. This yields a subproblem that we solve
recursively and we embed the recursion into a dynamic program.

I Theorem 1. There is an algorithm for UFP-cover with running time kO( kδ log k) · nO(1) that
either outputs a solution of size at most k that is feasible if the edge capacities are decreased
by a factor 1 + δ or asserts that there is no solution of size k for the original edge capacities.

We use the above algorithm to obtain a simple FPT-2-approximation algorithm without
resource augmentation. Also, with similar ideas we derive an algorithm computing the
optimal solution, assuming that additionally the number of different task sizes in the input is
bounded by a parameter.

I Theorem 2. There is an algorithm that solves UFP-cover in time kO(k′k) ·nO(1), assuming
that |{pi : i ∈ T}| ≤ k′.

Then we present a parameterized approximation scheme (PAS) for UFP-cover, i.e., an
algorithm with a running time of f(k) · nOε(1) that outputs a solution with at most (1 + ε)k
tasks or assert that there is no solution with at most k tasks. This algorithm is based
on a lemma developed for UFP in which we have the same input as in UFP-cover but we
want to maximize the weight of the selected tasks T ′ and require that their total size is
upper-bounded by ue on each edge e, i.e.,

∑
i∈T ′∩Te pi ≤ ue. Informally, the mentioned

lemma states that we can remove a set of tasks from OPTSL ⊆ OPT of negligible cardinality
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such that on each edge e we remove one of the largest tasks of OPT using e. This yields
some slack that we can use in order to afford inaccuracies in the computation. Translated to
UFP-cover, the natural correspondence would be a solution in which the tasks in OPTSL are
not removed but selected twice. This is not allowed in UFP-cover. However, we guess a set of
tasks T ′ that intuitively yields as much slack as OPTSL and whose size is also negligible. If
OPT ∩ T ′ 6= ∅ then we cannot add the tasks in T ′ to OPT to gain slack since some of them
are already included in OPT . Therefore, we use the following simple but useful trick: we
guess T ′ ∩OPT for which there are 2|T ′| ≤ 2O(εk) options, select the tasks in T ′ ∩OPT , and
recurse on the remaining instance. Since OPT ≤ k the whole recursion tree has a complexity
of O(kk) which depends only on our parameter k.

If OPT ∩ T ′ = ∅ then T ′ ∪OPT is a (1 + ε)-approximate solution with some slack and
we can use the slack in our computation. We compute a partition of E into O(k) intervals.
Some of these intervals are dense, meaning that there are many tasks from OPT that start
or end in them. We ensure that for each dense interval there is a task in T ′ that covers the
whole interval and whose size is at least a Ω(1/k)-fraction of the demand of each edge in the
interval. Intuitively this is equivalent to decreasing the demand on each edge by a factor
1 + Ω(1/k). If we had only dense intervals we could apply the FPT-algorithm for resource
augmentation from above for the remaining problem. On the other hand, if only few tasks
start or end in an interval we say that it is sparse. If all intervals are sparse, we devise a
dynamic program that processes them in the order of their amount of slack and guesses their
tasks step by step. We use the slack in order to be able to “forget” some of the previously
guessed tasks which yields a DP with only polynomially many cells.

Unfortunately, in an instance there can be dense and sparse intervals and our algorithms
above for the two special cases are completely incompatible. Therefore, we identify a type of
tasks in OPT such that we can guess tasks that cover as much as those tasks, while losing
only a factor of 1 + ε. Using some charging arguments, we show that then we can split the
remaining problem into two independent subinstances, one with only dense intervals and one
with only sparse intervals which we then solve with the algorithms mentioned above.

I Theorem 3. There is a parameterized approximation scheme for UFP-cover.

Our algorithms for resource augmentation, a bounded number of task sizes, and the
FPT-2-approximation even work in the weighted case, at the expense of a factor 1 + ε in
the approximation ratio. Due to space constraints the details of this and many proofs are
deferred to the full version of the paper.

1.2 Other related work
The study of parameterized approximation algorithms was initiated independently by Cai
and Huang [10], Chen, Grohe, and Grüber [14], and Downey, Fellows, and McCartin [18]. A
good survey on the topic was given by Marx [26]. Recently, the notion of approximate kernels
was introduced [25]. Independently, Bazgan [7] and Cesati and Trevisan [12] established an
interesting connection between approximation algorithms and parameterized complexity by
showing that EPTASs, i.e., (1 + ε)-approximation algorithms with running time f(ε)nO(1),
imply FPT algorithms for the decision version. Hence a W[1]-hardness result for a problem
makes the existence of an EPTAS for it unlikely.

For the unweighted case of UFP (packing) a PAS is known [27]. Note that in the FPT
setting UFP is easier than UFP-cover since we can easily make the following simplifying
assumptions that we cannot make in UFP-cover. First, we can assume that the input tasks
are not too small: if there are k input tasks whose size is smaller than 1/k times the capacity
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of any the edges they use, then we can simple output those tasks and we are done; otherwise
we can enumerate over them and only large tasks remain. Second, the tasks are not too
big since the size of a task can be assumed to be at most the minimum capacity of an edge
in its path. Third, we can easily find a set of at most k edges that together intersect the
path of each input task (i.e., a hitting set for the input task’s paths) unless a simple greedy
algorithm finds a solution of size k [27]. The best known polynomial time approximation
algorithm for UFP has a ratio of 5/3 + ε [22] and the problem admits a QPTAS [3, 6].

Recently, polynomial time approximation algorithms for special cases of UFP-cover under
resource augmentation were found: an algorithm computing a solution of optimal cost
if pi = ci for each task i and a (1 + ε)-approximation if the cost of each task equals its
“area”, i.e., the product of pi and the length of P (i) [17]. UFP-cover is a special case of the
general scheduling problem (GSP) on one machine in the absence of release dates. The best
known polynomial time result for GSP is a (4 + ε)-approximation [15] and a QPTAS for
quasi-polynomial bounded input data [2]. Also, UFP-cover is a special case of the capacitated
set cover problem, e.g., [13, 4].

2 Few different task sizes

In this section, we show that UFP-cover is FPT when it is parameterized by k + k′ where
k′ is the number of different task sizes. We are given two parameters k and k′ and assume
|{pi : i ∈ T}| = k′. We seek to compute a solution T ′ ⊆ T with |T ′| ≤ k such that for each
edge e it holds that p(T ′ ∩ Te) :=

∑
i∈T ′∩Te pi ≥ ue or assert that there is no such solution.

Denote by T (`) for ` = 1, . . . , k′ the partition of the set T into sets of tasks with equal size.
Our algorithm sweeps the path from left to right and guesses the tasks in OPT step by

step (in contrast to similar such algorithms it is not a dynamic program). We maintain a set
T ′ of previously selected tasks and a pointer indicating an edge e. We initialize the algorithm
with e being the leftmost edge of E and T ′ := ∅. Suppose that the pointer is at some edge
e. If the tasks in T ′ already cover the demand of e, i.e., p(Te ∩ T ′) ≥ ue, then we move the
pointer to the edge on the right of e. Otherwise, in OPT the edge e must be covered by a
task that is not in T ′. For each group T (`) we guess the number of tasks using e that are
missing in T ′ compared to OPT , i.e., we guess k` := |Te ∩ OPT ∩ T (`)| − |Te ∩ T ′ ∩ T (`)|.
Since there are at most k′ groups T (`), the number of possible guesses is bounded by (k+1)k′ .
For each group T (`) we add to T ′ the k` tasks in (Te ∩ T (`)) \ T ′ with rightmost endvertex.
Then we move the pointer to the edge on the right of e. Overall, we want to select at most k
tasks. Therefore, at each guessing step, we enumerate only guesses that ensure that we do
not select more than k tasks altogether. Hence, the total number of possible guesses overall
is bounded by ((k+ 1)k′)k = kO(k′k). Each of them yields a set T ′. In case that the resulting
set T ′ is not a feasible solution we reject the guesses that lead to T ′.

Assume from now on that all guesses were correct. In the next lemma we show that then
we obtain a feasible solution. The intuition for the proof is as follows: suppose that the
pointer is at some edge e and we select additional tasks from a group T (`). These additional
tasks were not necessary in order to cover the demands of the edges on the left of e. All
tasks in T (`) have exactly the same size. Therefore, the best choice is to select the tasks in
Te ∩ T (`) with rightmost endvertices.

I Lemma 4. Assume that the given instance has a solution of size at most k. Then the
resulting set T ′ satisfies

∑
i∈T ′∩Te pi ≥ ue for each edge e.

The total number of guesses is bounded by kO(k′k) and for each set of guesses we can
compute the corresponding set T ′ in time nO(1). Hence, we obtain Theorem 2.
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3 Resource augmentation

In this section, we turn to the case where we have resource augmentation but the number of
different task sizes is arbitrary. As a consequence of Theorem 2, we first show that UFP-cover
with (1 + δ) resource augmentation, can be solved in time f(k, δ) · nO(1) if the edge demands
come in a polynomial range. In Section 3.1 we generalize this algorithm to arbitrary edge
demands.

For now, we assume that the edge demands come in a polynomial range. Then, for two
parameters k ∈ N and δ > 0 we seek to compute a solution T ′ ⊆ T with |T ′| ≤ k such that
for each edge e it holds that p(T ′∩Te) :=

∑
i∈T ′∩Te pi ≥ ũe := ue/(1 + δ) or assert that there

is no solution T ′ ⊆ T with |T ′| ≤ k such that for each edge e it holds that p(T ′ ∩ Te) ≥ ue.
The idea is to round the task sizes and then use our algorithm for bounded number of

task sizes. Let OPT denote a solution with at most k tasks. We group the tasks into groups
such that the sizes of the tasks in the same group differ by at most a factor of 1 + δ. For
each ` ∈ N we define the group T (`) := {i ∈ T |pi ∈ [(1 + δ)`, (1 + δ)`+1)}. For each ` we
round the sizes of the tasks in T (`) to (1 + δ)`, i.e., for each i ∈ T (`) we define its rounded
size to be p̃i := (1 + δ)` (for convenience, we allow rounded the task sizes and edge demands
to be fractional). As we show in the next lemma, this rounding step is justified due to our
resource augmentation.

I Lemma 5. By decreasing the demand of each edge e to ũe := ue/(1 + δ) we can assume
for each ` ∈ N that each task i ∈ T (`) has a size of p̃i = (1 + δ)`, i.e., for each edge e it holds
that

∑
i∈OPT∩Te p̃i ≥ ũe.

Note that w.l.o.g. we can assume that pi ≤ maxe ue for each task i. Since we assumed
that the edge demands are bounded by a polynomial in n, there are only O(log1+δ n) groups
T (`) with T (`) 6= ∅. The optimal solution contains tasks from at most k of these groups. We
guess the groups T (`) that satisfy that OPT ∩ T (`) 6= ∅ in time

(O(log1+δ n)
k

)
= ( 1

δ logn)O(k).
Note that the latter quantity is of the form f(k, δ) · nO(1), since (logn)O(k) ≤ n + kO(k).
We delete the tasks from all other groups. This yields an instance with at most k different
(rounded) task sizes, and then we can apply Theorem 2 with k′ = k. Hence, there is an
algorithm with running time ( 1

δ logn)O(k) ·kO(k2) ·nO(1) = f(k, δ) ·nO(1) if the edge demands
are in a polynomial range.

3.1 Arbitrary demands

We extend the above algorithm now to the case of arbitrary demands. To this end, we start
with a shifting step that intuitively partitions the groups above into supergroups such that
the sizes of two tasks in different supergroups differ by at least a factor of 2k/δ. In particular,
one task from one supergroup will be larger than any k tasks from supergroups with smaller
tasks together. We define K to be the smallest integer such that k(1 + δ)−K−1 < δ/2, i.e.,
K = O( 1

δ log k). Let α ∈ {0, ..., k} be an offset to be defined later. Intuitively, we remove an
1
k+1 -fraction of all groups T (`) and combine the remaining groups into supergroups. With
a shifting argument we ensure that no task from OPT is contained in a deleted group.
Formally, we define a supergroup T (s) :=

⋃K(α+(s+1)(k+1)−1)−1
`=K(α+s(k+1)) T (`) for each integer s. In

particular, each supergroup contains K · k groups.

I Lemma 6. There exists an offset α ∈ {0, ..., k} such that for each task i ∈ OPT there is a
supergroup T (s) such that i ∈ T (s).
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40:6 Fixed-parameter algorithms for Unsplittable Flow Cover

We guess the value α due to Lemma 6. If the edge demands are no necessarily polynomially
bounded we can no longer guess the groups that contains tasks from OPT since there can be
up to Ω(n) groups. Instead, for each edge e we define a level se to be the largest value s such
that (1 + δ)K(α+s(k+1)) ≤ ûe := ũe/(1 + δ). Note that (1 + δ)K(α+s(k+1)) is a lower bound
on the size of each task in T (s). In the next lemma, using resource augmentation we prove
that for each edge e it holds that the tasks in

⋃
`′ T (se) ∩ OPT are sufficient to cover the

demand of e or that in OPT the edge e is completely covered by one task in a supergroup
T (s′) with s′ > se.

I Lemma 7. For each edge e it holds that p(OPT ∩ T (se) ∩ Te) ≥ ûe or that there is a task
i ∈ OPT ∩

⋃∞
s=se+1 T (s) ∩ Te. In the latter case it holds that pi ≥ p̃i ≥ ûe.

In order to solve our problem, we define a set of subproblems that we solve via dynamic
programming. Let us denote T (≥s) :=

⋃
s′≥s T (s′). Each subproblem is characterized by a

subpath Ẽ ⊆ E, and integers k̃, s̃ with 0 ≤ k̃ ≤ k and s̃ ∈ {−1, ..., O(log maxe ue)}. A tuple
(Ẽ, k̃, s̃) represents the following subproblem: select a set of tasks T ′ ⊆ T (≥s̃) with |T ′| ≤ k̃
such that for each edge e ∈ Ẽ it holds that

∑
i∈T ′∩Te p̃i ≥ ûe. Note that the subproblem

(E, k,−1) corresponds to the original problem that we want to solve. Moreover, the number
of DP-cells is polynomial in the input length. Notice that there are only a polynomial number
of values s̃ for which T (s̃) is non-empty.

Suppose we are given a subproblem (Ẽ, k̃, s̃) and assume that we already solved each
subproblem of the form (Ẽ′, k̃′, s̃′) where Ẽ′ ⊆ Ẽ, k̃′ ≤ k̃, and s̃′ > s̃. Assume that in OPT
each edge e ∈ Ẽ is covered by at least one task in T (≥s̃) (it will turn out that we need to
compute a feasible solution to (Ẽ, k̃, s̃) only in this case). Hence, for covering the reduced
edge demands û we do not need the tasks in supergroups T (s′) with s′ < s̃. Our algorithm
sweeps the path from left to right and guesses the tasks in OPT step by step (where OPT
denotes the optimal solution to the original input instance). We maintain a pointer at some
edge e and a set T ′ of previously selected tasks. We initialize the algorithm with e being the
leftmost edge of Ẽ and T ′ := ∅. Suppose that the pointer is at some edge e. If the tasks in
T ′ already cover the reduced demand of e, i.e., p(Te ∩ T ′) ≥ ûe, then we move the pointer to
the edge on the right of e. Otherwise, in OPT the edge e must be covered by a task that
is not in T ′. We guess whether p(OPT ∩ T (≥s̃+1) ∩ Te) ≥ ûe or p(OPT ∩ T (s̃) ∩ Te) ≥ ûe.
Since we assumed that e is covered by a task in T (≥s̃), Lemma 7 yields that one of these two
cases applies.

Suppose we guessed that p(OPT ∩ T (≥s̃+1) ∩ Te) ≥ ûe. For any two edges e1, e2 denote
by Pe1,e2 the subpath of E starting with e1 and ending with e2 (including e1 and e2). Let e′
be the rightmost edge on the right of e such that each edge e′′ ∈ Pe,e′ the set OPT ∩ Te′′
contains at least one task in T (≥s̃+1). Let k̃′ denote the number of tasks in OPT ∩ T (≥s̃+1)

whose path intersects Pe,e′ . We guess k̃′. Then we determine the rightmost edge e′′ such that
(Pe,e′′ , k̃′, s̃′) is a yes-instance, where s̃′ ≥ s̃+ 1 is the smallest integer such that T (s̃′) 6= ∅.
We add to T ′ the tasks in the solution of (Pe,e′′ , k̃′, s̃′) and move the pointer to the edge on
the right of e′′.

Assume now that we guessed that p(OPT ∩ T (s̃) ∩ Te) ≥ ûe. Observe that T (s̃) consists
of only Kk non-empty groups T (`). For each of these groups T (`) we guess k` := |OPT ∩
Te ∩ T (`)| − |T ′ ∩ Te ∩ T (`)|. Note that there are only (k + 1)Kk possible guesses. For each
group T (`) we add to T ′ the k` tasks in (Te ∩ T (`)) \ T ′ with rightmost endvertex. Then we
move the pointer to the edge on the right of e.

Like before, at each guessing step, we enumerate only guesses that ensure that we do not
select more than k̃ tasks altogether. Hence, the total number of possible guesses overall is
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bounded by 2k̃(k̃+ 1)O(Kk̃) = kO( kδ log k). We store in the cell (Ẽ, k̃, s̃) the set T ′ of minimum
size if a set of size k̃ was found. Finally, we output the solution in the cell (E, k,−1) if it
contains a feasible solution. If it does not contain a feasible solution we output that there is
no solution of size k for the original edge capacities u. Theorem 1 follows.

4 FPT-2-approximation algorithm

We present an FPT-2-approximation algorithm without resource augmentation (for arbitrary
edge demands), i.e., an algorithm that runs in time f(k)nO(1) and finds a solution of size
at most 2k or asserts that there is no solution of size at most k. Suppose we are given an
instance (I, k). First, we call the algorithm for resource augmentation from Section 3 with
δ = 1. If this algorithm asserts that there is no solution of size at most k then we stop.
Otherwise, let ALG denote the found solution. We guess ALG ∩OPT . Note that there are
only 2k possibilities for ALG ∩ OPT . If ALG ∩ OPT = ∅ then the solution OPT ∪ ALG
covers each edge e to an extent of at least 3/2 · ue, i.e., p((OPT ∪ ALG) ∩ Te) ≥ 3/2 · ue.
Therefore, we create a new UFP-cover instance I ′ whose input tasks are identical with the
tasks in I and in which the demand of each edge e is changed to u′e := 3/2 · ue. We invoke
our algorithm for the resource augmentation setting from Section 3 to I ′ where we look for
a solution of size at most |ALG|+ k ≤ 2k and we set δ := 1/2. Let ALG′ be the returned
solution. It holds that |ALG′| ≤ |ALG|+ k ≤ 2k and ALG′ covers each edge e to an extent
of at least 3/2 · ue/(1 + 1/2) = ue. We output ALG′.

If ALG∩OPT 6= ∅ then we generate a new instance I ′′ in which the tasks in ALG∩OPT
are already taken, i.e., the demand of each edge e is reduced to u′′e := ue−p(ALG∩OPT ∩Te)
and the set of input tasks consists of T \(ALG∩OPT ). We recurse on I ′′ where the parameter
k is set to k − |ALG ∩OPT |. Observe that OPT ′′ := OPT \ ALG is a solution to I ′′ and
if |OPT | ≤ k then |OPT ′′| ≤ k − |ALG ∩OPT |. The resulting recursion tree has depth at
most k with at most 2k children per node and hence it has at most 2O(k2) nodes in total.
This yields the following theorem.

I Theorem 8. There is an algorithm for UFP-cover with a running time of 2O(k2) · nO(1)

that either finds a solution of size at most 2k or asserts that there is no solution of size k.

5 Parameterized approximation scheme

In this section, we present a PAS for UFP-cover. Given a parameter k, we seek to compute
a solution of size at most (1 + ε)k or assert that there is no solution of size at most k. The
running time of our algorithm is kO(k)n(1/ε)O(1/ε) . Let OPT denote a solution with at most
k tasks and let ε > 0 such that 1/ε ∈ N.

We describe first how we guess a partition of E = I0∪̇I1∪̇ · · · ∪̇Ir into O(k) many subpaths
that we denote as intervals. Also, we will guess a set of tasks TS ⊆ T such that if we add TS
to OPT then we obtain a certain amount of slack that we will use in the computation later.
If TS ∩OPT 6= ∅ then we will simply guess TS ∩OPT and recurse, without losing anything
in the approximation ratio.

We group the tasks into groups such that the tasks in the same group have the same size, up
to a factor 1+ε. Formally, for each integer ` we define T ` := {i ∈ T, pi ∈ [(1+ε)`, (1+ε)`+1)}
and we say that a task i is of level ` if i ∈ T `. Then we run the 4-approximation algorithm
from [5] to obtain a solution S. If |S| > 4k then OPT > k and we stop. For each edge e let
OPT

1/ε
e denote the 1/ε largest tasks in OPT ∩ Te (breaking ties in an arbitrary fixed way).
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Intuitively, we would like to select the tasks OPTSL due to the following lemma from [6,
Lemma 3.1].

I Lemma 9 ([6]). There is a set OPTSL ⊆ OPT with |OPTSL| ≤ γε|OPT | such that for
each edge e with |OPT ∩Te| ≥ 1/ε it holds that OPTSL∩OPT 1/ε

e 6= ∅, where γ is a universal
constant that is independent of the given instance.

We cannot guess OPTSL directly. Instead, we run the following algorithm that computes
a set TS = T

(1)
S ∪ T (2)

S ∪ T (3)
S with at most O(|OPTSL|) tasks that gives us similar slack as

OPTSL. The reader may imagine that T (1)
S ∪ T (2)

S = OPTSL and that T (3)
S are additional

tasks that we select. We initialize T (1)
S = ∅. Let Ṽ be the set of start and end vertices of

the tasks in S. We partition E according to the vertices in Ṽ . Formally, we consider the
partition E = Ĩ1∪̇ · · · ∪̇Ĩr̃ of E such that for each Ĩj = {v1, ..., vs} we have that v1 ∈ Ṽ and
vs ∈ Ṽ and for each s′ ∈ {2, ..., s− 1} we have that vs′ 6∈ Ṽ . We say that a task i starts in
an interval Ĩj if Ĩj is the leftmost interval that contains an edge of P (i) and a task i ends in
an interval Ĩj if Ĩj is the rightmost interval that contains an edge of P (i). For each pair of
intervals Ĩj , Ĩj′ we guess whether there is a task from OPTSL that starts in Ĩj and ends in
Ĩj′ . If yes, we add to T (1)

S the largest task with this property. Additionally, for each interval
Ĩj in which at least one task from OPTSL starts or ends we add to T (1)

S the largest task
i∗ ∈ T such that Ĩj ⊆ P (i∗) and define s̄j := pi∗ . One can show that the maximum demand
of an edge e ∈ Ĩj is upper-bounded by 4ks̄j since i∗ is at least as large as the largest task
i ∈ S with Ĩj ⊆ P (i) and each task i ∈ S starts or ends at a vertex in Ṽ . On the other
hand, s̄j is as large as k tasks of size at most 1

k s̄j together and hence we can ignore tasks
of the latter kind for Ĩj if we have s̄j units of slack in Ĩj . Let L denote the set of values `
such that there is an interval Ĩj and a task i ∈ T ` with pi ∈ [ 1

2k s̄j , 4ks̄j ]. One can show that
|L| ≤ Oε(k log k) and |T (1)

S | ≤ O(εk).
Next, we define a set T (2)

S of additional slack tasks. We maintain a queue Q ⊆ V of
vertices that we call interesting and a set of tasks T (2)

S . At the beginning, we initialize
T

(2)
S := ∅ and Q := Ṽ . In each iteration we extract an arbitrary vertex v from Q. Let Q′

be the set of vertices that were removed from the queue Q in an earlier iteration. For each
vertex v let Tv denote the input tasks i whose path P (i) uses v, i.e., such that P (i) contains
an edge e incident to v. For each group T ` with ` ∈ L we guess whether there is a task in
OPTSL that uses v but that does not use any vertex in Q′, i.e., we guess whether there is a
task in OPTSL ∩T ` ∩Tv \

⋃
v′∈Q′ Tv′ . We add to T (2)

S the task with leftmost startvertex and
the task with rightmost endvertex from T ` ∩ Tv \

⋃
v′∈Q′ Tv′ . For each added task, we add

its start- and its endvertex to Q if it has not been in Q before. The algorithm terminates
once Q is empty.

Let T (2)
S be the resulting set. One can show that |T (2)

S | ≤ O(εk). Let now V ′ be the set of
start- and endvertices of tasks in S ∪T (1)

S ∪T
(2)
S and let I0∪ I1∪ · · · ∪ Ir = E be the partition

into subpaths defined by the vertices in V ′. In the following, we partition intervals into
three groups according to the number of tasks from OPT that start or end in them. Given
an interval I let d be the number of tasks that start or end in I. Let α be some constant in
{5, · · · , 5/ε}. We say that I is sparse if d ≤ 1/εα, medium if 1/εα < d ≤ 1/εα+5 and dense if
d > 1/εα+5.

I Lemma 10. There exists an integer α ∈ {5, . . . , 5/ε} such that the number of tasks in
OPT that start or end in a medium interval is at most 2εk.

We guess α and for each interval Ij we guess whether it is sparse, medium, or dense.
Note that there are in total 5

ε 3O(k) many guesses. We select now some more tasks that will
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provide us with additional slack. For each medium or dense interval Ij we select the largest
task i ∈ T such that Ij ⊆ P (i). Also, for each maximal set of contiguous sparse intervals
Ij ∪ Ij+1 ∪ · · · ∪ Ij′ =: I we select the largest task i ∈ T such that I ⊆ P (i). Let T (3)

S denote
the resulting set. We have that |T (3)

S | is at most twice the total number of intervals that are
medium or dense. In each of the latter intervals there are at least 1/ε5 tasks from OPT that
start or end. Therefore, |T (3)

S | ≤ εk. We call TS := T
(1)
S ∪T

(2)
S ∪T

(3)
S the slack tasks. For each

interval Ij we denote by ŝj the slack in the interval given by TS , i.e., ŝj = mine∈Ij p (Te ∩ TS).
To summarize, we obtained the following properties of our intervals and TS .

I Lemma 11. We have that I0∪̇I1∪̇ · · · ∪̇Ir is a partition of E into O(k) intervals and
|TS | ≤ O(εk). For each edge e that is the leftmost or the rightmost edge of an interval Ij
we have that there are at most 1/ε tasks i′ ∈ OPT ∩ Te such that ŝj(1 + ε) < pi′ < 4kŝj.
For each dense interval Ij we have that ŝj ≥ 1

4k maxe∈Ij ue. Also, for each maximal set of
contiguous sparse intervals Ij ∪ Ij+1 ∪ · · · ∪ Ij′ =: I we have that minj′′:j≤j′′≤j′ ŝj′′ is at least
size of the largest task i ∈ OPT with I ⊆ P (i) (if OPT contains such a task i).

If the tasks in TS are not contained in OPT then OPT ∪TS is a solution of size (1+O(ε))k
in which each edge has some slack and hence we can use this slack algorithmically. Otherwise,
we recurse: We guess OPT ∩ TS and if OPT ∩ TS 6= ∅ then we recurse on a new instance
where we assume that OPT ∩ TS is already selected. Formally, this instance has input task
T̄ := T \ (OPT ∩ TS), each edge e ∈ E has demand ūe := ue −

∑
i∈Te∩(OPT∩TS) pi, and

the parameter is k̄ := k − |OPT ∩ TS |. Together with the guesses above, this yields kO(k2)

many guesses. Hence, the recursion tree has depth at most k and each internal node has
at most kO(k2) children which yields kO(k3) vertices in total. In the sequel, we will assume
that OPT ∩ TS = ∅ and solve the remaining problem without any further recursion in time
f(k)nO(1) for some function f .

5.1 Medium intervals
We describe a routine that essentially allows us to reduce the problem to the case where
there are no medium intervals. From Lemma 10 we know that there are no more than 2εk
tasks in OPT that start or end in a medium interval. Therefore, for those tasks we can
afford to make mistakes that cost us a constant factor, i.e., we can select O(εk) instead of
2εk of those tasks.

Let Tmed ⊆ T be the set of tasks that start or end in a medium interval. Let Ij be
a medium interval. In OPT , the demand of the edges in Ij is partially covered by tasks
i ∈ OPT \ Tmed that completely cross Ij , i.e., such that Ij ⊆ P (i). We guess an estimate
for the total size of such tasks, i.e., an estimate for p̂j = p ({i ∈ OPT \ Tmed : Ij ⊆ P (i)}).
Formally, we guess ûj := bp̂j/(ŝj/3)c.

I Lemma 12. We have that ûj ∈ {0, ..., 3k} and for each edge e ∈ Ij it holds that p(Te ∩
OPT ∩ Tmed) + ûj ŝj/3 + p(Te ∩ TS) ≥ ue.

Since there are only O(k) intervals, there are only kO(k) many guesses in total. We construct
an auxiliary instance on the same graph G = (V,E) with input tasks Tmed and demand
umed
e = max{ue−p(Te∩(TS))− û`ŝ`/3, 0} for each e ∈ E in a medium interval, and umed

e = 0
for each edge e ∈ E in a sparse or dense interval. We run the 4-approximation algorithm [5]
on this instance, obtaining a set of tasks T ′med ⊆ Tmed with |T ′med| ≤ 4|OPT ∩Tmed| ≤ O(εk).

For our remaining computation for each medium interval Ij we define the demand ue of
each edge e ∈ Ij to be ue := ûj ŝj/3. Lemma 12 implies that any solution T ′ for this changed
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instance yields a solution T ′ ∪ T ′med ∪ TS with at most |T ′| + O(εk) tasks for the original
instance. In the sequel, denote by OPT ′ the optimal solution to the new instance.

5.2 Heavy vertices
Our strategy is to decouple the sparse and dense intervals. A key problem is that there are
tasks i ∈ OPT ′ such that P (i) contains edges in sparse and in dense intervals. Intuitively,
our first step is therefore to guess some of them in an approximate way.

There are vertices v ∈ V ′ that are used by many tasks in OPT ′ ∩ T ` for some level `.
Formally, we say that for a set of tasks T ′ ⊆ T a vertex v ∈ V ′ is (`, T ′)-heavy if there are
more than 1/εα+1 tasks i ∈ T ′ ∩ T ` ∩ Tv such that i starts or ends in a sparse or a medium
interval. We are interested in vertices v ∈ V ′ that are (`, OPT ′)-heavy for some `. It turns
out that we can compute a small number of levels ` for which this can happen based on the
slacks ŝj of the intervals Ij .

I Lemma 13. Let v ∈ V ′ and assume that v is (`, OPT ′)-heavy for some ` ∈ N0. Then
(1 + ε)` ∈ [ 1

2k ŝj , 4k · ŝj ] for some interval Ij.

Therefore, let L denote the set of levels ` such that a vertex v ∈ V ′ can be (`, OPT ′)-heavy
according to Lemma 13, i.e., L := {`|∃j : (1 + ε)` ∈ [ 1

2k ŝj , 4k · ŝj ]}. Intuitively, for each level
` ∈ L and each (`, OPT ′)-heavy vertex v ∈ V ′ we want to select a set of tasks T̄`,v ⊆ T ` ∩ Tv
that together cover as much as the tasks in OPT ′ due to which v is (`, OPT ′)-heavy, i.e.,
the tasks in OPT ′ ∩ T ` ∩ Tv.

To this end, we do the following operation for each level ` ∈ L. We perform several
iterations. We describe now one iteration and assume that v′ ∈ V ′ is the vertex that we
processed in the previous iteration (at the first iteration v′ is undefined and let Tv′ := ∅ in
this case). We guess the leftmost vertex v ∈ V ′ on the right of v′ that is (`, OPT ′ \Tv′)-heavy.
Let OPT ′`,v := OPT ′ ∩ T ` ∩ Tv \ Tv′ . We want to compute a set T̄`,v that is not much bigger
than OPT ′`,v, i.e., |T̄`,v| ≤ (1 + O(ε))|OPT ′`,v| and that covers at least as much on each
edge e as OPT ′`,v, i.e., p(Te ∩ T̄`,v) ≥ p(Te ∩ OPT ′`,v). We initialize T̄`,v := ∅. We consider
each pair of intervals Ij and Ij′ such that all edges of Ij are on the left of v (but might
have v as an endpoint) and all edges of Ij′ are on the right of v (but might have v as an
endpoint) and such that Ij or Ij′ is sparse or medium. We guess the number kv,`j,j′ of tasks
from OPT ′ ∩ T ` ∩ Tv \ Tv′ that start in Ij and end in Ij′ (and hence are contained in Tv). If
Ij is sparse or medium (and hence then Ij′ can be anything), we add to T̄`,v the kv,`j,j′ tasks
from T ` \ Tv′ with rightmost endvertex that start in Ij and end in Ij′ . If Ij is dense (and
hence then Ij′ is sparse or medium) we add to T̄`,v the kv,`j,j′ tasks from T ` \ Tv′ with leftmost
startvertex that start in Ij and end in Ij′ . Note that

∑
j,j′ k

v,`
j,j′ = |OPT ′`,v|. Intuitively,

the tasks in T̄`,v cover each edge of E to a similar extent as the tasks in OPT ′`,v. We will
show that the difference is compensated by additionally adding the following tasks to T̄`,v:
we add to T̄`,v the b2/εα + 2ε|OPT ′`,v|c tasks from T ` ∩ Tv \ (T̄`,v ∪ Tv′) with leftmost start
vertex. After this, we add to T̄ `v the b2/εα + 2ε|OPT ′`,v|c tasks from T ` ∩ Tv \ (T̄`,v ∪ Tv′)
with rightmost end vertex. Let T̄`,v denote the resulting set. We prove that it covers as much
as OPT ′`,v and that it is not much bigger than |OPT ′`,v|.

I Lemma 14. For each edge e ∈ E in a dense or a sparse interval, we have that p(Te∩T̄`,v) ≥
p(Te ∩OPT ′`,v). For each edge e in a medium interval, we have that p(Te ∩ T̄`,v \ Tmed) ≥
p(Te ∩OPT ′`,v \ Tmed). Also, it holds that |T̄`,v| ≤ (1 +O(ε))|OPT ′`,v|.

We continue with the next iteration where now v′ is defined to be the vertex v from
above. We continue until in some iteration there is no vertex v ∈ V ′ on the right of v′ that
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is (`, OPT ′ \ Tv′)-heavy. Let V ′` ⊆ V ′ denote all vertices that at some point were guessed as
being the (`, OPT ′ \ Tv′)-heavy vertex v above. Let TH :=

⋃
`∈L

⋃
v∈V ′

`
T̄`,v denote the set

of computed tasks and define OPT ′H :=
⋃
`∈L

⋃
v∈V ′

`
OPT ′`,v.

I Lemma 15. We have that p(Te ∩ TH) ≥ p(Te ∩OPT ′H) for each edge e in a dense and a
sparse interval, and p(Te ∩ TH \ Tmed) ≥ p(Te ∩OPT ′H \ Tmed) for each edge e in a medium
interval. Also, it holds that |TH | ≤ (1 +O(ε))|OPT ′H |.

It remains to compute a set of tasks T ′ such that T ′ ∪ TH ∪ TS is feasible. Intuitively,
T ′ should cover as much as OPT ′ \ OPT ′H on each edge. To this end, we decouple the
problem into one for the dense intervals and one for the sparse intervals. One problem for
this is that even after selecting the tasks in TH we might need to select additional tasks that
have one endpoint in a dense interval and the other one in a sparse interval. However, we
will show that since we selected the tasks in TS , for each dense interval I there are only
constantly many such tasks that still matter. We show that we can afford to select such
tasks twice (once in the subproblem for the dense intervals and once in the subproblem for
the sparse intervals) since we can charge them to the many tasks that start or end in I. For
this charging to work we use that in a dense interval there can be many more tasks that
start or end than in a sparse interval.

5.3 Dense intervals
Recall that for each dense interval Ij we have that ŝj ≥ 1

4k maxe∈Ij ue (see Lemma 11).
Hence, intuitively it suffices to compute a solution for Ij that is feasible under (1 + 1

4k )-
resource augmentation. So in order to compute a set of tasks T ′ that cover the remaining
demand in all dense intervals Ij (after selecting TH) we could apply the algorithm for resource
augmentation from Section 3 directly as a black box. However, there are also the sparse
intervals and it might be that there are tasks i ∈ OPT ′ \OPT ′H that are needed for a dense
interval and for a sparse interval. There are two types of such tasks. The first type are tasks
that have at least one endpoint in a sparse interval. For each dense interval Ij there can be
at most 2/εα such tasks in T ` ∩OPT ′ \OPT ′H for each group ` (since each of them needs to
overlap one of the endpoints of Ij). We will show later that the slack due to TS is as large
as almost all of them together, all apart from 1/εα+4 many. Hence, if we select the latter
tasks twice (once in the subproblem for the dense intervals and once in the subproblem for
the sparse intervals) we can charge them to the tasks that start or end in Ij and hence we
increase our cost by at most a factor 1 + ε. The second type are tasks that start and end in
a dense interval. Let TD ⊆ T denote the set of all such tasks. Note that a vertex can be
crossed by more than constantly many tasks in TD ∩OPT ′ \OPT ′H . To handle those tasks,
we guess an estimate for the demand that such tasks cover in the sparse intervals. Therefore,
for each sparse interval Ij′ we guess a value ûj′ such that ûj′ =

⌊
p(Te∩TD∩OPT ′\OPT ′H)

ŝj/4

⌋
· ŝj/4

for each edge e ∈ Ij′ (note that p(Te ∩TD ∩OPT ′ \OPT ′H) is identical for each edge e ∈ Ij′).
Then p(Te ∩ TD ∩OPT ′ \OPT ′H) essentially equals ûj′ and we show that the difference is
compensated by our slack, even if we cover a bit less than ûj′ units on each edge e ∈ Ij′ .

I Lemma 16. Let Ij′ be a sparse interval. Then ûj′ ∈ {0, ŝj4 , 2 ·
ŝj
4 , . . . , 4k ·

ŝj
4 } and

ûj′ ≤ p(Te ∩ TD ∩OPT ′ \OPT ′H) ≤ 1
(1+ 1

4k ) ûj′ + p(Te ∩ TS)/2 for each e ∈ Ij′ .

We generate now an auxiliary instance where in each sparse interval Ij′ we reduce the demand
ue of each edge e ∈ Ij′ to ûj′ (but do not change the demand on any edge in a dense interval)
and remove all input tasks i such that P (i) does not contain an edge of a dense interval.
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Also, for each remaining task i we shorten its path P (i) to a path P ′(i) such that P ′(i) is
the longest path contained in P (i) that starts and ends on a vertex in a dense interval. We
apply the algorithm from Section 3 with (1 + δ)-resource augmentation to this instance with
δ := 1/4k. We obtain a solution T (1) such that for each edge e in an interval Ij , the solution
T (1) covers at least ue − ŝj/2 when Ij is dense and ûj − ŝj/2 when Ij is sparse. Notice that
according to Lemma 11, we have ŝj ≥ ue/(4k) for each edge e in a dense interval Ij and for
each edge e lying in a maximal set of contiguous sparse intervals that is completely crossed
by at least one input task.

I Lemma 17. For each edge e in a dense interval we have that p(Te∩ (T (1)∪TH ∪TS)) ≥ ue.
For each edge e in a sparse interval Ij′ we have that p(Te ∩ T (1) ∩ TD) + p(Te ∩ TS)/2 ≥
p(Te ∩ TD ∩OPT ′ \OPT ′H).

Due to Lemma 17 we cover the complete demand in each dense interval and some portion
of the demand in each sparse interval. Therefore, for the remaining problem for each edge
e in a sparse interval Ij′ we change its demand to ūe := ue − ûj′ . Also, we remove all
tasks in TD from the input, i.e., we work with the input tasks T̄ := T \ TD. We claim that
OPT := OPT ′ \ (OPT ′H ∪ TD) is a solution to the residual instance.

I Lemma 18. For each edge e in a sparse interval we have that p(Te ∩OPT ) ≥ ūe.

5.4 Sparse intervals
Recall that in each sparse interval Ij′ there are at most 1/εα tasks from OPT that start
or end in Ij′ (and hence the same is true for OPT ⊆ OPT ). Therefore, for each sparse
interval we can guess these tasks in time nO(1/εα). If it was even true that for each sparse
interval Ij′ there are at most 1/εα tasks i ∈ OPT with P (i) ∩ Ij′ 6= ∅ then we could devise
a simple dynamic program (DP) that sweeps the intervals from left to right and computes
the optimal solution. Unfortunately, this is not true, but note that each vertex v ∈ V ′ is
used by at most 1/εα+1 tasks in OPT ∩ T ` for each group T `. Using this, we devise a more
complicated DP that processes the intervals in the order of their slacks ŝj and guesses step
by step the at most 1/εα tasks that start or end in each of them. In order to restrict the
running time to a polynomial we use the tasks in TS in order to be able to “forget” some
previously guessed tasks, i.e., we argue that the forgotten tasks have a total size that is at
most the size of the slack due to TS . Let us define a constant β := 1 + log1+ε

( 6
εα+2

)
and a

constant Γ := 1/εα + 1/ε+ (β + 2)/εα+1. Formally, each DP-cell is described by
two intervals Ij , Ij′ such that for each interval Ij′′ between Ij and Ij′ it holds that
ŝj′′ ≥ max{ŝj , ŝj′},
two sets of tasks T ′j and T ′j′ of size at most Γ such that for each i ∈ T ′j (resp. i ∈ T ′j′) it
holds that P (i) ∩ Ij 6= ∅ (resp. P (i) ∩ Ij′ 6= ∅) and p(Te ∩ T ′j) + p(Te ∩ TS)/2 ≥ ūe (resp.
p(Te ∩ T ′j′) + p(Te ∩ TS)/2 ≥ ūe) for each edge e ∈ Ij (resp. e ∈ Ij′), i.e., the tasks in T ′j
(resp. T ′j′) essentially cover the demand of Ij (resp. Ij′).

Such a cell (Ij , Ij′ , T ′j , T ′j′) represents the subproblem of selecting a set of tasks T̂ such that
the path of each task i ∈ T̂ lies between Ij and Ij′ and does not use any edge of Ij ∪ Ij′ and
such that T ′j ∪ T ′j′ ∪ T̂ cover the demand ūe for each edge between Ij and Ij′ together with
half of the slack, i.e., p(Te ∩ (T ′j ∪ T ′j′ ∪ T̂ )) + p(Te ∩ TS)/2 ≥ ūe.

Suppose we are given a cell (Ij , Ij′ , T ′j , T ′j′) and we want to compute a solution DP (Ij , Ij′ ,
T ′j , T

′
j′) for it. Let Ij′′ denote the interval between Ij and Ij′ with smallest slack ŝj′′ (breaking

ties arbitrarily). Let `′′ be the greatest integer such that (1 + ε)`′′ ≤ ŝj′′ . Let T≥`′′−β :=⋃
`≥`′′−β T

`. The intuition is that we guess the tasks in OPT that use Ij′′ and when we recurse



A. Cristi, M. Mari, and A. Wiese 40:13

we forget all tasks that are not in T≥`′′−β . We will show that our slack compensates the
forgotten tasks. Therefore, we can ensure that if we always guess all tasks from OPT correctly
then we will have only subproblems (Ij , Ij′ , T ′j , T ′j′) where |T ′j | ≤ Γ and |T ′j′ | ≤ Γ. Formally,
we enumerate all sets of tasks T ′j′′ ⊆ T≥`

′′−β such that there are at most Γ tasks in T ′j′′ ,
P (i)∩Ij′′ 6= ∅ for each i ∈ T ′j′′ , and the tasks in T ′j′′ cover the demand of Ij′′ together with half
of the slack in TS , i.e., p(Te∩T ′j′′)+p(Te∩TS)/2 ≥ ūe for each edge e ∈ Ij′′ . For a fixed guess
of T ′j′′ we associate the solution T ′j ∪ T ′j′ ∪ T ′j′′ ∪DP (Ij , Ij′′ , T ′j , T ′j′′) ∪DP (Ij′′ , Ij′ , T ′j′′ , T ′j′).
We define DP (Ij , Ij′ , T ′j , T ′j′) to be the solution of minimum size associated to one of the
enumerated sets T ′j′′ . For DP-cells (Ij , Ij′ , T ′j , T ′j′) such that there is no interval between
Ij and Ij′ we define DP (Ij , Ij′ , T ′j , T ′j′) := ∅. For convenience, assume that we append two
dummy intervals I−1 and Ir+1 on the left and on the right of E that are not used by any
task and that have zero demand on each of their edges. Also, we define that they have zero
slack, i.e., ŝ−1 = ŝr+1 = 0. We output the solution DP (I−1, Ir+1, ∅, ∅).

In order to show that the above DP is correct, one key step is to argue that it is
unproblematic to neglect the tasks that are not in T≥`′′−β in each respective step. This is
shown in the following lemma.

I Lemma 19. Let Ij , Ij′ be two intervals such that for each interval Ij′′ between Ij and Ij′
it holds that ŝj′′ ≥ max{ŝj , ŝj′}. Let `′′ be the greatest integer such that (1 + ε)`′′ ≤ ŝj′′ for
all intervals Ij′′ between Ij and Ij′ . Then for each edge e between Ij and Ij′ it holds that
d
(
Te ∩OPT ∩ T≥`

′′−β
)

+ p(Te ∩ TS)/2 ≥ ūe.

Also, we need to show that when we enumerate the sets T ′j′′ above one candidate set
consists of the tasks in OPT that use Ij′′ but neither Ij nor Ij′ and that in particular the
latter set contains at most Γ tasks.

I Lemma 20. Let Ij′′ be a sparse interval and let `′′ be the greatest integer such that
(1 + ε)`′′ ≤ ŝj′′ . Then there are at most Γ tasks in OPT ∩ T≥`′′−β that use an edge of Ij′′ .

Equipped with Lemmas 19 and 20 we can prove that the above DP is correct by arguing
that it will produce OPT if it makes the corresponding guesses for each DP-cell. Also, by
construction the returned solution is feasible. This yields the following lemma.

I Lemma 21. There is an algorithm with a running time of nO(1/εα+4) that computes a set
T (2) ⊆ T̄ with |T (2)| ≤ |OPT | and p(Te ∩ T (2)) + p(Te ∩ TS)/2 ≥ ūe for each edge e.

It remains to argue that our computed sets T ′med, T
(1), T (2), TH , TS together form a feasible

solution and do not contain too many tasks. With the following lemma we complete the
proof of Theorem 3.

I Lemma 22. We have that T ′med∪T (1)∪T (2)∪TH ∪TS is a feasible solution to the original
input instance (T,E) and |T ′med ∪ T (1) ∪ T (2) ∪ TH ∪ TS | ≤ (1 +O(ε))k.

6 W [1]-hardness

In this section we prove that UFP-cover is W [1]-hard if the parameter k represents the
number of tasks in the optimal solution. Our proof goes along the lines of the proof that
UFP (packing) is W [1]-hard for the same parameter as in [27].

I Theorem 23. UFP-cover problem is W [1]-hard when parameterized by the number of tasks
in the optimal solution.
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Figure 1 Sketch of the reduction used in order to prove Theorem 23. The sketch shows the tasks
i(j) and i′(j) for only one index j. The figure is essentially identical to a figure in [27], taken with
consent of the author.

We give a reduction from the k-subset sum problem which is W [1]-hard [19]. Given a set
of n values A = {a1, ..., an}, a target value B and an integer k, the goal is to choose exactly
k values from A that sum up to exactly B.

Suppose we are given an instance of k-subset sum. First, we claim that we can assume
w.l.o.g. some properties of it.

I Lemma 24. W.l.o.g. we can assume that there are values ε1, ..., εn, not necessarily positive,
such that ai = B/k + εi for each i ∈ [n] and that

∑n
i=1 |εi| < B/(2k).

We construct an instance of UFP-cover that admits a solution with 2k tasks if and only
if the given k-subset sum is a yes-instance. Our UFP-cover instance has a path with n+ 2
vertices v0, v1, ..., vn+1. Denote the leftmost and the rightmost edge by eL and eR, respectively.
We define u(eL) = u(eR) = B. For all other edges e we define u(e) := B −B/(2k). Assume
that the values in S are ordered such that a1 ≥ a2 ≥ ... ≥ an. Let j ∈ [n]. We introduce two
tasks i(j), i′(j) with s(i(j)) := v0, t(i(j)) := vj , p(i(j)) := aj s(i′(j)) := vj , t(i′(j)) = vn+1,
and p(i′(j)) := 2B/k − aj . See Figure 1 for a sketch.

In order to get some intuition about the constructed instance, we prove the following
lemma.

I Lemma 25. Any feasible solution contains at least 2k tasks. Among them are k tasks
covering eL and k tasks covering eR. If a task covers eL then it does not cover eR and vice
versa.

In the next lemma we show how to construct a solution with 2k tasks if the given k-subset
sum instance is a yes-instance.

I Lemma 26. If the given k-subset sum instance is a yes-instance, then the constructed
UFP-cover instance has a solution with 2k tasks.

Conversely, we show that if the UFP-cover instance has a solution with at most 2k tasks
then the k-subset sum instance is a yes-instance. Suppose we are given such a solution for
the UFP-cover instance. First, we establish that for each j ∈ [n] the solution selects either
both i(j) and i′(j) or none of these two tasks.

I Lemma 27. Given a solution T ′ to the UFP-cover instance with 2k tasks. For each j ∈ [n]
we have that either {i(j), i′(j)} ⊆ T ′ or {i(j), i′(j)} ∩ T ′ = ∅.

Suppose we are given a solution T ′ to the UFP instance with 2k tasks (for which hence
Lemma 27 applies). Let J ′ be the set of indices j such that i(j) ∈ T ′. Note that Lemma 27
implies that |J ′| = k.
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I Lemma 28. We have that
∑
j∈J′ aj = B.

Hence, we proved that the constructed UFP-cover instance has a solution with 2k tasks
if and only if the k-subset sum instance is a yes-instance. This implies that UFP-cover
is W [1]-hard when parameterized by the number of tasks in the optimal solution. This
completes the proof of Theorem 23.

7 Conclusion and open questions

In this paper we presented a PAS for UFP-cover and showed that the problem is FPT under
resource augmentation or if additionally the number of different task sizes are bounded by
a parameter. It remains open whether the problem is FPT if only the number task sizes
is bounded by a parameter, but not the number of tasks in the optimal solution. Also, we
showed that UFP-cover is W [1]-hard. Our W [1]-hardness proof is based on a reduction from
the k-subset sum problem, which can be solved in pseudopolynomial time O(nB). Hence, it
is open whether UFP-cover is FPT if the input data are polynomially bounded. Our PAS
can be simplified in this setting, however, it crucially relies on the slack obtained by selecting
εk additional tasks and thus does not solve the problem optimally in this case.
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A Reduction from Generalized Caching in the fault model

A reduction from generalized caching in the fault model to UFP-cover was given in [1, 5].
For completeness we present the reduction here using our notation. In the fault model of
general caching we are given a value M ∈ N that denotes the size of the cache and we are
given a set of pages P. Each page q ∈ P has a (not necessarily unit) size s(q) ∈ N. Also we
are given a set of requests R where each request j ∈ R is characterized by a time tj ≥ 0 and
a page qj ∈ P meaning that at time tj the page qj has to be present in the cache. The goal
is to decide at what times we bring each page into the cache in order to minimize the total
number of these transfers, assuming that initially the cache is empty. We show here how to
reduce this problem to UFP-cover with unit weights.

I Lemma 29. Given an instance (P,R,M) of general caching in the fault model, in polyno-
mial time we can compute an instance (V,E, T, u) of UFP-cover such that for any solution
to (P,R,M) with cost C, there is a solution T ′ ⊆ T to (V,E, T, u) with |T ′| = C, and vice
versa.

Proof. W.l.o.g. we can restrict ourselves to solutions of (P,R,M) where each page enters
the cache only when it is requested and leaves the cache only right after it is requested,
and to instances where each page is requested at least once and M <

∑
q∈P s(q). Thus, a

solution is completely defined by deciding at each point in time whether we evict the page
that was just requested or whether we keep it in the cache until it is requested again. We
construct the path (V,E) by defining one edge e(t) for each time t such that there is a request
j ∈ R with tj = t, and ordering the edges on the path by increasing values of t. For defining
the tasks T , we initialize T := ∅. Then, for every page q ∈ P and every pair j1, j2 ∈ R of
consecutive requests of page q, we add a task i(j1, j2) to T with size pi(j1,j2) = s(q). The
subpath Pi(j1,j2) is the one that starts in the right vertex of e(tj1) and ends in the left vertex
of e(tj2). We define the demand of the edge e(t) to be ue(t) = p(Te(t))−M +

∑
j∈R:tj=t s(qj)

for every time t. We also add an extra edge e0 at the left of E with capacity ue0 =
∑
q∈P s(q)

and we add a task i∗q with Pi∗q = {e0} and pi∗q = s(q) for each page q ∈ P. The cost of these
tasks is exactly the total cost of loading each page into the cache once, i.e., the first time
that the respective page is requested.

Given a solution to (P,R,M), we construct a solution T ′ for (V,E, T, u) in the following
way. For every page q and every pair of consecutive requests j1, j2 of page q, we add i(j1, j2)
to T ′ if and only if page q is evicted from (and therefore re-loaded into) the cache between
tj1 and tj2 . We also add i∗q to T ′ for all q ∈ P. It is clear that |T ′| is exactly the number of
times a page is brought into the cache in the original solution. We now check that T ′ is a
feasible solution. Consider an edge e(t) ∈ E. Then p(Te(t) \ T ′) is the sum of sizes of the
pages that are in the cache at time t that are not requested exactly at time t. The total
size of all pages in the cache is at most M , so p(Te(t) \ T ′) +

∑
j∈R:tj=t s(qj) ≤M . Then, as

p(Te(t)) = p(Te(t) ∩T ′) + p(Te(t) \T ′) and ue(t) = p(Te(t))−M +
∑
j∈R:tj=t s(qj) we conclude

that p(T ′ ∩ Te(t)) ≥ ue(t). Also it holds by construction that p(T ′ ∩ Te0) = ue0 .
Let now T ′ be a feasible solution to (V,E, T, u). Of course i∗q ∈ T ′ for all q ∈ P. This

accounts for the first time each page is brought into the cache. We construct a solution S′
to (P,R,M) as follows. For every page q and every pair of consecutive requests j1, j2 of
page q we keep page q in the cache between tj1 and tj2 if and only if i(j1, j2) 6∈ T ′. Thus,
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for each element in T ′ we have to bring a page into the cache once, and then the cost of
the solution is exactly |T ′|. We have to check that the size of the pages in the cache never
exceeds M in S′. In fact, note that the total size of the pages in the cache at time t is
p(Te(t) \ T ′) +

∑
j∈R:tj=t s(qj). But p(Te(t) ∩ T ′) ≥ ue(t), and therefore,

p(Te(t) ∩ T ′) ≥ p(Te(t))−M +
∑

j∈R:tj=t
s(qj)

⇔ M ≥ p(Te(t)) + p(Te(t) ∩ T ′) +
∑

j∈R:tj=t
s(qj)

⇔ M ≥ p(Te(t) \ T ′) +
∑

j∈R:tj=t
s(qj) .
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