Thread-Modular Analysis of Concurrent Programs

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2022-2023

Course 16 20 February 2023

Concurrent programming

Principle: decompose a program into a set of (loosely) interacting processes.

- exploit parallelism in current computers (multi-processors, multi-cores, hyper-threading)
 - "Free lunch is over" (change in Moore's law, ×2 transistors every 2 years)
- exploit several computers (distributed computing)
- ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

- combinatorial exposition of execution paths (interleavings)
- errors lurking in hard-to-find corner cases (race conditions)
- unintuitive execution models (weak memory consistency)

Scope

In this course: static thread model

- implicit communications through shared memory
- explicit communications through synchronisation primitives
- fixed number of threads (no dynamic creation of threads)
- numeric programs (real-valued variables)

Goal: static analysis

- infer numeric program invariants
- parameterized by a choice of numeric abstract domains
- discover run-time errors
- discover data-races (unprotected accesses by concurrent threads)
- discover deadlocks (some threads block each other indefinitely)
- application to analyzing embedded C programs

(e.g., divisions by 0)

Outline

- Simple concurrent language
- Non-modular concurrent semantics
- Simple interference thread-modular concurrent semantics
- Weakly consistent memories
- Locks and synchronization
- Abstract rely-guarantee thread-modular concurrent semantics
- Relational interference abstractions
- Application : the AstréeA analyzer

Language and semantics

Structured numeric language

- finite set of (toplevel) threads: stmt₁ to stmt_n
- lacksquare finite set of numeric program variables $V \in V$
- finite set of statement locations $\ell \in \mathcal{L}$
- locations with possible run-time errors $\omega \in \Omega$ (divisions by zero)

Structured language syntax

```
\begin{array}{llll} \operatorname{prog} & ::= & {}^{\ell}\operatorname{stmt}_1{}^{\ell} \mid | \dots || {}^{\ell}\operatorname{stmt}_n{}^{\ell} & \textit{(parallel composition)} \\ {}^{\ell}\operatorname{stmt}^{\ell} & ::= & {}^{\ell}V \leftarrow \exp^{\ell} & \textit{(assignment)} \\ & | & {}^{\ell}\operatorname{if} \exp\bowtie 0 \text{ then } {}^{\ell}\operatorname{stmt}^{\ell} \text{ fi}^{\ell} & \textit{(conditional)} \\ & | & {}^{\ell}\operatorname{while} {}^{\ell}\operatorname{exp}\bowtie 0 \text{ do } {}^{\ell}\operatorname{stmt}^{\ell} \text{ done}^{\ell} & \textit{(loop)} \\ & | & {}^{\ell}\operatorname{stmt}; {}^{\ell}\operatorname{stmt}^{\ell} & \textit{(sequence)} \\ \\ \operatorname{exp} & ::= & V \mid [c_1, c_2] \mid -\operatorname{exp} \mid \operatorname{exp} \diamond \operatorname{exp} \\ \\ c_1, c_2 \in \mathbb{R} \cup \{+\infty, -\infty\}, \, \diamond \in \{+, -, \times, /_{\omega}\}, \, \bowtie \in \{=, <, \dots\} \end{array}
```

Multi-thread execution model

t_1	t ₂	
while random do if $x < y$ then $x \leftarrow x + 1$	while random do for if y < 100 then for y \leftarrow y + [1,3]	

Execution model:

- finite number of threads
- the memory is shared (x,y)
- each thread has its own program counter
- execution interleaves steps from threads t₁ and t₂ assignments and tests are assumed to be atomic

 \implies we have the global invariant 0 < x < y < 102

Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: (Σ, A, τ, I)

- lacksquare Σ : set of program states
- \blacksquare \mathcal{A} : set of actions
- $\tau \subseteq \Sigma \times A \times \Sigma$: transition relation we note $(\sigma, a, \sigma') \in \tau$ as $\sigma \xrightarrow[]{a} \sigma'$
- $\mathcal{I} \subseteq \Sigma$: initial states

Labelled traces: sequences of states interspersed with actions

denoted as
$$\sigma_0 \stackrel{a_0}{\rightarrow} \sigma_1 \stackrel{a_1}{\rightarrow} \cdots \sigma_n \stackrel{a_n}{\rightarrow} \sigma_{n+1}$$

au is omitted on o for traces for simplicity

From concurrent programs to labelled transition systems

- lacksquare given: prog ::= ℓ_1^i stmt $_1^{\ell_1^{\mathsf{x}}} \mid\mid \cdots \mid\mid \ell_n^i$ stmt $_n^{\ell_n^{\mathsf{x}}}$
- threads are numbered: $\mathbb{T} \stackrel{\text{def}}{=} \{1, \ldots, n\}$

Program states: $\Sigma \stackrel{\text{def}}{=} (\mathbb{T} \to \mathcal{L}) \times \mathcal{E}$

- lacksquare a control state $L(t) \in \mathcal{L}$ for each thread $t \in \mathbb{T}$ and
- lacksquare a single shared memory state $ho \in \mathcal{E} \stackrel{\mathrm{def}}{=} \mathbb{V} o \mathbb{Z}$

Initial states:

threads start at their first control point ℓ_t^i , variables are set to 0:

$$\mathcal{I} \stackrel{\text{def}}{=} \{ \langle \lambda t. \ell_t^i, \lambda V.0 \rangle \}$$

Actions: actions are thread identifiers: $\mathcal{A} \stackrel{\text{def}}{=} \mathbb{T}$

From concurrent programs to labelled transition systems

Transition relation: $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$

$$\langle L, \rho \rangle \xrightarrow{t}_{\tau} \langle L', \rho' \rangle \stackrel{\text{def}}{\iff} \langle L(t), \rho \rangle \rightarrow_{\tau[\mathsf{stmt}_t]} \langle L'(t), \rho' \rangle \land \\ \forall u \neq t : L(u) = L'(u)$$

- based on the transition relation of individual threads seen as sequential processes \mathtt{stmt}_t : $\tau[\mathtt{stmt}_t] \subseteq (\mathcal{L} \times \mathcal{E}) \times (\mathcal{L} \times \mathcal{E})$
 - choose a thread t to run
 - update ρ and L(t)
 - leave L(u) intact for $u \neq t$

see course 2 for the full definition of $\tau[stmt]$

lacktriangledown each transition $\sigma
ightarrow_{ au[{\tt stmt}_t]} \sigma'$ leads to many transitions $ightarrow_{ au}!$

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Maximal traces: \mathcal{M}_{∞} (finite or infinite)

$$\mathcal{M}_{\infty} \stackrel{\mathrm{def}}{=} \left\{ \left. \left\{ \left. \sigma_{0} \stackrel{t_{0}}{\rightarrow} \cdots \stackrel{t_{n-1}}{\rightarrow} \sigma_{n} \, \right| \, n \geq 0 \wedge \sigma_{0} \in \mathcal{I} \wedge \sigma_{n} \in \mathcal{B} \wedge \forall i < n : \sigma_{i} \stackrel{t_{i}}{\rightarrow}_{\tau} \sigma_{i+1} \, \right\} \cup \right. \\ \left. \left\{ \left. \sigma_{0} \stackrel{t_{0}}{\rightarrow} \sigma_{1} \ldots \, \right| \, n \geq 0 \wedge \sigma_{0} \in \mathcal{I} \wedge \forall i < \omega : \sigma_{i} \stackrel{t_{i}}{\rightarrow}_{\tau} \sigma_{i+1} \, \right\} \right.$$

Finite prefix traces: \mathcal{T}_p

$$\mathcal{T}_{\textit{p}} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \big\{ \left. \sigma_0 \stackrel{t_0}{\to} \cdots \stackrel{t_{n-1}}{\to} \sigma_n \, | \, n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < n ; \sigma_i \stackrel{t_i}{\to}_{\tau} \sigma_{i+1} \, \big\}$$

$$\mathcal{T}_{\rho} = \mathsf{lfp}\, F_{\rho} \; \mathsf{where} \; F_{\rho}(X) = \mathcal{I} \cup \{\; \sigma_0 \overset{t_0}{\to} \cdots \overset{t_n}{\to} \sigma_{n+1} \; | \; n \geq 0 \land \sigma_0 \overset{t_0}{\to} \cdots \overset{t_{n-1}}{\to} \sigma_n \in X \land \sigma_n \overset{t_n}{\to}_{\tau} \sigma_{n+1} \; \}$$

Fairness

<u>Fairness conditions:</u> avoid threads being denied to run forever

Given
$$enabled(\sigma, t) \iff \exists \sigma' \in \Sigma : \sigma \xrightarrow{t}_{\tau} \sigma'$$
 an infinite trace $\sigma_0 \xrightarrow{t_0} \cdots \sigma_n \xrightarrow{t_n} \cdots$ is:

- weakly fair if $\forall t \in \mathbb{T}$: $\exists i : \forall j \geq i : enabled(\sigma_j, t) \implies \forall i : \exists j \geq i : a_j = t$ no thread can be continuously enabled without running
- strongly fair if $\forall t \in \mathbb{T}$: $\forall i : \exists j \geq i : enabled(\sigma_j, t) \implies \forall i : \exists j \geq i : a_j = t$ no thread can be infinitely often enabled without running

Proofs under fairness conditions given:

- lacksquare the maximal traces \mathcal{M}_{∞} of a program
- a property X to prove (as a set of traces)
- the set F of all (weakly or strongly) fair and of finite traces
- \implies prove $\mathcal{M}_{\infty} \cap F \subseteq X$ instead of $\mathcal{M}_{\infty} \subseteq X$

Fairness (cont.)

Example: while $x \ge 0$ do $x \leftarrow x + 1$ done $|| x \leftarrow -2$

- may not terminate without fairness
- always terminates under weak and strong fairness

Finite prefix trace abstraction

$$\mathcal{M}_{\infty} \cap F \subseteq X$$
 is abstracted into testing $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) \subseteq \alpha_{*\preceq}(X)$

for all fairness conditions
$$F$$
, $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) = \alpha_{*\preceq}(\mathcal{M}_{\infty}) = \mathcal{T}_p$

recall that
$$\alpha_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^* \mid \exists u \in T : t \preceq u \}$$
 is the finite prefix abstraction and $T = \alpha_* \preceq (\mathcal{M}_{\infty})$

⇒ fairness-dependent properties cannot be proved with finite prefixes only

In the rest of the course, we ignore fairness conditions

Reachability semantics for concurrent programs

Reminder : Reachable state semantics: $\mathcal{R} \in \mathcal{P}(\Sigma)$

Reachable states in any execution:

$$\mathcal{R} \stackrel{\text{def}}{=} \left\{ \sigma \mid \exists n \geq 0, \, \sigma_0, \dots, \sigma_n : \atop \sigma_0 \in \mathcal{I}, \, \forall i < n : \exists t \in \mathcal{T} : \sigma_i \xrightarrow{t}_{\tau} \sigma_{i+1} \land \sigma = \sigma_n \right\}$$

$$\mathcal{R} = \mathsf{lfp}\, F_{\mathcal{R}}$$
, where $F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \sigma \mid \exists \sigma' \in X, t \in \mathbb{T} : \sigma' \xrightarrow{t}_{\tau} \sigma \}$

Can prove (non-)reachability, but not ordering, termination, liveness and cannot exploit fairness.

Abstraction of the finite trace semantics.

$$\mathcal{R} = \alpha_p(\mathcal{T}_p) \text{ where } \alpha_p(X) \stackrel{\mathbf{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0 \stackrel{t_0}{\to} \cdots \sigma_n \in X : \sigma = \sigma_n \}$$

Reminders: sequential semantics

Equational state semantics of sequential program

- lacksquare see Ifp f as the least solution of an equation x=f(x)
- lacksquare partition states by control: $\mathcal{P}(\mathcal{L} imes \mathcal{E}) \simeq \mathcal{L} o \mathcal{P}(\mathcal{E})$

$$\mathcal{X}_{\ell} \in \mathcal{P}(\mathcal{E})$$
: invariant at $\ell \in \mathcal{L}$

$$\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} \stackrel{\text{def}}{=} \{ m \in \mathcal{E} \mid \langle \ell, m \rangle \in \mathcal{R} \}$$

 \Longrightarrow set of recursive equations on \mathcal{X}_ℓ

Example:

$$\begin{array}{l}\ell^{1}i\leftarrow2;\\\ell^{2}n\leftarrow[-\infty,+\infty];\\\ell^{3}\text{ while }\ell^{4}i< n\text{ do}\\\ell^{5}\text{ if }[0,1]=0\text{ then}\\\ell^{6}i\leftarrow i+1\end{array}$$

$$\begin{split} \mathcal{X}_1 &= \mathcal{I} \\ \mathcal{X}_2 &= \mathsf{C} \llbracket i \leftarrow 2 \rrbracket \, \mathcal{X}_1 \\ \mathcal{X}_3 &= \mathsf{C} \llbracket n \leftarrow [-\infty, +\infty] \rrbracket \, \mathcal{X}_2 \\ \mathcal{X}_4 &= \mathcal{X}_3 \cup \mathcal{X}_7 \\ \mathcal{X}_5 &= \mathsf{C} \llbracket i < n \rrbracket \, \mathcal{X}_4 \\ \mathcal{X}_6 &= \mathcal{X}_5 \\ \mathcal{X}_7 &= \mathcal{X}_5 \cup \mathsf{C} \llbracket i \leftarrow i + 1 \rrbracket \, \mathcal{X}_6 \\ \mathcal{X}_8 &= \mathsf{C} \llbracket i \geq n \rrbracket \, \mathcal{X}_4 \end{split}$$

Denotational state semantics

Alternate view as an input-output state function C[stmt]

- lacksquare mutate memory states in ${\mathcal E}$
- structured: nested loops yield nested fixpoints
- lacktriangle big-step: forget information on intermediate locations ℓ
- mimics an actual interpreter

Equational vs. denotational form

Equational:

$$\begin{cases} \mathcal{X}_1 = \top \\ \mathcal{X}_2 = F_2(\mathcal{X}_1) \\ \mathcal{X}_3 = F_3(\mathcal{X}_1) \\ \mathcal{X}_4 = F_4(\mathcal{X}_3, \mathcal{X}_4) \end{cases}$$

- linear memory in program length
- flexible solving strategy flexible context sensitivity
- easy to adapt to concurrency, using a product of CFG

Denotational:

- linear memory in program depth
- fixed iteration strategy
 fixed context sensitivity
 (follows the program structure)
- no inductive definition of the product ⇒ thread-modular analysis

Non-modular concurrent semantics

Equational concurrent state semantics

Equational form:

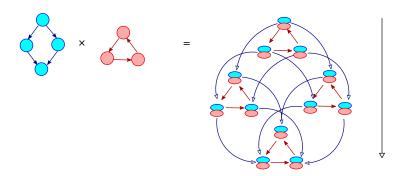
- for each $L \in \mathbb{T} \to \mathcal{L}$, a variable \mathcal{X}_{l} with value in \mathcal{E}
- \blacksquare equations are derived from thread equations $eq(stmt_t)$ as:

$$\begin{split} \mathcal{X}_{L_1} &= \bigcup\nolimits_{t \in \mathbb{T}} \{ \, F(\mathcal{X}_{L_2}, \dots, \mathcal{X}_{L_N}) \mid \\ &\exists (\mathcal{X}_{\ell_1} = F(\mathcal{X}_{\ell_2}, \dots, \mathcal{X}_{\ell_N})) \in \mathit{eq}(\mathtt{stmt}_t) : \\ &\forall i \leq \mathit{N} \colon L_i(t) = \ell_i, \, \forall u \neq t \colon \!\! L_i(u) = L_1(u) \, \} \end{split}$$

Join with \cup equations from $eq(\operatorname{stmt}_t)$ updating a single thread $t \in \mathbb{T}$.

(see course 2 for the full definition of eq(stmt))

Equational state semantics (illustration)



Product of control-flow graphs:

- control state = tuple of program points ⇒ combinatorial explosion of abstract states
- transfer functions are duplicated

Equational state semantics (example)

Example: inferring $0 \le x \le y \le 102$		
t_1	t_2	
while random do if $x < y$ then $x \leftarrow x + 1$	<pre> while random do if y < 100 then if y ← y + [1,3] </pre>	

Equation system:

```
 \begin{split} \mathcal{X}_{1,4} &= \mathcal{I} \\ \mathcal{X}_{2,4} &= \mathcal{X}_{1,4} \cup \mathbb{C}[\![ \, \mathbf{x} \geq y \,]\!] \, \mathcal{X}_{2,4} \cup \mathbb{C}[\![ \, \mathbf{x} \leftarrow \mathbf{x} + 1 \,]\!] \, \mathcal{X}_{3,4} \\ \mathcal{X}_{3,4} &= \mathbb{C}[\![ \, \mathbf{x} \leq y \,]\!] \, \mathcal{X}_{2,4} \\ \mathcal{X}_{1,5} &= \mathcal{X}_{1,4} \cup \mathbb{C}[\![ \, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{1,5} \cup \mathbb{C}[\![ \, \mathbf{y} \leftarrow \mathbf{y} + [\![ 1,3 ]\!]\!] \, \mathcal{X}_{1,6} \\ \mathcal{X}_{2,5} &= \mathcal{X}_{1,5} \cup \mathbb{C}[\![ \, \mathbf{x} \geq y \,]\!] \, \mathcal{X}_{2,5} \cup \mathbb{C}[\![ \, \mathbf{x} \leftarrow \mathbf{x} + 1 \,]\!] \, \mathcal{X}_{3,5} \cup \\ \mathcal{X}_{2,4} \cup \mathbb{C}[\![ \, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{2,5} \cup \mathbb{C}[\![ \, \mathbf{y} \leftarrow \mathbf{y} + [\![ 1,3 ]\!]\!] \, \mathcal{X}_{2,6} \\ \mathcal{X}_{3,5} &= \mathbb{C}[\![ \, \mathbf{x} < y \,]\!] \, \mathcal{X}_{2,5} \cup \mathcal{X}_{3,4} \cup \mathbb{C}[\![ \, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{3,5} \cup \mathbb{C}[\![ \, \mathbf{y} \leftarrow \mathbf{y} + [\![ 1,3 ]\!]\!] \, \mathcal{X}_{3,6} \\ \mathcal{X}_{1,6} &= \mathbb{C}[\![ \, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{1,5} \cup \mathbb{C}[\![ \, \mathbf{y} \leftarrow \mathbf{y} + 1 \,]\!] \, \mathcal{X}_{3,6} \cup \mathbb{C}[\![ \, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{2,5} \\ \mathcal{X}_{3,6} &= \mathbb{C}[\![ \, \mathbf{x} < y \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![ \, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{3,5} \end{split}
```

Equational state semantics (example)

Example: inferring $0 \le x \le y \le 102$		
t_1	t_2	
$^{\ell 1}$ while random do	4 while random do	
$ \begin{array}{c} \ell^2 \text{ if } x < y \text{ then} \\ \ell^3 x \leftarrow x + 1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Pros:

- easy to construct
- lacktriangle easy to further abstract in an abstract domain \mathcal{E}^{\sharp}

Cons:

- explosion of the number of variables and equations
- explosion of the size of equationsefficiency issues
- the equation system does not reflect the program structure (not defined by induction on the concurrent program)

Wish-list

We would like to:

- keep information attached to syntactic program locations (control points in \mathcal{L} , not control point tuples in $\mathbb{T} \to \mathcal{L}$)
- be able to abstract away control information (precision/cost trade-off control)
- avoid duplicating thread instructions
- have a computation structure based on the program syntax (denotational style)

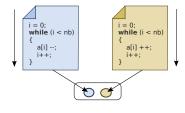
Ideally: thread-modular denotational-style semantics

analyze each thread independently by induction on its syntax but remain sound with respect to all interleavings !

Simple interference semantics

Principle:

■ analyze each thread in isolation

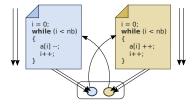


Principle:

- analyze each thread in isolation
- gather the values written into each variable by each thread

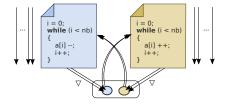
 ⇒ so-called interferences

 suitably abstracted in an abstract domain, such as intervals



Principle:

- analyze each thread in isolation
- gather the values written into each variable by each thread ⇒ so-called interferences suitably abstracted in an abstract domain, such as intervals
- reanalyze threads, injecting these values at each read



Principle:

- analyze each thread in isolation
- gather the values written into each variable by each thread

 ⇒ so-called interferences

 suitably abstracted in an abstract domain, such as intervals
- reanalyze threads, injecting these values at each read
- iterate until stabilization while widening interferences
 - ⇒ one more level of fixpoint iteration

while random do ℓ^2 if x < y then ℓ^3 $x \leftarrow x + 1$

 t_2 While random do

Solution if y < 100 then t_0 t_0

```
while random do

^{\ell 2} if x < y then

^{\ell 3} x \leftarrow x + 1
```

$$t_2$$
⁶⁴ while random do

⁶⁵ if y < 100 then

⁶⁶ $y \leftarrow y + [1,3]$

Analysis of t_1 in isolation

(1):
$$x = y = 0$$
 $\mathcal{X}_1 = I$
(2): $x = y = 0$ $\mathcal{X}_2 = \mathcal{X}_1 \cup C[[x \leftarrow x + 1]] \mathcal{X}_3 \cup C[[x \ge y]] \mathcal{X}_2$
(3): \perp $\mathcal{X}_3 = C[[x < y]] \mathcal{X}_2$

```
\ell_1

while random do

\ell_2 if x < y then

\ell_3 x \leftarrow x + 1
```

```
t_2

While random do

if y < 100 then

t_0

t_0

t_0

t_0
```

Analysis of t_2 in isolation

output interferences: $y \leftarrow [1, 102]$

```
t_1

while random do

t_1

if x < y then

t_2

t_3

t_4

t_4

t_5

t_7

t_8

t
```

```
t_2

While random do

if y < 100 then

t_0

t
```

Re-analysis of t_1 with interferences from t_2

input interferences: $y \leftarrow [1, 102]$

output interferences: $x \leftarrow [1, 102]$

subsequent re-analyses are identical (fixpoint reached)

```
t_1

while random do

if x < y then

t_1

t_2

t_3

t_4

t_4

t_5

t_4

t_4

t_4

t_5

t_7

t_8

t_8
```

```
t_2

<sup>44</sup> while random do

<sup>65</sup> if y < 100 then

<sup>66</sup> y \leftarrow y + [1,3]
```

Derived abstract analysis:

- similar to a sequential program analysis, but iterated can be parameterized by arbitrary abstract domains
- efficient few reanalyses are required in practice
- interferences are non-relational and flow-insensitive limit inherited from the concrete semantics

Limitation:

we get $x, y \in [0, 102]$; we don't get that $x \leq y$ simplistic view of thread interferences (volatile variables) based on an incomplete concrete semantics (we'll fix that later)

Formalizing the simple interference semantics

Denotational semantics with interferences

Interferences in $\mathbb{I} \stackrel{\text{def}}{=} \mathbb{T} \times \mathbb{V} \times \mathbb{R}$ $\langle t, X, v \rangle$ means that t can store the value v into the variable X

We define the analysis of a thread t with respect to a set of interferences $I \subseteq \mathbb{L}$.

Expressions :
$$\mathsf{E}_t \llbracket \exp \rrbracket : \mathcal{E} \times \mathcal{P}(\mathbb{I}) \to \mathcal{P}(\mathbb{R}) \times \mathcal{P}(\Omega)$$
 for thread t

- add interference $I \in \mathbb{I}$, as input
- **add error information** $\omega \in \Omega$ as output locations of / operators that can cause a division by 0

Example:

Apply interferences to read variables:

$$\mathsf{E}_{\mathsf{t}} \llbracket X \rrbracket \langle \rho, I \rangle \stackrel{\mathrm{def}}{=} \langle \{ \rho(X) \} \cup \{ v \mid \exists u \neq t : \langle u, X, v \rangle \in I \}, \emptyset \rangle$$

■ Pass recursively I down to sub-expressions:

$$\mathsf{E}_{\mathsf{t}} \llbracket -e \rrbracket \langle \rho, I \rangle \stackrel{\mathrm{def}}{=} \mathsf{let} \langle V, O \rangle = \mathsf{E}_{\mathsf{t}} \llbracket e \rrbracket \langle \rho, I \rangle \mathsf{in} \langle \{ -v \mid v \in V \}, O \rangle$$

etc.

Denotational semantics with interferences (cont.)

<u>Statements with interference:</u> for thread *t*

$$\textbf{C}_t[\![\![\texttt{stmt}]\!]\!]: \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \textcolor{red}{\mathcal{P}(\mathbb{I})} \to \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \textcolor{red}{\mathcal{P}(\mathbb{I})}$$

- pass interferences to expressions
- collect new interferences due to assignments
- accumulate interferences from inner statements
- collect and accumulate errors from expressions

```
 \begin{split} & \mathsf{C}_t \llbracket X \leftarrow e \, \rrbracket \, \langle \, R, \, O, \, I \, \rangle \, \stackrel{\mathrm{def}}{=} \\ & \langle \, \emptyset, \, O, \, I \, \rangle \, \sqcup \, \bigsqcup_{\rho \in R} \, \langle \, \{ \, \rho[X \mapsto v] \, | \, v \in V_\rho \, \}, \, O_\rho, \, \{ \, \langle \, t, \, X, \, v \, \rangle \, | \, v \in V_\rho \, \} \, \rangle \\ & \mathsf{C}_t \llbracket \, \mathsf{s}_1; \, \mathsf{s}_2 \, \rrbracket \, \stackrel{\mathrm{def}}{=} \, \mathsf{C}_t \llbracket \, \mathsf{s}_2 \, \rrbracket \, \circ \, \mathsf{C}_t \llbracket \, \mathsf{s}_1 \, \rrbracket \\ & \cdots \\ & \mathsf{noting} \, \langle \, V_\rho, \, O_\rho \, \rangle \, \stackrel{\mathrm{def}}{=} \, \mathsf{E}_t \llbracket \, e \, \rrbracket \, \langle \, \rho, \, I \, \rangle \\ & \sqcup \text{ is now the element-wise} \, \cup \, \mathsf{in} \, \, \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I}) \end{split}
```

Denotational semantics with interferences (cont.)

Program semantics: $P[prog] \subseteq \Omega$

Given prog ::= $stmt_1 || \cdots || stmt_n$, we compute:

$$\mathsf{P}[\![\operatorname{prog}]\!] \stackrel{\scriptscriptstyle \operatorname{def}}{=} \left[\mathsf{lfp} \, \lambda \langle \, O, \, {}^{\hspace{-0.1cm} I} \rangle. \, \bigsqcup_{t \in \mathbb{T}} \, \left[\mathsf{C}_t[\![\operatorname{stmt}_t]\!] \, \langle \, \mathcal{E}_0, \, \emptyset, \, {}^{\hspace{-0.1cm} I} \rangle \right]_{\Omega, \mathbb{I}} \right]_{\Omega}$$

- each thread analysis starts in an initial environment set $\mathcal{E}_0 \stackrel{\text{def}}{=} \{ \lambda V.0 \}$
- $[X]_{\Omega,\mathbb{I}}$ projects $X \in \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$ on $\mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$ and interferences and errors from all threads are joined the output environments from a thread analysis are not easily exploitable
- P[[prog]] only outputs the set of possible run-time errors

We will need to prove the soundness of P[[prog]] with respect to the interleaving semantics...

Interference abstraction

Abstract interferences 1#

$$\mathcal{P}(\mathbb{I}) \stackrel{\mathrm{def}}{=} \mathcal{P}(\mathbb{T} \times \mathbb{V} \times \mathbb{R}) \text{ is abstracted as } \mathbb{I}^{\sharp} \stackrel{\mathrm{def}}{=} (\mathbb{T} \times \mathbb{V}) \to \mathcal{R}^{\sharp}$$
 where \mathcal{R}^{\sharp} abstracts $\mathcal{P}(\mathbb{R})$ (e.g. intervals)

Abstract semantics with interferences $C_t^{\sharp} \llbracket s \rrbracket$

derived from $C^{\sharp}[s]$ in a generic way:

Example:
$$C_{t}^{\sharp} \llbracket X \leftarrow e \rrbracket \langle R^{\sharp}, \Omega, I^{\sharp} \rangle$$

- $\blacksquare \ \, \text{for each} \,\, Y \,\, \text{in e, get its interference} \,\, Y_{\mathcal{R}}^{\sharp} = \bigsqcup_{\mathcal{R}}^{\sharp} \, \{ \, I^{\sharp} \langle \, u, \, Y \, \rangle \, | \, u \neq t \, \}$
- if $Y_{\mathcal{R}}^{\sharp} \neq \bot_{\mathcal{R}}^{\sharp}$, replace Y in e with $get\langle Y, R^{\sharp} \rangle \sqcup_{\mathcal{R}}^{\sharp} Y_{\mathcal{R}}^{\sharp}$ $get(Y, R^{\sharp}) \text{ extracts the abstract values variable } Y \text{ from } R^{\sharp} \in \mathcal{E}^{\sharp}$
- lacksquare compute $\langle \, R^{\sharp \, \prime}, \, \, O' \, \,
 angle = \mathsf{C}^{\sharp} \, [\![\, e \,]\!] \, \langle \, R^{\sharp}, \, \, O \,
 angle$
- enrich $I^{\sharp}\langle t, X \rangle$ with $get(X, R^{\sharp})$

Static analysis with interferences

Abstract analysis

$$\mathsf{P}^{\sharp} \llbracket \operatorname{\mathtt{prog}} \rrbracket \ \stackrel{\mathrm{def}}{=} \ \left[\ \underset{t}{\mathsf{lim}} \ \lambda \langle \ O, \ \mathit{I}^{\sharp} \ \rangle . \langle \ O, \ \mathit{I}^{\sharp} \ \rangle \ \triangledown \ \bigsqcup_{t \in \mathbb{T}}^{\sharp} \ \left[\ \mathsf{C}_{\mathsf{t}}^{\sharp} \llbracket \operatorname{\mathsf{stmt}}_{t} \, \rrbracket \ \langle \ \mathcal{E}_{0}^{\sharp}, \ \emptyset, \ \mathit{I}^{\sharp} \ \rangle \ \right]_{\Omega, \emptyset^{\sharp}} \right]_{\Omega}$$

- effective analysis by structural induction
- Arr $P^{\sharp}[prog]$ is sound with respect to P[prog]
- termination ensured by a widening
- lacksquare parameterized by a choice of abstract domains $\mathcal{R}^{\sharp},~\mathcal{E}^{\sharp}$
- \blacksquare interferences are flow-insensitive and non-relational in \mathcal{R}^{\sharp}
- lacktriangle thread analysis remains flow-sensitive and relational in \mathcal{E}^{\sharp}

reminder: $[X]_{\Omega}$, $[Y]_{\Omega,\mathbb{I}^{\sharp}}$ keep only X's component in Ω , Y's components in Ω and \mathbb{I}^{\sharp}

Path-based soundness proof

Control paths of a sequential program

 $atomic ::= X \leftarrow \exp \mid \exp \bowtie 0$

Control paths

```
\pi : \operatorname{stmt} \to \mathcal{P}(\operatorname{atomic}^*)
\pi(X \leftarrow e) \stackrel{\operatorname{def}}{=} \{X \leftarrow e\}
\pi(\operatorname{if} e \bowtie 0 \text{ then } s \text{ fi}) \stackrel{\operatorname{def}}{=} (\{e \bowtie 0\} \cdot \pi(s)) \cup \{e \bowtie 0\}
\pi(\operatorname{while} e \bowtie 0 \text{ do } s \text{ done}) \stackrel{\operatorname{def}}{=} \left(\bigcup_{i \geq 0} (\{e \bowtie 0\} \cdot \pi(s))^i\right) \cdot \{e \bowtie 0\}
\pi(s_1; s_2) \stackrel{\operatorname{def}}{=} \pi(s_1) \cdot \pi(s_2)
```

 $\pi(stmt)$ is a (generally infinite) set of finite control paths

e.g. $\pi(i \leftarrow 0; \text{ while } i < 10 \text{ do } i \leftarrow i+1 \text{ done}; \ x \leftarrow i) = i \leftarrow 0 \cdot (i < 10 \cdot i \leftarrow i+1)^* \cdot x \leftarrow i$

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

$$\boxed{ \mathbb{D}[\![P]\!] : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \to (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) } \quad P \subseteq \mathsf{atomic}^*$$

$$\mathbb{\Pi}\llbracket P \rrbracket \langle R, O \rangle \stackrel{\text{def}}{=} \bigsqcup_{s_1 \cdot \ldots \cdot s_n \in P} (C \llbracket s_n \rrbracket \circ \cdots \circ C \llbracket s_1 \rrbracket) \langle R, O \rangle$$

Semantic equivalence

$$\mathsf{C}[\![\mathtt{stmt}]\!] = \mathsf{D}[\![\pi(\mathtt{stmt})]\!]$$

no longer true in the abstract

Path-based concrete semantics of concurrent programs

Concurrent control paths

```
\pi_* \stackrel{\text{def}}{=} \{ \text{ interleavings of } \pi(\text{stmt}_t), \ t \in \mathbb{T} \} 
= \{ p \in atomic^* \mid \forall t \in \mathbb{T}, \ proj_t(p) \in \pi(\text{stmt}_t) \}
```

Interleaving program semantics

$$\mathsf{P}_*\llbracket \operatorname{\mathtt{prog}} \rrbracket \ \stackrel{\scriptscriptstyle\mathrm{def}}{=} \ \llbracket \, \Pi \llbracket \, \pi_* \, \rrbracket \langle \, \mathcal{E}_0, \, \emptyset \, \rangle \, \rrbracket_{\Omega}$$

 $(proj_t(p)$ keeps only the atomic statement in p coming from thread t)

(\simeq sequentially consistent executions [Lamport 79])

Issues:

- too many paths to consider exhaustively
- no induction structure to iterate on ⇒ abstract as a denotational semantics

Soundness of the interference semantics

Soundness theorem

$$\mathsf{P}_*[\![\mathsf{prog}]\!] \subseteq \mathsf{P}[\![\mathsf{prog}]\!]$$

Proof sketch:

- define $\Pi_t \llbracket P \rrbracket X \stackrel{\text{def}}{=} \coprod \{ C_t \llbracket s_1; \dots; s_n \rrbracket X | s_1 \cdot \dots \cdot s_n \in P \}$, then $\Pi_t \llbracket \pi(s) \rrbracket = C_t \llbracket s \rrbracket$;
- given the interference fixpoint I ⊆ I from P[[prog]], prove by recurrence on the length of p ∈ π* that:
 - $\forall \rho \in [\llbracket \llbracket p \rrbracket \langle \mathcal{E}_0, \emptyset \rangle]_{\mathcal{E}}, \forall t \in \mathbb{T},$ $\exists \rho' \in [\llbracket _t \llbracket proj_t(p) \rrbracket \langle \mathcal{E}_0, \emptyset, I \rangle]_{\mathcal{E}} \text{ such that}$ $\forall X \in \mathbb{V}, \rho(X) = \rho'(X) \text{ or } \langle u, X, \rho(X) \rangle \in I \text{ for some } u \neq t.$
 - $\blacksquare \left[\left[\left[\left[p \right] \right] \right] \left\langle \mathcal{E}_{0}, \emptyset \right\rangle \right]_{\Omega} \subseteq \bigcup_{t \in \mathbb{T}} \left[\left[\left[\left[proj_{t}(p) \right] \right] \right] \left\langle \mathcal{E}_{0}, \emptyset, I \right\rangle \right]_{\Omega}$

Notes:

- sound but not complete
- can be extended to soundness proof under weakly consistent memories

Weakly consistent memories

Issues with weak consistency

program written

```
F_1 \leftarrow 1;
if F_2 = 0 then
S_1
fi
F_2 \leftarrow 1;
if F_1 = 0 then
S_2
fi
```

(simplified Dekker mutual exclusion algorithm)

 S_1 and S_2 cannot execute simultaneously.

Issues with weak consistency

program written

$$\begin{array}{c|c} F_1 \leftarrow 1; \\ \text{if } F_2 = 0 \text{ then} \\ S_1 \\ \text{fi} \end{array} \quad \begin{array}{c|c} F_2 \leftarrow 1; \\ \text{if } F_1 = 0 \text{ then} \\ S_2 \\ \text{fi} \end{array}$$

$$\begin{array}{c|c} \text{if } F_2=0 \text{ then } & \text{if } F_1=0 \text{ then } \\ F_1 \leftarrow 1; & F_2 \leftarrow 1; \\ S_1 & S_2 \\ \text{fi} & \text{fi} \end{array}$$

(simplified Dekker mutual exclusion algorithm)

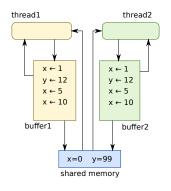
 S_1 and S_2 can execute simultaneously. Not a sequentially consistent behavior!

Caused by:

- write FIFOs, caches, distributed memory
- hardware or compiler optimizations, transformations
-

behavior accepted by Java [Mans05]

Hardware memory model example: TSO



Total Store Ordering: model for intel x86

- each thread writes to a FIFO queue
- queues are flushed non-deterministically to the shared memory
- a thread reads back from its queue if possible and from shared memory otherwise

Out of thin air principle

original program

$$\begin{array}{c|cccc} R1 \leftarrow X; & R \leftarrow Y; \\ Y \leftarrow R1 & X \leftarrow R2 \end{array}$$

(example from causality test case #4 for Java by Pugh et al.)

We should not have $R_1 = 42$.

Out of thin air principle

original program $\begin{array}{c|cccc} R1 \leftarrow X; & R \leftarrow Y; \\ Y \leftarrow R1 & X \leftarrow R2 \end{array}$

 \longrightarrow

"optimized" program

$$\begin{array}{c|cccc} Y \leftarrow 42; & \\ R1 \leftarrow X; & R2 \leftarrow Y; \\ Y \leftarrow R1 & X \leftarrow R2 \end{array}$$

(example from causality test case #4 for Java by Pugh et al.)

We should not have $R_1 = 42$.

Possible if we allow speculative writes!

⇒ we disallow this kind of program transformations.

(also forbidden in Java)

Atomicity and granularity

original program

$$X \leftarrow X + 1 \mid X \leftarrow X + 1$$

We assumed that assignments are atomic. . .

Atomicity and granularity

original program

executed program

$$\begin{array}{c|cccc}
r_1 \leftarrow X + 1 & r_2 \leftarrow X + 1 \\
X \leftarrow r_1 & X \leftarrow r_2
\end{array}$$

We assumed that assignments are atomic... but that may not be the case

The second program admits more behaviors e.g.: X=1 at the end of the program [Reyn04]

Path-based definition of weak consistency

Acceptable control path transformations: $p \rightsquigarrow q$

only reduce interferences and errors

- Reordering: $X_1 \leftarrow e_1 \cdot X_2 \leftarrow e_2 \rightsquigarrow X_2 \leftarrow e_2 \cdot X_1 \leftarrow e_1$ (if $X_1 \notin var(e_2)$, $X_2 \notin var(e_1)$, and e_1 does not stop the program)
- Propagation: $X \leftarrow e \cdot s \rightsquigarrow X \leftarrow e \cdot s[e/X]$ (if $X \notin var(e)$, var(e) are thread-local, and e is deterministic)
- Factorization: $s_1 \cdot \ldots \cdot s_n \rightsquigarrow X \leftarrow e \cdot s_1[X/e] \cdot \ldots \cdot s_n[X/e]$ (if X is fresh, $\forall i$, $var(e) \cap Ival(s_i) = \emptyset$, and e has no error)
- Decomposition: $X \leftarrow e_1 + e_2 \rightsquigarrow T \leftarrow e_1 \cdot X \leftarrow T + e_2$ (change of granularity)
-

but NOT:

• "out-of-thin-air" writes: $X \leftarrow e \rightsquigarrow X \leftarrow 42 \cdot X \leftarrow e$

Soundness of the interference semantics

Interleaving semantics of transformed programs $P'_*[prog]$

- $\blacksquare \pi'(s) \stackrel{\text{def}}{=} \{ p \mid \exists p' \in \pi(s) : p' \rightsquigarrow p \}$
- $\blacksquare \pi'_* \stackrel{\text{def}}{=} \{ \text{ interleavings of } \pi'(\text{stmt}_t), t \in \mathbb{T} \}$

Soundness theorem

$$\mathsf{P}'_* \llbracket \, \mathsf{prog} \, \rrbracket \subseteq \mathsf{P} \llbracket \, \mathsf{prog} \, \rrbracket$$

the interference semantics is sound wrt. weakly consistent memories and changes of granularity

Locks and synchronization

Scheduling

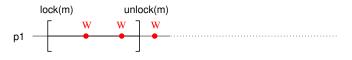
Synchronization primitives

Scheduling

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread

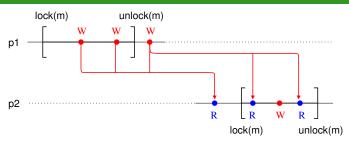
Mutual exclusion



We use a refinement of the simple interference semantics by partitioning wrt. an abstract local view of the scheduler \mathbb{C}

- $\blacksquare \ \mathcal{E} \ \leadsto \ \mathcal{E} \times \mathbb{C}, \quad \mathcal{E}^{\sharp} \ \leadsto \ \mathbb{C} \to \mathcal{E}^{\sharp}$
- $\begin{array}{c} \blacksquare \ \ \stackrel{\mathrm{def}}{=} \ \mathbb{T} \times \mathbb{V} \times \mathbb{R} \ \stackrel{\leadsto}{\leadsto} \ \ \stackrel{\mathrm{def}}{=} \ \mathbb{T} \times \stackrel{}{\mathbb{C}} \times \mathbb{V} \times \mathbb{R}, \\ \mathbb{I}^{\sharp} \ \stackrel{\mathrm{def}}{=} \ (\mathbb{T} \times \mathbb{V}) \to \mathcal{R}^{\sharp} \ \stackrel{\mathrm{def}}{\leadsto} \ (\mathbb{T} \times \stackrel{}{\mathbb{C}} \times \mathbb{V}) \to \mathcal{R}^{\sharp} \end{array}$
- $\mathbb{C} \stackrel{\mathrm{def}}{=} \mathbb{C}_{race} \cup \mathbb{C}_{sync}$ separates
 - data-race writes \mathbb{C}_{race}
 - lacktriangle well-synchronized writes \mathbb{C}_{sync}

Mutual exclusion



$\underline{\mathsf{Data}\text{-race effects}} \quad \mathbb{C}_{\mathsf{race}} \simeq \mathcal{P}(\mathbb{M})$

Across read / write not protected by a mutex.

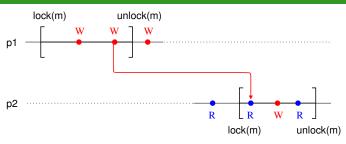
Partition wrt. mutexes $M \subseteq \mathbb{M}$ held by the current thread t.

$$C_t[X \leftarrow e] \langle \rho, M, I \rangle \text{ adds } \{\langle t, M, X, v \rangle \mid v \in E_t[X] \langle \rho, M, I \rangle\} \text{ to } I$$

$$\blacksquare \ \mathsf{E}_{\mathsf{t}} \llbracket \, X \, \rrbracket \, \langle \, \rho, \, \textcolor{red}{M}, \, \textcolor{black}{I} \, \rangle = \{ \, \rho(X) \, \} \, \cup \, \{ \, v \, | \, \langle \, t', \, \textcolor{red}{M'}, \, \textcolor{black}{X}, \, v \, \rangle \in \textcolor{black}{I}, \, \, t \neq \textcolor{black}{t'}, \, \textcolor{black}{M} \cap \textcolor{black}{M'} = \emptyset \, \}$$

Bonus: we get a data-race analysis for free!

Mutual exclusion



Well-synchronized effects $\mathbb{C}_{sync} \simeq \mathbb{M} \times \mathcal{P}(\mathbb{M})$

- last write before unlock affects first read after lock
- partition interferences wrt. a protecting mutex *m* (and *M*)
- $C_t[[unlock(m)]]\langle \rho, M, I \rangle$ stores $\rho(X)$ into I
- $\mathbb{C}_{\mathsf{t}} \llbracket \mathsf{lock}(m) \rrbracket \langle \rho, M, I \rangle$ imports values form I into ρ
- imprecision: non-relational, largely flow-insensitive

$$\Longrightarrow \mathbb{C} \simeq \mathcal{P}(\mathbb{M}) \times (\{data - race\} \cup \mathbb{M})$$

Example analysis

abstract consumer/producer		
consumer	producer	
while random do lock(m); l if X>0 then l2X \(-X-1 fi; \) unlock(m); l3Y \(-X \)	while random do lock(m); X←X+1; if X>100 then X←100 fi; unlock(m)	
done	done	

no data-race interference

(proof of absence of data-race)

well-synchronized interferences:

consumer:
$$x \leftarrow [0, 99]$$
 producer: $x \leftarrow [1, 100]$

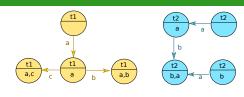
 \blacksquare \Longrightarrow we can prove that $y \in [0, 100]$

without locks, we cannot get $y \leq 100$

Can be generalized to several consumers and producers.

Deadlock checking

t_1	t ₂
lock(a)	lock(a)
lock(c)	lock(b)
unlock(c)	unlock(a)
lock(b)	lock(a)
unlock(b)	unlock(a)
unlock(a)	unlock(b)

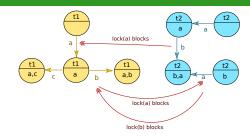


During the analysis, gather:

- all reachable mutex configurations: $R \subseteq \mathbb{T} \times \mathcal{P}(\mathbb{M})$
- lock instructions from these configurations $R \times M$

Deadlock checking

t_1	t_2
lock(a)	lock(a)
lock(c)	lock(b)
unlock(c)	unlock(a)
lock(b)	lock(a)
unlock(b)	unlock(a)
unlock(a)	unlock(b)



During the analysis, gather:

- all reachable mutex configurations: $R \subseteq \mathbb{T} \times \mathcal{P}(\mathbb{M})$
- lock instructions from these configurations $R \times M$

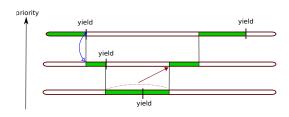
Then, construct a blocking graph between lock instructions

■ $((t, m), \ell)$ blocks $((t', m'), \ell')$ if $t \neq t'$ and $m \cap m' = \emptyset$ (configurations not in mutual exclusion) $\ell \in m'$ (blocking lock)

A deadlock is a cycle in the blocking graph.

generalization to larger cycles, with more threads involved in a deadlock, is easy

Priority-based scheduling



Real-time scheduling:

- priorities are strict (but possibly dynamic)
- a process can only be preempted by a process of strictly higher priority
- a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority

- partition interferences wrt. thread and priority support for manual priority change, and for priority ceiling protocol
- higher priority processes inject state from yield into every point
- lower priority processes inject data-race interferences into yield

Beyond non-relational interferences

Inspiration from program logics

Reminder: Floyd-Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: $\{P\}$ stmt $\{Q\}$

- annotate programs with logic assertions {P} stmt {Q} (if P holds before stmt, then Q holds after stmt)
- check that $\{P\}$ stmt $\{Q\}$ is derivable with the following rules (the assertions are program invariants)

$$\frac{\{P \land e \bowtie 0\} s \{Q\} \quad P \land e \bowtie 0 \Rightarrow Q}{\{P \land e \bowtie 0 \Rightarrow Q\}}$$

$$\frac{\{P\} s_1 \{Q\} \quad \{Q\} s_2 \{R\}}{\{P\} s_1; s_2 \{R\}}$$

$$\frac{\{P \land e \bowtie 0\} s \{P\}}{\{P\} \text{ while } e \bowtie 0 \text{ do } s \text{ done } \{P \land e \bowtie 0\}}$$

$$\frac{\{P'\} s \{Q'\} \quad P \Rightarrow P' \quad Q' \Rightarrow Q}{\{P\} s \{Q\}}$$

Link with abstract interpretation:

 \blacksquare the equations reachability semantics $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}}$ provides the most precise Hoare triples in fixpoint constructive form

Jones' rely-guarantee proof method

<u>Idea:</u> explicit interferences with (more) annotations [Jone81].

Rely-guarantee "quintuples": $R, G \vdash \{P\} \text{ stmt } \{Q\}$

- if P is true before stmt is executed
- and the effect of other threads is included in R (rely)
- \blacksquare then Q is true after stmt
- and the effect of stmt is included in G (guarantee)

where:

- P and Q are assertions on states (in $\mathcal{P}(\Sigma)$)
- R and G are assertions on transitions (in $\mathcal{P}(\Sigma \times \mathcal{A} \times \Sigma)$)

The parallel composition rule is:

$$\frac{R \vee G_2, G_1 \vdash \{P_1\} s_1 \{Q_1\} \quad R \vee G_1, G_2 \vdash \{P_2\} s_2 \{Q_2\}}{R, G_1 \vee G_2 \vdash \{P_1 \wedge P_2\} s_1 \parallel s_2 \{Q_1 \wedge Q_2\}}$$

Rely-guarantee example

```
checking t_1

**Mile random do **

**Landom do **

**Landom
```

Rely-guarantee example


```
 \begin{array}{c} \text{checking } t_2 \\ \text{y unchanged} \\ 0 \leq x \leq y \\ \end{array} \begin{array}{c} \ell^4 \text{ while random do} \\ \ell^5 \text{ if } y < 100 \text{ then} \\ \ell^6 \text{ } y \leftarrow \text{ } y + [1,3] \\ \text{ fidone} \\ \end{array} \\ \text{at } \ell^4 : x = y = 0 \\ \text{at } \ell^5 : x, y \in [0,102], \ x \leq y \\ \text{at } \ell^6 : x \in [0,99], \ y \in [0,99], \ x \leq y \\ \end{array}
```

In this example:

checking t_1

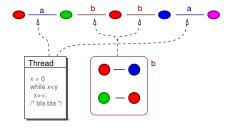
- **g**uarantee exactly what is relied on $(R_1 = G_1 \text{ and } R_2 = G_2)$
- rely and guarantee are global assertions

Benefits of rely-guarantee:

- more precise: can prove $x \leq y$
- invariants are still local to threads
- checking a thread does not require looking at other threads, only at an abstraction of their semantics

Rely-guarantee as abstract interpretation

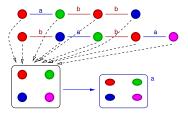
Modularity: main idea



Main idea: separate execution steps

- from the current thread a
 - found by analysis by induction on the syntax of a
- from other threads b
 - given as parameter in the analysis of a
 - inferred during the analysis of b
- ⇒ express the semantics from the point of view of a single thread

Trace decomposition

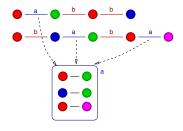


Reachable states projected on thread t: $\mathcal{R}I(t)$

- lacksquare attached to thread control point in \mathcal{L} , not control state in $\mathbb{T} o \mathcal{L}$
- remember other thread's control point as "auxiliary variables" (required for completeness)

$$\mathcal{R}I(t) \stackrel{\mathrm{def}}{=} \pi_t(\mathcal{R}) \subseteq \mathcal{L} \times (\mathbb{V} \cup \{ pc_{t'} \mid t \neq t' \in \mathbb{T} \}) \to \mathbb{R}$$
where $\pi_t(R) \stackrel{\mathrm{def}}{=} \{ \langle L(t), \rho [\forall t' \neq t: pc_{t'} \mapsto L(t')] \rangle | \langle L, \rho \rangle \in R \}$

Trace decomposition



Interferences generated by t: A(t) (\simeq guarantees on transitions)

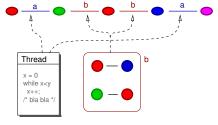
Extract the transitions with action t observed in \mathcal{T}_p

(subset of the transition system, containing only transitions actually used in reachability)

$$A(t) \stackrel{\mathrm{def}}{=} \alpha^{\mathbb{I}}(\mathcal{T}_{p})(t)$$

where $\alpha^{\parallel}(X)(t) \stackrel{\text{def}}{=} \{ \langle \sigma_i, \sigma_{i+1} \rangle \mid \exists \sigma_0 \stackrel{a_0}{\to} \sigma_1 \cdots \stackrel{a_{n-1}}{\to} \sigma_n \in X : a_i = t \}$

Thread-modular concrete semantics



We express $\mathcal{R}I(t)$ and A(t) directly from the transition system, without computing \mathcal{T}_p

States: RI

Interleave:

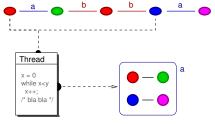
- transitions from the current thread t
- transitions from interferences A by other threads

$$\mathcal{R}I(t) = \operatorname{lfp} R_t(A)$$
, where

$$R_{t}(Y)(X) \stackrel{\text{def}}{=} \pi_{t}(I) \cup \{ \pi_{t}(\sigma') \mid \exists \pi_{t}(\sigma) \in X : \sigma \stackrel{t}{\to}_{\tau} \sigma' \} \cup \{ \pi_{t}(\sigma') \mid \exists \pi_{t}(\sigma) \in X : \exists t' \neq t : \langle \sigma, \sigma' \rangle \in Y(t') \}$$

 \implies similar to reachability for a sequential program, up to A

Thread-modular concrete semantics



We express $\mathcal{R}I(t)$ and A(t) directly from the transition system, without computing \mathcal{T}_n

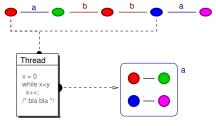
Interferences: A

Collect transitions from a thread t and reachable states \mathcal{R} :

$$A(t) = B(\mathcal{R}I)(t)$$
, where

$$B(\mathbf{Z})(t) \stackrel{\text{def}}{=} \{ \langle \sigma, \sigma' \rangle \mid \pi_t(\sigma) \in \mathbf{Z}(t) \land \sigma \stackrel{t}{\rightarrow_{\tau}} \sigma' \}$$

Thread-modular concrete semantics



We express $\mathcal{R}I(t)$ and A(t) directly from the transition system, without computing \mathcal{T}_n

Recursive definition:

- $\mathbb{R}(t) = \operatorname{lfp} R_t(A)$
- $A(t) = B(\mathcal{R}I)(t)$

express the most precise solution as nested fixpoints:

$$\mathcal{R}I = \operatorname{lfp} \lambda Z.\lambda t. \operatorname{lfp} R_t(B(Z))$$

Completeness: $\forall t : \mathcal{R}I(t) \simeq \mathcal{R}$ (π_t is bijective thanks to auxiliary variables)

any property provable with the interleaving semantics can be proven with the thread-modular semantics!

Fixpoint form

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

■
$$\mathcal{R}I = \mathsf{lfp}\ H = \bigsqcup_{n \in \mathbb{N}} H^n(\lambda t.\emptyset)$$

in the pointwise powerset lattice $\prod_{t \in \mathbb{T}} \{t\} \to \mathcal{P}(\Sigma_t)$

■
$$H(Z)(t) = \text{Ifp } R_t(B(Z)) = \bigcup_{n \in \mathbb{N}} (R_t(B(Z)))^n(\emptyset)$$

in the powerset lattice $\mathcal{P}(\Sigma_t)$
(similar to the sequential semantics of thread t in isolation)

⇒ nested iterations

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

- start from $\mathcal{R}_0^{\sharp} \stackrel{\text{def}}{=} A_0^{\sharp} \stackrel{\text{def}}{=} \lambda t. \bot^{\sharp}$
- while A_n^{\sharp} is not stable
 - compute $\forall t \in \mathbb{T} : \mathcal{R}^{\sharp}_{n+1}(t) \stackrel{\text{def}}{=} \text{lfp } R^{\sharp}_{t}(A^{\sharp}_{n})$ by iteration with widening ∇

(\simeq separate analysis of each thread)

- compute $A_{n+1}^{\sharp} \stackrel{\text{def}}{=} A_n^{\sharp} \nabla B^{\sharp} (\mathcal{R} I_{n+1}^{\sharp})$
- when $A_n^{\sharp} = A_{n+1}^{\sharp}$, return $\mathcal{R}I_n^{\sharp}$
- thread-modular analysis parameterized by abstract domains (only source of approximation) able to easily reuse existing sequential analyses

Retrieving thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

- reduce as much control information as possible
- but keep flow-sensitivity on each thread's control location

Local state abstraction: remove auxiliary variables

$$\alpha_{\mathcal{R}}^{nf}(X) \stackrel{\text{def}}{=} \{ \langle \ell, \rho_{|_{\mathbb{V}}} \rangle | \langle \ell, \rho \rangle \in X \} \cup X$$

<u>Interference abstraction:</u> remove all control state

$$\alpha_{A}^{nf}(Y) \stackrel{\text{def}}{=} \{ \langle \rho, \rho' \rangle \, | \, \exists L, L' \in \mathbb{T} \to \mathcal{L} : \langle \langle L, \rho \rangle, \langle L', \rho' \rangle \rangle \in Y \}$$

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply $\alpha_{\mathcal{R}}^{nf}$ and $\alpha_{\mathcal{A}}^{nf}$ to the nested fixpoint semantics.

 $\mathcal{R}I^{nf} \stackrel{\text{def}}{=} \operatorname{lfp} \lambda Z.\lambda t. \operatorname{lfp} R^{nf}{}_{t}(B^{nf}(Z)), \text{ where}$

- $B^{nf}(Z)(t) \stackrel{\text{def}}{=} \{ \langle \rho, \rho' \rangle | \exists \ell, \ell' \in \mathcal{L}: \langle \ell, \rho \rangle \in Z(t) \land \langle \ell, \rho \rangle \rightarrow_t \langle \ell', \rho' \rangle \}$ (extract interferences from reachable states)
- $R_t^{nf}(Y)(X) \stackrel{\text{def}}{=} R_t^{loc}(X) \cup A_t^{nf}(Y)(X)$ (interleave steps)
- $\blacksquare \ R_t^{loc}(X) \stackrel{\mathrm{def}}{=} \{\langle \ell_t^i, \, \lambda V.0 \rangle\} \cup \{\langle \ell', \, \rho' \, \rangle \, | \, \exists \langle \ell, \, \rho \, \rangle \in X: \langle \ell, \, \rho \, \rangle \rightarrow_t \langle \ell', \, \rho' \, \rangle \}$ (thread step)
- $A_t^{nf}(Y)(X) \stackrel{\text{def}}{=} \{ \langle \ell, \rho' \rangle \mid \exists \rho, u \neq t : \langle \ell, \rho \rangle \in X \land \langle \rho, \rho' \rangle \in Y(u) \}$ (interference step)

Cost/precision trade-off:

- less variables
 - ⇒ subsequent numeric abstractions are more efficient
- insufficient to analyze $x \leftarrow x + 1 \mid\mid x \leftarrow x + 1$

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

- forget the relations between variables
- forget the relations between values before and after transitions (input-output relationship)
- only remember which variables are modified, and their value:

$$\alpha_A^{nr}(Y) \stackrel{\text{def}}{=} \lambda V.\{x \in \mathbb{V} \mid \exists \langle \rho, \rho' \rangle \in Y: \rho(V) \neq x \land \rho'(V) = x\}$$

■ to apply interferences, we get, in the nested fixpoint form:

$$A_t^{nr}(Y)(X) \stackrel{\text{def}}{=} \{ \langle \ell, \, \rho[V \mapsto v] \rangle \, | \, \langle \ell, \, \rho \, \rangle \in X, \, V \in \mathbb{V}, \, \exists u \neq t \colon v \in Y(u)(V) \, \}$$

- no modification on the state (the analysis of each thread can still be relational)
- ⇒ we get back our simple interference analysis!

Finally, use a numeric abstract domain $\alpha: \mathcal{P}(\mathbb{V} \to \mathbb{R}) \to \mathcal{D}^{\sharp}$ for interferences, $\mathbb{V} \to \mathcal{P}(\mathbb{R})$ is abstracted as $\mathbb{V} \to \mathcal{D}^{\sharp}$

A note on unbounded thread creation

Extension: relax the finiteness constraint on \mathbb{T}

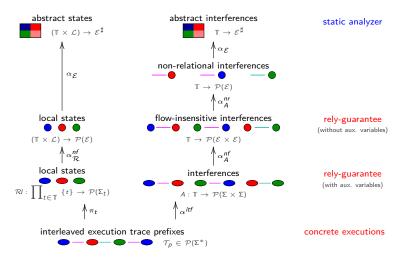
- there is still a finite syntactic set of threads T_s
- some threads $\mathbb{T}_{\infty} \subseteq \mathbb{T}_s$ can have several instances (possibly an unbounded number)

Flow-insensitive analysis:

- local state and interference domains have finite dimensions $(\mathcal{E}_t \text{ and } (\mathcal{L} \times \mathcal{E}) \times (\mathcal{L} \times \mathcal{E})$, as opposed to \mathcal{E} and $\mathcal{E} \times \mathcal{E}$)
- all instances of a thread $t \in \mathbb{T}_s$ are isomorphic \Longrightarrow iterate the analysis on the finite set \mathbb{T}_s (instead of \mathbb{T})
- we must handle self-interferences for threads in \mathbb{T}_{∞} : $A_{\bullet}^{nf}(Y)(X) \stackrel{\text{def}}{=}$

$$A_t^{nt}(Y)(X) \stackrel{\text{def}}{=}$$
 $\{ (\ell, \rho') | \exists \rho, u : (u \neq t \lor t \in \mathbb{T}_{\infty}) \land (\ell, \rho) \in X \land (\rho, \rho') \in Y(u) \}$

From traces to thread-modular analyses



Relational thread-modular abstractions

Fully relational interferences with numeric domains

$\underline{\mathsf{Interferences}} : A(t) \in \mathcal{P}(\Sigma \times \Sigma)$

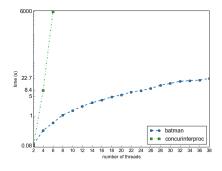
- a numeric relation can be expressed in a classic numeric domain as $\mathcal{P}((\mathbb{V}_a \to \mathbb{Z}) \times (\mathbb{V}_a \to \mathbb{Z})) \simeq \mathcal{P}((\mathbb{V}_a \cup \mathbb{V}_a') \to \mathbb{Z})$
 - $X \in V_a$ value of variable X or auxiliary variable in the pre-state
 - $X' \in V'_a$ value of variable X or auxiliary variable in the post-state

e.g.:
$$\{(x, x+1) \mid x \in [0, 10]\}$$
 is represented as $x' = x+1 \land x \in [0, 10]$ \implies use one global abstract element per thread

Benefits and drawbacks:

- simple: reuse stock numeric abstractions and thread iterators
- precise: the only source of imprecision is the numeric domain
- costly: must apply a (possibly large) relation at each program step

Experiments with fully relational interferences



$$\begin{array}{c|c} t_1 \\ \hline \text{while } z < 10000 \\ \hline z \leftarrow z+1 \\ \text{if } y < c \text{ then } y \leftarrow y+1 \\ \text{done} \end{array} \qquad \begin{array}{c} t_2 \\ \hline \text{while } z < 10000 \\ \hline z \leftarrow z+1 \\ \text{if } x < y \text{ then } x \leftarrow x+1 \\ \hline \text{done} \end{array}$$

Experiments by R. Monat Scalability in the number of threads (assuming fixed number of variables)

Partially relational interferences

Abstraction: keep relations maintained by interferences

remove control state in interferences

 (α_A^{nf})

(set of mutexes held)

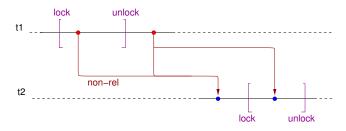
- keep mutex state M
- forget input-output relationships
- keep relationships between variables

Lock invariant:

$$\{ \rho \mid \exists t \in \mathcal{T}, M: \langle M, \rho \rangle \in \alpha_A^{\mathsf{inv}}(\mathbb{I}(t)), \ m \notin M \}$$

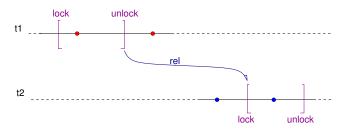
- property maintained outside code protected by m
- possibly broken while m is locked
- restored before unlocking m

Improved interferences: mixing simple interferences and lock invariants



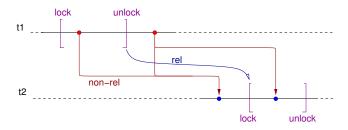
Improved interferences: mixing simple interferences and lock invariants

 apply non-relational data-race interferences unless threads hold a common lock (mutual exclusion)



Improved interferences: mixing simple interferences and lock invariants

- apply non-relational data-race interferences unless threads hold a common lock (mutual exclusion)
- apply non-relational well-synchronized interferences at lock points then intersect with the lock invariant
- gather lock invariants for lock / unlock pairs



Improved interferences: mixing simple interferences and lock invariants

- apply non-relational data-race interferences unless threads hold a common lock (mutual exclusion)
- apply non-relational well-synchronized interferences at lock points then intersect with the lock invariant
- gather lock invariants for lock / unlock pairs

Monotonicity abstraction

Abstraction:

```
map variables to \uparrow monotonic or \top don't know \alpha_A^{\text{mono}}(Y) \stackrel{\text{def}}{=} \lambda V.\text{if } \forall \langle \, \rho, \, \rho' \, \rangle \in Y : \rho(V) \leq \rho'(V) \text{ then } \uparrow \text{ else } \top
```

- keep some input-output relationships
- forgets all relations between variables
- flow-insensitive

Inference and use

gather:

$$A^{\text{mono}}(t)(V) = \uparrow \iff$$
 all assignments to V in t have the form $V \leftarrow V + e$, with $e > 0$

■ use: combined with non-relational interferences if $\forall t \colon A^{\text{mono}}(t)(V) = \nearrow$ then any test with non-relational interference $\mathbb{C}[X \leq (V \mid [a, b])]$ can be strengthened into $\mathbb{C}[X \leq V]$

Weakly relational interference example

analyzing t_1							
t_1	t ₂						
while random do lock(m); if x < y then x ← x + 1; unlock(m)	x unchanged y incremented 0 ≤ y ≤ 102						

analyzing t ₂							
	t_1	t ₂					
	y unchanged $0 \le x, x \le y$	while random do lock(m); if $y < 100$ then $y \leftarrow y + [1,3];$ unlock(m)					

Using all three interference abstractions:

- non-relational interferences $(0 \le y \le 102, 0 \le x)$
- lock invariants, with the octagon domain $(x \le y)$
- monotonic interferences (y monotonic)

we can prove automatically that $x \leq y$ holds

Application: The AstréeA analyzer

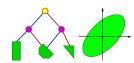
The Astrée analyzer

Astrée:

- started as an academic project by: P. Cousot, R. Cousot, J. Feret, A. Miné, X. Rival, B. Blanchet, D. Monniaux, L. Mauborgne
- checks for absence of run-time error in embedded synchronous C code
- applied to Airbus software with zero alarm (A340 in 2003, A380 in 2004)
- industrialized by AbsInt since 2009

Design by refinement:

- incompleteness: any static analyzer fails on infinitely many programs
- completeness: any program can be analyzed by some static analyzer
- in practice:
 - from target programs and properties of interest
 - start with a simple and fast analyzer (interval)
 - while there are false alarms, add new / tweak abstract domains



The AstréeA analyzer

From Astrée to AstréeA:

- follow-up project: Astrée for concurrent embedded C code (2012–2016)
- interferences abstracted using stock non-relation domains
- memory domain instrumented to gather / inject interferences
- added an extra iterator ⇒ minimal code modifications
- additionally: 4 KB ARINC 653 OS model

Target application:

- ARINC 653 embedded avionic application
- 15 threads, 1.6 Mlines
- embedded reactive code + network code + string formatting
- many variables, arrays, loops
- shallow call graph, no dynamic allocation

From simple interferences to relational interferences

monotonicity domain	relational lock invariants	analysis time	memory	iterations	alarms
×	×	25h 26mn	22 GB	6	4616
✓	×	30h 30mn	24 GB	7	1100
\checkmark	\checkmark	110h 38mn	90 GB	7	1009

Conclusion

Conclusion

We presented static analysis methods that are:

- inspired from thread-modular proof methods
- abstractions of complete concrete semantics (for safety properties)
- sound for all interleavings
- aware of scheduling, priorities and synchronization
- parameterized by (possibly relational) abstract domains (independent domains for state abstraction and interference abstraction)

Bibliography

Bibliography

- [Bour93] **F. Bourdoncle**. *Efficient chaotic iteration strategies with widenings*. In Proc. FMPA'93, LNCS vol. 735, pp. 128–141, Springer, 1993.
- [Carr09] **J.-L. Carré & C. Hymans**. From single-thread to multithreaded: An efficient static analysis algorithm. In arXiv:0910.5833v1, EADS, 2009.
- [Cous84] **P. Cousot & R. Cousot**. *Invariance proof methods and analysis techniques for parallel programs.* In Automatic Program Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.
- [Cous85] **R. Cousot**. Fondements des méthodes de preuve d'invariance et de fatalité de programmes parallèles. In Thèse d'Etat es sc. math., INP Lorraine, Nancy, 1985.
- [Hoar69] **C. A. R. Hoare**. *An axiomatic basis for computer programming*. In Com. ACM, 12(10):576–580, 1969.

Bibliography (cont.)

[Jone81] **C. B. Jones**. Development methods for computer programs including a notion of interference. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In Comm. ACM, 21(7):558–565, 1978.

[Mans05] **J. Manson, B. Pugh & S. V. Adve**. *The Java memory model*. In Proc. POPL'05, pp. 378–391, ACM, 2005.

[Miné12] **A. Miné**. Static analysis of run-time errors in embedded real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] **S. Owicki & D. Gries**. An axiomatic proof technique for parallel programs I. In Acta Informatica, 6(4):319–340, 1976.

Bibliography (cont.)

[Reyn04] J. C. Reynolds. Toward a grainless semantics for shared-variable concurrency. In Proc. FSTTCS'04, LNCS vol. 3328, pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von Praun. *A theory of memory models*. In Proc. PPoPP'07, pp. 161–172, ACM, 2007.