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1 Introduction

I did an internship of two months in the Discrete Mathematics and theoretical Computer Science
laboratory (DMTCS) at the university of Cape Town in South Africa, with Prof David Erwin, a
researcher mainly specialized in Graph Theory. This is a field of mathematics that I didn’t really
know before and I wanted to discover new areas mixing mathematics and computer science. I think
that graph theory was a perfect candidate. Since I didn’t know this theory I spent the first weeks in
discovering the basics of this area. I read among others books the lectures notes for master students
which were written by David Erwin. In particaular I was interested in problems linked to graph coloring
and graph labelling.

1.1 The chromatic number

The easiest way to color a graph is to color every vertices with a color (red, blue, green, . . . ) such that
two adjacent vertices have not the same color. The first questions are :

• Given a graph and a set of colors, is it possible to color all vertices of the graph with that colors
respecting the rule above ?

• Given a graph, what is the minimum number of color one has to choose to color the graph
properly ?

The minimum number of color needed to color a given graph G is called his chromatic number, and
it’s denoted by χ(G). It’s very easy to understand this problem, but in some cases, it’s very difficult to
give an answer. Indeed, to find the chromatic number of a arbitrary graph is an NP -complete problem
[4]. Also, it took more than one hundred years to prove the famous Four colors theorem, recently
proved with the help of computers, which tells us that it’s always possible to color an arbitrary planar
graph with only four colors.

1.2 The game chromatic number

Imagine now that we add a competitive aspect in graph coloring. Imagine a game in which two players,
say Alice and Bob choose a graph G and a set of colors X, and they color turn by turn an uncolored
vertex with a color in X such that none of the its colored neighbors is colored with the same color.
Alice wins the if every vertices is finally colored, and at the contrary, Bob wins if one of the player
is reached in an impasse, i.e. if during the game, there exists an uncolored vertex such that for any
colors in X, it has at least one neighbor colored with this color.

Given a graph G, its game chromatic number denoted by χg(G) is the minimum number m of
colors such that Alice has a winning strategy playing on G with a set of m colors.

The game chromatic number of a set of graphs is the highest game chromatic numbers of the graphs
of this set.

χg(S) = max
G∈S

χg(G)

The game chromatic number was first introduced by Bodlaender in [1]. It’s proved in [3] that the
game chromatic number of trees is 4. For the family of planar graphs, it is very difficult to find its
exact value, and it’s not determined yet. The best upper bound that we have is χg(P) ≤ 17 where P
is the family of planar graphs [11].

The first part of my work was to study the different strategies to find a good upper bound of the
game chromatic number of the family of planar graphs and of its sub-family, the outerplanar graphs.
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1.3 The marking game

It’s good to introduce an other game called the marking game, which was used for the first time in [3]
and was formally introduced in [10] to study the game chromatic number.

Suppose G = (V,E) a graph. In this game where Alice plays first, Alice and Bob play turn by turn
by marking an unmarked vertex. The game ends when all vertices are marked. For each vertex v, let
s(v) denote the number of vertices that are marked before v. The score of the game is 1+maxv∈V s(v).
Alice’s goal is to minimize the score and at the contraty, Bob try to maximize it.

• The game coloring number is the minimum number m such that Alice has a strategy to get a
score equal to m. The game coloring number of a graph G is denoted by colg(G).

• The game coloring number of a family of graphs is the highest game chromatic numbers of the
graphs of this set.

It’s easy to see that χg(G) ≤ colg(G) for any graph G. Indeed, if Alice has a strategy to get a score
equal to m, then by coloring the vertices in the same order with a feasible color, it’s impossible that
a uncolored vertex has more than m − 1 colored vertices, and then it’s always possible to color this
vertex with one of the m colors.

Rem. This game is easier that the chromatic game to study because, we only deal with the order
to mark the vertices and not the colors to use. The previous inequality allows us to find upper bounds
of the game chromatic number.

The best bound ever found of the game coloring number of planar graph family are 11 ≤ χg(P) ≤ 17
thanks to [11, 9], where P denotes the family of planar graphs.

Definition. An outerplanar graph is a planar graph in which every vertex belongs to the infinite face.

Now, the problem of the game coloring number of outerplanar graphs has been settled since Guan
and Zhu [6] proved that colg(O) ≤ 7 (where O denotes the family of outerplanar graphs), and Kierstead
and Yang [8] found an outerplanar graph with an game coloring number equal to 7.

Definition. A line graph is a outerplanar graph for which any face (except the infinite face) has at
most two inner-edges, and it’s denoted by L.

Rem. I chose the name line because its dual graph (after removing the vertex corresponding to the
infinite face) is a path. I was studying these graphs because it seemed to be possible to make a planar
graph or an outerplanar graph as a special union of some line graphs. And then, it would have been pos-
sible to apply an strategy on every different line graphs to get a new upper bound for the planar graphs.

Prop. χg(L) ≤ 6

Proof. We use the following result proved by Guan and Zhu in [6].

Lemma. Suppose G = (V,E) is a graph and E = E1 ∪E2. Let G1 = (V,E1) and G2 = (V,E2). If
∆(G1) = d and colg(G2) ≤ k, then colg(G) ≤ k + d.

The strategy for Alice is simple. She applies the strategy that she would use on the sub-graph G2

that guarantees a score lower than or equal to k. At every move, an unmarked vertex has at most d
neighbors already colored in G1. Since E = E1 ∪ E2, the final score is lower than or equal to k + d.

In [6], they show an algorithm to built a spanning sub-tree of any planar graph. Then for an
outerplanar graph, the resulting graph G2 is a tree and ∆(G1) ≤ 3. If we use exactly the same
algorithm with a line graph, we easily see that G1 is an union of paths, and then ∆(G1) ≤ 2. Since
the game coloring number of trees is 4 (see [3]), we have colg(L) ≤ 6.
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2 Game labelling number

Given a graph G = (V,E), we call L(2, 1)-labelling of G a function f : V (G) → N such that if two
vertices u and v are adjacent then |f(u) − f(v)| ≥ 2 and if the distance between u and v is 2 then
f(u) 6= f(v).

The L(1, 2)-labelling number of G denoted λ(G) is the minimum number m such that there exists
a L(1, 2)-labelling f of G, where f(v) ≤ m,∀v ∈ V .

The L(2, 1)-labelling was first introduced in [5] in which Griggs and Yeh show some properties of
this number and calculate it for some families like the families of paths, cycles, tree and completes
graphs.

David Erwin told me about this labelling number and advised me to see what we would find if
Alice and Bob would play with the rules given by the labelling number instead of the ones given by
the chromatic number. Then, taking example on the game chromatic number which is made from the
chromatic number, we can also define a game L(2, 1)-labelling number from the labelling number.

Given a graph G = (V,E) and m ∈ N, consider the following two-person game which is played
on G. Alice (player 1) and Bob (player 2) play turn by turn by assigning a label l ∈ {0, . . . ,m} to
an unlabelled vertex v such that if v has a neighbor labelled with l′ then |l − l′| ≥ 2 and if there a
vertex at distance 2 from v which is labelled with l′′ then l 6= l′′. Alice wins the game if after |V |
moves, every vertices are labelled properly and Bob wins if an impasse is reached during the game.
The game L(2, 1)-labelling number is the minimum number m for which Alice has a winning strategy.

Since the parameters (2, 1) are constant in this paper, we will simply call it game labelling number and
it’s denoted by λg(G).

Rem. I heard after writing this article that this game had been already introduced by Chia, Hsu,
Kuo, Liaw and Xu in [2]. They give the more general definition which is the game L(d, 1)-labelling
number, and they calculate this number for the family of complete graphs.

In this paper, I calculate the game labelling number for the family of paths, cycles and complete
graphs with a different proof that the one the reader would find in [2]. I also present a upper bound
for the family of trees and outerplanar graphs.

2.1 Preliminary

Theorem 1. For any graph G with maximum degree ∆,

∆ + 1 ≤ λ(G) ≤ λg(G) ≤ ∆2 + 2∆

We define the weight of an unlabelled vertex as the number of labels with which this vertex can’t
be labelled. One can interpret the game labelling number as the maximum number m for which Bob
can find a strategy to create a unlabelled vertex with weight equal to m.

Proof. First, it’s easy to see that λ(G) ≤ λg(G). Indeed by playing the game, Alice and Bob make a
labelling f ′ and

λg(G) = max
v∈V (G)

f ′(v) ≥ min
f : labelling

(
max
v∈V (G)

f(v) = λ(G)
)

Let’s prove now that λg(G) ≤ ∆2 + 2∆. An unlabelled vertex v has at most ∆ neighbors (at distance
1) and there are at most ∆(∆−1) vertices at distance 2 from v. Every neighbors increase the weight by
v by at most 3 and every vertices at distance 2 increase the weight by at most 1. Then the maximum
weight of v is 3∆ + 1∆(∆− 1) = ∆2 + 2∆. Thus, λg(G) ≤ ∆2 + 2∆.
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2.2 Paths and cycles

Griggs and Yeh proved in [5] that the L(2, 1)-labelling number of the path on n vertices is 4 when
n ≥ 5, and the L(2, 1)-labelling number of the cycle on n vertices is 4 for any n. We now calculate the
game labelling number for the both families.

Let Pn be the path on n vertices and Cn be the cycle on n vertices. If we apply the previous
theorem to the family of paths and cycles for which ∆ = 2, we obtain the upper bound λg(Pn) ≤ 8
and λg(Cn) ≤ 8, for any n. Nonetheless, we can find a better upper bound.

Lemma. For any n, λg(Pn) ≤ 7 and λg(Cn) ≤ 7.

Proof. We will prove this result for paths but the proof for cycles is exactly the same.
To facilitate the proof, vertices of Pn are represented by v1, v2, . . . , vn corresponding to the order

naturally induced by the path, and if a vertex vi is labelled then its label is denoted by ci. For cycles,
Alice has to decide arbitrarily the vertex v1 and the direction of the cycle. We’ll present the strategy
for Alice to complete the game such that any unlabelled vertex during the game has weight strictly
lower than 8. Note that by Theorem 1, λg(Pn) ≤ 8. That means that if a vertex vi has weight equal
to 8 then the neighbors vi−2, vi−1, vi+1 and vi+2 are all labelled, and their labels respect the following
properties :

1. |ci−1 − ci+1| ≥ 3

2. |ci±2 − ci±1| ≥ 2

3. ci−2 6= ci+2

Since the labels belong to [0, 7], one can check that the only possibles quadruplets are :

(ci−2, ci−1, ci+1, ci+2) = (6, 1, 4, 7) or (7, 1, 4, 6) or (3, 1, 5, 7) or (7, 1, 5, 3)

or (3, 1, 6, 4) or (4, 1, 6, 3) or (0, 2, 5, 7) or (7, 2, 5, 0)

or (0, 2, 6, 4) or (4, 2, 6, 0) or (0, 3, 6, 1) or (1, 3, 6, 0)

We will designate by wrong couple, a couple cc′ of labels such that if the vertices vi and vi+1 are
respectively labelled by c and c′, then the weight of vi−1 and vi+2 will always be strictly lower than 8
whatever the situation of the game. By seeing the above list of quadruplets, we can make the list of
wrong couples :

{04, 07, 15, 25, 26, 37, 40, 52, 51, 62, 70, 73}

Note that if the couple ab is wrong couple then ba is a also a wrong couple.

Observation 1. For any label c, there exists at least one label c′ such that cc′ (or c′c) is a wrong
couple.

Note also that for these couples, the two vertices don’t have the same role. Indeed, one is the direct
neighbor and the other is the vertex at distance 2. Then we call wrong directed couple the couple cc′

such that if the vertices vi and vi+1 are respectively labelled by c and c′, then the weight of vi+2 will
always be strictly lower than 8, whatever the situation of the game. There’s the list of wrong directed
couples :

{04, 07|14, 15, 17|20, 24, 25, 26, 27|30, 37|40, 47|50, 51, 52, 53, 57|60, 62, 63|70, 73}

Note that if cc′ is a wrong directed, then c′c is not necessarily a wrong directed couple (example : 47).
Plus, if c′c is a wrong directed couple as well then this is a wrong couple.

Observation 1’. For any label c, there exists at least two labels c′ such that cc′ is a wrong directed
couple.
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We now describe the strategy for Alice such the two following observations are true at any time
during the game.

Observation 2. After any Alice’s move, every labelled vertex has at least one neighbor labelled, except
one of the two end-vertices which can have no labelled neighbors.

Observation 3. Suppose that vi and vi+1 are labelled.
1. If the three vertices vi+2, vi+3 and vi+4 (resp. vi−1, vi−2 and vi−3) are unlabelled then cici+1 (resp.

ci+1ci) is a wrong directed couple.

2. If the two vertices vi+2, vi+3 (resp. vi−1, vi−2) are unlabelled and vi+4 (resp. vi−3) is labelled then
it’s not possible to label vi+3 (resp. vi−2) such that vi+2 (resp. vi−1) get a weight equal to 8.

Alice plays her first move by labelling v1 with label 0. Observation 2 and observation 3 are true
after this first move.

Now, suppose that after several steps, Bob labels the vertex vi with label ci. We also suppose that
observation 2 and observation 3 are true just before Bob’s move.

Case 1 : Two neighbors unlabelled. Suppose that vi−1 and vi+1 are unlabelled.

1.1 : vi−2 and vi+2 are labelled. In this case, because of observation 2 and observation 3.1,
ci−3ci−2 and ci+3ci+2 are wrong directed couples, then vi±1 can’t pretend to get weight
equal to 8. Thus, Alice can pick up vi−1 with one of the 8 labels.

1.2 : vi−2 and vi+3 are labelled and vi+2 is unlabelled. Alice can pick up vi+1 with one of
the 8 labels. Because of observation 2 and observation 3.1, ci−3ci−2 and ci+4ci+3 are wrong
directed couples, then vi−1 and vi+2 can’t pretend to get weight equal to 8.

1.2’ : vi−3 and vi+2 are labelled and vi−2 is unlabelled. Same case than 1.2 because of the
symmetry of the path.

1.3 : vi±2 are unlabelled and vi±3 are labelled. ci+4ci+3 is a wrong oriented couple by hy-
pothesis, then whatever the label Alice chooses to label vi+1, the weight of vi+2 will be
strictly lower than 8. If there exist at least two labels (say a and b) such that aci and bci are
a wrong directed couple then Alice can choose ci+1 = a or ci+1 = b depending on whether
ci+3 is equal to a or b. The only labels c for which there exist an unique c′ such that c′c is
a wrong directed couple are 1 and 6 (such that c′ = 5 and c′ = 2 respectively). These two
cases are symmetric actually because of the symmetry of labels (6 = 7 − 1), then we are
going to study only the case where ci = 1 and ci+3 = 5.

In this case it’s not possible to label vi+1 with label 5, and then Alice’s going to create
a “well directed couple”. If ci−3 6= 5 then Alice labels vi+1 with label ci−3 and otherwise
she can choose any feasible label to label vi+1. One can check that vi−1 can’t get a weight
strictly greater than 7.

Finally, the vertex vi−2 is not dangerous for Alice because ci−4ci−3 is a wrong directed
couple by assumption.

1.4 : vi+1, vi+2 and vi+3 are unlabelled. Because of observation it’s possible to choose a label
ci+1 for vi+1 such that cici+1 is a wrong couple.

1.4 : vi−1, vi−2 and vi−3 are unlabelled. Same case than 1.4 because of the symmetry of the
path.
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Case 2 : One neighbor labelled. Because of the symmetry, we will only consider the case where
vi−1 is labelled and vi+1 is unlabelled.

2.1 : vi+2 is labelled. Observation 3.2 permits to conclude that the weight of vi+1 doesn’t
exceed 7. Thus, Alice can choose one of the eight labels to label this vertex.

2.2 : vi+2 is unlabelled and vi+3 is labelled. While observation 3.1 is true just before Bob’s
move, ci+4ci+3 is a wrong directed couple, then Alice can label vi+1 with any feasible label.

2.3 : vi+2 and vi+3 are unlabelled. Because of observation 1’, Alice can find a label ci+1 such
that cici+1 is a wrong directed couple.

Case 3 : Both neighbors are labelled. Since observation 2 is true just before Bob’s move, vi±2 are
both labelled and then Bob’s move has changed nothing for the rest of the game. Thus Alice can
pick up any vertex, choosing by example to label the smaller unlabelled vertex, and she decides
the label by seeing case 2.

We can see that in any case, observations 2 and 3 are still true after Alice’s move. Thus, for any
n, λg(Pn) ≤ 7.

Theorem 2. Let Pn be the path on n vertices.
1. λg(P2) = 2. λg(P3) = 3. λg(P4) = 6. λg(P5) = 6.
2. λg(Pn) = 7, ∀n ≥ 6.

Proof. 1. For n ≤ 5, it’s easy to calculate the corresponding game labelling number by programming
the min-max algorithm. I wrote a program in OCaml (the reader could find a simplified version
in annex) to calculate the game labelling number for small values of n (n ≤ 6). Alice’s first move
is always to label v2 with label 0.

2. By using the previous lemma, we can already say that λg(Pn) ≤ 7 for all n ≥ 6. By programming
the algorithm of min-max (annex) we can see that with maximum label equal to 6, Bob has a
winning strategy for P6, and since P6 is a subpath of Pn for all n ≥ 6, Bob has also a winning
strategy on Pn with maximum label equal to 6. Thus λg(Pn) = 7 for any n ≥ 6.

Rem. Note that for the family of paths, the game labelling number is strictly greater than the
labelling number since Griggs and Yeh [5] have proved that λ(Pn) = 4 for n ≥ 5.

Theorem 3. Let Cn be the cycle on n vertices.
1. λg(C3) = 4.
2. λg(Cn) = 7, ∀n ≥ 4.

Proof. 1. We have λg(C3) ≥ λ(C3) = 4. If Alice picks a vertex up with the label 2 then, because of
the symmetry of the graph and the symmetry of the labels (we are only interested in the distance
between labels), any Bob’s move is actually the same, then let imagine for example that he labels
one of the two unlabelled vertices with 0, then Alice can label the last vertex with label 4. Thus
Alice has a winning strategy with maximum label equal to 4, so λg(C3) ≤ 4.

2. By the lemma we know that λg(Cn) ≤ 7 for all n ≥ 4. By programming the min-max algorithm
(annex) we can see that Bob has a winning strategy with 7 labels for Cn, 4 ≤ n ≤ 6, then
λg(Cn) = 7 for 4 ≤ n ≤ 6. Finally, P6 is a subgraph of Cn for n ≥ 7 then λg(Cn) ≥ λg(P6) = 7.
Thus, for any n ≥ 4, λg(Cn) = 7.
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2.3 Trees and forests

We now look at the game labelling number of the family of trees with maximal degree ∆. If ∆ is equal
to 1, this kind of tree are simply paths and then refer to previous section.

Theorem 4. Let T a tree with maximal degree ∆ ≥ 2. Then λg(T ) ≤ ∆ + 10.

Proof. We will give a strategy for Alice such that at every step of the game, any unlabelled vertex has
a weight at most equal to ∆ + 10.

For her first move, Alice chooses and label an arbitrary vertex v0, and creates a set of vertices T ′

with initially, T ′ := {v0}. Now, suppose that Bob has just moved by labelling vertex v. Then,

1. If v ∈ T ′ then, Alice labels an arbitrary unlabelled vertex in T ′, and if every vertices of T ′ are
labelled, then Alice labels an vertex w adjacent to T ′, and updates T ′ := T ′ ∪ {w}.

2. Otherwise, let P be the unique path between v0 and v. And let v1 be the last vertex P has in
common with T ′.

(a) If v1 is unlabelled then Alice moves by labelling this vertex with a feasible label.

(b) Otherwise, let v2 be the adjacent vertex of v1 in P (different that v). Then,

i. If v2 is unlabelled, then Alice labels this vertex with a feasible label.
ii. Else, if v2 is labelled then Alice labels an arbitrary unlabelled vertex in T ′, and if

all vertices of T ′ are labelled, then Alice labels a vertex adjacent to T ′, and updates
T ′ := T ′ ∪ {w}.

Alice updates T ′ := T ′ ∪ P .

After any Bob’s moves, an unlabelled vertex v has :

• A degree at most 3 in T ′ (2. (a)) and since every labelled vertices in T are in T ′, v has at most
3 adjacent vertices labelled. The vertices at distance 1 contribute to increase the weight of an
unlabelled vertex at most by 3 ∗ 3 = 9.

• At most 3 “grandchildren” (i.e vertices w such that d(v, w) = 2 and d(v0, w) > d(v0, v)) in T ′ and
then at most 3 labelled “grand-sons”. If v has exactly 3 labelled “grandchildren” then for the next
move Alice labels v (2. (b) i.) and then when it’s just been labelled, v has at most 2 adjacent
vertices labelled. Since, the vertices at distance 2 add 1 of the weight, the weight is increased at
most by max(3 ∗ 3 + 2 ∗ 1, 3 ∗ 2 + 3 ∗ 1) = 11.

• At most 1 “grandfather” (i.e. a vertex w such that d(w, v) = 2 and d(v0, w) < d(v0, v)) and ∆−2
“brothers” (i.e. vertices w such that d(w, v) = 2 and d(v0, w) = d(v0, v)). Then, all of them
increase the weight at most by ∆− 1.

The weight of v is finally increased at most by 11 + (∆− 1) = ∆ + 10. Thus λg(T ) ≤ ∆ + 10.

Rem. This strategy is inspired by the proof used by Faigle, Kern, Kierstead, and Trotter [3] to
prove that the game chromatic number of the family of trees is lower than 4.

Rem. For some graphs, Bob can find a strategy such that if Alice respects the strategy described
above, then they have to choose a maximal label equal to ∆ + 10. That means that λg ≤ ∆ + 10 is
the tightest bound Alice can hope with this strategy.

Corollary. Let F be a forest with maximal degree ∆, then λg(F ) ≤ ∆ + 10.

Proof. If Bob plays first, Alice can still apply her strategy. Since Alice first move in the algorithm
described above is chosen arbitrarily, then Alice has just to consider that she played first where Bob
has just moved, and picks up a adjacent vertex of the first one. After the two first moves, Alice applies
the same strategy on every trees.
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2.4 Outerplanar graphs

The strategy used by Alice on outerplanar graphs is almost the same than the one used for trees.
Indeed, we first show how to make a particular spanning tree and then we use the strategy for trees
on this spanning tree. We finally try to find the tightest bound of the game labelling number by
calculating the maximal weight possible for an arbitrary vertex.

The following lemma explains that we can color the edge of an connected outerplanar graph with
two colors (Blue and Red, for example) such that the “blue-subgraph” is a spanning tree and the
“red-subgraph” has maximal degree lower than or equal to 3.

Lemma. Let O = (V,E) be an outerplanar graph. Then there exist two graphs GB = (V,EB) and
GR = (V,ER) such that :

• For any e ∈ E, e ∈ EB or e ∈ ER.

• GB is a tree.

• For any v ∈ V there exist w ∈ V such that vw ∈ EB (EB is a spanning tree)

• ∆(GR) ≤ 3

Rem. This structure is used on by Guan and Zhu in [7] to calculate the game chromatic number
of outerplanar graphs.

We explain here how to color edges in O such that we get two sub-graphs respecting the properties
above. We will do that by choosing an order on vertices.

Let v1 and v2 be two arbitrary vertices in O such that v1 is adjacent to v2 and v1v2 belongs to the
infinite face. Then pick up this edge with color blue, i.e. EB := {v1v2}. We also initiate ER := ∅.

Suppose now that we have already colored the edges of the subgraph generated by vertices v1, . . . , vk,
for k ≥ 2 (i.e. < v1, . . . , vk >= EB ∪ER). Let vi (i ≤ k) be a vertex with at least one adjacent vertex
w which is not in {v1, . . . , vk}.

• If vi has an adjacent vertex vj ∈ {v1, . . . , vk} such that vi,vj and w belong to the same inner face in
O and vj and w are adjacent in O then color the edge viw with color blue (i.e. EB := EB∪{viw})
(resp. red) and the edge vjw with color red (resp. blue) if i < j (resp. j < i). Finally, let vk+1

be the vertex w.

• Otherwise, color the edge viw with color blue and create vk+1 := w.

At the end, we get two sub-graphs GB and GR respecting the properties of the lemma. For more
details, the reader can find the proof of that result in [7].

Rem. This algorithm also gives us an order on vertices. We will say that v < w if v was in
GB ∪GR before w.

Theorem 5. Let O be an outerplanar graph with maximal degree ∆ ≥ 6. Then, λg(O) ≤ 20 + 4∆.

Proof. In the proof, v is called a blue-neighbor of w if vw ∈ GB and a red-neighbor of w is vw ∈ GR.
Alice has to use the strategy described for trees on the spanning tree (the blue subgraph GB) given

by the previous lemma. She considers that the root is the vertex v1 used in the proof of the lemma.
Note that v1 can be chosen arbitrarily, and then we get the same result if Bob begins, because it’s
always possible to choose v2 such that v1v2 belongs to the infinite face.
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Figure 1: An arbitrary vertex w Figure 2: An arbitrary blue-neighbor ui

Let w be a arbitrary vertex. The picture on the left shows an arbitrary vertex with exactly three
red-neighbors. In that picture r,r′ < w, and then in the process, w was created from r and r′. All
others vertices on the diagram were created after w.

We now count the contribution of the different neighbors and vertices at distance 2 in the total
weight of w :

+9 : If Alice applies the strategy used for trees, w has at most 3 labelled neighbors in GB and all of
them increase the weight by 3 · 3 = 9.

+9 : According to the lemma, w has at most 3 labelled neighbors in GR and all of them increase the
weight by 3 · 3 = 9.

+3 · (∆− 1) : Each of the three red-neighbors (v,r′ and v′) can have ∆ − 1 neighbors different than
w, these vertices at distance 2 from w contribute to increase its weight by 3 · (∆− 1).

+∆− 1 : In the algorithm for trees, it’s not possible to limit the number of labelled neighbors of the
“father” of an arbitrary vertex, and then r can have in the worst case ∆ − 1 labelled neighbors
(we count the red-neighbors and the blue-neighbors at the same time) when w has just been
labelled.

+2 : According to the algorithm for trees, there are at most two blue-neighbors of a labelled blue-
neighbor ui.

+4 : The most difficult is to count the weight brought by red-neighbors of blue-neighbors ({ui, 1 ≤
i ≤ k} and {ui, 1 ≤ i ≤ k}) of w.
The figure on the right shows the diagram of a arbitrary blue-neighbor ui of w, for i ∈ {1, . . . , k}.
ui has at most three red-neighbors d1i , d

2
i and d

3
i . It’s easy to see that d1i and d

2
i belong to a path

from ui−1 which doesn’t contain w, and d3i belongs to a path from ui+1 which doesn’t contain w
neither.

Suppose ui labelled, and i ≥ 2. If Bob labels di1, d2i or d3i , then just after this move, Alice labels
w according to the algorithm for trees. But the vertex labelled just before w is a blue-neighbor
of w different than ui. Then a blue-neighbor uj or u′j can have some red-neighbors only if j = 1.
In this case, there are at most 4 vertices possibly labelled which are d11, d21, d′11 and d′21 where d′1i
and d′2i are made by symmetry from the right diagram.

In final, the weight of w is at most 9+9+3·(∆−1)+∆−1+2+4 = 4∆+20. Thus, λg(O) ≤ 20+4∆.
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2.5 Complete graphs

It’s easy to see that the labelling number of the complete graph on n vertices Kn is 2(n − 1), by
labelling the vertices with even labels 0,2,. . . ,2n− 2. Then a strategy for Bob to increase the number
of labels would be to label a vertex with an odd label. The following theorem gives the exacts game
labelling number depending on the rest of division of n by 3.

Theorem 6. Let Kn be the complete graph with n vertices.

• If n = 3m then λg(Kn) = 7m− 3

• If n = 3m+ 1 then λg(Kn) = 7m

• If n = 3m+ 2 then λg(Kn) = 7m+ 2

To prove this result, we introduce a new game which could be considered as the “dual game” of the
labelling game on complete graphs.

In a complete graph, any vertex is at distance 1 from any other vertex, then during the labelling
game, a label c is used only one time and the labels c± 1 can’t be used to label an unlabelled vertex.

In the “dual game” we consider the labels [0, . . . , k − 1] as a path with k vertices where two
consecutive labels are represented in the path by two adjacent vertices. Bob or Alice plays by marking
turn by turn an unmarked vertex and its two neighbors (the neighbors can be unmarked or already
marked). The game ends when all vertices are marked. The score is the number of moves played to
finish the game. Alice’s goal is to maximise the score and at the contrary Bob wants to minimise it.

• We call σA(k) the maximum number n such that there exists a strategy for Alice to get a score
equal to n playing in a path with k vertices when she plays first.

• We call σB(k) the minimum number n such that there exists a strategy for Bob to get a score
equal to n playing in a path with k vertices when he plays first.

If there exists such a strategy for Alice to get a score equal to n in a path with k vertices, then
by labelling the vertices of Kn corresponding to the vertices of the path, Alice has a winning strategy
with k labels playing on the complete graph KσA(k), and then λg(Kn) ≤ k − 1.

Reciprocally, if Alice has a winning strategy on Kn with k labels, by applying the same strategy,
she can get a score greater than or equal to n if she plays on a path with k vertices. Thus,

λg(Kn) = min{k, σA(k) = n} − 1 (1)

Rem. We could say that σA is a kind of inverse function of n→ λg(Kn).

Lemma. let δA and δB be the functions from {0, . . . , 6} to N given by :

r 0 1 2 3 4 5 6

δA(r) 0 1 1 2 2 3 3

δB(r) 0 1 1 1 2 2 3

If k ≥ 0 and k = 7d+ r then σA(m) = 3d+ δA(r) and σB(k) = 3d+ δB(r)

Proof. One easily agree that the families {σA(k)}k≥0 and {σB(k)}k≥0 respect the following properties,
for all k ≥ 0 :

σA(k) ≥ σB(k) (2)

σA(k + 1) ≥ σA(k) and σB(k + 1) ≥ σB(k) (3)
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At any step, every unmarked vertex v belongs to a maximal connected component of unmarked
vertices. If the order of this component is k, it will be called a k-component. Let v1, . . . , vk be the
ordered vertices of a k-component. Suppose that Bob (resp. Alice) marks vi (vi−1 and vi+1 are also
marked just after this move).

If i = 1 or i = k : Bob (resp. Alice) has marked 2 vertices (v1 and v2 or vk−1 and vk) of the k-
component then Alice (resp. Bob) can play her next move in a (k − 2)-component. In any case,
we have, for any k ≥ 2:

σA(k) ≥ 1 + min
(
σA(k − 2), σB(k − 2)

)
≥ 1 + σB(k − 2) according to (2)

and,
σB(k) ≤ 1 + max

(
σA(k − 2), σB(k − 2)

)
≤ 1 + σA(k − 2) again according to (2)

If 2 ≤ i ≤ k − 2 : Bob (resp. Alice) has marked 3 vertices in the middle of the k-component, and
then has created a (i−2)-component (vertices v1, . . . , vi−2) and a (k− i−1)-component (vertices
vi+2, . . . , vk). We note that one of these two components can possibly have order 0. Thus, for
the next move, Alice (resp. Bob) can choose to play either in the (i − 2)-component or in the
(k− i−1)-component or in any other component, depending on the best strategy to apply. Then
by denoting p := i − 1 and q := k − i − 1 such that p, q ≥ 0 and p + q + 3 = k, we have in the
worst case for Bob (resp. Alice) :

σA(k) ≥ 1 + min
(
σA(p), σB(p)) + min(σA(q), σB(q)

)
≥ 1 + σB(p) + σB(q)

and,

σB(k) ≥ 1 + max
(
σA(p), σB(p)) + max(σA(q), σB(q)

)
≥ 1 + σA(p) + σA(q)

In particular, since σB(1) = 1 and σA(0) = 0, we have :

σA(k) ≥ 1 + σB(1) + σB(k − 3− 1) = 2 + σB(k − 4) (4)

and,
σB(k) ≤ 1 + σA(0) + σB(k − 3− 0) = 1 + σA(k − 3) (5)

Bob (resp. Alice) can always play in one of the two components (p or q) but Alice (resp. Bob)
chooses in which component Bob is going to play after her move according to her best strategy.
Then, we have :

σA(k) ≤ 1 + max

(
σB(k − 2), max

p+q+3=k

(
min

(
σA(p) + σB(p), σA(q) + σB(p)

)))
(6)

and,

σB(k) ≥ 1 + min

(
σA(k − 2), min

p+q+3=k

(
max

(
σA(p) + σB(p), σA(q) + σB(p)

)))
(7)
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Now, we prove the lemma by induction on d.

For d = 0, it’s easy to calculate manually the winning strategy for Alice, and the winning strategy
for Bob, and then one can see that for r in {1, . . . , 6}, σA(r) = δA(r) and σB(r) = δB(r).

Let K = 7D +R ∈ N, with R ∈ {0, . . . , 6}. Suppose that for any k < K, σA(k) = 3d+ δA(r) and
σB(k) = 3d+ δB(r) where k = 7d+ r, with r ∈ {0, . . . , 6}.

Note that for all 7 < k < K, we have σA(k − 7) + 3 = σA(k) and σB(k − 7) + 3 = σB(k). Then, if
7d+ r < 7D (we don’t say that r has to belong to {0, . . . , 6}), we have (using induction assumptions)

σA(7d+ r) = 3(d+ φ(r)) + δA(r mod 7) (8)

and,
σB(7d+ r) = 3(d+ φ(r)) + δB(r mod 7) (9)

where φ(r) = l when 7l ≤ r < 7(l + 1). This result will simplify calculations later.

Using (4) and (9) we have :

σA(K) ≥ 2 + σB(K − 4)

= 2 + σB
(
7D + (R− 4)

)
= 2 + 3D + δB

(
(R− 4) mod 7

)
+ 3 · φ(R− 4)

We easily check that 2 + δB
(
(R − 4) mod 7

)
+ 3 · φ(R − 4) = δA(R), for all R ∈ {0, . . . , 6}. Thus, we

have just proved that
σA(K) ≥ 3D + δA(R) (10)

Using (5) and (8) we have :

σB(K) ≤ 1 + σA(K − 3)

= 1 + σA
(
7D + (R− 3)

)
= 1 + 3D + δA

(
(R− 3) mod 7

)
+ 3 · φ(R− 3)

We easily check that

1 + δA
(
(R− 3) mod 7

)
+ 3φ(R− 3) = δB(R), for all R ∈ {0, . . . , 6}

Thus, we have just proved that
σB(K) ≤ 3D + δB(R) (11)

For 0 ≤ p ≤ 7D+R− 3, where p = 7d+ r with r ∈ {0, . . . , 6}, and q = (7D+R)− p− 3, we have :

σA(p) + σB(q) = σA(p) + σB
(
(7D +R)− p− 3

)
= σA(7d+ r) + σB

(
7(D − d) + (R− r − 3)

)
= 3 ·

(
d+ φ(r)

)
+ δA(r mod 7)

+ 3 ·
(
(D − d) + φ(R− r − 3)

)
+ δB

(
(R− r − 3) mod 7

)
using (8) and (9)

= 3D + δA(r) + 3 · φ(R− r − 3) + δB
(
(R− r − 3) mod 7

)
Let f(R, r) := δA(r) + 3 · φ(R− r− 3) + δB

(
(R− r− 3) mod 7

)
, depending only on the parameters R

and r. Then, we can rewrite inequalities (6) and (7) :

σA(K) ≤ 1 + max

(
σB(K − 2), 3D + max

r∈{0,...,6}

(
min

(
f
(
R, r

)
, f
(
R, (K − r − 3) mod 7

))))
(12)

and,

σB(k) ≥ 1 + min

(
σA(k − 2), 3D + min

r∈{0,...,6}

(
max

(
f(R, r), f

(
R, (K − r − 3) mod 7

))))
(13)
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Since 1 + σA(K − 2) ≥ 3D + δB(R) and 1 + σB(K − 2) ≤ 3D + δA(K), to prove that σA(K) ≤
3D + δA(R) and σB(K) ≥ 3D + δB(R), we have just have to check that

δA(R) ≤ max
r∈{0,...,6}

min
(

1 + f(R, r), 1 + f
(
R, (K − r − 3) mod 7

))
,∀R ∈ {0, . . . , 6} (14)

and,
δB(R) ≤ min

r∈{0,...,6}
max

(
1 + f(R, r), 1 + f

(
R, (K − r − 3) mod 7

))
, ∀R ∈ {0, . . . , 6} (15)

The following tabular shows the calculation of couples
(

1 + f(R, r), 1 + f
(
R, (K − r− 3) mod 7

))
R/r 0 1 2 3 4 5 6 min(max(., .)) max(min(., .))

0 (0, 0) (1, 0) (0, 0) (0, 1) (0, 0) (0, 1) (1, 0) 0 0
1 (1, 0) (1, 1) (1, 0) (0, 1) (1, 1) (1, 2) (1, 1) 1 1

2 (1, 1) (2, 1) (1, 1) (1, 1) (1, 1) (1, 2) (1, 1) 1 1

3 (1, 1) (2, 2) (2, 1) (1, 2) (2, 1) (1, 2) (2, 2) 1 2

4 (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) 2 2

5 (2, 2) (3, 3) (2, 2) (2, 3) (3, 2) (2, 3) (3, 2) 2 3

6 (3, 2) (3, 3) (3, 3) (2, 3) (3, 3) (3, 3) (3, 3) 3 3

The tabular permits to conclude that the formulas (14) and (15) are true. Thus, we proved that
σA(7D+R) ≥ 3D+ δA(R) and σA(7D+R) ≥ 3D+ δA(R), for all R ∈ {0, . . . , 6}. With (10) and (11),
we have finally proved by induction the lemma.

Now, it’s easy to prove the theorem 6.

Proof. (Theorem 6)
According to 1, we have :

λg(Kn) = min{k, σA(k) = n} − 1

If n = 3m. Using the lemma, we find that :

λg(Kn) = min{k, σA(k) = 3m} − 1

= min{7(m− 1) + 5, 7(m− 1) + 6, 7m} − 1

= 7m− 3

If n = 3m+ 1. Using the lemma, we find that :

λg(Kn) = min{k, σA(k) = 3m+ 1} − 1

= min{7m+ 1, 7m+ 2} − 1

= 7m

If n = 3m+ 2. Using the lemma, we find that :

λg(Kn) = min{k, σA(k) = 3m+ 2} − 1

= min{7m+ 3, 7m+ 4} − 1

= 7m+ 2
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3 Annex : Calculation of the game labelling number of small paths.�
let rec init_pos n = (* make a list [n,n-1,...,0] *)

match n with 0 -> [0]
|n -> n::(init_pos (n-1));;

let snd (a,b) = b ;; let fst (a,b) = a ;;

let init_path m n = let l = init_pos n in Array.make m (-1,l);;
(* make an array [|(-1,l); ... ; (-1,l)|] where l = [n,n-1,...,0] |] *)
(* this array represent the state of the game. -1 means that the corresponding vertex is unlabelled,
and the list l represents the feasible labels for this vertex *)

let rec remove x l = match l with (* remove element x from the list l *)
|[] -> []
|e::r -> if x=e then r else e::(remove x r);;

let remove’ x b = let (e,l) = b in (e,remove x l);;

let solution_path m n = (* m : path order, n : maximal label*)
(* the result of this program is :

- 0 if Alice has a winning strategy playing on a path with m vertices with labels lower
than or equal to n.

- 1 otherwise. *)
let choice v = (* make a list of all possible moves deducted from the state of the game *)

let rec ins x l rest = match l with (* [e1,e2,...] -> [(x,e1),(x,e2),...]@rest *)
|[]-> rest
|e::r -> (x,e)::(ins x r rest)

in
let rec aux i =

if i = m then []
else
(

if fst(v.(i)) = -1 then (ins i (snd(v.(i))) (aux (i+1))) else aux (i+1)
)

in aux 0
in

let rec aux w c l =
(* w : state of the game, c : number of moves already payed, l : list of feasible moves *)

if c = m then 0 (* all vertices are labelled, Alice wins *)
else (* some vertices are still unlabelled *)
(
match l with

|[] -> 1-c (* there’s no feasible moves anymore, ... *)
|(i,color)::r ->

(* the player (c mod 2) (0:Alice, 1:Bob) chooses to label the vertex ’i’ with label ’color’ *)
(

let w’ = Array.copy w in
w’.(i) <- (color,[]);

begin
if i-2 >= 0 then w’.(i-2) <- remove’ color w’.(i-2);
if i+2 <= m-1 then w’.(i+2) <- remove’ color w’.(i+2);
if i+1 <= m-1 then w’.(i+1) <- remove’ (color-1) (remove’ color (remove’ (color+1) w’.(i

+1)));
if i-1 >= 0 then w’.(i-1) <- remove’ (color-1) (remove’ color (remove’ (color+1) w’.(i

-1)));
end;

(* we have modified the state of the game according to the rules of the labelling game *)
let b = ref false in
for j = 1 to 2 do

b := (!b)||((fst(w’.(max (i-j) 0)) = -1)&&(snd(w’.(max (i-j) 0)) = []))||((fst(w’.(min
(i+j) (m-1))) = -1)&&(snd(w’.(min (i+j) (m-1))) = []));

done;
(* b is true is the move played has created an unlabelled vertex with no feasible label *)
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if (!b = true)&&(c+1 < m) then 1 (* In this case, Bob wins *)
else
(

let l’= choice w’ in
let winner = aux w’ (c+1) l’ in
if winner=(c mod 2) then winner (* In this case, at this step of the game, the player

(c mod 2) has a winning strategy if he/she labels the vertex ’i’ with label ’
color’ *)

else aux w c r (* otherwise, we try the next feasible move on the list *)
)

)
)

in let w = init_path m n in
aux w 0 (choice w);;

let gln_path m = (* the result is the game labelling number of the path on m vertices *)
let n = ref 0 in let b = ref 1 in
while !b=1 do

n := !n + 1;
b := solution_path m !n;

done;
!n;;

for m = 1 to 6 do
print_string "The␣game␣labelling␣number␣of␣a␣path␣on␣"; print_int m;
print_string "␣vertices␣is␣:␣"; print_int (gln_path m); print_string "\n";

done;;
� �
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