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Abstract

When launching a new product, firms face uncertainty about the market reception.
In this context online reviews provide valuable information not only to consumers,
but also to the firm since by tracking them it can adjust the product characteristics,
including its selling price. In this paper we consider a pricing model with online
reviews in which the quality of the product is uncertain and both the seller and
the buyers Bayesianly update their belief to make purchasing/pricing decisions.
Quite naturally, we connect the problem to a bandits problem. In this problem a
player is unsure if a slot machine is good or bad. If the machine is good then, in
each round, the player wins one dollar with probability p, whereas if it is bad the
winning probability is q < p. At each point in time, the only decision of the player
is to whether play one more round at a cost of c (where p > c > q) or to stop
playing forever, giving rise to an optional stopping problem. Initially the player has
a prior x about the quality of the machine, i.e., she believes that with probability x
the machine is good. Interestingly, we show a close connection between this basic
problem and the celebrated Catalan numbers, allowing us to efficiently compute
the overall future discounted reward of the player. With this tool we can determine
the optimal dynamic pricing strategy for the firm in the original pricing problem.
We also discuss how this differs from the optimal static pricing, particularly in
terms of the probability of effectively learning the quality of the product.

1 Introduction

As a key part of modern online platforms, online decision making play a crucial role in a variety of
decision making setting, particularly related to the internet. Two landmark examples that have been
widely studied are dynamic pricing and online reviews. Online review systems constitute powerful
platforms for users to get informed about the product and for the firm to understand how a given
market is receiving the product. The study of these systems has been vast for the last two decades
[4, 7]. More recently modeling simple like/dislike reviews as bandits problems has become standard
[1, 2, 9, 11]. Dynamic pricing on the other hand, is an active area of research in economics, computer
science and operations research, and has become a common practice in several industries such as
transportation and retailing.
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Very recently, there has been a growing interest in combining the two areas as a way to design more
effective pricing mechanisms that gather information from current reviews to update prices and make
the product more attractive [3, 8, 12]. Crapis et al consider social learning from like/dislikes a market
with non-Bayesian agents, and the resulting pricing decision of a monopolist [3]. Shin et al consider
a setting when the volume of sales is large and optimizes for revenue via fluid dynamics and ODEs
[12]. The general idea here is to use online reviews to update the market’s belief about the quality of
the product and thus to influence the pricing. However the complexity of many models limit their
practicality and already the Bayesian updating of beliefs becomes intractable.

In this paper, we continue on this line of research but consider a straightforward model that amounts to
precisely determine the optimal pricing strategies that use the information elicited by online reviews.
The main message of this paper is to show that online reviews not only influence how successful a
product is but also could be used to find more effective dynamic pricing strategies. These dynamic
pricing strategies ultimately also lead to more efficient allocations. Indeed, dynamic pricing with
online reviews gives a foundation for the common practice of temporarily pricing a product below its
production cost, leading to short term revenue loses. This loses come with a potential boost in future
purchases, even at a higher price, and ultimately may lead to more sales.

The Pricing Problem. Consider a seller marketing a new product. As it is common in the literature
(see e.g. [8]) we assume that the product may be either good or bad. A good product will be liked
by a user with probability p (so that roughly a fraction p of the market is satisfied with the product),
while a bad product will be liked by a user with probability q < p. Neither the seller nor the buyers
are informed about the quality of the product but only receive a public signal x representing the prior
probability of the product being good. The market is composed by an infinite stream of users arriving
at times t = 0, 1, 2, . . ., which are offered the product at a certain price π. Upon receiving the offer, a
user (which we assume risk-neutral) evaluates whether his expected utility for buying the product.
Initially, since the first buyer’s prior is x, his expected utility can be evaluated as xp + (1 − x)q,
and thus, if this quantity exceeds the price he decides to buy. After buying, the user experiences the
product and may like it or not, in both cases he submits an online review in the like/dislike format.
These reviews allow following users to update their priors using Bayes’ rule. More precisely, given a
prior x, if the product receives one like we update the prior to x′ as follows:

x′ := P(good |like) =
Px(like|good)Px(good)

P(like)
=

x · p
x · p+ (1− x) · q

.

Similarly, given a dislike, we update the prior as follows:

x′ := P(good |dislike) =
P(dislike |good)P(good)

P(dislike)
=

x · (1− p)
x · (1− p) + (1− x) · (1− q)

.

As we will see later, an interesting feature of our model is that the updated prior after a sequence of
likes and dislikes only depends on the number of such likes and dislikes and not on the full sequence.
This is in sharp contrast with most models of online reviews and it allows both the seller and the users
to update their beliefs based solely on these figures.

A basic problem faced by the seller is thus to find an optimal pricing strategy. One alternative for the
seller is to adopt a static price, that is, the price π offered to each consumer is fixed at the beginning
and can not be changed. In this situation, users will buy the product so long as the current prior x
satisfies xp + (1 − x)q ≥ π, yielding positive expected value, and whenever xp + (1 − x)q < π
the process will stop forever. In other words, the sales process will continue until the prior reaches
xmin = π−q

p−q . Let c denote the per-unit cost to produce the product. Thus, given the prior x and the
price π, the seller, who discounts the future at rate δ, can compute her expected revenue by computing
the probability of stopping at time t, Px,π(τ = t), for all times t, including ∞.1 This results in
an expected revenue2 of π−c

1−δ (Px,π(τ =∞) +
∑∞
t=0 (1− δt)Px,π(τ = t)). Finally the seller will

optimize this function over the values of π ∈ (c, xp+ (1− x)q].3

On the other hand, the seller may opt for a dynamic pricing approach. In this setting the price may be
adjusted according to the current reviews the product has received. To maximize revenue the seller

1As we will show, with positive probability the process will continue forever.
2We denote by Px,π(·) to the probability of an event given prior x and price π.
3Clearly π has to be at least c for the revenue to be positive. Also if π > xp+ (1− x)q then no user will

ever buy and then the revenue is zero.
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will just make the user indifferent whenever she decides to continue selling the product, offering the
product at time t with prior x at exactly πt = xp+ (1− x)q. The decision of when to stop however
becomes more involved. Although at times xp+ (1− x)q < c may hold, and therefore in the next
sale the seller will incur in a loss, it may still be worth to continue selling. The reason for this relies
on the information gain provided by one more sale and the impact this information has on future
purchases. In this paper we explicitly compute the prior value x∗ that determines the stopping time
of the seller under a dynamic pricing strategy. We show a surprising connection between this value
and an unexplored generalization of the celebrated Catalan numbers in combinatorics.

Our Results. In this paper we study the dynamic and static pricing with online reviews in detail.
We start by formulating the underlying dynamic process as a simple multi-armed bandit problem
and design a dynamic programming strategy for it. Perhaps surprisingly, this problem appears to be
unexplored in the literature. Then, we take a combinatorial approach using the classic Gittins index
[6], and we explicitly determine the optimal underlying stopping time. For the latter, we uncover
a connection with the classic Catalan numbers that allow us to explicitly determine the stopping
rule. This rule takes the form of a threshold prior such that the process continues so long as the
current prior is at least this threshold. In the case of static pricing the threshold is simply given by
xmin = π−q

p−q . In the case of dynamic pricing the situation is more involved. The intuition is that even
at the prior c−qp−q , the seller may still be incentivized to sell in order to gain more information about the
product. Thus, the threshold x∗,4 which we compute explicitly, such that we are actually indifferent
to continue, is smaller than c−q

p−q .

With this tool at hand, we go back to the pricing problem and pin down the optimal static and dynamic
pricing strategies. Finally we study, in for each pricing strategy, the probability of achieving full
efficiency. Note that this fully efficient situation occurs when the product is good and is sold forever5,
i.e., the product is good and the market learns this fact. To this end we exploit that the stochastic
process governing the prior updates is a martingale and we can thus use the optional stopping theorem.

The Bandits Problem. We can model our dynamic pricing problem using a bandit framework.
Imagine there is a single slot machine (bandit) which could either be a good or bad machine. This
machine costs c to play and will yield a return of 1 (a win) with some probability and 0 (a loss) with
some other probability.6 If the machine is good it has a fixed, known probability of p of returning 1,
while if it is bad it has known probability of q of returning 1. We have a prior x that the machine
is good, however we do not know for sure if the machine is good or not. Thus, given a prior x, the
expected earning of a single pull is xp+ (1− x)q − c. Finally, we discount the future at rate δ, so
that the value of earnings in time t is discounted by a factor of δt. As we play, we update our prior
using Bayes rule and the problem we consider is that of determining the prior, x∗, under which we
should stop playing.

The correspondence between the dynamic pricing problem and the bandits problem is straightforward.
The slot machine corresponds to the product, which may be good or bad, and the prior for this is
given by x. The cost c to play corresponds to the cost of the product. The slot machine returning
1 or 0 corresponds to a like or dislike in the online review, and the probabilities p and q have the
same meaning in the problems. It should be noted that in the dynamic pricing problem the optimal
price always corresponds to the expected utility of the next buyer xp+ (1− x)q so long as the total
discounted future revenue is positive. Thus the total expected reward in the bandits problem and the
the revenue in the dynamic pricing problem coincide.

The only subtle apparent difference in the problems comes from the available information. In bandits
problems we typically assume that we have the whole history of pulls whereas in the dynamic pricing
problem we only want to assume that the users get to see the number of likes and dislikes the product
has received so far. However, as we show next this is not an issue since the updated prior after a
number of pulls only depends on the number of wins and losses and not on the sequence itself. Indeed,
given a prior x, denote by W (x) and L(x) the updated priors after a win and a loss, respectively.

4This x∗ is a function of p, q, c, δ
5This is the best possible situation for the whole market, considering both the seller and the buyers.
6To avoid trivial cases we assume that 0 ≤ q ≤ c ≤ p ≤ 1.
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Then,7

W (x) := Px(good|win) =
Px(win|good)Px(good)

Px(win)
=

x · p
x · p+ (1− x) · q

.

L(x) := Px(good|loss) =
Px(loss|good)Px(good)

Px(loss)
=

x · (1− p)
x · (1− p) + (1− x) · (1− q)

.

With these expression we can establish the important observation that the value of the prior after a
given sequence of losses and wins is independent from the order, it only depends on the number of
wins and losses. Furthermore, even the probability of the sequence only depends on the number of
wins and losses. Denote xw,` as the value after seeing w wins and ` losses.
Lemma 1. Given a prior x, the updated prior after a sequence of ` losses and w wins does not
depend on the order and this value is xw,` = xpw(1−p)`

xpw(1−p)`+(1−x)qw(1−q)` . Furthermore, the probability
of each such sequence only depends on w and `.

Roadmap. We first describe two approaches to the bandit problem, with a dynamic programming
approach in section 2 and a combinatorial approach providing a formal method to compute x∗ and
the expected long term reward in section 3. Finally, equipped with these tools we go back to the
pricing problem and study their relative efficiency in section 4.

2 A Dynamic Programming Approach

In this section, we describe how a dynamic programming approach can determine x∗, the lowest
prior such that the player will continue playing the slot machine.

Let V (x) denote the global expected reward from a prior x, having the ability to play on infinitely if
so desired. We compute the Gittins index for our slot machine V (x) as the discounted global reward,
such that as long as V (x) is positive we continue playing [6]. We compute V (x) as a function of
the expected local reward and the global reward from updated priors W (x) and L(x). Thus, we can
formulate V (x) recursively as follows:

V (x) = max
(

0, R(x) + δ · Px(win) · V (W (x)) + δ · Px(loss) · V (L(x))
)

(1)

where the local reward R(x) = xp + (1 − x)q − c; the probability of winning is Px(win) =
xp + (1 − x)q; the probability of losing is Px(loss) = x(1 − p) + (1 − x)(1 − q) and W (x) and
L(x) are the Bayesian updates given a win and a loss respectively. We define x∗ as the largest prior x
such that V (x) = 0.

In this section, we propose a fast dynamic programming approach to compute the threshold prior x∗
and the global expected reward from any initial prior x. Let us denote the set of possible updated
priors by P(x) := {xw,` | w, ` ≥ 0}. We say that a set S ⊆ [0, 1] is discrete if all elements of S has
a neighbourhood that contains no other elements of S.

Claim 2. The space of possible updated priors P(x) is discrete if and only if
log( pq )

log( 1−q
1−p )

∈ Q.

Corollary 3. If
log( 1−q

1−p )

log( qp ) = a
b where a and b are two integers such that gcd(a, b) = 1, then there

exists an infinite increasing sequence (xi)i∈Z such that for all i ∈ Z we have W (xi) = xi+a and
L(xi) = xi−b.

In this setting, we can re-write equation (1) as

V (xi) = max
(

0, R(xi) + δ · Pxi(win) · V (xi+a) + δ · Pxi(loss) · V (xi−b)
)

(2)

The algorithm. To apply a dynamic programming approach, let us fix an ε > 0 that corresponds to
the threshold between the precision of the solution returned and the running time: the smaller ε, the
greater the precision and the running time. We note that this approach is not mathematically rigorous
since its validity requires smoothness conditions on the function V (·) that do not follow from (1). In

7We denote by Px(·) to the probability of an event given prior x.

4



Figure 1: An example of computing V (x) through our dynamic programming approach. We see that
x∗ = 0.33, which is lower than when x = 0.5 = c−q

p−q causes the local reward to be 0.

the next section we will derive a formal approach while now we continue with this approach that is
computationally tractable. First, assuming that V is differentiable at x = 1 we get from equation (1)
that V (1) = p−c

1−δ and V ′(1) = −(p−q)
1−δ . See Claim 8 in the Appendix for a proof.

For all indexes i such that xi > 1− ε, we make the estimation that V (xi) ≈ V (1) + (1−xi)V ′(1) =
p−c
1−δ − (1−xi)p−q1−δ . Let istart be the greatest index i such that xistart < 1− ε. We have the following
estimate: istart = Ox(a · logp/q(1/ε)).

Then, for all i ≤ istart, we recursively compute V (xi), in decreasing order, with:

V (xi) :=
V (xi+b)−R(xi+b)− δ · Pxi+b(win)V (xi+b+a)

δ · Pxi+b(loss)

until we have V (xi) ≤ 0. We call this index i∗ and then set V (xi) := 0 for all i ≤ i∗. The prior
xi∗ gives an estimation of x∗. This method is fast but it is difficult to prove an upper bound on the
precision of the results obtained. In the next section, we give a combinatorial method to compute x∗
and the global expected reward, that enables us to provide a strong guarantee on the solution.

3 A Combinatorial Approach

In this section we intend to give a exact formulation of the value V (x). To compute V (x) we will
make use of the concepts of Catalan’s triangle and Catalan’s trapezoid. Conceptually, Catalan’s
triangle is a number triangle whose entries C(w, l) corresponds to the number of strings such that
there are w “wins” and l “losses” such that no initial segment of the string has more losses than wins.
The well-known Catalan numbers belongs to Catalan’s triangle: C(n, n) = 1

n+1

(
2n
n

)
.

The so called Catalan’s trapezoid is an extension of Catalan’s triangle, in which Cm(w, l) counts the
number of strings with w wins and ` losses such that every initial segment has at least m more wins
than losses8. In particular the Catalan’s triangle corresponds to the special case where m = 0. We
have the following closed form for the Catalan’s trapezoid [10]: Cm(w, `) =

(
w+`
`

)
if 0 ≤ ` ≤ m,

Cm(w, `) =
(
w+`
`

)
−
(
w+`

`−m−1

)
if m < ` ≤ w +m and Cm(w, `) = 0 otherwise.

Definition 4 (Catalan’s quadrilateral). Given integers w, ` and parameters a, b and m we denote
Ca,bm (w, `) the number of strings consisting of w W-s and ` L-s such that in every initial segments of
the string that consist of w′ W-s and `′ L-s, the value a · w′ − b · `′ is always at least −m.

Let us say that these numbers form Catalan’s quadrilateral since the Catalan’s trapezoid corresponds
to a = b = 1. Figure 2 provides a geometrical interpretation of these numbers.

We have the following induction to compute these numbers: Ca,bm (w, `) = 0 whenever a ·w− b · ` <
−m. Otherwise Ca,bm (w, `) = 1 when w = 0 or ` = 0. And generally: Ca,bm (w, `) = Ca,bm (w −
1, `) + Ca,bm (w, `− 1).

8We use here a slightly different definition than in [10]. We have C′m(w, `) = Cm−1(w, `) where C′m(w, `)
denote the original Catalan Trapezoid numbers.
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Figure 2: The number of paths from A to B along the grid, that do not enter the light red area (like
the blue path but not like the green one) is the Catalan’s quadrilateral number C1,2

3 (9, 4) = 570

(for comparison, the unconditional number of paths from A to B is
(

9+4
4

)
= 715 ). More generally

Ca,bm (w, `) is the number of paths starting on point A = (0, 0) that consists of moving w times “up”
i.e. (i, j) → (i + 1, j + 1) and w times “down” i.e. (i, j) → (i + 1, j − 1), and that do not enter
the open half-plane {(x, y) | (a− b)x− (a+ b)y < −2m}. The slope of the boundary depends on
parameters a, b. The classic Catalan’s trapezoid (a = b = 1) arises when the boundary is horizontal.

Thus, computing Ca,bm (w, `) can be done in time O(w · `) with a simple dynamic program imple-
menting the above inductive formulation. No non-recurrence-based formula exists for Catalan’s
quadrilaterals, though computation of partial values in the quadrilateral are derived in [5]. The
purpose of defining these particular numbers lies in the following lemma that will enables us to
provide an expression of the global expected reward.

Given a initial prior x, we let Xt be the (random) updated prior after t pulls. In particular, X0 = x.
Recall that xw,` denotes the updated prior after a sequence of ` losses and w wins from an initial
prior x, and R(x) = xp+ (1− x)q − c is the local reward when the prior is x. The global expected
prior from a prior x is given by V (x) =

∑
w,`≥0,t=w+` δ

t · Px(Xt = xw,`) ·R(xw,`).

We now use the Catalan’s quadrilateral to provide an expression of Px(Xt = xw,`).
Lemma 5. Let w, ` two integers, and t = w + `. Given any prior x, we have Px(Xt = xw,`) =
Ca,bm (w, `) · px(w, `) where px(w, `) := xpw(1 − p)` + (1 − x)qw(1 − q)` is the probability of
having a given ordered sequence of w wins and ` losses; a = log(p/q); b = log( 1−q

1−p ); and

m = log 1−q
1−p

(
x(1−x∗)
x∗(1−x)

)
.

To compute the value of V (x), first we need to compute the value of the threshold x∗.

3.1 Computing x∗

By definition, x∗ is the prior for which stopping or continuing to play gives the same global expected
reward. Assuming that the initial prior is x = x∗, we have m = 0 and we obtain after simplification
the following equation :

0 = V (x∗) =
∑
w,`≥0

δw+`Ca,b0 (w, `) ·
(
x∗pw(p− c)(1− p)` + (1− x∗)qw(q − c)(1− q)`

)
where a = log(p/q) and b = log( 1−q

1−p ). If we set Φ(p) :=
∑
w,`≥0 δ

w+` · Ca,b0 (w, `) · (p −
c)pw(1− p)`, the above equation becomes 0 = x∗Φ(p) + (1− x∗)Φ(q). Thus we can express x∗ as
x∗ = Φ(q)

Φ(q)−Φ(p) .

To get a precise estimate of the value Φ(p), we only need to focus on sequences of wins and losses
that do not exceed a certain length. More precisely, fix any ε > 0. Since Φ(p) is defined as a series of
positive terms, we know that there exists an integer tε such that∑

w,`≥0,w+`≥tε

δw+` · Ca,b0 (w, `) · (p− c)pw(1− p)` ≤ ε

6



and since this series is upper bounded by a convergent geometric series, we have the following
estimate tε = O(log 1/ε). Thus, we can compute an ε-estimate x̂∗ of x∗, i.e. |x̂∗ − x∗| < ε, in time
O(log(1/ε)2). When the ratio a/b is a rational number, the set of possible updated priors from x is
discrete, so that choosing an ε sufficiently small enables to compute an exact value for x∗. Eventually,
since the rational number are dense in [0, 1], we can slightly change p and q so that a/b is rational.

Once we have a precise estimation of x∗, we can proceed similarly to compute an arbitrarily closed
estimation of V (x) for any prior x.

In the symmetric case, when the values of p and q are such that q = 1− p, we can even get a closed
expression for x∗ and V (x). Indeed, we have a = b = 1 and we can use the closed formula of the
coefficients of the Catalan Trapezoid.

4 Pricing Strategies

In this section, we revisit our original seller’s problem. When the seller has the option to price the
product dynamically, the problem reduces to our slot machine scenario. Thus she will maximizes
her revenue by setting π = xp + (1− x)q, where x is the current prior. In this case the buyer has
negligible utility but is still willing to purchase the product. The seller is willing to set such price up
until x reaches x∗, upon which the seller stops selling the product. In particular, she may sell the
product at certain times πt < c in order to gain more information about the product. Of course, any
price π < xp+ (1− x)q also works although the surplus will then be split between the seller and the
users; the important part, in term of social welfare, is that the process continues so long as the current
prior is at least x∗. This dynamic pricing scenario maximizes the overall welfare of the system. We
now discuss how to compute the optimal static price and then discuss exhibit some comparisons
between these two pricing strategies.

4.1 Optimal static price

The seller sells a good that has a production cost c. Her goal is to determine the price π at which
she wants to sell it, assuming that the price will be the same at all times. Of course, π must be
at least equal to c and and should depend on p, q and the original prior x. On the other side, the
buyer has access to the public prior x and buys if xp+ (1− x)q ≥ π. When the prior x goes below
xmin := π−q

p−q , the buyer stops buying. Let τ denote the random variable that corresponds to the first
time t when x goes below xmin.

First, we note that if the machine is used t times, then the profit achieved is
∑t
i=0 δ

i(π − c) =

(π − c) 1−δt
1−δ . The expected revenue of the seller is then

Rev(π) := E
(

(π − c)1− δτ

1− δ

)
=
π − c
1− δ

Px,π(τ =∞) +
∑
t≥0

Px,π(τ = t) · (1− δt)

 .

We first prove that with constant probability the player will play on forever and give an expression
of how often that happens. Given an initial prior x, and given a time t ≥ 0 we define the (random)
variable Xt that is the updated prior after t pulls. (Xt)t≥0 is a martingale with X0 = x. Let us fix
ε > 0. The random time τ at which Xt reaches xmin or 1− ε is a stopping time. Since τ has finite
expectation, by the optional stopping theorem, the expected value of Xτ is equal to the initial prior,
i.e., E(Xτ ) = x. Then we get

x = Px,π(Xτ < xmin)E(Xτ |Xτ < xmin) + Px,π(Xτ > 1− ε)E(Xτ |Xτ > 1− ε)
We know that L(xmin) ≤ E(Xτ |Xτ < xmin) < xmin and 1− ε < E(Xτ |Xτ > 1− ε) ≤W (1− ε).

Thus, when ε goes to zero, we obtain Px,π(Xτ =∞) = x−E(Xτ |Xτ<xmin)
1−E(Xτ |Xτ<xmin) .

Lemma 6. We have the following estimation of playing forever: x−xmin

1−xmin
< Px,π(Xτ = ∞) ≤

x−L(xmin)
1−L(xmin) .

In the symmetric case when q = 1 − p, we can have a better estimation. Indeed, if τ = t then
necessarily, Xt−1 = xmin and we got a loss at time t− 1. Thus, E(Xτ |Xτ < xmin) = L(xmin) so
that Px,π(Xτ =∞) = x−L(xmin)

1−L(xmin) .
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Figure 3: In the symmetric setting (left), the blue points represent the revenue on the efficient frontier,
which is the maximum possible price per discrete xstop. The red points are not optimal because such
prices yield the same number of possible net dislikes before the buyers stop buying. In the general
setting (right), we see that revenue as a function of price is not as well-defined.

Now, the probability of stopping at a finite time t can be expressed via the Catalan’s quadrilateral,
using Lemma 5. This is justified by the following Claim. Recall that Xt denotes the prior at time t
and xw,` denotes the value of the updated prior from an initial prior after a sequence of w wins and `
losses.
Claim 7. Given an initial prior x, and a cost c, the probability that the buyer stops buying a
time t ≥ 1 is Px,π(τ = t) = Px(Xt = xw,`) = Ca,bm (w, `) · px(w, `) where ` = bm+at

a+b c and

w = t−bm+at
a+b c; a = log(p/q) and b = log( 1−q

1−p ); and m = log 1−q
1−p

(
x(1−xmin)
xmin(1−x)

)
; and px(w, `) :=

xpw(1− p)` + (1− x)qw(1− q)`.

We now give an approximate expression of the expected revenue for the seller for a fixed price π. Let
us fix an ε > 0. There is a time tε = O(log 1/ε) for which Px,π(τ ≥ tε) ≤ Px,π(τ =∞) + ε · 1−δ

π−c .
To get an estimate, we consider that if the buyers have not stopped buying at time tε, then they will
buy forever. Thus using the value for the Catalan’s quadrilateral, we can compute the following
approximation of the expected revenue in time O(t2ε) = O((log(1/ε))2).

Revε(π) :=
π − c
1− δ

Px,π(τ ≥ tε) +
∑
t≤tε

Px,π(τ = t) · (1− δt)


and we have a good estimate: |Revε(π)−Rev(π)| ≤ ε. To compute the optimal price, i.e. the price
that maximises the revenue for the seller, one can compute Revε(π) for different prices π and pick
the best one. The set of values to try can be restricted to a discrete set of possible updated priors
P(x). In the symmetric setting, we observe that for a set price π, buyers can tolerate up to a net of m
losses, where m is a function of x, p, q, c, δ, π, before no longer buying. Thus, for a fixed m, we can
maximize revenue Revε(π) by setting the price π such that the buyer is indifferent to purchase after
m net losses (π = x0,mp− (1− x0,m)q). This efficient frontier appears to be concave, as shown in
figure 3, so finding the optimal price is simply a binary search procedure along the efficient frontier
points. In the asymmetric setting, the function is not as well-defined.

4.2 Comparison of the two pricing strategies.

In this section we investigate the probability that the market learns the true value of the product,
i.e. the probability of stopping in finite time when the product is bad and the probability of playing
forever when the production is good. Of course, under dynamic pricing learning occurs with larger
probability. The main conclusion of the section is to express this additional gain as a function of the
primitives of the model, proving a simple quantification of the potential gains of dynamic pricing
over static pricing,

A first observation (see Lemma 9) is that in both models the market discovers that the machine
is bad whenever it is the case. On the other hand, when the product is good, learning may fail to
occur. To quantify this efficiency loss we define xstop as the threshold prior from which the users
stop buying. In the dynamic pricing model we have xstop = x∗ and in the static price model, we
have xstop = xmin = π−q

p−q . In particular we know that x∗ < c < xmin. Our main result (Lemma 10)

8



establishes that when the product is good the probability of learning it is at least x−xstop

x(1−xstop)
. Moreover,

the latter holds with equality in the symmetric case.

With these results we can bound the ratio of not learning under the considered pricing strategies. This
happens exactly when the machine is good but the market does not discover it and stops buying in
finite time. Let FNstatic and FNdynamic be the probabilities of stopping when the product is good in
the static and in the dynamic prices scenarios, respectively. In the case when p = 1 − q we have
FNstatic
FNdynamic

= 1/x∗−1
1/xmin−1 .
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Proofs

Proof. (Lemma 1) Let us start by computing L(W (x)), the value of the updated prior after seeing a
win then a loss:

L(W (x)) =
(1− p)W (x)

(1− p)W (x) + (1− q)(1−W (x))

=
(1− p) p·x

p·x+q·(1−x)

(1− p) p·x
p·x+q·(1−x) + (1− q)(1− p·x

p·x+q·(1−x) )

=
p(1− p) · x

p(1− p) · x+ q(1− q) · (1− x)

Clearly, this expression when swapping p (resp. q) with 1 − p (resp. 1 − q) is unchanged, thus
W (L(x)) = L(W (x)).

The proof of the formula for xw,`, with w wins and ` losses, uses induction and works similarly.

To see the second part of the statement simply note that

PW (x)(loss) · Px(win) = (W (x)(1− p) + (1−W (x))(1− q)) · (xp+ (1− x)q)

=

(
xp

xp+ (1− x)q
(1− p) + (1− xp

xp+ (1− x)q
)(1− q)

)
· (xp+ (1− x)q)

= xp(1− p) + (1− x)q(1− q).

And we easily get the same expression for PL(x)(win) ·Px(loss). The result follows by induction.

Proof. (Claim 2) For our purpose we prove only the sufficiency and leave the proof of necessity to
the interested reader.

Assume that
log( pq )

log( 1−q
1−p )

= a
b where a and b are two integers such that pcd(a, b) = 1. This is equivalent

to
(

1−q
1−p

)a
=
(
p
q

)b
. We show that there exists an infinite increasing sequence (xi)i∈Z such that

x0 = x and for all i ∈ Z we have W (xi) = xi+a and L(xi) = xi−b.

We first show that the updated prior after a sequence of b wins and a losses is unchanged, i.e. xb,a =

x0,0. Indeed, by Lemma 1, we have xb,a = xpb(1−p)a
xpb(1−p)a+(1−x)qb(1−q)a = x

x+(1−x)( qp )b( 1−q
1−p )a

= x.

Then, for any i ∈ Z, we can set xi := xw,` where w, ` is any pair of integers such that w ·a− ` · b = i.
The sequence (xi) is strictly increasing because aw − b` > aw′ − b`′ if and only if ( qp )w( 1−q

1−p )` >

( qp )w
′
( 1−q

1−p )`
′
, i.e. if and only if xw,` > xw′,`′ .

Claim 8. Assuming that solution V of equation (1) is differentiable in x = 1, we have V (1) = p−c
1−δ

and V ′(1) = −(p−q)
1−δ .

Proof. If x = 1, then the machine must be good, therefore the expected global reward is

V (1) =
∑
t≥0

(p− c)δt =
p− c
1− δ

.
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Now fix a small ε > 0. Assume that the function V (x) admits a derivative in x = 1, we can write
V (1− ε) = V (1) + εV ′(1) + o(ε). With equation 1 we have for x = 1− ε close to 1:

V (1− ε) = R(1− ε) + δ · Px(win) · V (W (1− ε)) + δ · Px(loose) · V (L(1− ε))

= p− c− ε(p− q) + δ(p− ε(p− q))(V (1− q

p
ε+ o(ε)))

+ δ((1− p) + ε(p− q))(V (1− 1− q
1− p

ε+ o(ε)))

= p− c− ε(p− q) + δ(p− ε(p− q))(V (1) +
q

p
εV ′(1) + o(ε))

+ δ((1− p) + ε(p− q))(V (1) +
1− q
1− p

εV ′(1) + o(ε))

= p− c+ δV (1) + ε (−(p− q) + δV ′(1)) + o(ε) = V (1) + εV ′(1) + o(ε)

Thus, V ′(1) = −(p−q)
1−δ .

Proof. (Claim 7) Suppose we stop exactly at time t after a sequence of w wins and ` losses. First
w+ ` = t. Moreover, aw− b` < −m and aw− b(`− 1) ≥ −m. This implies that ` = bm+at

a+b c and
w = t− `. Then we apply Lemma 5.

Proof. (Lemma 5) By Lemma 1, the updated prior after a sequence of w wins and ` losses only
depends on w and ` so as the probability of such each sequence. Therefore, Px(Xt = xw,`) is the
product of the probability of one sequence and the number of such sequences.

We first show that the probability of having a given ordered sequence of w wins and ` losses is
px(w, `) := xpw(1− p)` + (1− x)qw(1− q)`. We proceed by induction on the length w + ` of the
sequence w + `. The base case of the induction follows from Lemma 1. Then, using the induction
hypothesis, we obtain
px(w + 1, `) = pW (x)(w, `) · Px(win)

= (W (x)pw(1− p)` + (1−W (x))qw(1− q)`) · (xp+ (1− x)q)

=

(
xp

xp+ (1− x)q
pw(1− p)` + (1− xp

xp+ (1− x)q
)qw(1− q)`

)
(xp+ (1− x)q)

= xpw+1(1− p)` + (1− x)qw+1(1− q)`

The calculation for px(w, `+ 1) = xpw(1− p)`+1 + (1− x)qw(1− q)`+1 works similarly. Thus
we have established the induction.

Now for any integers w, `, it is easy to see that xw,` < x∗ if and only if a · w − b · ` < −m where

a = log(p/q), b = log( 1−q
1−p ) and m = log 1−q

1−p

(
x(1−x∗)
x∗(1−x)

)
. Thus, the number of sequences of w wins

and ` losses such that the prior at any time is at least x∗ is equal to the Catalan’s quadrilateral number
Ca,bm (w, `).

Comparison of the pricing strategies

Lemma 9. Assuming that the product is bad, we stop in finite time almost surely.

Proof. Let Dt = awt − b`t denote the random variable that corresponds to the weighted difference
between the number of wins and loses after t pulls, where a = log(p/q) and b = log((1−q)/(1−p)).
We define the stopping time τ as the first time t when Dt < −m where m depends on the original
prior x and the threshold prior xstop.

Given that the machine is bad, we have: E(Dt − Dt−1) = a · P(win|bad) − b · P(loss|bad) =
aq − b(1− q) =: µ < 0 for any 0 < q < p. Then, E(Dt) = µ · t→t −∞.

We deduce, for t sufficiently large, using Bienaymé-Tchebychev inequality that
P(τ ≥ t) ≤ P (|Dt − E(Dt)| ≥ −µ · t−m) ≤ O(1/t)
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Notice that since x∗ < xmin, then we will learn that the product is bad in the static price scenario
earlier than in the dynamic pricing model. Conversely, we learn that the product is good with higher
probability in the dynamic pricing model.
Lemma 10. Assume that the product is good. In both pricing scenarios, the probability of learning
that the product is good is at least x−xstop

x(1−xstop)
.

Proof. The probability of playing forever is

P(τ =∞) = P(τ =∞ | good) · P(good) + P(τ =∞ | bad) · P(bad) = P(τ =∞ | good) · x

since P(τ =∞ | bad) = 0 by Lemma 9. We conclude using Lemma 6.

In particular, in the symmetric case the probability of learning that the product is good is exactly
x−xstop

x(1−xstop)
. In this case we can even give an alternative expression for this probability.

Lemma 11. Assume that q = 1 − p. Then when the machine is good, the probability of playing

forever is equal to 1−
(

1−
√

1−4p(1−p)
2p

)m
where m is the smallest integer such that after m losses

the prior goes below xstop.

Proof. Let pm denote this probability. We have pm = 0 if m ≤ 0; pm = p · pm+1 + (1 − p) ·
pm−1 otherwise, and limm pm = 1. The roots of the polynomial pX2 − X + (1 − p) are 1 and
1−
√

1−4p(1−p)
2p < 1. Thus, we deduce easily the expected expression.

We now intend to compare the two pricing strategies in the symmetric case. We already know that we
stop earlier in the static price scenario. Conversely, when the product is actually good the probability
of not learning it is greater for the static price strategy. We now give the ratio between these two false
negative probabilities.
Lemma 12. Let FNstatic and FNdynamic be the probabilities of stopping when the product is good,
respectively in the static and in the dynamic prices scenarios. We have FNstatic ≥ FNdynamic > 0
and in the case when p = 1− q:

FNstatic

FNdynamic
=
xmin

x∗
· 1− x∗

1− xmin
=

1/x∗ − 1

1/xmin − 1
.

Proof. By Lemma 10, the probabilities of having a false negative is xstop

1−xstop
· 1−x

x and the formula
follows.
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