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Abstract
Given a set D of n unit disks in the plane and an integer k ≤ n, the maximum area connected subset
problem asks for a set D′ ⊆ D of size k maximizing the area of the union of disks in D′, under the
constraint that this union is connected. This problem is motivated by wireless router deployment
and is a special case of maximizing a submodular function under a connectivity constraint.

We prove that the problem is NP-hard and analyze a greedy algorithm, proving that it is a
1
2 -approximation. We then give a polynomial-time approximation scheme (PTAS) for this problem
with resource augmentation, i.e., allowing an additional set of εk unit disks that are not drawn from
the input. Additionally, for two special cases of the problem we design a PTAS without resource
augmentation.
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1 Introduction

Maximizing a submodular function1 under constraints is a classical problem in computer
science and operations research [16, 35]. The most commonly studied constraints are
cardinality, knapsack and matroids constraints. A natural constraint that has received little
attention is the connectivity constraint. In this paper, we study the following problem. Given
a set D of n unit disks in the plane and an integer k ≤ n, compute a set D′ ⊆ D of size k
that maximizes the area of the union of disks in D′, under the constraint that this union is
connected. We call this problem Maximum Area Connected Subset problem (MACS). Notice
that the area covered by the union of a set of disks is a monotone submodular function.

The problem is motivated by wireless router deployment, first introduced in [24]: we
need to install a certain number of routers to maximize the number of clients covered while
also ensuring that these routers are connected to each other. When the clients are spatially
uniformly spread, the number of clients covered is proportional to the area and hence the
objective is to maximize the area covered.

Our Contributions

We first analyze a variant of the greedy algorithm and prove that it computes a 1
2 -approximation

(Theorem 4); further we show that the analysis of the algorithm is tight. On the other hand,
we show that the naive greedy algorithm that adds disks one at a time to maximize the area
of the union computes, in the worst-case, a solution that is a Ω (k)-factor smaller than the
optimal one.

To improve upon the 1
2 -approximation ratio, we turn to the resource augmentation setting

in which the algorithm is allowed to add a few additional disks that are not drawn from the
input. We design a PTAS for the resource augmentation version of the problem (Theorem 5)
using Arora’s shifted dissection technique [1]. The correctness proof hinges on a structural
statement (Lemma 21) which shows the existence of a near-optimal solution with O (εk)
additional disks, and with additional structure that allow it to be computed efficiently by
dynamic programming.

As a corollary, for two special cases of the MACS we design a PTAS without resource
augmentation: i) when the Euclidean distances are well-approximated by shortest paths in
the intersection graph (Corollary 7) and ii) every point of the relevant region of the Euclidean
plane is covered by at least one input disk (Corollary 10).

On the negative side, via a reduction from the Rectilinear Steiner Tree problem, we show
that MACS is NP-hard (Theorem 3). We leave open the question of whether MACS is
APX-hard or admits a PTAS without resource augmentation. Nonetheless, we show that
if the goal is to compute MACS for a set of arbitrary quadrilaterals instead of disks, the
problem is APX-hard (Theorem 12).

Related work.

Maximising a monotone submodular function under constraint(s) is a subject that has received
a large amount of attention over the years. We refer the reader to [3, 7, 13, 16, 23, 25, 35]
and the references therein. Our problem can be regarded as maximising a submodular
function under a cardinality (knapsack) constraint and a connectivity constraint. Notice that

1 Given a set X, a function f : 2X → R is submodular if given any two subsets A, B ⊆ X, f(A) + f(B) ≥
f(A ∩B) + f(A ∪B).
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the connectivity constraint is central to the difficulty of our problem: without connectivity
constraints, MACS admits a PTAS even on the more general case of convex pseudodisks
[6]. We also give a short proof of this result for unit-disks in Appendix A; even without
connectivity, the problem is still NP-hard2.

Another motivation for studying the connectivity constraint is related to cancer genome
studies. Suppose that a vertex represents an individual protein (and associated gene), an
edge represents pairwise interactions, and each vertex has an associated set. Finding the
connected subgraph of k genes that is mutated in the largest number of samples is equivalent
to the problem of finding the connected subgraph with k nodes that maximizes the cardinality
of the union of of the associated sets, see [34].

In the general (non-geometric) setting where a general monotone submodular function
is given, a O( 1√

k
)-approximation algorithm is given in [24]. Our results show that when

the submodular function and the connectivity are induced by a geometric configuration, the
approximation ratio can be significantly improved.

We next discuss several related problems where the connectivity constraint is involved.
An example is the node-cost budget problem introduced in [31], where the goal is to find a
connected set of vertices in a general graph to collect the maximum profit on the vertices
while guaranteeing the total cost does not exceed a certain budget. Notice that in this
setting the submodular function is a simple additive function of the profits. Another related
problem [4] is to assign radii to a given set of points in the plane so that the resulting set of
disks is connected, the objective being to minimize the sum of radii.

Khuller et al. [22] study the budgeted connected dominating set problem, where given a
general undirected graph, there is a budget k on the number of vertices that can be selected,
and the goal is to induce a connected subgraph that dominates as many vertices as possible.
It was pointed out to us that via a reduction, their algorithm gives a 1

13
(
1− 1

e

)
-approximate

solution for MACS. The authors of [19] consider the problem of selecting k nodes of an
input node-weighted graph to form a connected subgraph, with the aim of maximizing or
minimizing the selected weight.

We now turn to the geometric setting. A logarithmic-factor approximation algorithm
is known [17] for the connected sensor coverage problem, in which one must select a small
number (at most k) of sensors in the plane forming a connected communication network
and covering the desired region. Here the region covered by each sensor is not necessarily
a disk but may be a convex region of the plane (see [14, 21]). Our resource augmentation
PTAS relies on ideas used for Euclidean TSP and other geometric problems [1, 28]. A
(1−ε)-approximation algorithm in time nO(1/ε) for the maximum independent set problem on
unit disk graphs is known [27]. The authors of [26] present a constant-factor approximation
algorithm for several problems on Unit Disk Graphs, including maximum independent set.
The maximum independent set problem is NP-hard even for unit disk graphs in the Euclidean
plane [8]. When the goal is to cover a specified set of clients (instead of the maximum area)
with the minimum number of disks (instead of constraining the number of disks to at most
k), and there is no connectivity constraint, the problem is NP-hard [8] but there exists a
polynomial-time approximation scheme [20].

2 The reduction is from Maximum independent set problem that is NP-hard in unit-disk-graphs
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2 Formal definitions and our results

The Euclidean distance between two points x and y is denoted by ‖x− y‖. When there
is no confusion, we will refer to a point x in the plane and the unit disk centered at x
interchangeably.

I Definition 1. Given a finite set S in the plane, the unit disk intersection graph UDG(S)
is a graph on S where there is an edge between x, y ∈ S if and only if ‖x− y‖ ≤ 2.

A set S of points in the plane are connected if UDG(S) is a connected graph.

I Definition 2. The Maximum Area Connected Subset (MACS) problem is as follows.
Input: a finite set of points X ⊆ R2 and a non-negative integer k, where k ≤ |X|.
Output: a subset S ⊆ X of size at most k, such that the unit-disk graph UDG(S) of S is
connected.
Goal: maximize the area of the union of the unit disks centered at points of S.

The optimal solution of MACS on input (X, k) is denoted by OPT (X, k).

When the context is clear, we refer to OPT (X, k) as OPT, which is also used to denote
the area covered by the optimal solution (observe that OPT is trivially upper-bounded by
πk). Any S ⊆ X with |S| 6 k for which UDG(S) is connected is called a feasible solution.

2.1 Results
We state our main results below.

I Theorem 3 (Hardness). MACS is NP-hard.

I Theorem 4 (Approximation). MACS has a (1/2)-approximation that can be computed in
polynomial time (Algorithm 1).

With resource augmentation, we obtain a (1− ε)-approximation.

I Theorem 5 (Resource augmentation). Let ε > 0 be fixed. Given a set of points X ⊆ R2

and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in time
nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points, such
that UDG (S ∪ Sadd) is connected, and the area covered by the unit disks centered at S is at
least (1− ε)OPT (X, k) .

In Section B we provide an alternative PTAS, based on the m-guillotine method, which
is deterministic, with a somewhat better running time.

Let dG(x, y) denote the distance of two vertices x and y in graph G. A set X of points in
the plane is called α-well-distributed if UDG(X) is an α-spanner [30] for X, namely

I Definition 6. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

I Corollary 7. MACS on α-well-distributed inputs (for a fixed α) allows a polynomial-time
approximation scheme (Algorithm 3).

I Definition 8. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.
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I Lemma 9. A pseudo-convex set X is 3.82-well-distributed.

I Corollary 10. MACS on pseudo-convex inputs admits a polynomial-time approximation
scheme.

In contrast, a similar problem stated with quadrilaterals instead of disks is hard to
approximate.

I Definition 11. The quad-connected-cover is defined as follows.
Input: a set T of n convex quadrilaterals in the plane, and an integer k.
Output: a subset T of T of size k such that the intersection graph3 of T is connected.
Goal: Maximise the area covered by the union of quadrilaterals in T .

I Theorem 12. Quad-connected-cover is APX-hard.

3 NP-Hardness of MACS

We present a reduction from the Rectilinear Steiner Tree (RST) problem, which is
NP-hard, to prove that MACS is NP-hard.

Rectilinear Steiner Tree problem: Given n terminals on a Euclidean plane and
a number L, decide whether there exists a tree to connect all the n terminals using
horizontal and vertical lines of total length at most L.

The problem is NP-complete [15], even if all terminals have integral coordinates bounded
by V = poly(n). In the following, we assume that n is sufficiently large, say n ≥ 1000.

We next explain the reduction. We start from an instance of RST and define an instance
of MACS as follows. For all 0 ≤ i, j ≤ V , we define one cardinal disk with center at (n · i, nj);
n−4 path disks centered at

(
in+ 2 + (1 + 1

n−5 ) · t, jn
)
where t ∈ {0, . . . , n−5} and n−4 path

disks centered at
(
in, jn+ 2 + t(1 + 1

n−5 )
)
where t ∈ {0, . . . , n− 5}. For each terminal (i, j)

in the RST instance, we place n2/10 bonus disks : the first one centered at
(
in+

√
2, jn+

√
2
)

and the remaining centers forming a connected group in [in+2, (i+1)n−2]×[jn+2, (j+1)n−2]
in such a way that each bonus disk is tangent other bonus disks, and can be connected to the
first bonus disk. Notice that except the first one, no bonus disk intersects path disks. This
defines the set of disks. We set k = 1 + L(n− 3) + n3/10. This defines the MACS instance.

See Figure 1 for an illustration. Note that the interior of a cardinal disk is disjoint from
all other disks of the instance.

Notice that as the RST instance has all terminals bounded by a rectangular of polynomial
size, the above reduction can be done in polynomial time.

Let Z denote the set of the cardinal disk at (0, 0) and the n−4 path disks at
(

2 + t(1 + 1
n−5 ), 0

)
where t ∈ {0, . . . , n− 5} and let A(Z) denote the area covered by Z.

I Theorem 13. The original RST instance has a feasible solution of total length at most
L if and only if the derived MACS instance has a feasible solution of area of at least
π + L · A(Z) + (n

3

10 −
n
3 )π.

3 vertex set is T and two quadrilaterals are adjacent if and only if they intersect.
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Proof. (⇒) direction is easy to see: We call a set of disks a segment if it consists of a cardinal
disk and all the n− 4 path disks between it and one of its four adjacent cardinal disks. Thus
the area covered by a segment is exactly A(Z). Consider a feasible solution for the RST
instance, of length exactly L without loss of generality. We root it at an arbitrary integral
point, direct it outwards from the root, and view it as a collection of horizontal or vertical
directed edges of unit length. In the MACS instance, we take all bonus disks, the cardinal
disk associated to the root of the RST solution, and, for each directed edge of the RST
solution, all disks of the corresponding segment. The total number of disks is exactly k, and
the area covered is at least π + L · A(Z) + n3π

10 − 2nγ, where γ is the size of the overlapped
area of the first bonus disk associated with a terminal and the path disk just tangent to the
corresponding cardinal disk of the latter. (Recall the first bonus disk can overlap up to two
path disks). The distance between two such centers is h =

√
8− 4

√
2. Furthermore, the

overlapped area can be expressed as

2 arccos h2 − 2
(
h

2

)√
1−

(
h

2

)2

which is upper-bounded by 0.45. Therefore 2nγ ≤ 0.9n ≤ nπ/3. This gives the proof of one
direction.

For (⇐) direction, assume that a solution S for the MACS instance is given with area at
least π + L · A(Z) + (n

3

10 −
n
3 )π. By our construction, we can modify S, while conserving its

connectivity and without diminishing covered area, so that the following properties hold.

(i) If any bonus disk corresponding to a terminal is part of S, so is the cardinal disk
corresponding to this terminal.

(ii) The path and cardinal disks in S form a tree; furthermore, such a tree consists of a
cardinal disk, a set of segments, and at most one sub-segment. (A sub-segment is a subset
of a segment, so that it induces a connected component.)

We claim that the number B of bonus disks in S is at least n
3

10 −
9n
10 . Suppose not. Observe

that the covered area of S can be upper-bounded as

Bπ + π +
L|Z|+ n3

10 −B
|Z|

A(Z) (1)

(Here we ignore the possible intersection of a bonus disk with the path disks. The first
term is the area covered by bonus disks; the second term is the area covered by a cardinal
disk; the third term is the maximum area that can be covered by segments, and possibly the
single sub-segment in S). Now since S is supposed to be a feasible solution in the MACS
instance, its covered area should be at least

π + L · A(Z) +
(
n3

10 −
n

3

)
π (2)

However,

(2)− (1) =
(
n3

10 −B
)(

π − A(Z)
|Z|

)
− nπ

3 ≥
9n
10

(
π − A(Z)

|Z|

)
− nπ

3 .

Here in order to reach a contradiction (making the last term greater than 0), we need to
calculate A(Z), which is (n− 3)π − (n− 5)γ′, where γ′ is size of the overlapped area of two
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disks whose centers have distance 1 + 1
n−5 . γ

′ is easily shown to be at most 1.25. Therefore,
0.9n(π − A(Z)

|Z| ) − nπ
3 ≥ 0.9n(π − (n−3)π−(n−5)1.25

n−3 ) − nπ
3 ≥ 0, which can be verified when

n ≥ 1000.
So we know that S has at least n3

10 − δ bonus disks, where δ ≤ n/10. Ignoring the possible
sub-segment of S, S includes a cardinal disk, L′ segments and n3

10 − δ bonus disks. As a
result,

k = 1 + L|Z|+ n3

10 ≥ 1 + L′|Z|+ n3

10 − δ ≥ 1 + L′|Z|+ n3

10 −
n

10 ,

implying that n/10 ≥ (L′−L)|Z| = (L′−L)(n− 3). Thus L′ = L and the cardinal disks and
path disks of S correspond to a tree of length L in the RST instance. The proof follows. J

Figure 1 Black, red and orange disks respectively represent path,cardinal and bonus disks. The
hatched disk is associated to a terminal node.

4 Proof of Theorem 4: the Two-by-two algorithm

In the section we present a simple (1/2)-approximation for MACS based on a greedy
approach, by iteratively adding two unit disks that maximize the additional area covered
while maintaining feasibility. Interestingly, the algorithm that adds disks one at a time is
not a constant approximation algorithm. See Figure 2 for an example. Moreover, trying all
possible sets of s disks, for any s ≥ 3, in the neighborhood of the current solution does not
improve the approximation ratio. This can be seen on Figure 3 where the first disk chosen
by the algorithm is not x, but xs.

Let Bx denote the unit disk centered at x ∈ R2 and B(S) =
⋃
x∈S Bx denote the set

of points at distance at most one from at least one point in a finite set S ⊂ R2 of points.
The area covered by a set C ⊂ R2 is denoted by A(C). When C = B(S), its area is simply
written as A(S). Given a graph G, G [S] denotes the subgraph induced by a subset S of
vertices. A subset of the vertices of a graph is a dominating set if every vertex belongs to
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Figure 2 The greedy algorithm that adds only one connected disk maximising the marginal area
covered is not a constant factor algorithm. For any k > 0 and ε > 0, consider the above input where
O = (0, 0), and yi = (2(i− 1) + ε, 0) for all i. Then, put all x1, . . . , xk evenly spaced (by an angle
α) on a circle of radius 2 around O so that none of them intersect y2. Each light grey regions are
covered by only one disk xi so the marginal gain of adding xi to any solution is at least the area
of one of these regions, say a > 0. If ε is chosen such that A(By1 \BO) < a, then if the algorithm
starts by picking disk O, it will then choose all xj , so that the area covered by the solution is
upper-bounded by the area of a radius 3 disk, 9π, while the optimal solution (disks yi) has area πk.

the set or is adjacent to some vertex of it.
Algorithm 1: The Two-by-two algorithm for MACS

Input: X ⊆ R2, k ≥ 0, where X is finite and k ≤ |X|.
Output: a feasible set of size k.

1 if k is even then
2 S ← any two intersecting disks of X;
3 else
4 S ← any one disk of X;
5 while |S| 6 k − 2 do
6 {x, x′} ← arg max {A(S ∪ {x, x′}) : x, x′ ∈ X, S ∪ {x, x′} is feasible };
7 S ← S ∪ {x, x′};
8 return S;

One can find an example similar to Figure 3 to show that optimising the initial choice of
the first disk(s) does not improve the approximation ratio.

I Theorem 4 (Approximation). MACS has a (1/2)-approximation that can be computed in
polynomial time (Algorithm 1).

We assume here that the input graph is connected. Otherwise, one may consider the
largest solution over all connected components. The execution of Algorithm 1 is divided in
two phases. An iteration belongs to the first phase as long as the current solution S is not a
dominating set in the graph UDG(X).

During the first phase, in each iteration the area covered increases by at least π. During
the second phase, since the current solution is a dominating set, any disk can be added while
keeping the solution feasible. Therefore, the algorithm is then a standard greedy algorithm to
maximize a submodular function, and the analysis is similar to the proof that Nemhauser’s
algorithm is a

(
1− 1

e

)
-approximation for classic submodular functions, showing that the



8 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

approximation ratio of Algorithm 1 stays greater than 1/2 during the second phase.

Proof. We first analyze the even case where k = 2κ, and then we reduce the odd case to
the even one. Let Sκ = {x1, x2, . . . , x2κ} be the solution returned by the algorithm. Let
Si = {x1, . . . , x2i} be the set right before the i-th iteration, and d be the smallest integer
such that Sd is a dominating set in UDG(X). If such an integer does not exist, i.e., Sκ is
not a dominating set, then set d = κ.

B Claim 14. The area A(Sd) is at least πd.

Proof. For i < d, Si is not a dominating set. Then there exist two disks y, y′ such that
B(Si) ∩By = ∅ and S ∪ {y, y′} is connected. Adding such a pair increases the area covered
by at least A (By) = π. Since (x2i+1, x2i+2) is chosen to maximize A(Si ∪ {x, x′}) among all
feasible pairs, A(Si+1) > A(Si ∪ {y, y′}) > A(Si) + π. By induction, A(Sd) > πd. J

Note that when d = κ, Claim 14 immediately implies that A(Sκ) > OPT
2 . Also remark that,

regardless of the initial choice, the area covered by the first two disks is at least π. This
observation will be useful when we prove the case where k is odd.

B Claim 15. For all d 6 i 6 κ, A(OPT) 6 A(Si) + κ · (A(Si+1)−A(Si)) .

Proof. It is easy to check that the function A(·) satisfies the following properties for all
H ⊆ H ′ ⊆ X :

positivity : A(H) > 0.
monotonicity : A(H) 6 A(H ′).
submodularity : ∀H ′′ ⊆ X, A(H ′ ∪H ′′) 6 A(H ∪H ′′)−A(H) +A(H ′).

Let OPT = {y1, . . . , y2κ}. We have for all d 6 i 6 κ :

A(OPT) 6 A(Si ∪OPT)
= A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + . . .

+ (A(Si ∪ {y1, . . . , y2κ})−A(Si ∪ {y1, . . . , y2κ−2}))
6 A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + · · ·+ (A(Si ∪ {y2κ−1, y2κ})−A(Si))
6 A(Si) + κ · (A(Si ∪ {x2i+1, x2i+2})−A(Si))
= A(Si) + κ · (A(Si+1)−A(Si)) .

The first and the second inequality respectively come from monotonicity and submodularity,
while the third one follows from the fact that for i ≥ d (x2i+1, x2i+2) is the pair of disks
maximizing A(Si ∪ {x, x′}) among all pairs (x, x′) in X. As Sd is a connected dominating
set in X, all pairs (y2j−1, y2j) for 1 6 i 6 κ are considered. J

We can now re-write Claim 15 as

For all d 6 i 6 κ : A(Si+1) >
(

1− 1
κ

)
A(Si) + OPT

κ
.

Combined with Claim 14, simple algebra yields that for d 6 i 6 κ, we have

A(Si) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)i−d]
OPT.



C-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell and N. H. Mustafa 9

Therefore, for i = κ we have

A(S) = A(Sκ) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)κ−d]
OPT =

[
1− 1

2 (1 + t)
(

1− 1
κ

)κt]
OPT

where t = κ− d
κ
∈ [0, 1]. As 1 + x 6 ex for all x ∈ R, we get

A(S) >
(

1− 1
2(1 + t)e−t

)
OPT >

(
1− 1

2e
te−t

)
OPT = 1

2OPT,

concluding the proof of the case when k is an even number.
For the odd case k = 2κ− 1: in the first iteration, instead of adding two disks to S1, we

add a single disk of X to S1. This is equivalent to adding two copies of the same disk. This
iteration belongs to the first phase, and the only properties we used in the first phase is that
each iteration adds an area of π, and keeps the solution feasible; these are clearly true for
the first iteration even with one disk. J

Figure 3 shows a tight example.

Figure 3 A tight example for Algorithm 1. For any ε > 0, X contains x = (0, 0) (stripe-shaded),
xi = (2(i− 1) + iε, 0) and x′

i = ((2 + ε)i, 0) for 1 6 i 6 k (blue) and yi = (−2i− ε/2, 0) for 0 6 i 6 k

(orange). Suppose that k = 1 + 2κ is odd and the algorithm starts with S0 := {x, x}. Then the
algorithm will add {xi, x

′
i} in iteration i since it covers more additional area than {y0, y1}. The

solution returned (blue disks) covers an area of π + κ(π + f(ε)) ≈ k
2π, for some function f(·) with

limε→0 f(ε) = 0, while OPT (orange disks) covers an area kπ.

5 Proof of Theorem 5: PTAS with resource augmentation

Let us recall our main result.

I Theorem 5 (Resource augmentation). Let ε > 0 be fixed. Given a set of points X ⊆ R2

and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in time
nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points, such
that UDG (S ∪ Sadd) is connected, and the area covered by the unit disks centered at S is at
least (1− ε)OPT (X, k) .

We summarise the high level ideas here and fill in the details in the subsequent sections.
Let (X, k) denote an input of MACS and OPT be the optimal solution of MACS on input
(X, k). When the context is clear OPT can also denote the total area covered by the union
of the unit disks centered in points of OPT.

We start by guessing a bounding box of size Θ(k) × Θ(k) that contains OPT. Next,
another square of size L× L, where L = Θ(k), is randomly shifted so that it always contains
the bounding box. We remove all disks that are outside the square. That square is then
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recursively partitioned into smaller squares until they have (large) constant size. The
hierarchical dissection induces a grid.

We remove all disks that intersect the lines of the grid. In contrast, we deploy some
new, additional disks (Xadd) in some strategic portal positions along the lines and near the
boundary of all the smallest squares.

Next, we use dynamic programming to build a solution from the smallest squares upwards.
The difficulty lies in having to guarantee the connectivity when combining solutions from
smaller squares into larger squares using additional disks, while controlling the time complexity
and number of disks added.

The key of our approach lies in Lemma 21, in which we argue that with constant probability,
there exists a well-structured near-optimal solution that uses at most εk additional disks.

5.1 The grid.
The first step is to reduce significantly the size of the input by guessing the position of the
optimal solution.

I Lemma 16. There exists a point c ∈ X such that OPT is contained in an axis-parallel
square, of side length 4k, centered in c.

Proof. For c, take any disk in OPT and recall that OPT is connected and has at most k
disks, so all the disks in OPT are contained in the square centered at c and with side length
4k. J

Let L′ be the sidelength of the box given by the Lemma 16, and set X ′ be the set of
points of X lying inside this box. Let L be the smallest power of 2 greater than 2L′. The
root square is defined to be the axis-parallel L× L square with the same left-bottom corner
as the bounding-box.

A shift is an non-negative integer a smaller than or equal to L/2. We say that the root
square is shifted by a if it is translated by the vector (−a,−a). Notice that any shifted root
square contains the bounding-box.

Given a shifted root square, we can define its dissection as a recursive partitioning into
smaller squares. The L× L root square is divided into four squares of size L/2× L/2. Each
of these squares is again divided into four L/4× L/4 squares, so forth. The process stops
when the side length of a square is equal to L0 = Θ(ε−1). Let d = log (L/L0) = O (log(εk)).
We can think of this partitioning as 4-ary tree, where each node at level ` corresponds to a
L02` × L02` square and has four children corresponding to four L02`−1 × L02`−1 squares.
The root square is at level 0 and the leaf squares are at level d. Given two squares of level `
and level `′, ` > `′, we say the former is of higher level than the latter. So the leaf square is
the one with the highest level.

This dissection defines a grid composed of 2 · (2d − 1) horizontal and vertical lines of
length L. We say that a line is at level ` ∈ {1, . . . , d} if it was added on the grid to divide a
square at level l− 1 into four squares at level `. There are 2` horizontal (resp. vertical) lines
at level `. See figure 4.

On each horizontal line of level ` > 1, we will place a set of vertical—notice the naming
asymmetry—portals of level `, near which (not exactly on which) we will deploy the portal
disks to facilitate the connection of disks on both sides of this line. We define a set of
horizontal portals for each vertical line in an analogous manner. Notice that it is possible
that a point is both a vertical portal and a horizontal portal. Let m = O(ε−1d) be a power
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of two. Along a line of level `, there are m2` + 1 portals evenly spaced so that the distance
between two neighboring portals have distance exactly L

m2` .

B Observation 17. If an horizontal line of level ` crosses a vertical line of level greater than
or equal to ` then the intersection point is a horizontal portal.

We define a set P of portal disks which we position at or near the portals. If a portal
(i, j) is on exactly one line of the grid then we add the portal disk (i, j) to P. If a portal
(i, j) is at the intersection of two lines of the grid, then i) if it is a horizontal portal then we
add to P two portal disks (i, j + 2) and (i, j − 2), and ii) if it is a vertical portal then we
add to P two portal disks (i− 2, j) and (i+ 2, j).

Given a square C of the dissection, the potential portal disks of C, denoted by PC , are
the portal disks on the boundary of C.

B Observation 18. For any square, the number of potential portal disks is O(m) =
O(ε−1 log(εk)).

The border of a leaf square C, denoted as ∂C, is the set of points in C within distance 1
from C’s boundary. The remaining points of C are called the core of C, written as core(C). A
unit disk with its center in C intersects the boundary if and only if its center lies in the border.
If two disks are in the core of two different leaf squares, then they do not intersect. We refer
to the union of the core of all leaf squares as the core. In a leaf square C = [a, b]× [c, d], the
set of points formed by the boundary of the square [a + 2, b − 2] × [c + 2, d − 2] is called
the fence. We cover the fence of C by fence disks, aligned such that each corner of this
square is the center of a fence disk. See Figure 5. We denote by F the set of all fence disks
for all leaf squares. The set of portal disks and fence disks form the set of additional disks
Xadd = P ∪ F .

Figure 4 An illustration of the grid with
d = 3. Numbers on the top and the right
are the level of the corresponding lines and
the red, orange and yellow are respectively
the example of square of the dissection at
level 1, 2 and 3.

Figure 5 The grey and white area are respectively
the core and the border. Dotted lines are from the grid
while the orange lines represent the fence and orange
disks are the fence disks. Blue points are (vertical)
portals and blue disks are portal disks.

5.2 Dynamic program
The algorithm uses dynamic programming. The dynamic programming table is indexed by
configurations.



12 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

I Definition 19. A configuration is a 5-tuple C = [C, t, tadd, P,∼], where:
C is a square of the dissection.
0 ≤ t ≤ k is an integer, denoting the number of disks of S used by the solution inside C.
0 ≤ tadd ≤ εk is an integer, denoting the number of additional disks used by the solution
inside C.
P ⊆ PC is a subset of potential portal disks of C, those that are used by the solution.
∼ is a planar connectivity relation on P (described below), representing the connectivity
achieved so far by the part of the solution inside C.

In the following, to facilitate discussion, we will refer to portals disks as simply portals.
An equivalence relation ∼ on P is a planar connectivity relation if each equivalence class has
an associated tree with the portals at the leaves, and there exists a planar embedding of
those trees inside the square, such that the trees do not intersect.

The content of the dynamic programming table, the value of a configuration C =
[C, t, tadd, P,∼], denoted by A(C), is the maximum area that can be covered by a set S ⊆ X
of t disks in C ∩ core4, such that there is a set Sadd ⊆ Xadd of tadd additional disks such that
any p, p′ ∈ P with p ∼ p′ are in the same connected component induced by S ∪Sadd ∪P . We
say that p and p′ are connected in C. If such sets {S, Sadd, P} do not exist for configuration
C, the value A(C) is set to −∞.

We next explain how to fill in the table.

5.2.1 Computing leaf entries of the dynamic programming
We first explain how to fill the entries of the table corresponding to the leaf squares. For
each leaf square C, we enumerate
1. all possible subsets S ⊆ X ′ ∩ core(C) of at most k0 disks, for a parameter k0 = O(ε−3)

(see Lemma 21).
2. all possible subsets Sf ⊆ F ∩ C,
3. all possible subsets P ⊆ PC , and
4. all possible planar connectivity relations ∼ on P .
We say that (S, Sf , P,∼) is a guess in C and that it is usable if one of the following two
conditions holds:
Case 1. if P = ∅, then S ∪ Sf is connected, otherwise
Case 2. every connected component of S ∪ Sf ∪ P contains at least one portal disk in P .

Each usable guess (S, Sf , P ) in C corresponds to a configuration C := [C, |S|, |Sf |, P,∼],
where ∼ is the planar connectivity relation on P induced by the connected components of
S ∪ Sf ∪ P .

Several usable guesses (S, Sf , P ) can potentially correspond to the same configuration C.
The value of C is computed5 as the maximum value A(S) over all such guesses S.

5.2.2 Computing all entries
It remains to show how to compute the solution of a configuration, say C = [C, t, tadd, P,∼],
for a square C at level `, by combining the solutions

[
Ci, ti, tiadd, P

i,∼i
]
of the four child

4 Recall that core is the union of the core(C) of all leaf squares C.
5 The area covered by the union of a set of disks is a real number that can be computed exactly. When
the desired accuracy is a fixed constant (for instance ε), one can give an approximation of this area
with the desired precision in polynomial time.
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squares Ci, i = 1, 2, 3, 4, at level ` + 1. Recall that connectivity relations ∼i capture the
information about connectivity in the squares Ci. Let P = {p0, . . . , ps} be the subset of
potential portal disks. We define ∼′ as the transitive closure of all ∼i: p ∼′ p′ if and
only if there exists a sequence of squares i1, . . . , is ∈ {1, 2, 3, 4} and a sequence of portals
p = p0, . . . , ps = p′ such that for all 1 6 j 6 s, pj is a common portal of P ij−1 and P ij .
Further, pj−1 and pj must be connected in Cij . We call C empty if P = ∅ and t = 0, and
closed if P = ∅ and t > 0.

We now define the notion of compatibility of configurations.

I Definition 20. Five configurations
(
C, C1, C2, C3, C4) with C = [C, t, tadd, P,∼] and

Ci = [Ci, ti, tiadd, P i,∼i] are compatible if all the following properties are satisfied.
1. all Ci have the same level and their union is the square C.
2. P =

⋃4
i=1 P

i ∩ ∂C.
3. ∼ is the restriction of the transitive closure ∼′ of

(
∼i
)

16i64 to P .
4. t = t1 + t2 + t3 + t4 and t 6 k.
5. tadd = t1add + t2add + t3add + t4add + |

⋃4
i=1 P

i \ P | and tadd 6 εk.
6. exactly one of following three conditions holds.

(a) Ci, i ∈ {1, 2, 3, 4}, is closed and all Cj, j 6= i are empty.
(b) C is closed and there is exactly one equivalence class for ∼′.
(c) all equivalence classes of ∼′ contain a portal in P .

Remark. By condition 2, the set P of portals used by C is obtained by removing from⋃4
i=1 P

i the portals not on the border of C. Notice that these removed portals in
⋃4
i=1 P

i \P
are now counted as additional disks (in condition 5). Condition 6 attempts to capture
all possible situations—either we have a single connected component not connected to the
“outside world”, which is a feasible solution by itself, (see Condition (6a) and Condition (6b)),
or we have several connected components, each of which must be further connected to the
outside world in a later stage (see Condition (6c)). See Figure 6. Finally, it is easy to see
that if all ∼i satisfy the connectivity relation, then so does ∼.

(a) the top-left configuration
is closed while other configur-
ations are empty.

(b) there is unique connected
component independent from
the outside world.

(c) Each connected compon-
ent contains a portal in P .

Figure 6 Illustration of cases (a)-(b)-(c) of point 6. in Definition 20

5.3 Structural Lemma
Let a be a shift chosen uniformly at random in

{
0, L2

}
. We consider the grid associated to

this shift and the set of additional disks on this grid as defined in the previous section. The
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following lemma is essential to our main theorem. Recall that P denotes the set of portal
disks and F the set of fence disks.

I Lemma 21 (Structural Lemma). Given a fixed parameter ε > 0, there exists a subset
S ⊆ core of input disks and a set Sadd ⊆ P ∪F of additional disks, such that with probability
at least 1/3,
(i) (feasibility) |S| 6 k and S ∪ Sadd is connected,
(ii) (bounded resource augmentation) |Sadd| 6 εk,
(iii) (near-optimality) A(S) > (1− ε)OPT,
(iv) (bounded local size) For each leaf square C, |C ∩ S| = O(ε−3).

Our dynamic programming aims at finding a solution satisfying all conditions of this
Structural Lemma. We show that such a solution can be computed in time nO(ε−3). The
bounded local size property ensures that we can try all possible configurations in the leaf
squares in polynomial time. We also prove that for any square, the number of different planar
connectivity relations is upper-bounded by the Catalan number of the number of potential
portal disks of the square. It follows from Observation 18 that this number is polynomially
bounded.

5.4 Proof of the structural Lemma
We construct S and Sadd from OPT in two steps. In the first step, we build sets S′ and Sadd
that satisfy properties (i)-(iii); and in the second step, we construct S ⊆ S′ by removing
some disks from S′ so as to satisfy property (iv) while maintaining the validity of the three
first properties.

5.4.1 Part 1 : Construction of the set of additional disks
Fix any shift, consider its associated grid and dissection and the corresponding set of
additional disks Xadd = P ∪F . Let S′ be the union of disks in OPT that are located in the
core of a leaf square of the dissection, namely

S′ = OPT ∩ core.

Observe that S′ might be disconnected since we have removed from OPT all the disks
that were intersecting the grid. Letting border denote

⋃
C is leaf ∂(C), we show how to

replace the set of input disks OPT ∩ border by a subset Sadd ⊆ F ∪ P of additional disks.
Each leaf square [a, b]× [c, d] has an associated fence that is the boundary of the square

[a+ 2, b− 2]× [c+ 2, d− 2]. For each vertical (resp. horizontal) portal disk (x, y), we define
a connection line, which is {x} × [y − 2, y + 2] (resp. [x− 2, x+ 2]× {y}). The set of fences
and connection lines naturally partition the set of points which are at distance at most 2
from the lines of the grid into a set of rectangles R. See Figure 7.

Notice that all connections and fences are covered by the union of additional disks. Given
a rectangle R ∈ R, we define disk(R) ⊆ Xadd as the minimal set of additional disks that
contain R.

We construct Sadd as the union of disk(R), over all rectangles R that intersect a disk
x ∈ OPT ∩ border.

Sadd =
⋃
{disk(R) : R ∈ R,∃x ∈ OPT ∩ border such that Bx ∩R 6= ∅}

Notice that each disk x ∈ OPT ∩ border intersects at most two rectangles. Furthermore,
such a disk does not intersect with any fence and can intersect at most one connection line.
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Figure 7 Dotted lines are the grid lines. The bottom and top horizontal lines have respectively
level 8 and 10, and the vertical lines from left to right have level 5, 10 and 9. Grey continuous line
are the fence, and the red ones, the connection lines. Points and blue disks are portals and portal
disks. Striped orange areas illustrate some rectangles R ∈ R, and other disks are fence disks of the
corresponding sets disk(R).

B Claim 22. Sets S′ and Sadd are such that S′ ∪ Sadd is connected, S′ has size at most k
and with probability at least 1/3 : |Sadd| 6 O(εk) and A(S′) > (1−O(ε))OPT.

The argument is similar to the one of Arora [1]. We first upper-bound the expectation of
|Sadd| and A(OPT)−A(S′), and then use Markov’s inequality. To bound the expectation of
|Sadd|, we observe that the number of additional disks added in Sadd for each disk in OPT
intersecting a line at level ` is O(L/(m2`)) while the probability that a disk intersects a line
at level ` is O(2`/L).

Proof. (Claim 22)
Clearly |S′| 6 |OPT| 6 k. We now prove that S′ ∪ Sadd is connected. Suppose that

there exists a disk x ∈ OPT ∩ border such that OPT \ {x} is split into several connected
components. We know that x intersects only one rectangle R1 ∈ R or two rectangles
R1, R2 ∈ R. Since OPT is connected, and Bx is contained in the set U = R1 or U = R1∪R2,
each connected component intersects the boundary of U . Then, Bx intersects a disk in
disk(R1) or disk(R2). Therefore, OPT \ {x} ∪ disk(R1) ∪ disk(R2) is connected. By doing
so for each x ∈ OPT ∩ border, it follows that S′ ∪ Sadd is connected.

It remains to show that, under a uniform random shift a, with probability at least one
third we have |Sadd| 6 O(εk) and A(S′) = A(OPT ∩ core) > (1−O(ε))OPT. The proof
is very similar to Arora’s approach, we first upper-bound the expectation of |Sadd| and
A(OPT)−A(S′), and then use Markov inequality to conclude.

We first upper-bound the expected number of additional disks. For each x ∈ OPT
intersecting a line at level `, we have added at most two sets of additional disks associated
to rectangles with side length smaller than the distance between two consecutive portals
of this line. It follows that O(L/(m2`)) additional disks have been added to Sadd for each
disk in OPT intersecting a line of level `. This can be observed in Figure 8. Moreover, the
probability that a disk intersects a line at level ` is O(2`/L). Then,
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Figure 8 OPT is represented by orange disks. Disks of OPT that intersect the grid (dotted
line) are replaced by additional disks (striped blue disks). This operation maintains the connectivity
of the set.

E(|Sadd|) 6
∑

x∈OPT

d−1∑
`=0

P (x intersects exactly one line at level `)O( L

m2` )

=
∑

x∈OPT

d−1∑
`=0
O(2`

L
· L

m2` ) = O(dk
m

) = O(εk)

We now upper-bound the expectation of A(OPT)−A(S′). First we have A(OPT)−
A(S′) 6 A(OPT ∩ border), and the probability that a point p ∈ B(OPT) is in B(OPT ∩
border) is smaller that p is at distance 2 from the lines of the grid. Therefore

E (A(OPT)−A(S′)) 6 E(A(OPT ∩ border))

6
∫
p∈B(OPT)

P (p is at distance at most 4 from the grid)dp

6
∫
p∈B(OPT)

2 · 4
L0

dp

6
8 ·OPT
L0

= O(εOPT)

By choosing the constant properly in the big O notation and using the Markov inequality,
we can show that the probability of |Sadd| > O(εk) and the probability of A(OPT )−A(S) >
O(εOPT ) are both upper bounded by 1

3 . Thus, by a union bound, we conclude the proof.
J

5.4.2 Part 2 : Sparsification of S ′

The sets S′ ∪ Sadd obtained so far may not satisfy the last property (bounded local size). In
this section, we show how to remove some disks from S′ to guarantee this property while
still maintaining the other required properties in Lemma 21.

Suppose that there exists a leaf square C such that S′C := S′ ∩ C has size greater than
k0 := (1 + β−1)L2

0 = O(ε−3), where β = min {ε/12, 1}. Then the core of C is “overcrowded”
and we show how to construct a non-overcrowded subset maintaining connectivity while
losing only an ε/2-th fraction of the covered area.

Define a set S to be initially equal to S′. Consider each overcrowded leaf square C one
by one, and define SC = S ∩ C. Start with an empty set H and for each disk x ∈ SC , add
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x in H if A(H ∪ {x})−A(H) > β. Define H = SC \H as the complement of H and then
apply Claim 23 to G = UDG(S ∪ Sadd) and D = S ∪ Sadd \H to define D′ ⊆ H. Finally
update S to (S \H) ∪D′.

B Claim 23. Let G = (V,E) be a connected graph and D a dominating set with µ connected
components. There exists a subset D′ ⊆ V \D of size at most 2(µ− 1) such that G[D ∪D′]
is connected.

Proof. Let H and H ′ be two connected components in D that minimize dG(H,H ′). Then,
dG(H,H ′) 6 3. Indeed, if dG(H,H ′) > 4, then there exists a vertex x on a shortest path
from H to H ′ that is not dominated by D. This implies that we can find two vertices that
connect H and H ′. We repeat this operation until there is only one connected component.
This requires at most 2(µ− 1) vertices. J

The following claim, together with Claim 22 ensures that sets S and Sadd built in Part 1
and Part 2 satisfy the expected properties of our structural Lemma.

B Claim 24. The constructed sets S and Sadd satisfy
(i) S ∪ Sadd is connected,
(ii) for each leaf square C, |S ∩ C| 6 k0, and
(iii) A(S) > (1− ε/2)A(S′).

This Claim might not be true if the radius of disks considered are arbitrary. The proof of
this fact follows from geometrical observations about unit disks.

Proof. (claim 24)
For (i), we just need to argue that for each leaf square C, after H is defined, S ∪Sadd \H

is a dominating set in UDG(S ∪ Sadd) (then the proof follows from Claim 23). Indeed if a
disk x is in H then it means that A(H ∪ {x})−A(H) < β 6 1. In particular, it implies that
there exists a disk in H ⊆ S ∪ Sadd \H that intersects x.

For (ii), observe that the size of S ∩ C is the sum of the size of the corresponding sets
H and D′ built during the “sparsification” of C. Since all disks in H increases the area
covered by at least β and are contained in a square of area L2

0, the number of disks in H
is upper-bounded by β−1L2

0. Moreover, each connected component of S ∪ Sadd \H had a
disk contained in C so that the number µ of connected component is upper-bounded by
L2

0/π < L2
0/2. Therefore |D′| < L2

0. Finally |H ∪D′| < (1 + β−1)L2
0 = k0.

For (iii), we start by observing that the union B(S′) of disks in S′ is contained in the set
B+(S), which is defined as

B+(S) := {z ∈ R2 | ∃x ∈ S such that ||z − x|| 6 1 + β}

Indeed, if there exists a point p covered by a disk x in S′ but at distance at least 1 + β

from any disk of S then adding x to S would increase the area covered by S by more that β.
Therefore, we have the following inclusion

B(S) ⊆ B(S′) ⊆ B+(S), (3)

and if the following geometrical claim holds, our proof of (iii) will be complete.

B Claim 25. A(B(S)) > (1− ε/2)A(B+(S))
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Figure 9 S consists of grey disks. The boundary of B+(S) is the dotted curve. Circular sectors
are in orange while the red one represents a circular sector in B+(S).

The result follows from the fact that B(S) is a union of unit-disks. See Figure 9. The
boundary of B(S) is made of circular arcs and each of these arcs is associated with a circular
sector θi. Circular sectors intersect with other circular sectors only on the extreme points of
their corresponding arcs, thus A(∪iθi) =

∑
iA(θi).

We can associate with each circular sector θi (of a disk of radius 1) its “dilation” θ+
i which

corresponds to the same circular sector in a disk of radius 1+β. We haveA(θ+
i ) = (1+β)2A(θi)

and can see that B+(S) \B(S) ⊆
⋃
i(θ

+
i \ θi). Then

A(B+(S))−A(B(S)) = A(B+(S) \B(S)) = A
(⋃

i

(θ+
i \ θi)

)
6
∑
i

A(θ+
i \ θi) =

∑
i

A(θ+
i )−A(θi)

6
∑
i

(1 + β)2A(θi)−A(θi)

6
∑
i

3βA(θi) = 3βA
(⋃

i

θi

)
6 3βA(B(S))

Therefore, A(B(S)) >
A(B+(S))

1 + 3β > (1 − ε/2)A(B+(S)). This concludes the proofs of
Claims 25 and 24. J
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5.5 The algorithm

Algorithm 2: PTAS for MACS with resource augmentation
Input: X, k, ε.
Output: a real number maxi > (1− ε)OPT.

1 forall c ∈ X do
2 let B′ be the 4k × 4k square centered at c;
3 X ′ ← X ∩ B′;
4 L← the smallest power of 2 such that L > 8k;
5 forall shift a ∈ {0, . . . , L/2} do
6 Create a table tab;
7 foreach configuration C do
8 tab[C]← −∞;

/* Initialization */
9 foreach C at level d (leaf square) do

10 tab[C]← max{A(S) : (S, Sf , P ) is usable and corresponds to C};
/* Fusion */

11 foreach level 0 6 i 6 d− 1 in decreasing order do
12 foreach configuration C at level i do
13 tab[C]← max

{∑4
i=1 tab[Ci] : (C, C1, C2, C3, C4) are compatible

}
;

14 return maxi = max
configuration C
for root square

tab [C];

Notice that since the root square has no potential portals (portals are only placed on
lines at level at least 1), any configuration that corresponds to the root square has only one
connected component. We can easily add information in the table so that the algorithm also
outputs the corresponding sets S and Sadd.

Notice that Algorithm 2 tries all possible shift a. Our structural Lemma 21 ensures
that there exists at least one shift such that the output satisfies all expected properties of
Theorem 5.

I Theorem 26. Algorithm 2 has a running time nO(ε−3).

The key ingredient in order to prove that our algorithm is polynomial follows from
Observation 18. We show that the number of connectivity relations of a set of O(m) portals
corresponds to its Catalan number which is polynomial when m = O(ε−1 log(εk)).

Proof. (Theorem 26)

Size of tab. There exists 4i squares at level i so the total of squares is
∑d
i=0 4i = O(4d+1).

For any square C, the number of potential portal disks is at most 4m. To see this, observe
that if C is of level i, it is of size L/2i × L/2i. Furthermore, it is surrounded by lines of
level at most i and two adjacent portals on such a line has distance Ω(L/(m2i)).
Therefore, the number of possible sets P ⊆ PC is 24m, and for each set P of size r
the total number of planar connectivity relations is equal to the r-th Catalan number

: P (r) = 1
r − 1

(
2r
r

)
= O

(
1

m− 1

(
8m
m

))
and then by Stirling formula we get P (r) =

O(44m). To see that P (r) is the r-th Catalan number, we check that it satisfies the same
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recurrence relation :

P (r) =
r∑

k=1
P (k − 1) · P (r − k) (4)

with P (0) = 1. Indeed, if k denotes the index of the first portal pk that is on the connected
component of the r-th portal disk pr, then the portal disk pi with 1 6 i 6 k − 1 cannot
be equivalent to a portal pj disk with k 6 j 6 n, and then the equivalence relation can be
restricted to the set {pi, 1 6 i 6 k − 1} and there are P (k − 1) possible distinct choices.
Next observe that since pn and pk are connected (i.e. pn ∼ pk), it is enough to count
the number of different equivalence relations in {pj , k + 1 6 j 6 r}, which is P (r − k).
Finally, observe that k can be from 1 to r (k = r means that pr is alone in its connected
component.) We thus concludes (4). Therefore, creating tab in line 6 can be done in time
O(4d+1εk284m) = kO(1/ε).

Initialization There exists 4d leaf squares and for each of them, we try all possible guesses.
This can be done in time nO(ε−3).

Fusion Trying all possible combinations can be done in time kO(1/ε)

J

6 A PTAS for well-distributed inputs

Let us recall the definition of well-distributed input.

I Definition 6. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

Here d·e is the ceiling function. This ensures that the right-hand side is always at least
one. Notice that a well-distributed set is necessarily connected.

One intuitive view of a well-distributed input is to look at the shape of the “holes” of
the input, that are the different connected components of the complement of the union of
the input disks in the plane. The assumption of well-distribution means that these holes are
roughly fat.

One particular interesting case arises when there is no hole at all. We call these sets
pseudo-convex, and we prove that this is a particular case of well-distributed inputs.

I Definition 8. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.

I Lemma 9. A pseudo-convex set X is 3.82-well-distributed.

Proof. (Lemma 9) Let X be a pseudo-convex set, G its unit-disk-graph, and x and y

be any two disks in X at distance L = ‖x− y‖. We show that dG(x, y) 6 dαLe where
α = 12/π < 3.82.

If L < 2 then the two unit disks associated to x and y overlap so that dG(x, y) = 1 6 dαLe.
Otherwise suppose that L > 2. Since X is pseudo-convex, it is connected and any point in
the line segment [x, y] is covered by a disk in X. Let S = {z ∈ X | Bz ∩ [x, y] 6= ∅, ‖x− z‖ >
2 and ‖y − z‖ > 2} and let I be any maximal independent set in S ∪ {x, y}. Since S is at
distance at least 2 from x and y, we deduce that x, y ∈ I and all disks in I \ {x, y} are inside
a L × 4 rectangle and then |I| 6 4L/π. Since I is maximal, it is a dominating set in S.
Therefore, claim 23 implies that there exists a connected subset D ⊆ X such that I ⊆ D

and |D| 6 3|I| − 2 6 12L/π − 2. We deduce that dG(x, y) 6 (12L/π − 2) + 1 6 dαLe. J
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Our Corollary 7 states that the restriction of MACS to well-distributed inputs admits a
PTAS. The algorithm works as follows. Given a parameter 0 < ε 6 1/2, and an input (X, k)
of MACS, we run Algorithm 2 on input (X, k′, ε′) for suitable values k′ and ε′ specified
below. Next, we transform the set of additional disks obtained into a set of input disks that
has roughly the same size while maintaining the connectivity of the solution. See Lemma
27 and Algorithm 3 for details. This algorithm naturally applies to pseudo-convex inputs
(Corollary 10).

I Lemma 27. Given an α-well-distributed input X and two finite sets S ⊆ X and Sadd ⊆ R2

such that UDG(S∪Sadd) is connected, there exists a set S′ ⊆ X of size at most (22α+4)|Sadd|
such that UDG(S ∪ S′) is connected. Moreover, such a set can be computed in polynomial
time.

In the previous lemma, the set Sadd is not supposed to be a set of additional disks as
defined in Section 5.

Proof. (Lemma 27) Let us use the same notation as in the statement of Lemma 27. We prove
how to build S′ from Sadd such that |S′| 6 (22α+ 4)|Sadd| while preserving connectivity.

Let Y be a connected component of Sadd. We prove that we can find a set Y ′ ⊆ X of
input disks such that |Y ′| 6 (4 + 22α)|Y | and (Sadd \ Y ) ∪ (S ∪ Y ′) is connected. Removing
Y might split the solution into several connected components F1, . . . , Fs. For each connected
component Fi, pick one disk xi in Fi ∩X that intersects Y .
Step 1. Each additional disk y in Y is adjacent to at most 6 disks xi. We can connect the

corresponding connected component by using 20α disks of the input. Indeed, any two
xi and xj adjacent to y has a Euclidean distance at most 4. Since X is well-distributed
their distance in UDG(X) is at most 4α. Then, we can find d4α− 1e disks in X which
connect xi and xj . In order to connect all the xi that are adjacent to y, it is sufficient
to repeat this operation 5 times, which asks at most 20α disks. We can perform this
operation for each additional disk that was not already considered. Then, in total for
this first step we need to use at most 20α|Y | disks.

Step 2. During step 1, we may have connected some disks xi, so that the number of
connected components has decreased. The number of connected components is s′ 6 s,
each of them corresponds to a disk xi, and without loss of generality we can assume that
the corresponding indexes are such that 1 6 i 6 s′. Let T be a spanning tree on UDG(Y ).
Without loss of generality, we can suppose that indexes i are such that the sequence
(x1, . . . , xs′) correspond to a T transversal. Note that after step 1, each xi can be associated
to a different y in Y . Then, we reconnect each xi to xi+1 for 1 6 i 6 s− 1. If xi and xi+1
are respectively associated to yi and yi+1, then ||xi − xi+1|| 6 2 + 2dT (yi, yi+1) and thus
dUDG(X)(xi, xi+1) 6 dα(2 + 2dT (yi, yi+1)e. Then, we can find dα(2 + 2dT (yi, yi+1)e − 1
disks in X to connect xi and xi+1. In order to connect all xi we need to use at most

s′−1∑
i=1
dα(2 + 2dT (yi, yi+1)e − 1 6 2(s′ − 1)α+ 2

s′−1∑
i=1

dT (yi, yi+1)

input disks. Since the order corresponds to a T transversal, each edge is visited at most
twice and then

∑s′−1
i=1 dT (yi, yi+1) 6 2(|Y | − 1). Therefore the total number of disks that

were added during this second step is bounded by |Y |(4 + 2α).

We proved that there exists a subset Y ′ ⊆ X of size at most (4 + 22α)|Y | such that
(S ∪ Sadd \ Y ) ∪ Y ′ is connected. By doing so for each connected component of Sadd, we get
the result claimed. J
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Algorithm 3: PTAS for MACS for well-distributed inputs
Input: X an α-well-distributed input, k > 0, ε > 0.
Output: A feasible solution to MACS(X, k).

1 Choose ε′ > 0 and k′ 6 k such that (1− ε′)(1− 10(22α+ 4)ε′) > (1− ε) and
k′(1 + (22α+ 4)ε′) = k;

2 Let S, Sadd be the solution of Algorithm 2 on input (X, k′, ε′) ;
3 Let S′ be the set obtained from Sadd by Lemma 27;
4 return S ∪ S′;

Since ε′ = Θ(ε/α), the previous algorithm runs in polynomial time when ε and α are
fixed constants.

B Claim 28. The solution returned by Algorithm 3 on input (X, k, ε) is a feasible solution
to MACS(X, k) and covers an area at least (1− ε)OPT(X, k).

In order to prove this result we need to state the following “stability” property over
optimal solutions.

I Lemma 29. Let η < 1/2. Then: OPT(X, k) > (1− 10η) ·OPT(X, k(1 + η)).

Proof. (Lemma 29) Let X be a set of points of the plane, k a positive integer and η 6
1/2 a parameter. We prove a stronger result. Given any solution feasible solution S to
MACS(X, k(1 + η)), there exists a subset S′ of S that is a feasible solution to MACS(X, k)
with value at least (1 − 10η)A(S). Obviously Lemma 29 follows when S is optimal. If
A(S) > k/3, then remove ηk disks from S without disconnecting S. For instance, consider a
spanning tree on UDG(S) and remove the nodes from the leaves to the root until you reach
the desired size. Let S′ denote the subset obtained.

A(S′) > A(S)− ηπk > (1− 3πη)A(S) > (1− 10η)A(S)

If A(S) < k/3, let I be a maximal independent set in S. We have |I|π = A(I) 6 A(S) < k

3 .
According to claim 23, there exists a connected dominating set I ⊆ D ⊆ S in S of size at
most 3|I| − 2 < k/π <

k

3 . Consider a set H ⊆ S \D of size k − |D| > 2
3k built by greedily

adding a disk h ∈ S \ (D ∪H) maximising the marginal area A(D ∪H ∪ {h})−A(D ∪H).
Since D is a connected dominating set, the set S′ := D ∪ H is connected. Since all disk
where added greedily in H, for all H ∈ S \ S′, we have

A(S′ ∪ {h})−A(S′)) 6 A(S)−A(D)
|H|

6
2A(S)
k

.
By submodularity, we deduce that A(S)−A(S′) 6 ηk · 2A(S)

3k . That implies A(S′) >
(1− 3

2η)A(S). This concludes the proof of lemma 29. J

Remark that this proof is constructive and it is easy to check that finding S′ from any given
set S can be done in polynomial time.

Proof. (Claim 28) The solution output by Algorithm 2 on input (X, k′, ε′) verifies the
following properties: S ∪ Sadd is connected, the size of S and Sadd are respectively upper-
bounded by k′ and ε′k′ andA(S) > (1−ε′)OPT(X, k′). Therefore, the set S′ given by Lemma
27 has size at most (22α+ 4)|Sadd| 6 (22α+ 4)ε′k′, and then |S ∪ S′| 6 k′ + (22α+ 4)ε′k′ 6
(1+(22α+4)ε′)k′ = k. Since S∪S′ is connected, this set is a feasible solution to MACS(X, k).



C-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell and N. H. Mustafa 23

Finally, from Lemma 29 with parameter η = (22α+ 4)ε′, we get that the area covered by
this solution is

A(S ∪ S′) > A(S) > (1− ε′)OPT(X, k′) > (1− ε′)(1− 10η)OPT(X, k′(1 + η))
> (1− ε′)(1− 10(22α+ 4)ε′)OPT(X, k′(1 + (22α+ 4)ε′))
> (1− ε)OPT(X, k)

which concludes the proof. J

7 APX-hardness of Quad-Connected-Cover

I Theorem 12. Quad-connected-cover is APX-hard.

The reduction will be from the following problem.
3-set-cover. Given a set X of n elements, and its subsets S = {S1, . . . , Sm} such that

|Si| ≤ 3 for i = 1, . . . ,m, compute a minimum size subset of S that covers X. 3-set-cover
is APX-hard (due to the fact that minimum vertex cover on graphs with maximum degree 3
is APX-hard).

Proof. (Theorem 12) The proof is by a reduction from 3-set-cover to quad-connected-
cover. In particular, given a set X = {x1, . . . , xn} and subsets § = {S1, . . . , Sm}, we show
how to construct, in polynomial time and for any parameter ε < 1

6 , a (1 + ε)-approximation
to 3-set-cover from a

(
1− ε

6
)
-approximation to the quad-connected-cover.

o

xi

T ′
i

C

Map the n points of X to n points placed uniformly on a circle C of unit area centered
at the origin o; we will use the notation xi for these points as well. Our set T will consist of
convex quadrilaterals of two types:

center-quads. These are, for each set Sj ∈ §, the quadrilateral Tj = convexhull (Sj ∪ {o}).
side-quads. For each element xi, let T ′i be the rectangle with width 1

2n , length 4n,
containing xi and tangent to C

Note that every pair of center-quads intersect (namely, at o), no two side-quads intersect,
and Tj intersects T ′i if and only if xi ∈ Sj . The area of the union of the center-quads is at
most 1, and the area of each side-quad is 2.

Let s be the size of an optimal set-cover for X and §. Let T ′ be a (1− ε
6 )-approximate

solution to the quad-connected-cover problem on the set {T1, . . . , Tm, T
′
1, . . . , T

′
n} with k =

n+ s. Observe that to maintain connectivity of the intersection graph of T ′, if a point xi
is covered by a side-quad of T ′, it must also be covered by some center-quad of T ′, as a
side-quad only intersects center-quads.

One possible solution consists of picking the s center-quads of the set-cover, and all
the n side-quads to get the total area of at least 2n; in particular, an optimal solution
has value at least 2n. Thus the area of the union of the quadrilaterals in T ′ is at least(
1− ε

6
)
·2n. This implies that T ′ leaves at most εn

6 elements of X uncovered by center-quads;
otherwise at least εn

6 + 1 side-quads are not picked, and so the area covered by T ′ can only
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be 1 + 2
(
n− εn

6 − 1
)
≤
(
1− ε

6
)
· 2n− 1. Thus, out of the n+ s quadrilaterals in T ′, at least

n − εn
6 side-quads are present, and at most (n+ s) −

(
n− εn

6
)

= s + εn
6 center-quads are

present. Thus one can pick arbitrarily one set for each uncovered point to construct a set
cover for X of size at most

(
s+ εn

6
)

+ εn
6 ≤ s+ 2ε

6 · 3s ≤ (1 + ε) · s, where the first inequality
follows from the fact that s ≥ n

3 . This completes the proof.
J

One can imagine that finding a more specific reduction from APX-hard geometric covering
problems in [18] for instance suggests that the problem quad-connected-cover remains
APX-hard even when the quadrilaterals are triangles with area arbitrarily close to one.
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A A simple PTAS when connectivity is not required

We explain here how to obtain a PTAS when connectivity is not required. Given a set X of
n unit-disks in the plane and an integer k, let us denote by OPT a subset S ⊆ X of size at
most k, that maximizes the value A(S). We prove that for any ε > 0, there exists a algorithm
that finds in time nOε(1) a set S of size at most k such that A(S) > (1− ε)A(OPT ).

The principle is the following. We start with a bounding box of size O(n)×O(n) that
contains all input disks and partition it into a set of squares of constant size ε−1 × ε−1

similarly as in Section 5.1. Then we remove all disks that intersect a line of the grid to get a
input X ′ where any two disks from distinct square can not overlap anymore . We can show
using the same shifting argument (see Claim 22) that there exists at least one position of the
grid, among O(n) possible choices such that A(OPT ∩X ′) > (1−O(ε))A(OPT ).

Now, we run a dynamic program to compute an solution of size at most k in X ′ that is
near-optimal. Let C1, . . . , Cn′ be the set of squares induced by the grid, arbitrarily ordered.
Notice that n′ = O(n2). Each DP-cell is described by two integers i 6 n′ and k′ 6 k. The
value A(i, k′) associated with a cell (i, k′) corresponds to the maximum area that can be
covered by a subset S ⊆ X ′ of size k′ that contains only disks from squares Cj with j 6 i

and such that |S ∩ Cj | 6 ε−3. We initialize A(i, 0) = A(0, k′) = 0 for all i, k′ and we have
A(i + 1, k′) = max

{
A(i, k′ − k′′) +A(S′′) | S′′ ⊆ X ′ ∩ Ci+1, |S′′| = k′′ 6 ε−3}. We output

the value A(n′, k), that can be computed in time O(n1/ε3 · n · k). The near-optimality of the
solution returned is guaranteed by following “structural” lemma.

I Lemma 30. Given an input (X, k), let OPT ⊆ X be at set of size k maximising the
area covered, and consider a grid chosen uniformly at random. Then, there exists a set
OPT ′ ⊆ OPT such that
1. no disks in OPT ′ intersect the grid
2. for all square C we have |OPT ′ ∩ C| 6 ε−3

3. with probability at least 1/3, we have A(OPT ′) > (1−O(ε))A(OPT )

https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1137/S0097539796309764
http://dx.doi.org/10.1137/S0097539796309764
http://arxiv.org/abs/1312.0378
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2458
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2458
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2458
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The proof is almost identical as the proof of Lemma 24. We show that if a set XC =
OPT ∩C of unit-disks lies into a square of size ε−1×ε−1, then there exists a subset X ′C ⊆ XC

of size at most ε−3 that covers an area A(X ′C) > (1− O(ε))A(XC). This set can even be
built using a simple greedy procedure : starting with X ′C = ∅, add in X ′C the unpicked disk
that maximises the uncovered area until |X ′C | > ε−3. At the end, any disk x ∈ XC \X ′C
can only increase the area by at most A(X ′C ∪ {x}) − A(X ′C) 6 ε−2/(π · ε−3) = O(ε). In
particular, any point of the plane covered by XC is at distance at most 1 + β from a point in
X ′C , where β = O(ε). It follows from Claim 25 that A(X ′C) > (1−O(ε))A(XC).

B An alternative proof of Theorem 5 with m-guillotine subdivisions

Let R = {R1, . . . , Rn} be a set of n connected regions in the plane. We assume that the
union

⋃
iRi of the regions is connected. Given a positive integer k, our goal is to compute

a subset R∗ ⊆ R of cardinality |R∗| ≤ k such that the union
⋃
Ri∈R∗ Ri is connected and

has maximum possible area. This problem is the Maximum Area Connected Subset (MACS)
problem.

We begin with the case in which R is a set of n unit-radius disks, specified by the set,
X ⊆ <2, of their center points. We let OPT(X, k) denote the area of an optimal solution of
MACS on the set of unit-radius disks centered at X.

In the MACS with augmentation problem, we allow a small number (at most εk) of
additional disks to be computed, which, together with the subset of disks chosen, yield a
connected union. We now provide a proof of the following theorem, which shows that the
MACS with augmentation, on a set of unit-radius disks, has a PTAS.

I Theorem 31. Let ε > 0 be fixed. Given a set X ⊆ <2 of points and a positive integer k,
there is a deterministic algorithm that computes, in time nO(ε−1), a subset S ⊆ X of size
at most k and a set Sadd ⊆ <2 of at most εk points, such that UDG(S ∪ Sadd) is connected,
and the area covered by the unit disks centered at S is at least (1− ε)OPT(X, k).

Let X∗ ⊆ X be an optimal (for MACS) subset of k = |X∗| centers of unit-radius
disks, the union of which is connected and of maximum possible area OPT(X, k). Let
Z = {(x, y) : x = i/2, y = j/2, for some integers i, j} be the set of points in the plane having
half-integral coordinates. Our algorithm will select augmentation disks centered at points
Sadd ⊂ Z.

Let Q = {Q1, . . . , Qk} be the set of k axis-aligned bounding squares of the unit-radius
disks centered at the points X∗. Let E be the set of 4k axis-parallel line segments (each of
length 2) that bound the squares Q. The union of the segments E is connected, since the
union of the (equal-size) squares Q is connected.

As we know from the standard m-guillotine structure theorem (Theorem 3.3 of [29]), the
edge set E can be made to be m-guillotine6, for any positive integer m, by the addition of
m-spans (horizontal/vertical line segments) whose total length is at most O(k/m); with the
appropriate choice of m = Θ(1/ε), the total length of all added m-spans is thus at most εk.
Further, the m-spans can be chosen to lie along horizontal/vertical cut lines that pass through
edges of squares in Q. (This follows immediately from the proof of the existence of a favorable
cut [29], using the fact that the edge set E is axis-parallel, yielding piecewise-constant cost
functions f and g.)

6 In Section B.2 we review the definition of m-guillotine from [29].
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First, if an m-span has length less than 2, then any square that the m-span intersects is
already among the squares that intersect the cut that are accounted for among the first m or
last m edges crossed by the cut. Thus, the total number of squares intersected by the cut is
at most 2m, and we can afford to ignore this short m-span, since our goal is to have O(m)
information specified across a partitioning cut. Thus, we can assume that all m-span bridges
are of length at least 2.

Now, associated with each (remaining) horizontal/vertical m-span segment, ab, we
define an m-span rectangle, which is axis-parallel, centered on ab, of width 2; i.e., if ab is
vertical, with a = (xa, ya) and b = (xb = xa, yb), the corresponding m-span rectangle is
[xa − 1, xa + 1] × [ya, yb]. It is readily seen that the m-span rectangle associated with ab
is covered by a set of O(|ab|) unit-radius disks with centers at half-integral points Z; thus,
the set of all m-span rectangles is covered by a set of O(εk) augmentation disks, centered
at points of Z. Refer to Figure 10. The purpose of the m-span rectangle is to allow us to
decouple the subproblems on each side of a cut: any unit-radius disk centered at a point of X
to the right of a vertical cut contributes nothing to the union of disks centered at points left
of the cut, unless it is one of the O(m) specified disks crossing the cut, since, if it crosses an
m-span segment on the cut, the m-span rectangle fully covers it, so that the augmentation
disks fully cover it as well.

a

b b

a

Figure 10 Left: A vertical cut, the m-span segment ab (for m = 5), and the associated m-span
rectangle. Right: The set of augmentation unit-radius disks centered at half-integral points of Z
within the m-span rectangle; the augmentation disks cover the m-span rectangle.

Let U be a finite set of unit-radius disks centered at points of X ∪ Z. We now define the
notion of the set U being “m-guillotine”. An axis-parallel cut line ` is m-good with respect to
the set U of unit-radius disks and an axis-aligned rectangle window W if (1) ` ∩W intersects
at most 3m disks of U that are centered at points of X; and (2) U includes all unit-radius
disks centered at points of Z that lie within the m-span rectangle associated with the m-span
of ` with respect to the edge set E of segments bounding the axis-aligned bounding squares
of unit-radius disks of U that are centered at points of X. An m-good cut has a succinct
specification of those disks of U that are intersected by the cut: O(m) disks of U centered at
points of X, together with a single m-span segment (rectangle), which specifies the set of all
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augmentation disks (centered at half-integral points Z) within U that intersect the cut.
We say that a set U of unit-radius disks centered at points of X ∪ Z satisfies the m-

guillotine property with respect to (axis-aligned) rectangle W if either (1) no disk of U lies
(completely) inside W ; or (2) there exists an axis-parallel cut line ` that is m-good with
respect to U and W , such that ` splits W into W1 and W2, and, recursively, U satisfies the
m-guillotine property with respect to W1 and with respect to W2. We say that U satisfies the
m-guillotine property if U satisfies the m-guillotine property with respect to the axis-aligned
bounding rectangle of U .

The following key structural lemma allows us to prove our main claim, since it shows
that an arbitrary set of input disks (e.g., the optimal set, centered at points X∗ ⊆ X) can
be converted to a covering set of disks that satisfies the m-guillotine property, with only a
small (factor (1 +O(1/m))) increase in the total number of disks.

I Lemma 32. For any positive integer m and finite set U of k unit-radius disks centered at
points of X, there exists a set U ′ of unit-radius disks centered at points of X ∪ Z such that
U ′ satisfies the m-guillotine property, the union of the disks U ′ covers the union of the disks
U , and |U ′| ≤ (1 +O(1/m))k.

Proof. As noted above, the standard m-guillotine structure theorem (Theorem 3.3 of [29])
implies that the edge set E, of edges bounding the bounding squares of the k unit-radius
disks U , can be made to be m-guillotine through the addition of m-spans (horizontal/vertical
line segments) whose total length is at most O(k/m).

Now, each recursive (axis-parallel) cut, within a rectangular window W , in the associated
m-guillotine hierarchy gives rise, potentially, to anm-span segment ab, which has an associated
m-span rectangle, which is covered completely by the O(|ab|) unit-radius augmentation disks
centered at half-integral points Z within the m-span rectangle (refer to Figure 10); these
augmentation disks are included in the set U ′. Any disk of U that lies interior to W and has
its bounding square crossed by the m-span segment ab must lie fully within the associated
m-span rectangle; thus, it is covered by the augmentation disks and is not included in the set
U ′. All other disks of U are included in U ′; thus, the union of disks in U ′ covers the union of
disks in U . Further, the cut now intersects at most O(m) disks of U ′, and the resulting set
U ′, consisting of a subset of disks of U and a set of O(k/m) augmentation disks, has the
m-guillotine property and has cardinality |U ′| ≤ (1 +O(1/m))k. J

To complete the proof of Theorem 31, we now provide a dynamic programming algorithm
to compute, for given positive integers k, k′, and m, and an input set of points X for which
UDG(X) is connected, a set U of unit-radius disks centered at points of X ∪ Z such that (i)
U satisfies the m-guillotine property, (ii) U has at most k disks centered at X and at most
k′ centered at points of Z, and (iii) the union of the disks of U has the maximum possible
area among all sets of disks satisfying (i) and (ii). The application of this algorithm, with
k′ = (1 +O(1/m))k, yields the claimed PTAS, since we know, by Lemma 32 applied to an
MACS-optimal set U of k disks, that, among the m-guillotine sets of disks over which the
dynamic program optimizes, there is such a set that includes a MACS-optimal set of k disks.

The dynamic program proceeds in much the same way that similar algorithms are used
to compute optimal m-guillotine subdivisions for TSP and other problems [29, 32, 5, 10, 11,
9, 2, 33, 12]. Subproblems will be specified by axis-aligned rectangles, W , the coordinates
of which come from the left/right/top/bottom coordinates of the n input disks; specifically,
we let x1 ≤ x2 ≤ · · · ≤ x2n and y1 ≤ y2 ≤ · · · ≤ y2n denotes the sorted coordinates. The
optimization of a subproblem is to select an axis-parallel cut, partitioning the rectangular
window into two, along with the O(m) data associated with the cut, including the O(m)
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unit-radius disks centered at points of X that intersect the cut, the connection requirements
(O(1), for fixed m) for the two new subproblems, and the defining coordinates of an m-span
rectangle (if any), which succinctly encodes the set of augmentation disks centered at half-
integral points of Z within the m-span rectangle. Overall, the approximation to the MACS
with augmentation will be given by the optimal solution of a subproblem associated with
a root rectangle, W0; there are only O(n4) possible choices of W0, and these include the
axis-aligned bounding box of an (exact) MACS-optimal set of k disks.

A subproblem is specified by a rectangle W ⊆ W0, with coordinates among the xi’s
and yj ’s, together with a specification of certain boundary information, B, that gives the
information necessary to describe how the solution inside W interfaces with the solution
outside of the window W . This information B includes the following:
(a) For each of the four sides of W , we specify at most 2m unit-radius disks, centered at

input points X, that intersect the side. Additionally, each side can have one “bridge”
(m-span) segment specified, which defines the associated m-span rectangle, with the
corresponding set of all unit-radius (augmentation) disks centered at points of Z that lie
within the rectangle. There are nO(m) choices for this information.

(b) We specify a required “connectivity constraint” within W . In particular, we indicate
which subsets of the O(m) boundary elements (disks centered at points of X, and clusters
of augmentation disks covering the at most four m-span rectangles on the boundary of
W ) are required to be connected within W . (If there are no boundary elements associated
with W (meaning that W = W0 is one of the choices of a root rectangle), then the
connectivity constraint is simply that all disks within W must have a connected union.)
Since the number of different partitions of the O(m) boundary elements is purely a
function of m, considered to be a constant, there are only a constant number of choices
of these connectivity constraints.

b

a

Figure 11 A subproblem in the dynamic program that optimizes over sets of disks that satisfy
the m-guillotine property.

Let f(W,B, k, k′) denote the value of a subproblem, the maximum area of W intersected
with the union of the disks in a set U of unit-radius disks that satisfy the following properties:
(a) U satisfied the m-guillotine property with respect to W ; (b) U consists of k unit-radius
disks centered at input points X and at most k′ unit-radius (augmentation) disks centered at
points of Z; and, (c) U satisfies the specified boundary information B, including the required
connectivity. In order to tabulate values of f , we build up the solutions bottom-up, as usual,
starting with subproblems that are trivial, and tabulating values corresponding to window
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W , defined by rectangle [xi, xi′ ]× [yj , yj′ ] with i < i′ and j < j′, in order of increasing values
of (i′ − i) and (j′ − j), with each choice of boundary information, k, and k′. The value
f(W,B, k, k′) is computed recursively:

f(W,B, k, k′) = max
ξ,Bξ
{f(W1,B1, k1, k

′
1) + f(W2,B2, k2, k

′
2)},

where ξ is an axis-parallel cut (at one of the discrete coordinates xi, yj), Bξ is the boundary
information across the cut ξ (including specification of kξ unit-radius disks, centered at points
of X, that cross ξ and (possibly) specification of an m-span rectangle that contains k′ξ half-
integral points of Z where augmentation disks are centered),W1 andW2 are the subrectangles
of W obtained when making cut ξ, B1 and B2 are boundary information consistent with B
and Bξ, k1 and k2 satisfy k = k1 + k2 + kξ, and k′1 and k′2 satisfy k′ = k′1 + k′2 + k′ξ.

The overall solution to the problem is given by f(W0,B0, k, k
′) for W0 chosen to be one

of the O(n4) possible root rectangles, B0 specifying no crossed disks or augmentation disks
for the boundary of W0 (so that all disks are interior to W0), k equal to the input parameter
of the MACS instance, k′ = ck/m for a fixed constant c, and connectivity specifying that
the union of all disks interior to W0 must be connected.

The number of subproblems is nO(m), and the evaluation of f(W,B, k, k′) for any one sub-
problem requires time nO(m) to optimize over all choices of cuts and boundary specifications.
Thus, the overall running time is nO(m), which is nO(1/ε), with the choice of m = O(1/ε).

B.1 Extensions
B.1.1 Cases in Which No Augmentation Is Needed
In the case of regions R that are unit-radius disks, we used augmentation disks (centered at
points of Z within an m-span rectangle) in order to decouple the subproblems on each side
of a cut, doing so with a specification of O(1) information (the coordinates of the rectangle).
We were able to afford to add the augmentation disks, staying within O(k/m) = O(εk) such
disks, because the total length of all m-span segments ab needed to convert the edge set of
an arbitrary set of k bounding squares to be m-guillotine is only O(k/m), implying that
only O(k/m) augmentation disks are needed to make any connected set of disks satisfy the
m-guillotine property.

If the set of input unit-radius disks is such that for any potential m-span segment ab there
is a path in the UDG(X) from a to b of length at most O(|ab|), then a shortest path from a

to b within the UDG(X) can serve to decouple the subproblems across a cut, in place of the
augmentation disks within an m-span rectangle. This property is implied by the assumption
that X is “α-well-distributed”, for a fixed α [30].

B.1.2 More General Regions
For a given set R = {R1, . . . , Rn} of n connected regions in the plane, with a connected
union

⋃
iRi, we now assume that each region Ri has an axis-aligned bounding box, BB(Ri),

whose aspect ratio is at most ρ; i.e., the ratio of the length of the longer side of BB(Ri) to
the length of the shorter side of BB(Ri) is at most ρ. Further, we assume that the sizes of
the regions Ri are all about the same, within a constant factor; more precisely, we assume
that the ratio diam(Ri)/diam(Rj) is bounded by a constant.

Then, if we allow at most (εk) augmentation disks of size Θ(maxi diam(Ri)), then
the PTAS we described for regions that are unit-radius disks generalizes immediately
to this case. In particular, the set E of edges of bounding boxes of the regions Ri can
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be made to be m-guillotine with the addition of m-span segments of lengths totalling
O((1/m)

∑
i diam(Ri)) = O((k/m) maxi diam(Ri)). Each of the m-span segments ab yields

an m-span rectangle, of width maxi diam(Ri), centered on it, which can be covered by
O(|ab|/maxi diam(Ri)) augmentation disks of size maxi diam(Ri). Thus, using only O(εk)
augmentation disks, an optimal set of regions, with area-maximizing connected union, can
be made to have an m-guillotine property. The rest of the dynamic programming algorithm
goes through to optimize the area of a set of regions whose union is connected.

B.2 useful definitions and facts
We review some definitions and facts from [29]. Let G be an embedding of a planar graph,
and let L denote the total Euclidean length of its edges, E. We can assume (without loss of
generality) that G is restricted to the unit square, B (i.e., E ⊂ int(B)).

Consider an axis-aligned rectangle W (a window) with W ⊆ B and with corners at
grid points within the N -by-N grid centered on a vertex c0 (for one choice of possible c0).
Rectangle W will correspond to a subproblem in a dynamic programming algorithm. Let `
be an axis-parallel line, through grid points, intersecting W . We refer to ` as a cut for W .
We will refer to a root window, W0, which is a window that is hypothesized to be the minimal
enclosing bounding box of an optimal solution (e.g., of the disks in an optimal solution to
MACS). All windows W of interest will then be subwindows of W0. Clearly, there are only a
polynomial number (O(n4)) of possible choices for W0; we can afford to try each one.

The intersection, `∩ (E ∩ int(W )), of a cut ` with E ∩ int(W ) (the restriction of E to the
window W ) consists of a (possibly empty) set of subsegments (possibly singleton points) of `.
Let ξ be the number of endpoints of such subsegments along `, and let the points be denoted
by p1, . . . , pξ, in order along `. For a positive integer m, we define the m-span, σm(`), of `
(with respect to W ) as follows. If ξ ≤ 2(m− 1), then σm(`) = ∅; otherwise, σm(`) is defined
to be the (possibly zero-length) line segment, pmpξ−m+1, joining the mth endpoint, pm, with
the mth-from-the-last endpoints, pξ−m+1. Line ` is an m-good cut with respect to W and E
if σm(`) ⊆ E. (In particular, if ξ ≤ 2(m− 1), then ` is trivially an m-good cut.)

We now say that E satisfies the m-guillotine property with respect to window W if either
(1) no edge of E lies (completely) interior to W ; or (2) there exists a cut `, that is m-good
with respect to W and E, such that ` splits W into W1 and W2, and, recursively, E satisfies
the m-guillotine property with respect to both W1 and W2.

We say that a point p ∈W is m-dark with respect to horizontal cuts of W if the vertical
rays going upwards/downwards from p each cross at least m edges of E before reaching the
boundary of W . As in [29], the length of the m-dark portion of a cut is the “chargeable”
length of the cut that is chargeable to the lengths of the m layers of E on each side of the
cut that become “exposed” after the cut.

Given an edge set E of a connected planar graph G, if E is not already satisfying the
m-guillotine property with respect to W0, then the following lemma of [29] (reproduced
here for completeness) shows that there exists a “favorable cut” for which we can afford to
charge off (to the edges of E) the construction of any m-span that must be added to E in
order to make the cut m-good with respect to W and E. A cut ` is said to be favorable if
its chargeable length (i.e., length of its m-dark portion) is at least as large as the cost of `
(|σm(`)|).

I Lemma 33. [from [29]] For any G and any window W , there is a favorable cut.

We show that there must be a favorable cut that is either horizontal or vertical.
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Let f(x) denote the “cost” of the vertical line, `x, through x, where “cost” means the
sum of the lengths of the m-span; thus, f(x) = |σm(`x)|.

Then, Ax =
∫ 1

0 f(x)dx is simply the area, A(m)
x =

∫ 1
0 |σm(`x)|dx, of the (x-monotone)

region R(m)
x of points of B that are m-dark with respect to horizontal cuts. Similarly, define

g(y) to be the cost of the horizontal line through y, and let Ay =
∫ 1

0 g(y)dy.
Assume, without loss of generality, that Ax ≥ Ay. We claim that there exists a horizontal

favorable cut; i.e., we claim that there exists a horizontal cut, `, such that its chargeable
length (i.e., length of its m-dark portion) is at least as large as the cost of ` (|σm(`)|).
To see this, note that Ax can be computed by switching the order of integration, “slicing”
horizontally, rather than vertically; i.e., Ax =

∫ 1
0 h(y) where h(y) is the chargeable length of

the horizontal line through y. Thus, since Ax ≥ Ay, we get that
∫ 1

0 h(y)dy ≥
∫ 1

0 g(y)dy ≥ 0.
Thus, it cannot be that for all values of y ∈ [0, 1], h(y) < g(y), so there exists a y = y∗ for
which h(y∗) ≥ g(y∗). The horizontal line through this y∗ is a cut satisfying the claim of the
lemma. (If, instead, we had Ax ≤ Ay, then we would get a vertical cut satisfying the claim.)

The charging scheme assigns a charge to the edges of E of total amount equal to (roughly)
1/mth of the length of E. We therefore have shown the following structure theorem:

I Theorem 34. Let G be an embedded connected planar graph, with edge set E consisting
of line segments of total length L. Let R be a set of disjoint fat regions and assume that
E ∩ Pi 6= ∅ for every Pi ∈ R. Let W0 be the axis-aligned bounding box of E. Then, for any
positive integers m and M , there exists an edge set E′ ⊇ E that obeys the (m,M)-guillotine
property with respect to window W0 and regions RW0 and for which the length of E′ is at
most L+O( 1

m )L+O( 1
M )λ(RW0), where λ(RW0) is the sum of the diameters of the regions

RW0 .
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