
MPRI

Abstract Interpretation of Mobile Systems

Jérôme Feret
Département d’Informatique de l’École Normale Supérieure

INRIA, ÉNS, CNRS
http://www.di.ens.fr/⇠ feret

January, 22-29 2023

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Systèmes mobiles

Un ensemble de composants qui interagissent.
Ces interactions permettent de :

• synchroniser l’exécution de ces composants,

• changer les liaisons entre les composants,

• créer des nouveaux composants.

Le nombre de composants n’est pas borné !
Champs d’application :

• protocoles de communication,

• protocoles cryptographiques,

• systèmes reconfigurables,

• systèmes biologiques,

•

Démarche
Construction de sémantiques abstraites :

• correctes, automatiques, décidables,
• mais approchées (indécidabilité).

Approche indépendante du modèle:
1. conception d’un META-langage pour encoder les modèles existants ;
2. développement d’analyses au niveau de ce META-langage.

Trois familles d’analyses:
1. analyse des liaisons dynamiques entre les composants :

(confinement, confidentialité, . . .)
2. dénombrement des composants :

(exclusions mutuelles, non-épuisement des ressources, . . .)
3. analyse des unités de calculs :

(absence de conflit, authentification, intégrité des mises à jour, . . .).

Analyse des liaisons entre les composants :
Quels composants peuvent interagir ?

ServeurRessource
Client

L’analyse distingue les composants récursifs
Domaines abstraits : relations entre des mots.

Publications : Feret — SAS’00, SAS’01, ESOP’02, JLAP’05

Analyse du nombre des composants :
Borne le nombre de composants

client rouge en attente...

création
des clients

clients

serveur
deux ports

instances du serveur

Nouveau domaine abstrait : relations numériques
(invariants affines et intervalles).

Publication : Feret — GETCO’00, JLAP’05

Partitionnement de tâches
Principe :

• regrouper les composants en unités de calcul,
=⇒ grâce à l’analyse des liaisons entre les composants ;

• compter le nombre de composants dans chaque unité de calcul,
=⇒ grâce à l’analyse de dénombrement.

Intérêt :
• chaque session est isolée,

ce qui permet aux analyses de se focaliser sur chacune des sessions.

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Mobile system

A pool of processes which interact and communicate:

Interactions control:

• process synchronization;

• update of link between processes (communication, migration);

• process creation.

The number of processes may be unbounded !

Dynamic linkage of agents

A

B

C

Dynamic creation of agents

1 1
...........

2 32
A3

A1 A2

A connection:

client

client

client server

server

server

mail, req

answer answer

mail, reqmail, req

A network

ServeurRessource
Client

π-calculus: syntax

Name: infinite set of channel names,
Label: infinite set of labels,

P ::= action.P
| (P | P)
| (P + P)
| (ν x)P
| ∅

action ::= c!i[x1, ..., xn]

| c?i[x1, ..., xn]

| ∗c?i[x1, ..., xn]

where n ! 0, c, x1, ..., xn, x, ∈ Name, i ∈ Label.
ν and ? are the only name binders.
fn(P): free variables in P,
bn(P): bound names in P.

Transition semantics

A reduction relation and a congruence relation give the semantics of the π-
calculus:

• the reduction relation specifies the result of computations:

P+Q → P
P+Q → Q

c?i[y]Q | c!j[x]P
i,j
→ Q[y← x] | P

∗c?i[y]Q | c!j[x]P
i,j
→ Q[y← x] | ∗c?i[y]Q | P

P → Q

(ν x)P → (ν x)Q

P ′ ≡ P P → Q Q ≡ Q ′

P ′→ Q ′
P → P ′

P | Q→ P ′ | Q

Congruence relation

• the congruence relation reveals redexs:
P | Q ≡ Q | P (Commutativity)

P | (Q | R) ≡ (P | Q) | R (Associativity)
(ν x)P ≡ (ν y)P[x← y] if y &∈ fn(P) (α-conversion)

(ν x)(ν y)P ≡ (ν y)(ν x)P (Swapping)
((ν x)P) | Q ≡ (ν x)(P | Q) if x &∈ fn(Q) (Extrusion)

(ν x)∅ ≡ ∅ (Garbage collection)

Exporting a channel

(ν a)((ν x)(a?[y].P(x, y)|(ν y)(ν x)a![x].R(x, y)))

≡ (α-conversion, swapping and extrusion)

(ν a)(ν x1)(ν x2)(ν y)(a?[y].P(x1, y)|a![x2].R(x2, y))

→

(ν a)(ν x1)(ν x2)(ν y)(P(x1, x2)|R(x2, y))

≡ (swapping and extrusion)

(ν a)(ν x2)((ν x1)P(x1, x2)|(ν y)R(x2, y))

Example: syntax

S := (ν port)(ν gen)
(Server | Customer | gen!0[])

where

Server := ∗port?1[info,add](add !2[info])

Customer := ∗gen?3[] ((ν data) (ν email)
(port!4[data,email] | gen!5[]))

Example: computation

(ν port)(ν gen)
(Server | Customer | gen!0[])

3,0
→ (ν port)(ν gen)(ν data1)(ν email1)

(Server | Customer | gen!5[] | port!4[data1,email1])
1,4
→ (ν port)(ν gen)(ν data1)(ν email1)

(Server | Customer | gen!5[] | email1!2[data1])
3,5
→ (ν port)(ν gen)(ν data1)(ν email1)(ν data2)(ν email2)

(Server | Customer | gen!5[] | email1!
2[data1] | port!4[data2,email2])

1,4
→ (ν port)(ν gen)(ν data1)(ν email1)(ν data2)(ν email2)

(Server | Customer | gen!5[] | email1!2[data1] | email2!2[data2])

α-conversion

α-conversion destroys the link between names and processes which have
declared them:

(ν port)(ν gen)(ν data1)(ν email1)
(ν data2)(ν email2)
(Server | Customer | gen!5[]
| email1!4[data1] | email2!4[data2])

∼α
(ν port)(ν gen)(ν data2)
(ν email1)(ν data1)(ν email2)
(Server | Customer | gen!5[]
| email1!4[data2] | email2!4[data1])

Mobile Ambients

Ambients are named boxes containing other ambients (and/or) some agents.

Agents:

• provide capabilities to their surrounding ambients for local migration and
other ambient dissolution;

• dynamically create new ambients, names and agents;

• communicate names to each others.

An ftp-server

query
p

data c(p)

query
p

p

answer

data

data

c(p)

client generator server

?p
instance

i(p)
query

c(p)

p
ν p, ν data

p

answer

data

query
p

data i(p)

query
p

data i(p)
data

Syntax

Let Name be an infinite countable set of ambient names and Label an infinite
countable set of labels.

n ∈ Name (ambient name)
l ∈ Label (label)

P,Q ::= (ν n)P (restriction)
| 0 (inactivity)
| P | Q (composition)
| nl[P] (ambient)
| M (capability action)
| io (input/output action)

Capability and actions

M ::= inl n.P (can enter an ambient named n)
| outl n.P (can exit an ambient named n)
| openl n.P (can open an ambient named n)
| !openl n.P (can open several ambients named n)

io ::= (n)l.P (input action)
| !(n)l.P (input action with replication)
| 〈n〉l (async output action)

The only name binders are (ν _), (_) and !(_).

Ambient Migration

o

n m

SRin m.P | Q −→

o

n

R S

m

P | Q

o

n
m

R Sout m.P | Q −→

o

SP | Q

m n

R

Ambient Dissolution

o

m

Q Ropen m.P −→

o

P | Q | R

o

m

Q R∗open m.P −→

o

∗open m.P | P | Q | R

Communication

o

〈m〉 | (n).P | Q
−→

o

P[n←m] | Q

o

〈m〉 | ∗(n).P | Q
−→

o

∗(n).P | P[n←m] | Q

An ftp-server

S :=(νPub)(S | !(x)11.C | 〈make〉21)

where

Pub :=(ν request)(ν make)(ν server)(ν duplicate)(ν instance)(ν answer),

C :=(ν q)(ν p)p12[C1 | C2 | C3] | 〈make〉20,
C1 :=request13[〈q〉14], C2 :=open15instance,
C3 :=in16server.duplicate17[out18p.〈p〉19],

S :=server1[S1 | S2], S1 :=!open2duplicate, S2 :=!(k)3.instance4[I],

I :=in5k.open6request.(rep)7(I1 | I2), I1 :=answer8[〈rep〉9], I2 :=out10server.

(νPub)(S | !(x)11.C | 〈make〉21)
→

(νPub)





!(x)11.C | 〈make〉20| server1[S1 | S2] |

(ν q1)(ν p1)p1
12

[

request13[〈q1〉14] | C2 |

in16server.duplicate17[out18p1.〈p1〉19]

]





→
(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

S1 | S2 | p1
12

[

request13[〈q1〉14] | C2 |

duplicate17[out18p1.〈p1〉19]

]])

→
(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

!open2duplicate | S2 | duplicate17[〈p1〉19] |
p1

12[request13[〈q1〉14] | C2]

])

(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

!open2duplicate | S2 | duplicate17[〈p1〉19] |
p1

12[request13[〈q1〉14] | C2]

])

→
(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

S1 | !(k)
3.instance4[I] | 〈p1〉19|

p1
12[request13[〈q1〉14] | C2]

])

→
(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

S1 | S2 | p1
12[request13[〈q1〉14] | C2] |

instance4[in5p1.open6request.(rep)7(I1|I2)]

])

→
(νPub)(ν q1)(ν p1)


!(x)11.C| 〈make〉20| server1





S1 | S2 |

p1
12

[

request13[〈q1〉14] | open15instance |

instance4[open6request.(rep)7(I1|I2)]

]









(νPub)(ν q1)(ν p1)


!(x)11.C| 〈make〉20| server1





S1 | S2 |

p1
12

[

request13[〈q1〉14] | open15instance |
instance4[open6request.(rep)7(I1|I2)]

]









→
(νPub)(ν q1)(ν p1)
(

!(x)11.C | 〈make〉20| server1
[

S1 | S2 | p1
12

[

request13[〈q1〉14] |
open6request.(rep)7(I1 | I2)

]])

→∗

(νPub)(ν q1)(ν p1)

(!(x)11.C | 〈make〉20| server1[S1 | S2 | p1
12[answer8[〈q1〉9] | out10server]])

→
(νPub)(ν q1)(ν p1)
(!(x)11.C | 〈make〉20| server1[S1 | S2] | p1

12[answer8[〈q1〉9]])
→∗

(νPub)(ν q1)(ν p1)(ν q2)(ν p2)(!(x)
11.C | 〈make〉20| server1[S1 | S2]

| p1
12[answer8[〈q1〉9]] | p2

12[answer8[〈q2〉9]])

Shared-memory example
Motivation

We want to describe in the π-calculus a shared-memory in which:

• each process can allocate new cells,

• each authorized process can read the content of a cell,

• each authorized process can write inside a cell, overwriting the former
content.

Shared-memory example
Specification

A memory cell will be denoted by three channel names, cell , read , write:

• a channel name cell describes the content of the cell:
the process cell![data] means that the cell cell contains the information
data, this name is internal to the memory (not visible by the user).

• a channel name read allows reading requests:
the process read![port] is a request to read the content of the cell, and
send it to the port port,

• a channel name write allows writing requests:
the process write![data] is a request to write the information data inside
the cell.

Shared Memory
Encoding

System := (ν create)(ν null)(∗create?[d].Allocate(d))

Allocate(d) :=
(ν cell)(ν write)(ν read)

(init(cell) | read(read,cell) | write(write,cell) | d![read ;write])

where

• init(cell) := cell![null]

• read(read,cell) := ∗read?[port].cell?[u].(cell![u] | port![u])

• write(write,cell) := ∗write?[data].cell?[u].cell![data]

Shared-memory example
Trace example

(ν create)(ν null)
(∗create?[d].Allocate(d)
| (ν address)(ν data)create![address].address?[r ;w].w ![data].r ![address])

→
(ν create) (ν null) (ν cell) (ν write) (ν read) (ν address) (ν data)

(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)
| cell![null] | address![read,write] | address?[r ;w].w ![data].r ![address])

→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | write![data].read ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | cell?[u].cell![data] | read ![address])

Shared-memory example
Expected Derivation

(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)
| cell![null] | cell?[u].cell![data] | read ![address])

→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | read ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | cell?[u].(cell![u] | address![u]))
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | address![data])

Shared-memory example
Unexpected Derivation

(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)
| cell![null] | cell?[u].cell![data] | read ![address])

→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | cell?[u].cell![data] | cell?[u].(cell![u] | address![u]))
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | cell?[u].cell![data] | address![null])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | address![null])

Shared-memory example
Enforcing synchronisation

System := (ν create)(ν null)(∗create?[d].Allocate(d))

Allocate(d) :=
(ν cell)(ν write)(ν read)

init(cell) | read(read,cell) | write(write,cell) | d![read ;write]

where

• init(cell) := cell![null]

• read(read,cell) := ∗read?[port].cell?[u](cell![u] | port![u])

• write(write,cell) := ∗write?[data,ack].cell?[u].(cell![data] | ack ![])

(ν create)(ν null)
(∗create?[d].Allocate(d)
| (ν address)(ν data)(ν ack)

create![address].address?[r ;w].w ![data;ack].ack?[].r ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell) | cell![null]

| address![read,write] | address?[r ;w].w ![data;ack].ack?[].r ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | write![data;ack].ack?[].read ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![null] | cell?[u].(cell![data] | ack ![])
| ack?[].read ![address])

(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)
| cell![null] | cell?[u].(cell![data] | ack ![])
| ack?[].read ![address])

→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| (cell![data] | ack ![]) | ack?[].read ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | read ![address])
→
(ν c)(∗create?[d].Allocate(d) | read(read,cell) | write(write,cell)

| cell![data] | address![data])

Shared-memory example
Using Mutex

System := (ν create)(ν null)(∗create?[d]Allocate(d))
Allocate(d) := (ν cell)(ν mutex)(ν nomutex)(ν write)(ν read)(ν lock)(ν unlock)

init(cell,mutex) | read(read,cell) | write(write,cell)
| lock(lock,mutex,nomutex) | unlock(unlock,mutex,nomutex)
| d ![read ;write;lock ;unlock]

where
init(cell,mutex) := cell![null] | mutex ![]
read(read,cell) := ∗read?[port].cell?[u](cell![u] | port![u])
write(write,cell) := ∗write?[data,ack].cell?[u].(cell![data] | ack ![])
lock(lock,mutex,nomutex) := ∗lock?[ack].mutex?[].(ack ![] | nomutex ![])
unlock(unlock,mutex,nomutex) :=∗unlock?[ack].nomutex?[].(ack ![] | mutex ![])

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Motivation

We focus on reachability properties.
We distinguish between recursive instances of components.

We design three families of analyses:

1. environment analyses capture dynamic properties
(non-uniform control flow analysis, secrecy, confinement, . . .)

2. occurrence counting captures concurrency properties
(mutual exclusion, non exhaustion of resources)

3. thread partitioning mixes both dynamic and concurrency properties
(absence of race condition, authentication, . . .).

Non-standard semantics

A refined semantics in where

• recursive instances of processes are identified with unambiguous mark-
ers;

• channel names are stamped with the marker of the process which has
declared them.

Example: non-standard configuration

(Server | Client | gen!5[] | email1!2[data1] | email2!2[data2])






(

1, ε,
{

port)→ (port, ε)
)

(

3, ε,

{
gen)→ (gen, ε)
port)→ (port, ε)

)

(

2, id ′
1,

{
add)→ (email, id1)

info)→ (data, id1)

)

(

2, id ′
2,

{
add)→ (email, id2)

info)→ (data, id2)

)

(

5, id2,
{

gen)→ (gen, ε)
)






Marker properties

1. Marker allocation must be consistent:

Two instances of the same process cannot be associated to the same
marker during a computation sequence.

2. Marker allocation should be robust:

Marker allocation should not depend on the interleaving order.

Marker allocation

Markers describe the history of the replications which have led to the creation
of the threads.
They are binary trees:

• leaves are not labeled;

• nodes are labeled with a pair (i, j) ∈ Label 2.
They are recursively calculated when fetching resources as follows:

id!

id∗ :

(i,j)

id?

Small step semantics

Small step semantics is given by a transition system:

• an initial configuration;

• three structural reduction rules which simulate the congruence relation;

• four action reduction rules which simulate the transition relation.

Initial configuration

C0(S) = {(S, ε, ∅)}

Structural rules

C ∪ {(P | Q, id, E)}
ε
→ C ∪ {(P, id, E|fn(P)); (Q, id, E|fn(Q))}

C ∪ {((ν x)P, id, E)}
ε
→ C ∪ {(P, id, E[x→ (x, id)]|fn(P))}

C ∪ {(∅, id, E)}
ε
→ C

Communication rules

E?(y) = E!(x)

C ∪

{
(y?i[y]P, id?, E?);

(x!j[x]Q, id!, E!)

}
(i,j)
→ C ∪

{
(P, id?, E?[y→ E![x]]|fn(P));
(Q, id!, E!|fn(Q))

}

E?(y) = E!(x)

C ∪

{
(∗y?i[y]P, id?, E?);

(x!j[x]Q, id!, E!)

}
(i,j)
→ C ∪






(∗y?i[y]P, id?, E?);
(P,N((i, j), id?, id!), E?[y→ E!(x)]|fn(P));
(Q, id!, E!|fn(Q))






Choice rules

C ∪ {P+Q, id, E}
ε
→ C ∪ {(P, id, E|fn(P)}

C ∪ {P+Q, id, E}
ε
→ C ∪ {(Q, id, E|fn(Q)}

Coherence

Theorem 1 Standard semantics and small step non-standard semantics are
weakly bisimilar.

The main point is to prove that there are no conflicts between markers.

Marker allocation consistency

We denote by father(P) the father of P, when it exists, in the syntactic tree of
S.

1. the thread (S, ε, ∅) can only be created at the start of the system com-
putation;

2. a thread (P, id, _) such that father(P) is not a resource, can only be cre-
ated by making a thread (father(P), id,_) react;

3. a thread (P,N((i, j), id?, id!), _) can only be created by making a thread
(Pj, id!,_) react (when Pj denote the syntactic process begining with the
syntactic component labeled with j).

This proves marker allocation consistency.

Simplifying markers

We can simplify the shape of the marker without any loss of consistency:

1. replacing each tree by its right comb:
{
φ1(N((i, j), id1, id2)) = φ1(id2).(i, j)

φ1(ε) = ε

2. replacing pairs by their second component:
{
φ2(N((i, j), id1, id2)) = φ2(id2).j

φ2(ε) = ε

Those simplifications can be seen as an abstraction, they do not loose se-
mantics consistency, but they may abstract away information, in the case
of nested resources, by merging information about distinct computation se-
quences.

Middle semantics

Small step semantics can be analyzed but:

• there are too many transition rules;

• it uses too many kinds of processes.

=⇒We design a new semantics with only active rules.

(Structural rules are included inside active rules)

Definition

Structural rules:

C ∪ {(P | Q, id, E)}
ε
→ C ∪ {(P, id, E|fn(P)); (Q, id, E|fn(Q))}

C ∪ {((ν x)P, id, E)}
ε
→ C ∪ {(P, id, E[x→ (x, id)]|fn(P))}

C ∪ {(∅, id, E)}
ε
→ C

are a confluent and well-founded transition system,
we denote by =⇒ its limit:

a =⇒ b ssi

{
a→∗ b

∀c, b &→ c.

and we define our new transition system by
λ
→′ =

λ
→ ◦ =⇒.

Extraction function

An extraction function calculates the set of the thread instances spawned at
the beginning of the system execution or after a computation step.

β((ν n)P, id, E) = β(P, id, (E[n)→ (n, id)]))
β(∅, id, E) = ∅

β(P | Q, id, E) = β(P, id, E) ∪ β(Q, id, E)
β(P+Q, id, E) = {(P+Q, id, E|fn(P+Q))}

β(y?i[y].P, id, E) = {(y?i[y].P, id, E|fn(y?i[y].P))}

β(∗y?i[y].P, id, E) = {(∗y?i[y].P, id, E|fn(∗y?i[y].P))}

β(x!j[x].P, id, E) = {(x!j[x].P, id, E|fn(x!j[x]P))}

Transition system

C0(S) = β(S, ε, ∅)

C ∪ {(P+Q, id, E)}
ε
→ (C ∪ β(P, id, E))

C ∪ {(P+Q, id, E)}
ε
→ (C ∪ β(Q, id, E))

Communication rules

E?(y) = E!(x)

C ∪

{
(y?i[y]P, id?, E?),

(x!j[x]Q, id!, E!)

}
(i,j)
→ (C ∪ β(P, id?, E?[yi)→ E!(xi)]) ∪ β(Q, id!, E!))

E∗(y) = E!(x)

C ∪

{
(∗y?i[y]P, id∗, E∗),

(x!j[x]Q, id!, E!)

}
(i,j)
→











C ∪{(∗y?i[y]P, id∗, E∗)}
∪β(P,N((i, j), id∗, id!), E∗[yi)→ E!(xi)])
∪β(Q, id!, E!)











Coherence

Middle semantics and standard semantics are strongly bisimilar, but we still
consider too much process: we can also factor choice operations.

For that purpose we restrict our study to the computation sequences in where
communication are only made when there are no choice thread instance at
top level, and factor choices with communication rules.

Definition

Choice rules are a well-founded transition system,

we denote by =⇒ its non-deterministic limit:

a =⇒ b ssi

{
a→∗ b

∀c, b &→ c.

and we define our new transition system by λ
→′ =

λ
→ ◦ =⇒.

Extraction function

An extraction function calculates the set of all choices for the set of the thread
instances spawned at the beginning of the system execution or after a com-
munication.

β((ν n)P, id, E) = β(P, id, (E[n)→ (n, id)]))
β(∅, id, E) = {∅}

β(P+Q, id, E) = β(P, id, E) ∪ β(Q, id, E)
β(P | Q, id, E) = {A ∪ B |A ∈ β(P, id, E), B ∈ β(Q, id, E)}

β(y?i[y].P, id, E) = {{(y?i[y].P, id, E|fn(y?i[y].P)
)}}

β(∗y?i[y].P, id, E) = {{(∗y?i[y].P, id, E|fn(∗y?i[y].P))}}

β(x!j[x].P, id, E) = {{(x!j[x].P, id, E|fn(x!j[x]P))}}

Transition system

C0(S) = β(S, ε, ∅)

E?(y) = E!(x), ContP∈β(P, id?, E?[yi)→ E!(xi)]),ContQ∈β(Q, id!, E!)

C ∪ {(y?i[y]P, id?, E?), (x!
j[x]Q, id!, E!)}

(i,j)
→ (C ∪ ContP ∪ ContQ)

E∗(y) = E!(x), ContP∈β(P,N((i, j), id∗, id!), E∗[yi)→ E!(xi)]),ContQ∈β(Q, id!, E!)

C ∪

{
(∗y?i[y]P, id∗, E∗),

(x!j[x]Q, id!, E!)

}
(i,j)
→
(

C ∪ {(∗y?i[y]P, id∗, E∗)} ∪ ContP ∪ ContQ
)

META-language: intuition

In the π-calculus :

• each program point a?[y]P is associated with a partial interaction:

(in, [a], [y], label(P))

• each program point b![x]Q is associated with a partial interaction:

(out, [b, x], [], label(Q))

• The generic transition rule:

((in,out), [X1
1 = X2

1], [Y
1
1 ← X2

2]).

describes communication steps.

Some rules are more complex (e.g. ambient opening).

Advantages of the META-language

1. each analysis at the META-language level provides an analysis for each
encoded model;

2. the META-language avoids the use of congruence and α-conversion:
Fresh names are allocated according to the local history of each pro-
cess.

3. names contains useful information:
This allows the inference of:

• more complex properties;
• some simple properties the proof of which uses complex proper-

ties.

Context-free analysis

Analyzing interaction between a system and its unknown context.

System

Context
The context may

• spy the system, by listening to message
on unsafe channel names;

• spoil the system, by sending message
via unsafe channel names.

Nasty context

Context := (ν unsafe) (new
| spy0 | ... | spyn

| spoil0 | ... | spoiln)

where

new := (∗(ν channel)∗unsafe![channel])

spoilk := (∗unsafe?[c]unsafe?[x1]...unsafe?[xk]c![x1,...,xk])

spyk := (∗unsafe?[c]c?[x1,...,xk] ((∗unsafe![x1]) | ... | (∗unsafe![xk])))

Non-Standard Configuration

We flatly represent system configurations:






(p12[•], id0, (top, ε), [p)→ (p, id0)])

(p12[•], id1, (top, ε), [p)→ (p, id1)])

(answer8[•], id ′
0, (12, id0), ∅)

(answer8[•], id ′
1, (12, id1), ∅)

(〈rep〉9, id ′
0, (8, id

′
0), [rep)→ (data, id0)])

(〈rep〉9, id ′
1, (8, id

′
1), [rep)→ (data, id1)])

p

answer

data

p

answer

data

top

In migration





λ =
(

ni[•], id1, loc1, E1

)

,

µ =
(

mj[•], id2, loc2, E2

)

,

ψ =
(

inko.P, id3, loc3, E3

)

,

loc1 = loc2, loc3 = (i, id1), E2(m) = E3(o), λ &= µ.

C ∪ {λ;µ;ψ}
in(i,j,k)
→ (C ∪ {µ}) ∪ (ni[•], id1, (j, id2), E1) ∪ β

(

P, id3, loc3, E3|fn(P)

)

.

o

n m

SRin m.P | Q −→

o

n

R S

m

P | Q

out migration





λ =
(

mi[•], id1, loc1, E1

)

,

µ =
(

nj[•], id2, loc2, E2

)

,

ψ =
(

outko.P, id3, loc3, E3

)

,

loc2 = (i, id1), loc3 = (j, id2), E1(m) = E3(o)

C ∪ {λ;µ;ψ}
out(i,j,k)
→ (C ∪ {λ}) ∪ (nj[•], id2, loc1, E2) ∪ β

(

P, id3, loc3, E3|fn(P)

)

.

o

n
m

R Sout m.P | Q −→

o

SP | Q

m n

R

Dissolution





λ =
(

openim.P, id1, loc1, E1

)

µ =
(

nj[•], id2, loc2, E2

)

,

loc1 = loc2, E1(m) = E2(n),

C ∪ {λ;µ}
open(i,j)
→ (C \A) ∪A ′ ∪ β

(

P, id1, loc1, E1|fn(P)

)

where

{
A = {(a, id, loc, E) ∈ C | loc = (j, id2)}

A ′ = {(a, id, loc2, E) | (a, id, (j, id2), E) ∈ C} .

o

m

Q Ropen m.P −→

o

P | Q | R

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Collecting semantics

(C, C0,→) is a transition system,
We restrict our study to its collecting semantics:
this is the set of the states that are reachable within a finite transition se-
quence.

S = {C | ∃i ∈ C0, i→
∗ C}

It is also given by the least fixpoint of the following ∪-complete endomorphism
F:

F =

{
℘(C) → ℘(C)

X)→ C0 ∪ {C ′ | ∃C ∈ X, C→ C ′}

This fixpoint is usually not computable automatically.

Abstract domain

We introduce an abstract domain of properties:

• properties of interest;

• more complex properties used in calculating them.

This domain is often a lattice: (D!,.,/,⊥,1,2) and is related to the concrete
domain ℘(C) by a monotonic concretization function γ.

∀A ∈ D!, γ(A) is the set of the elements which satisfy the property A.

Numerical domains

• sign approximation;

• interval approximation;

• octagonal approximation;

• polyhedra approximation;

• concrete domain.

Abstract transition system

Let C!
0 be an abstraction of the initial states and " be an abstract transition

relation, which satisfies C0 ⊆ γ(C
!
0) and the following diagram:

C!

C C

γ

λ
→

λ
"

C
!

γ

Then, S ⊆
⋃

n∈N

γ(F!n(C!
0)),

where F!(C!) = C!
0 / C! /

(
⊔

finite{C! | C! " C!}
)

.

Widening operator

We require a widening operator to ensure the convergence of the analysis:

∇ : D! ×D!→ D!

such that:

• ∀X!
1, X

!
2 ∈ D!, X!

1 / X!
2 . X!

1∇X!
2

• for all increasing sequence (X!
n) ∈

(

D!
)N

, the sequence (X∇
n) defined

as {
X∇
0 = X!

0

X∇
n+1 = X∇

n ∇ X!
n+1

is ultimately stationary.

Abstract iteration

The abstract iteration (C∇
n) of F! defined as follows






C∇
0 = C!

0

C∇
n+1 =

{
C∇

n if F!(C∇
n) . C∇

n

C∇
n ∇ F!(C∇

n) otherwise

is ultimately stationary and its limit C∇ satisfies lfp∅F ⊆ γ(C∇).

Example: Interval widening

We consider the complete I lattice of the natural number intervals.

I does not satisfy the increasing chain condition.

Given n a natural number, we use the following widening operator to ensure
the convergence of the analyses based on the use of I:

{
[|a;b|] ∇ [|c;d|] = [|min{a; c};∞|[if d > max{n;b}

I ∇ J = I / J otherwise

Composing two abstractions

Given two abstractions (D!,γ, C!
0,",∇) and (D!,γ, C!

0,",∇), and a reduc-
tion ρ : D! ×D!→ D! ×D! which satisfy:

∀(A,A) ∈ D! ×D!, γ(A) ∩ γ(A) ⊆ γ(a) ∩ γ(a) where (a, a) = ρ(A,A).

Then (D!,γ, C!
0,",∇) where:

• D! = D! ×D!;

• ∇ is pair-wisely defined;

• γ(A,A) = γ(A) ∩ γ(A);

• C!
0 = ρ(C

!
0, C

!
0);

• (A,A)" ρ(C,C)

if B" C and B" C and (B, B) = ρ(A,A)

is also an abstraction.

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Generic environment analysis

For each subset V of variables, we introduce a generic abstract domain GV

to describe the markers and the environments which may be associated to a
syntactic component the free name of which is V:

℘(Id × (V → (Name × Id)))
γV←− GV.

The abstract domain C! is then the set:

C! =
∏

p∈P

Gfn(p)

related to ℘(C) by the concretization γ:

γ(f) = {C | (p, id, E) ∈ C =⇒ (id, E) ∈ γfn(p)(fp)}.

Abstract communication

?

Variable PropertyEnvironment Property

Relational Information

y?[y].(νp)P x![x].(νq)Q

Synchronization Constraint

Extending environments

Variable Property
Environment Property

Relational Information

y?[y].(νp)P x![x].(νq)Q

Environment Extension
Synchronization Constraint

Synchronizing environments

Variable Property
Environment Property

Relational Information

y?[y].(νp)P x![x].(νq)Q

Environment Extension
Synchronization Constraint

Propagating information

Variable Property

Relational Information

Environment Property

y?[y].(νp)P x![x].(νq)Q

Environment Extension
Information closure

Generic primitives

We only require abstract primitives to:

1. extend an environment domain,

2. gather the description of the linkage of two syntactic agents,

3. synchronize variables,

4. separate two descriptions,

5. restrict an environment domain.

About mobile ambients

mi[•] inko.Pnj[•]

m n

inko.P

i j

?

mi[•] inko.Pnj[•]

m n

inko.P

i j

mi[•] inko.Pnj[•]

m n

inko.P

i j

Control flow analyses

We abstract for each variable x and each name restriction ν y the set of
marker pairs (idx, idy) such that the channel opened by the instance of the
restriction ν y tagged with the marker idy may be communicated to the vari-
able x of a thread tagged by the marker idx.

Let Id ! be an abstract domain of properties about marker pairs.

γId 2 : Id ! → ℘(Id 2)

GV = V × Name→ Id !

γV(a
!) is the set of marker/environment pairs (idx, E) such that:

∀x ∈ V, E(x) = (y, idy) =⇒ (idx, idy) ∈ γId 2(a!(x, y)).

Regular approximation

We approximate the shape of the markers which may be associated to chan-
nel names linked to variables, and syntactic components, without relations
among them.
We use the following abstract domain:

℘(Σ)× ℘(Σ)× ℘(Σ× Σ)× {true;false}.

γ(I, F, T, b) is defined by γ1(I) ∩ γ2(F) ∩ γ3(T) ∩ γ4(b) where:

• γ1(I) = {u ∈ Σ∗ | |u| > 0⇒ u1 ∈ I},

• γ2(F) = {u ∈ Σ∗ | |u| > 0⇒ u|u| ∈ F},

• γ3(T) = {u ∈ Σ∗ | ∀a, b ∈ Σ∗, λ, µ ∈ Σ, u = a.λ.µ.b⇒ (λ, µ) ∈ T },

• γ4(b) =

{
Σ+ if b = 0

Σ∗ otherwise.

Domain complexity is O(n.|Σ|) and maximum iteration number is O(n4.|Σ|).

Comparison between channel and agent
markers

We capture the difference between the occurrence number of letters in such
two markers.

Id 2 = (Σ→ (Z ∪ {2})) ∪ {⊥}

γId 2 is defined as follows:

γId 2(⊥) = ∅
γId 2(f) = {(u, v) ∈ (Σ∗)2 | ∀λ, f(λ)∈Z =⇒ |u|λ − |v|λ = f(n)}.

Domain complexity is O(|Σ|) and maximum iteration number is O(n3.|Σ|).

Several trade-offs

1. 0-cfa (0-CFA): Id ! = {⊥;2},
Cf [Nielson et al.:CONCUR’98], [Hennessy and Riely:HLCL’98].

2. Confinement (CONF): Id ! = {⊥,=,2},
Cf [Cardelli et al.:CONCUR’00].

3. Algebraic comparisons: we use the product between regular approxi-
mation and relational approximation.
We can tune the complexity:

• by capturing all numerical relations (GLOBi), or only one relation
per literal (LOCi).

• by choosing the set of literals among Label (i = 2)or Label 2 (i = 1).

Abstract semantics hierarchy

GLOB2

LOC2

GLOB=
2

0-CFA

CONF

GLOB1

GLOB=
1

LOC1

LOC=
2

LOC=
1

where
A→ B

means that there exists α : A→ B,
such that for any system S,

α(!S"!A).B!S"!B.

Example: 0-CFA

Analysis result

We detect that threads at program point 2 as the following shape:



2, (3, 6)(3, 5)n(1, 4),

{
add)→ (email, (3, 6)(3, 5)n)

info)→ (data, (3, 6)(3, 5)n)





Example: non-uniform result

Example: the ring of processes

(ν make)(ν edge)(ν first)
(∗make?1[last](νnext)

(edge!2[last ,next]
| make!3[next])

| ∗make?4[last](edge!5[last,first])
| make!6[first])

first s1

s3 s2

edge edge

edge

edge
!(1, 3) + 1 =
!(1, 3)

Example: Algebraic properties

Example

We detect that:





(p12[•], (11, 20)m.(11, 21), _, [p)→ (p, (11, 20)m.(11, 21))])

(answer8[•], (3, 19).(11, 20)n.(11, 21), (12, (11, 20)n.(11, 21),_)
(〈rep〉9, _, (8, (3, 19).(11, 20)p.(11, 21), [rep)→ (data, (11, 20)p.(11, 21))]))

We deduce that each packet exiting the server has the following structure:

answer
(p.(11, 20)n.(11, 21))

(data, (11, 20)n.(11, 21))

(11, 20)n.(11, 21)

(3, 19).(11, 20)n.(11, 21)

Limitations

Two main drawbacks:

1. we only prove equalities between Parrikh’s vectors, some more work is
needed in order to prove equalities of words;

2. we only capture properties involving comparison between channel name
and agent markers:

(ν make)(ν edge)(ν first)(ν first)
(∗make?1[last](νnext)

(edge!2[last ,next]
| make!3[next])

| ∗make?6[last](edge!7[last,first])
| make!8[first])
| edge?[x,y][x =9 y][x &=10first]Ok!11[]

we cannot infer that 11 is unreachable.

Dependency analysis between names

We describe equality and inequality relations between the names linked to
variables.

GV =

{

(A,R)

∣

∣

∣

∣

A is a partition of V
R is a symetric anti-reflexive relation on A

}

.

GV is related to ℘(Id × (V → (Name × Id))) by the following concretization
function:

γV((A,R)) =

{

(id, E)

∣

∣

∣

∣

∀X ∈ A, {x, y} ⊆ X =⇒ E(x) = E(y)
(X ,Y) ∈ R =⇒ ∀x ∈ X , y ∈ Y, E(x) &= E(y)

}

=⇒ implicit closure of relations and information propagation.

Dependency analysis between markers
We describe equality and inequality relations between the markers of threads
and the names linked to variables.

GV =

{

(A,R)

∣

∣

∣

∣

A is a partition of V 7 {idp}
R is a symetric anti-reflexive relation on A

}

.

GV is related to ℘(Id × (V → (Name × Id))) by the following concretization
function:

γV((A,R)) =






(id, E)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀X ∈ A, x ∈ V, {idp, x} ⊆ X =⇒ id = snd(E(x))
∀X ∈ A, x, y ∈ V, {x, y} ⊆ X =⇒ snd(E(x)) = snd(E(y))
∀(X ,Y) ∈ R, y ∈ V,

idp ∈ X and y ∈ Y =⇒ id &= snd(E(y))
∀(X ,Y) ∈ R, x, y ∈ V,

x ∈ X and y ∈ Y =⇒ snd(E(x)) &= snd(E(y))






=⇒ implicit closure of relations and information propagation.

Global numerical analysis

We abstract relations between all the name markers and all the names linked
to variables, and the thread markers:
For each V ⊆ Name, we introduce the set

XV = {pλ | λ ∈ Σ} ∪ {c(λ,v) | λ ∈ Σ ∪ Name, v ∈ V}

The domain GV is then the set of the affine relations system among XV related
to the concrete domain by the following concretization:

γV(K) =





(id, E)

∣

∣

∣

∣

∣

(

pλ→ |id|λ
x(y,v) → (y = first(E(v)))
x(λ,v)→ |snd(E(v))|λ

)

satisfies K





.

Pair-wise numerical analysis

We compare pair-wisely markers, having partitioned in accordance with the
name creations having created the names.
Let Φ be a linear form defined on RΣ, for each V ⊆ Name, the domain GV is
a pair of function (f, g):

f : V ∪ Name→ { Affine subspace of R2},
g : (V ∪ Name)2→ { Affine subspace of R2},

the concretization γV(f, g) is given by:





(id, E)

∣

∣

∣

∣

∣

∣

E(x) = (y, idy) =⇒ (Φ((|id|λ)λ∈Σ),Φ((|idy|λ)λ∈Σ)) ∈ f(x, y){
E(x) = (y, idy)

E(x ′) = (y ′, id
′

y)
=⇒ (Φ((|idy|λ)λ∈Σ),Φ((|id

′

y)|λ)λ∈Σ) ∈ g((x, y), (x ′, y ′))






Reduction

Global

Pair−wise

Shape

Dependency

 PI
=

=
=

=
&=

&=
&=

Example

(ν make)(ν edge)(ν first)
(∗make?1[last](νnext) (edge!2[last ,next] | make!3[next])
| ∗make?6[last](edge!7[last,first])
| make!8[first])
| edge?[x,y][x=9y][x &=10first]Ok!11[]

we first prove in global abstraction that:

f(2) satisfies

{
c(1,3),next = c(1,3),last + cnext,last

cfirst,last + cnext,last = 1

f(7) satisfies

{
cnext,last + cfirst,last = 1

cfirst,first = 1

Example

We then prove in pair-wise analysis that in process 9, x and y are respectively
linked to names created by some instance of the restrictions :

1. (ν first) and (ν first),

2. (ν first) and (ν next),

3. (ν next) and (ν next) but distinct instances,

4. (ν next) and (ν first).

so, the matching pattern [x = y] is satisfiable only in the first case !!!

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Intuition






(

1, ε,
{

port)→ (port, ε)
)

(

3, ε,

{
gen)→ (gen, ε)
port)→ (port, ε)

)

(

2, id ′
1,

{
add)→ (email, id1)

info)→ (data, id1)

)

(

2, id ′
2,

{
add)→ (email, id2)

info)→ (data, id2)

)

(

5, id2,
{

gen)→ (gen, ε)
)






Abstract transition

C!

C
!

(i,j)

"

Abstract domains

We design a domain for representing numerical constrains between

• the number of occurrences of processes !(i);

• the number of performed transitions !(i,j).

We use the product of

• a non-relational domain:
=⇒ the interval lattice;

• a relational domain:
=⇒ the lattice of affine relationships.

Interval narrowing

An exact reduction is exponential.
We use:

• Gaus reduction:

{
x+ y+ z = 1

x+ y+ t = 2
=⇒

{
x+ y+ z = 1

t− z = 1

• Interval propagation:






x+ y+ z = 3

x ∈ [|0;∞|[

y ∈ [|0;∞|[

z ∈ [|0;∞|[

=⇒






x+ y+ z = 3

x ∈ [|0; 3|]

y ∈ [|0;∞|[

z ∈ [|0;∞|[

• Redundancy intro-
duction:

{
x+ y− z = 3

x ∈ [|1; 2|[
=⇒






x+ y− z = 3

y− z ∈ [|1; 2|]

x ∈ [|1; 2|]

to get a cubic approximated reduction.

Example: non-exhaustion of resources

Example: exhaustion of resources

Example: mutual exclusion

Example: token ring

Comparison

• Non relational analyses.
[Levi and Maffeis: SAS’2001]

• Syntactic criteria.
[Nielson et al.:SAS’2004]

• Abstract multisets.
[Nielson et al.:SAS’1999,POPL’2000]

• Finite control systems.
[Dam:IC’96],[Charatonik et al.:ESOP’02]

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Computation unit

Gather threads inside an unbounded number of dynamically created compu-
tation units.
Then detect mutual exclusion inside each computation unit.

Each thread is associated with a computation unit, which is left as a parame-
ter of:

• the model

• and the properties of interest.

For instance:

• in the π-calculus, the channel on which the input/output action is per-
formed;

• in ambients, agent location and the location of its location
[Nielson:POPL’2000].

Thread partitioning

Thread partitioning

We gather threads according to their computation unit.
We count the occurrence number of threads inside each computation unit.

To simulate a computation step, we require:

• to relate the computation units of:

1. the threads that are consumed;
2. the threads that are spawned.

This may rely on the model structure (ambients) or on a precise envi-
ronment analysis (other models).

• an occurrence counting analysis:
to count occurrence of threads inside each computation unit.

Concrete partitioning

B: a finite set of indice.
We define the set of computation units as:

unit
∆
= B→ Label × Id.

give-index maps each program point p to a function give-index(p) ∈ B→ fn(p).

Given a thread t = (p, id, E), we define its computation unit give-unit(t) as:

give-unit(t) = [b ∈ B→ E(give-index(p)(b))].

Abstract computation unit

There may be an unbounded number of computation units.

To get a decidable abstraction, we merge the description of the computation
units that have the same labels.

We define:
UNIT! ∆= B→ Label.

The abstraction function:

Πunit ∈

{
unit → UNIT!

[b ∈ B)→ (lb,_)])→ [b)→ lb];

maps each computation unit to an abstract one.

Abstract domain

Our main domain is a Cartesian product:

C!
part

∆
=
(

Πp∈LpGfn(p)

)

×
(

UNIT! → NLp

)

.

The set γpart(ENV, CU) contains any configuration (v,C) ∈ Σ∗ × S that satis-
fies:

1. (v, C) ∈ γENV(ENV);

2. for any computation unit u ∈ unit, there exists a function

t ∈ {(0) ∈ N
Lp} ∪

(

γNLp
(CU(Πunit(u)))

)

such that:

t(p) = Card({(p, id, E) ∈ C | give-unit(p, id, E) = u}).

Balance molecule

To simulate an abstract computation step,

we compute an abstract molecule that describes:

• both the n threads that are interacting;

• and the m threads that are launched;

we also collect any information about the values in computation units:

• each thread is launched in a computation unit. Each value occurring in
this computation unit may either be fresh, or may come from interacting
threads;
(we take into account these constraints in the abstract molecule).

Admissible relations

Then, we consider any potential choice for:

1. the equivalence relation among the computation unit of the (n + m)
threads involved in the computation step;

2. abstract computation units associated to each thread.

Each choice induces some constraints about:

• the control flow;

• the number of threads inside computation units;

We use these constraints to:

1. check that this choice is possible;

2. refine control flow and occurrence counting information;

Then, we simulate the computation step.

Shared-memory example

A memory cell will be denoted by three channel names, cell , read , write:

• the channel name cell describes the content of the cell:
the process cell ![data] means that the cell cell contains the information
data, this name is internal to the memory (not visible by the user).

• the channel name read allows reading requests:
the process read ![port] is a request to read the content of the cell, and
send it to the port port,

• the channel name write allows writing requests:
the process write![data] is a request to write the information data inside
the cell.

Implementation

System := (ν create)(ν null)(∗create?[d].Allocate(d))

Allocate(d) :=
(ν cell)(ν write)(ν read)

init(cell) | read(read,cell) | write(write,cell) | d![read ;write]

where

• init(cell) := cell![null]

• read(read,cell) := ∗read?[port].cell?[u](cell![u] | port![u])

• write(write,cell) := ∗write?[data,ack].cell?[u].(cell![data] | ack ![])

Absence of race conditions

The computation unit of a thread is the name of the channel on which it per-
forms its i/o action.

We detect that there is never two simultaneous outputs on a channel opened
by an instance of a (ν cell) restriction.

Other Applications

By choosing appropriate settings for the computation unit, it can be used to
infer the following causality properties:

• authentication in cryptographic protocols;

• absence of race conditions in dynamically allocated memories;

• update integrity in reconfigurable systems.

Overview

1. Overview

2. Mobile systems

3. Non standard semantics

4. Abstract Interpretation

5. Environment analyses

6. Occurrence counting analysis

7. Thread partitioning

8. Conclusion

Conclusion

We have designed generic analyses:

• automatic, sound, terminating, approximate,

• model independent (META-language),

• context independent.

We have captured:

• dynamic topology properties:
absence of communication leak between recursive agents,

• concurrency properties:
mutual exclusion, non-exhaustion of resources,

• combined properties:
absence of race conditions, authentication (non-injective agreement).

Future Work I
Enriching the META-language

• term defined up to an equational theory (applied pi),
=⇒ analyzing cryptographic protocols with XOR;

• higher order communication;
=⇒ agents may communicate running programs;
=⇒ agents may duplicate running programs;

• Using our framework to describe and analyze mobility in industrial ap-
plications (ERLANG).

Future works II
High level properties

Fill the gap between:

• low level properties captured by our analyses;

• high level properties specified by end-users.

Our goal:

• check some formula in a logic [Caires and Cardelli:IC’2003/TCS’2004]

• still distinguishing recursive instances
&= [Kobayashi:POPL’2001]

Future works III
Analyzing probabilistic semantics

In a biological system, a cell may die or duplicate itself. The choice between
these two opposite behaviors is controlled by the concentration of compo-
nents in the system.
=⇒ a reachability analysis is useless.

• Using a semantics where the transitions are chosen according to prob-
abilistic distributions:
=⇒ (e.g token-based abstract machines [Palamidessi:FOSSACS’00])

• Existing analyses consider finite control systems
[Logozzo:SAVE’2001,Degano et al.:TSE’2001]

• We want to design an analysis for capturing the probabilistic behavior
of unbounded systems.

