Program Semantics and Properties

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2022-2023

Course 2 26 September 2022

Programs and executions

Language syntax

$^\ell$ stat $^\ell$::=	${}^{\boldsymbol{\ell}} X \leftarrow \texttt{exp}^{\boldsymbol{\ell}}$	(assignment)
		^{ℓ} if exp $\bowtie 0$ then $^{\ell}$ stat	(conditional)
	Í	^{ℓ} while ^{ℓ} exp \bowtie 0 do ^{ℓ} st	$\operatorname{at}^{\ell} \operatorname{done}^{\ell} $ (loop)
		$^{\ell}$ stat; $^{\ell}$ stat $^{\ell}$	(sequence)
exp	::=	X	(variable)
		-exp	(negation)
		$\texttt{exp} \diamond \texttt{exp}$	(binary operation)
		с	(constant $c \in \mathbb{Z}$)
		[c,c']	(random input, $c, c' \in \mathbb{Z} \cup \set{\pm \infty}$)

Simple structured, numeric language

- $X \in \mathbb{V}$, where \mathbb{V} is a finite set of program variables
- $\ell \in \mathcal{L}$, where \mathcal{L} is a finite set of control points
- numeric expressions: $\bowtie \in \{=, \leq, \ldots\}$, $\diamond \in \{+, -, \times, /\}$
- random inputs: $X \leftarrow [c, c']$ model environment, parametric programs, unknown functions, ...

Example

```
Example
```

$${}^{a}X \leftarrow [-\infty, \infty];$$

 b while ${}^{c}X \neq 0$ do ${}^{d}X \leftarrow X - 1$ done e

Where:

• control points
$$\mathcal{L} = \{a, b, c, d, e\}$$

• variables
$$\mathbb{V} = \{X\}$$

We also define:

- the entry control point: $a \in \mathcal{L}$
- \blacksquare the exit control point: $e \in \mathcal{L}$
- \blacksquare the memory states: $\mathcal{E} \stackrel{\mbox{\tiny def}}{=} \mathbb{V} \to \mathbb{Z}$
- the program states: $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$ (control and memory state)

Transition systems

Program execution modeled as discrete transitions between states

- Σ : set of states
- $\tau \subseteq \Sigma \times \Sigma$: a transition relation, written $\sigma \rightarrow_{\tau} \sigma'$, or $\sigma \rightarrow \sigma'$
- \Longrightarrow a form of small-step semantics.

and also sometimes:

- distinguished set of initial states $\mathcal{I} \subseteq \Sigma$
- distinguished set of final states $\mathcal{F} \subseteq \Sigma$
- *labelled* transition systems: $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$, $\sigma \xrightarrow{a} \sigma'$ where \mathcal{A} is a set of labels, or actions

Transition system on our language

Application: on our programming language

- $\sum \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E} \text{ (a program state} = a control point and a memory state)$ $where <math>\mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{Z}$
- initial states $\mathcal{I} \stackrel{\text{def}}{=} \{\ell\} \times \mathcal{E}$ and final states $\mathcal{F} \stackrel{\text{def}}{=} \{\ell'\} \times \mathcal{E}$ for program $^{\ell} \texttt{stat}^{\ell'}$
- τ is defined by structural induction on $\ell \operatorname{stat}^{\ell'}$ (next slides)

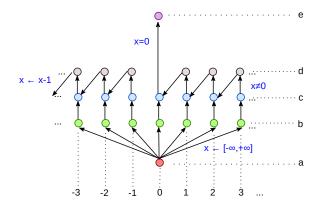
Programs and executions

Transition semantics example

Example

$${}^{a}X \leftarrow [-\infty, \infty];$$

 b while ${}^{c}X \neq 0$ do ${}^{d}X \leftarrow X - 1$ done e



From programs to transition relations

$$\underline{\mathsf{Transitions:}} \quad \tau[^{\ell} \mathsf{stat}^{\ell'}] \subseteq \Sigma \times \Sigma$$

$$\tau[{}^{\boldsymbol{\ell} 1}\boldsymbol{X} \leftarrow \boldsymbol{e}^{\boldsymbol{\ell} 2}] \stackrel{\text{def}}{=} \{ (\boldsymbol{\ell} 1, \rho) \to (\boldsymbol{\ell} 2, \rho[\boldsymbol{X} \mapsto \boldsymbol{v}]) \, | \, \rho \in \mathcal{E}, \, \boldsymbol{v} \in \mathsf{E}[\![\, \boldsymbol{e} \,]\!] \, \rho \}$$

$$\begin{aligned} \tau[{}^{\ell 1} \mathbf{if} \ e \bowtie 0 \ \mathbf{then} \ {}^{\ell 2} s^{\ell 3}] \stackrel{\text{def}}{=} \\ \left\{ \left(\ell 1, \rho\right) \to \left(\ell 2, \rho\right) \mid \rho \in \mathcal{E}, \ \exists \mathbf{v} \in \mathsf{E}[\![e]\!] \ \rho; \mathbf{v} \bowtie 0 \right\} \cup \\ \left\{ \left(\ell 1, \rho\right) \to \left(\ell 3, \rho\right) \mid \rho \in \mathcal{E}, \ \exists \mathbf{v} \in \mathsf{E}[\![e]\!] \ \rho; \mathbf{v} \bowtie 0 \right\} \cup \tau[{}^{\ell 2} s^{\ell 3}] \end{aligned} \right. \\ \tau[{}^{\ell 1} \mathbf{while} \ {}^{\ell 2} e \bowtie 0 \ \mathbf{do} \ {}^{\ell 3} s^{\ell 4} \ \mathbf{done}^{\ell 5}] \stackrel{\text{def}}{=} \\ \left\{ \left(\ell 1, \rho\right) \to \left(\ell 2, \rho\right) \mid \rho \in \mathcal{E} \right\} \cup \\ \left\{ \left(\ell 2, \rho\right) \to \left(\ell 3, \rho\right) \mid \rho \in \mathcal{E}, \ \exists \mathbf{v} \in \mathsf{E}[\![e]\!] \ \rho; \mathbf{v} \bowtie 0 \right\} \cup \tau[{}^{\ell 3} s^{\ell 4}] \cup \\ \left\{ \left(\ell 4, \rho\right) \to \left(\ell 2, \rho\right) \mid \rho \in \mathcal{E} \right\} \cup \\ \left\{ \left(\ell 2, \rho\right) \to \left(\ell 5, \rho\right) \mid \rho \in \mathcal{E}, \ \exists \mathbf{v} \in \mathsf{E}[\![e]\!] \ \rho; \mathbf{v} \bowtie 0 \right\} \end{aligned} \\ \tau[{}^{\ell 1} \mathbf{s}_{1}; {}^{\ell 2} \mathbf{s}_{2} {}^{\ell 3}] \stackrel{\text{def}}{=} \tau[{}^{\ell 1} \mathbf{s}_{1} {}^{\ell 2}] \cup \tau[{}^{\ell 2} \mathbf{s}_{2} {}^{\ell 3}] \end{aligned}$$

(expression semantics E[[e]] on next slide)

Expression semantics

$\underline{\mathsf{E}[\![\,e\,]\!]}\colon (\mathbb{V}\to\mathbb{Z})\to\mathcal{P}(\mathbb{Z})$

- semantics of an expression in a memory state $\rho \in \mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{Z}$
- outputs a set of values in $\mathcal{P}(\mathbb{Z})$
 - random inputs lead to several values (non-determinism)
 - divisions by zero return no result (omit error states for simplicity)
- defined by structural induction

$$\begin{split} & \mathsf{E}[\![[c,c']]\!]\rho & \stackrel{\text{def}}{=} & \{x \in \mathbb{Z} \mid c \leq x \leq c'\} \\ & \mathsf{E}[\![X]\!]\rho & \stackrel{\text{def}}{=} & \{\rho(X)\} \\ & \mathsf{E}[\![-e]\!]\rho & \stackrel{\text{def}}{=} & \{-v \mid v \in \mathsf{E}[\![e]\!]\rho\} \\ & \mathsf{E}[\![e_1\!+\!e_2]\!]\rho & \stackrel{\text{def}}{=} & \{v_1\!+\!v_2 \mid v_1 \in \mathsf{E}[\![e_1]\!]\rho, v_2 \in \mathsf{E}[\![e_2]\!]\rho\} \\ & \mathsf{E}[\![e_1\!-\!e_2]\!]\rho & \stackrel{\text{def}}{=} & \{v_1\!-\!v_2 \mid v_1 \in \mathsf{E}[\![e_1]\!]\rho, v_2 \in \mathsf{E}[\![e_2]\!]\rho\} \\ & \mathsf{E}[\![e_1\!\times\!e_2]\!]\rho & \stackrel{\text{def}}{=} & \{v_1\!\times\!v_2 \mid v_1 \in \mathsf{E}[\![e_1]\!]\rho, v_2 \in \mathsf{E}[\![e_2]\!]\rho\} \\ & \mathsf{E}[\![e_1\!/\!e_2]\!]\rho & \stackrel{\text{def}}{=} & \{v_1\!/\!v_2 \mid v_1 \in \mathsf{E}[\![e_1]\!]\rho, v_2 \in \mathsf{E}[\![e_2]\!]\rho\} \end{split}$$

Another example: λ -calculus

syntax: $\lambda-$ terms				
	x.t (abstraction)			
1	U (application)			

Small-step operational semantics:

(call-by-value)

$$\frac{M \rightsquigarrow M'}{(\lambda x.M)N \rightsquigarrow M[x/N]} \qquad \frac{M \rightsquigarrow M'}{M N \rightsquigarrow M' N} \qquad \frac{N \rightsquigarrow N'}{M N \rightsquigarrow M N'}$$

Models program execution as a sequence of term-rewriting \rightsquigarrow exposing each transition (low level).

$$\Sigma \stackrel{\text{def}}{=} \{\lambda - \text{terms} \\ \tau \stackrel{\text{def}}{=} \rightsquigarrow$$

Program executions

Intuitive model of executions:

- program traces sequences of states encountered during execution sequences are possibly unbounded
- a program can have several traces due to non-determinism

Trace semantics:

- the domain is $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\Sigma^*)$
- the semantics is:

 $\mathcal{T}_{p}(\mathcal{I}) \stackrel{\text{\tiny def}}{=} \{ \sigma_{0}, \ldots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i: \sigma_{i} \to \sigma_{i+1} \}$

actually, we defined here finite execution prefixes, observable in finite time

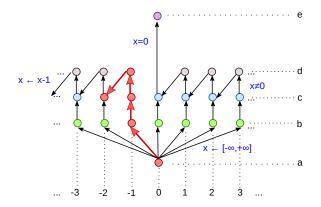
Programs and executions

Trace semantics example

Example

$${}^{a}X \leftarrow [-\infty, \infty];$$

 b while ${}^{c}X \neq 0$ do ${}^{d}X \leftarrow X - 1$ done e



Semantics and abstract interpretation

Other choices of semantics are possible:

- reachable states (later in this course)
- going backward as well as forward (later in this course)
- relations between input and output (relational, or denotational semantics)

...

these are all uncomputable concrete semantics (next course will consider computable approximations)

Goal: use abstract interpretation to

- express all these semantics uniformly as fixpoints (staying at the level of transition systems for generality, not program syntax)
- relate these semantics by abstraction relations
- study which semantics to choose for each class of properties to prove

Finite prefix trace semantics

Finite traces

<u>Finite trace:</u> finite sequence of elements from Σ

- *c*: empty trace (unique)
- σ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$: trace of length n
- Σ^n : the set of traces of length *n*
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \bigcup_{i \leq n} \Sigma^i$: the set of traces of length at most *n*
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$: the set of finite traces

Note: we assimilate

- a set of states $S \subseteq \Sigma$ with a set of traces of length 1
- a relation $R \subseteq \Sigma \times \Sigma$ with a set of traces of length 2

so, $\mathcal{I}, \mathcal{F}, \tau \in \mathcal{P}(\Sigma^*)$

Trace operations

Operations on traces:

- length $|t| \in \mathbb{N}$ of a trace $t \in \Sigma^*$
- concatenation ·

$$(\sigma_0,\ldots,\sigma_n)\cdot(\sigma'_0,\ldots,\sigma'_m)\stackrel{\text{def}}{=}\sigma_0,\ldots,\sigma_n,\sigma'_0,\ldots,\sigma'_m$$

 $\epsilon\cdot t\stackrel{\text{def}}{=}t\cdot\epsilon\stackrel{\text{def}}{=}t$

■ junction [¬]

 $(\sigma_0, \ldots, \sigma_n)^{\frown} (\sigma'_0, \sigma'_1, \ldots, \sigma'_m) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots, \sigma'_m$ when $\sigma_n = \sigma'_0$

undefined if $\sigma_n \neq \sigma'_0$, and for ϵ

join two consecutive traces, the common element $\sigma_n=\sigma_0'$ is not repeated

Trace operations (cont.)

Extension to sets of traces:

$$\bullet A \cdot B \stackrel{\text{def}}{=} \{ a \cdot b \mid a \in A, b \in B \}$$

 $\{\epsilon\}$ is the neutral element for \cdot

•
$$A^{\frown}B \stackrel{\text{def}}{=} \{a^{\frown}b \mid a \in A, b \in B, a^{\frown}b \text{ defined}\}$$

 Σ is the neutral element for \frown

$$\begin{array}{cccc} A^{0} & \stackrel{\mathrm{def}}{=} & \{\epsilon\} & & A^{\frown 0} & \stackrel{\mathrm{def}}{=} & \Sigma \\ A^{n+1} & \stackrel{\mathrm{def}}{=} & A \cdot A^{n} & & A^{\frown n+1} & \stackrel{\mathrm{def}}{=} & A^{\frown}A^{\frown n} \\ A^{*} & \stackrel{\mathrm{def}}{=} & \bigcup_{n < \omega} A^{n} & & A^{\frown *} & \stackrel{\mathrm{def}}{=} & \bigcup_{n < \omega} A^{\frown n} \end{array}$$

Note: $A^n \neq \{ a^n \mid a \in A \}$, $A^{\frown n} \neq \{ a^{\frown n} \mid a \in A \}$ when |A| > 1

Note: \cdot and \cap distribute \cup and \cap $(\cup_{i \in I} A_i)^{\frown}(\cup_{j \in J} B_j) = \cup_{i \in I, j \in J} (A_i^{\frown} B_j)$, etc.

Prefix trace semantics

$\mathcal{T}_{\rho}(\mathcal{I})$: finite partial execution traces starting in \mathcal{I}

$$\begin{aligned} \mathcal{T}_{\rho}(\mathcal{I}) &\stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \, | \, n \geq 0, \sigma_0 \in \mathcal{I}, \forall i : \sigma_i \to \sigma_{i+1} \} \\ &= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n}) \end{aligned}$$

(traces of length *n*, for any *n*, starting in \mathcal{I} and following τ)

 $\mathcal{T}_p(\mathcal{I})$ can be expressed in fixpoint form:

 $\mathcal{T}_{p}(\mathcal{I}) = \mathsf{lfp} \, F_{p} \, \mathsf{where} \, F_{p}(T) \stackrel{\text{\tiny def}}{=} \mathcal{I} \cup T^{\frown} \tau$

(F_{ρ} appends a transition to each trace, and adds back \mathcal{I})

<u>Alternate characterization</u>: $\mathcal{T}_{p}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} G_{p}$ where $G_{p}(T) = T \cup T^{\frown} \tau$.

 G_{p} extends T by $\mathit{ au}$ and accumulates the result with T

(proofs on next slides)

Finite prefix trace semantics

Prefix trace semantics: graphical illustration

$$\begin{array}{c} \mathcal{I} \stackrel{\text{def}}{=} \{a\} \\ \tau \stackrel{\text{def}}{=} \{(a,b), (b,b), (b,c)\} \end{array}$$

Iterates:
$$\mathcal{T}_{p}(\mathcal{I}) = \mathsf{lfp} \, F_{p}$$
 where $F_{p}(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T^{\frown} \tau$.

$$F^{0}_{p}(\emptyset) = \emptyset$$

$$F^{1}_{p}(\emptyset) = \mathcal{I} = \{a\}$$

$$F^{2}_{p}(\emptyset) = \{a, ab\}$$

$$F^{3}_{p}(\emptyset) = \{a, ab, abb, abc\}$$

$$F^{n}_{p}(\emptyset) = \{a, ab^{i}, ab^{j}c \mid i \in [1, n-1], j \in [1, n-2]\}$$

$$\mathcal{T}_{p}(\mathcal{I}) = \bigcup_{n \ge 0} F^{n}_{p}(\emptyset) = \{a, ab^{i}, ab^{i}c \mid i \ge 1\}$$

Prefix trace semantics: proof

proof of:
$$\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$$
 where $F_p(\mathcal{T}) = \mathcal{I} \cup \mathcal{T}^{\frown} \tau$

$$\begin{aligned} F_{\rho} \text{ is continuous in a CPO } (\mathcal{P}(\Sigma^*), \subseteq): \\ F_{\rho}(\cup_{i \in I} T_i) \\ = & \mathcal{I} \cup (\cup_{i \in I} T_i)^{\frown} \tau \\ = & \mathcal{I} \cup (\cup_{i \in I} T_i^{\frown} \tau) = \cup_{i \in I} (\mathcal{I} \cup T_i^{\frown} \tau) \\ \text{hence (Kleene), Ifp } F_{\rho} = \cup_{n \geq 0} F_{\rho}^{n}(\emptyset) \end{aligned}$$

We prove by recurrence on *n* that $\forall n: F_p^n(\emptyset) = \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i}$:

Thus, Ifp $F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$.

The proof is similar for the alternate form $\mathcal{T}_{\rho}(\mathcal{I}) = \operatorname{lfp}_{\mathcal{I}} G_{\rho}$ where $G_{\rho}(T) = T \cup T^{\frown} \tau$ as $G_{\rho}^{n}(\mathcal{I}) = F_{\rho}^{n+1}(\emptyset) = \bigcup_{i \leq n} \mathcal{I}^{\frown} \tau^{\frown i}$.

Prefix closure

 $\underline{\mathsf{Prefix partial order:}} \quad \underline{\prec} \text{ on } \Sigma^*$

 $x \preceq y \iff \exists u \in \Sigma^* : x \cdot u = y$

Note: (Σ^*, \preceq) is not a CPO, as $a^n, n \in \mathbb{N}$ has no limit

 $\frac{\text{Prefix closure:}}{\rho_p(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^+ | \exists t \in T : u \leq t \}$

 ρ_p is an upper closure operator on $\mathcal{P}(\Sigma^* \setminus \{\epsilon\})$ (monotonic, extensive $T \subseteq \rho_p(T)$, idempotent $\rho_p \circ \rho_p = \rho_p$)

The prefix trace semantics is closed by prefix: $\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I})$

(note that $\epsilon \notin \mathcal{T}_p(\mathcal{I})$, which is why we disallowed ϵ in ρ_p)

Collecting semantics and properties

General properties

General setting:

- given a program $prog \in Prog$
- its semantics: $[\![\cdot]\!] : Prog \to \mathcal{P}(\Sigma^*)$ is a set of finite traces

■ a property *P* is the set of correct program semantics

i.e., a set of sets of traces $P \in \mathcal{P}(\mathcal{P}(\Sigma^*))$

 \subseteq gives an information order on properties

 $P \subseteq P'$ means that P' is weaker than P (allows more semantics)

General collecting semantics

The collecting semantics $Col : Prog \rightarrow \mathcal{P}(\mathcal{P}(\Sigma^*))$ is the strongest property of a program

Hence: $Col(prog) \stackrel{\text{def}}{=} \{ \llbracket prog \rrbracket \}$

<u>Benefits:</u> uniformity of semantics and properties, \subseteq information order

■ given a program *prog* and a property $P \in \mathcal{P}(\mathcal{P}(\Sigma^*))$ the verification problem is an inclusion check:

$Col(prog) \subseteq P$

■ generally, the collecting semantics cannot be computed, we settle for a weaker property S[#] that

• is sound: $Col(prog) \subseteq S^{\sharp}$

• implies the desired property: $S^{\sharp} \subseteq P$

Restricted properties

Reasoning on (and abstracting) $\mathcal{P}(\mathcal{P}(\Sigma^*))$ is hard!

In the following, we use a simpler setting:

- a property is a set of traces $P \in \mathcal{P}(\Sigma^*)$
- the collecting semantics is a set of traces: Col(prog) ^{def} [[prog]]
- the verification problem remains an inclusion check: $\llbracket prog \rrbracket \subseteq P$
- abstractions will over-approximate the set of traces [[prog]]

Example properties:

- state property $P \stackrel{\text{def}}{=} S^*$ (remains in the set S of safe states)
- maximal execution time: $P \stackrel{\text{def}}{=} S^{\leq k}$
- ordering: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^*$ (a occurs before b)

Proving restricted properties

Invariance proof method: find an inductive invariant *I*

- set of finite traces $I \subseteq \Sigma^*$
- $\blacksquare \ \mathcal{I} \subseteq \textit{I}$

(contains traces reduced to an initial state)

■ $\forall \sigma_0, \ldots, \sigma_n \in I: \sigma_n \to \sigma_{n+1} \implies \sigma_0, \ldots, \sigma_n, \sigma_{n+1} \in I$ (invariant by program transition)

• implies the desired property: $I \subseteq P$

Link with the finite prefix trace semantics $\mathcal{T}_{p}(\mathcal{I})$:

An inductive invariant is a post-fixpoint of F_p : $F_p(I) \subseteq I$ where $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \frown \tau$. $\mathcal{T}_p(\mathcal{I}) = \text{lfp } F_p$ is the most precise inductive invariant

Limitations

- Our semantics is closed by prefix It cannot distinguish between:
 - non-terminating executions (infinite loops)
 - and unbounded executions

 \implies we cannot prove termination and, more generally, liveness

(this will be solved using maximal trace semantics later in this course)

Some properties, such as non-interferences, cannot be expressed as sets of traces, we need sets of sets of traces

$$P \stackrel{\text{def}}{=} \{ T \in \mathcal{P}(\Sigma^*) \mid \forall \sigma_0, \dots, \sigma_n \in T \colon \forall \sigma'_0: \sigma_0 \equiv \sigma'_0 \implies \exists \sigma'_0, \dots, \sigma'_m \in T \colon \sigma'_m \equiv \sigma_n \}$$

where $(\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X : \rho(V) = \rho'(V)$

changing the initial value of X does not affect the set of final environments up to the value of X

State semantics and properties

Principle: reason on sets of states instead of sets of traces

- simpler semantic *Col* : $Prog \rightarrow \mathcal{P}(\Sigma)$
- state properties are also sets of states $P \in \mathcal{P}(\Sigma)$
 - \implies sufficient for many purposes
- easier to abstract
- can be seen as an abstraction of traces

(forgets the ordering of states)

Forward reachability

 $\underbrace{\mathsf{Forward image:}}_{\tau} \quad \mathsf{post}_{\tau}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$

$$\mathsf{post}_{\tau}(S) \stackrel{\text{\tiny def}}{=} \{ \, \sigma' \, | \, \exists \sigma \in S : \sigma \to \sigma' \, \}$$

 post_{τ} is a strict, complete \cup -morphism in $(\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma)$ $\text{post}_{\tau}(\cup_{i \in I} S_i) = \cup_{i \in I} \text{post}_{\tau}(S_i), \text{post}_{\tau}(\emptyset) = \emptyset$

$$\underline{\text{Blocking states:}} \quad \mathcal{B} \stackrel{\text{\tiny def}}{=} \{ \sigma \, | \, \forall \sigma' \in \Sigma : \sigma \not\to \sigma' \, \}$$

(states with no successor: valid final states but also errors)

$\mathcal{R}(\mathcal{I})$: states reachable from \mathcal{I} in the transition system

$$\mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \ge 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \mathsf{post}_{\tau}^n(\mathcal{I})$$

(reachable \iff reachable from \mathcal{I} in *n* steps of τ for some $n \ge 0$)

Fixpoint formulation of forward reachability

 $\mathcal{R}(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \ F_{\mathcal{R}} \ \mathsf{where} \ F_{\mathcal{R}}(S) \stackrel{\text{\tiny def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$

 $F_{\mathcal{R}}$ shifts S and adds back \mathcal{I}

<u>Alternate characterization</u>: $\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ \mathcal{G}_{\mathcal{R}}$ where $\mathcal{G}_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \mathsf{post}_{\tau}(S)$.

 ${\cal G}_{\cal R}$ shifts S by au and accumulates the result with S

(proofs on next slide)

Fixpoint formulation proof

proof: of
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
 where $F_{\mathcal{R}}(S) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$

 $(\mathcal{P}(\Sigma), \subseteq)$ is a CPO and post_{τ} is continuous, hence $F_{\mathcal{R}}$ is continuous: $F_{\mathcal{R}}(\cup_{i \in I} A_i) = \cup_{i \in I} F_{\mathcal{R}}(A_i)$. By Kleene's theorem, lfp $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$.

We prove by recurrence on *n* that: $\forall n: F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i < n} \mathsf{post}_{\tau}^i(\mathcal{I}).$ (states reachable in less than *n* steps)

•
$$F^0_{\mathcal{R}}(\emptyset) = \emptyset$$

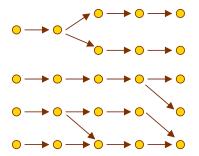
■ assuming the property at *n*,

$$\begin{aligned} F_{\mathcal{R}}^{n+1}(\emptyset) &= F_{\mathcal{R}}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ &= \mathcal{I} \cup \mathsf{post}_{\tau}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ &= \mathcal{I} \cup \bigcup_{i < n} \mathsf{post}_{\tau}(\mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ &= \mathcal{I} \cup \bigcup_{1 \leq i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \\ &= \bigcup_{i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \end{aligned}$$

Hence: If $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i \in \mathbb{N}} \text{ post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$

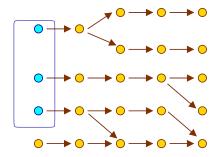
The proof is similar for the alternate form, given that $\operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} G_{\mathcal{R}}^{n}(\mathcal{I})$ and $G_{\mathcal{R}}^{n}(\mathcal{I}) = F_{\mathcal{R}}^{n+1}(\emptyset) = \bigcup_{i \leq n} \operatorname{post}_{\tau}^{i}(\mathcal{I}).$

Graphical illustration



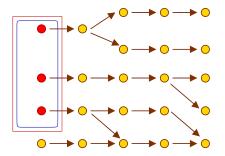
Transition system

Graphical illustration



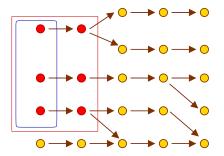
Initial states ${\mathcal I}$

Graphical illustration



Iterate $F^1_{\mathcal{R}}(\mathcal{I})$

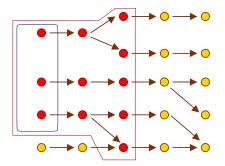
Graphical illustration



Iterate $F^2_{\mathcal{R}}(\mathcal{I})$

Forward state reachability semantics

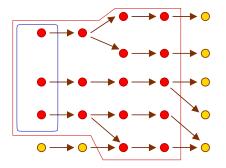
Graphical illustration



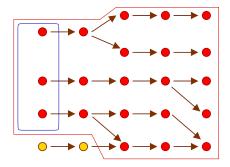
Iterate $F^3_{\mathcal{R}}(\mathcal{I})$

Forward state reachability semantics

Graphical illustration



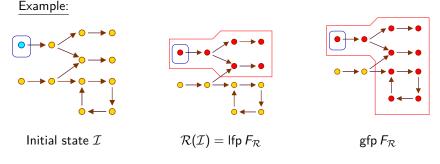
Iterate $F^4_{\mathcal{R}}(\mathcal{I})$



Iterate $F^5_{\mathcal{R}}(\mathcal{I})$ $F^6_{\mathcal{R}}(\mathcal{I}) = F^5_{\mathcal{R}}(\mathcal{I}) \Rightarrow$ we reached a fixpoint $\mathcal{R}(\mathcal{I}) = F^5_{\mathcal{R}}(\mathcal{I})$

Multiple forward fixpoints

Recall: $\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \, F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$ Note that $F_{\mathcal{R}}$ may have several fixpoints



Exercise:

Compute all the fixpoints of $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \text{post}_{\tau}(S)$ on this example

Forward state reachability semantics

Example application of forward reachability

Infer the set of possible states at program end: $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$

```
• i \leftarrow 0;

while i < 100 do

i \leftarrow i + 1;

j \leftarrow j + [0, 1]

done •
```

- initial states \mathcal{I} : $j \in [0, 10]$ at control point •
- final states *F*: any memory state at control point •
- $\blacksquare \implies \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$: control at \bullet , i = 100, and $j \in [0, 110]$

Prove the absence of run-time error: $\mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$ (never block except when reaching the end of the program)

To ensure soundness, over-approximations are sufficient (if $\mathcal{R}^{\sharp}(\mathcal{I}) \supseteq \mathcal{R}(\mathcal{I})$, then $\mathcal{R}^{\sharp}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F} \implies \mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$)

Link with state-based invariance proof methods

Invariance proof method: find an inductive invariant $I \subseteq \Sigma$

- $\blacksquare \ \mathcal{I} \subseteq I$
- $\forall \sigma \in I: \sigma \to \sigma' \implies \sigma' \in I$

(contains initial states) (invariant by program transition)

• that implies the desired property: $I \subseteq P$

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

• if *I* is an inductive invariant, then $F_{\mathcal{R}}(I) \subseteq I$ $F_{\mathcal{R}}(I) = \mathcal{I} \cup \text{post}_{\tau}(I) \subseteq I \cup I = I$ \implies an inductive invariant is a post-fixpoint of $F_{\mathcal{R}}$

Link with the equational semantics

By partitioning forward reachability wrt. control points, we retrieve the equation system form of program semantics

 $\label{eq:control location:} \begin{array}{ll} \mbox{Grouping by control location:} \\ \mbox{We have a Galois isomorphism:} \end{array} \qquad \mathcal{P}(\Sigma) = \mathcal{P}(\mathcal{L} \times \mathcal{E}) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\alpha_{\mathcal{L}}]{\overset{\gamma_{\mathcal{L}}}{\underbrace{\alpha_{\mathcal{L}}}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \dot{\subseteq})$$

$$\blacksquare X \stackrel{\scriptscriptstyle !}{\subseteq} Y \iff \forall \ell \in \mathcal{L} : X(\ell) \subseteq Y(\ell)$$

- $\alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell \{ \rho \mid (\ell, \rho) \in S \}$
- $\gamma_{\mathcal{L}}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \in \mathcal{L}, \rho \in X(\ell) \}$

■ given
$$F_{eq} \stackrel{\text{def}}{=} \alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$$

we get back an equation system $\bigwedge_{\ell \in \mathcal{L}} \mathcal{X}_{\ell} = F_{eq,\ell}(\mathcal{X}_1, \dots, \mathcal{X}_n)$

simply reorganize the states by control point

after actual abstraction, partitioning makes a difference (flow-sensitivity)

Example equation system

$$\begin{cases} \mathcal{X}_{1} = \mathcal{E} \\ \mathcal{X}_{2} = C[\![X \leftarrow [0, 10]]\!] \mathcal{X}_{1} \\ \mathcal{X}_{3} = C[\![Y \leftarrow 100]\!] \mathcal{X}_{2} \cup C[\![Y \leftarrow Y + 10]\!] \mathcal{X}_{5} \\ \mathcal{X}_{4} = C[\![X \ge 0]\!] \mathcal{X}_{3} \\ \mathcal{X}_{5} = C[\![X \leftarrow X - 1]\!] \mathcal{X}_{4} \\ \mathcal{X}_{6} = C[\![X < 0]\!] \mathcal{X}_{3} \end{cases}$$

(atomic command semantics C[[com]] on next slide)

- $\mathcal{X}_i \in \mathcal{P}(\mathcal{E})$: set of memory states at program point $i \in \mathcal{L}$ e.g.: $\mathcal{X}_3 = \{ \rho \in \mathcal{E} \mid \rho(X) \in [0, 10], \ 10\rho(X) + \rho(Y) \in [100, 200] \cap 10\mathbb{Z} \}$
- **\square** \mathcal{R} corresponds to the smallest solution $(\mathcal{X}_i)_{i \in \mathcal{L}}$ of the system
- $I \subseteq \mathcal{E}$ is invariant at *i* if $\mathcal{X}_i \subseteq I$

Systematic derivation of equations

 $\underline{\text{Atomic commands:}} \quad \mathsf{C}[\![\operatorname{com}]\!] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

 $\mathbf{com} \stackrel{\text{def}}{=} \{ V \leftarrow \exp, \ exp \bowtie 0 \}: \text{ assignments and tests}$

•
$$C[V \leftarrow e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[V \mapsto v] \mid \rho \in \mathcal{X}, v \in E[e] \mid \rho \}$$

•
$$C[\![e \bowtie 0]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[\![\rho]\!] \rho: v \bowtie 0 \}$$

 $\mathsf{C}[\![\,\cdot\,]\!] \text{ are } \cup -\mathsf{morphisms: } \mathsf{C}[\![\,s\,]\!] \, \mathcal{X} = \cup_{\rho \in \mathcal{X}} \mathsf{C}[\![\,s\,]\!] \, \{\rho\}, \text{ monotonic, continuous } \mathsf{C}[\![\,s\,]\!] \, \{\rho\}, \mathsf{monotonic, continuous } \mathsf{C}[\![\,s\,]\!] \, \{\rho\}, \mathsf{C}[\![\,s\,]\!] \, \{\rho\}, \mathsf{monotonic, continuous } \mathsf{C}[\![\,s\,]\!] \, \{\rho\}, \mathsf{C}[\![\,s\,]\!] \, \{\rho\},$

Systematic derivation of the equation system: $eq(^{\ell}stat^{\ell'})$

by structural induction:

$$eq({}^{\ell_1}X \leftarrow e^{\ell_2}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell_2} = C[[X \leftarrow e]] \mathcal{X}_{\ell_1} \}$$

$$eq({}^{\ell_1}s_1; {}^{\ell_2}s_2{}^{\ell_3}) \stackrel{\text{def}}{=} eq({}^{\ell_1}s_1{}^{\ell_2}) \cup ({}^{\ell_2}s_2{}^{\ell_3})$$

$$eq({}^{\ell_1}\text{if } e \bowtie 0 \text{ then } {}^{\ell_2}s{}^{\ell_3}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell_2} = C[[e \bowtie 0]] \mathcal{X}_{\ell_1} \} \cup eq({}^{\ell_2}s{}^{\ell_3'}) \cup \{ \mathcal{X}_{\ell_3} = \mathcal{X}_{\ell_{3'}} \cup C[[e \bowtie 0]] \mathcal{X}_{\ell_1} \}$$

$$eq({}^{\ell_1}\text{while } {}^{\ell_2}e \bowtie 0 \text{ do } {}^{\ell_3}s{}^{\ell_4} \text{ done}{}^{\ell_5}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell_2} = \mathcal{X}_{\ell_1} \cup \mathcal{X}_{\ell_4}, \mathcal{X}_{\ell_3} = C[[e \bowtie 0]] \mathcal{X}_{\ell_2} \} \cup eq({}^{\ell_3}s{}^{\ell_4}) \cup \{ \mathcal{X}_{\ell_5} = C[[e \bowtie 0]] \mathcal{X}_{\ell_2} \}$$
where: $\mathcal{X}^{\ell_3'}$ is a fresh variable storing intermediate results

Course 2

Solving the equational semantics

Solve $\bigwedge_{i \in [1,n]} \mathcal{X}_i = F_i(\mathcal{X}_1, \dots, \mathcal{X}_n)$

Each F_i is continuous in $\mathcal{P}(\mathcal{E})^n \to \mathcal{P}(\mathcal{E})$ (complete \cup -morphism) aka $\vec{F} \stackrel{\text{def}}{=} (F_1, \dots, F_n)$ is continuous in $\mathcal{P}(\mathcal{E})^n \to \mathcal{P}(\mathcal{E})^n$

By Kleene's fixpoint theorem, Ifp \vec{F} exists

Kleene's theorem:	Jacobi iterations
$\left(\begin{array}{c} \mathcal{X}_1^0 \stackrel{\text{def}}{=} \emptyset \right. \right.$	$\left(\begin{array}{c} \mathcal{X}_1^{k+1} \stackrel{\text{def}}{=} F_1(\mathcal{X}_1^k, \ldots, \mathcal{X}_n^k) \end{array} \right)$
$\left\{\begin{array}{c} \dots \\ \mathcal{X}_i^0 \stackrel{\text{def}}{=} \emptyset\right.$	$\left\{\begin{array}{c} \cdots \\ \mathcal{X}_i^{k+1} \stackrel{\text{def}}{=} \mathcal{F}_i(\mathcal{X}_1^k, \ldots, \mathcal{X}_n^k) \end{array}\right.$
$\begin{array}{c} \cdots \\ \mathcal{X}_n^0 \stackrel{\text{def}}{=} \emptyset \end{array}$	$\left(\begin{array}{c} \cdots \\ \mathcal{X}_n^{k+1} \stackrel{\text{def}}{=} F_n(\mathcal{X}_1^k, \ldots, \mathcal{X}_n^k) \end{array}\right)$

The limit of $(\mathcal{X}_1^k, \ldots, \mathcal{X}_n^k)$ is lfp \vec{F}

Naïve application of Kleene's theorem called Jacobi iterations by analogy with linear algebra

Solving the equational semantics (cont.)

Other iteration techniques exist [Cous92].

$$\begin{aligned} & \mathsf{Gauss-Seidl iterations} \\ & \left\{ \begin{array}{l} \mathcal{X}_{1}^{k+1} \stackrel{\mathrm{def}}{=} F_{1}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) \\ \dots \\ \mathcal{X}_{i}^{k+1} \stackrel{\mathrm{def}}{=} F_{i}(\mathcal{X}_{1}^{k+1}, \dots, \mathcal{X}_{i-1}^{k+1}, \mathcal{X}_{i}^{k}, \dots, \mathcal{X}_{n}^{k}) \\ \dots \\ \mathcal{X}_{n}^{k+1} \stackrel{\mathrm{def}}{=} F_{n}(\mathcal{X}_{1}^{k+1}, \dots, \mathcal{X}_{n-1}^{k+1}, \mathcal{X}_{n}^{k}) \end{aligned} \right. \\ & \text{use new results as soon as available} \end{aligned}$$

Chaotic iterations $\mathcal{X}_{i}^{k+1} \stackrel{\text{def}}{=} \begin{cases} F_{i}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) & \text{if } i = \phi(k+1) \\ \mathcal{X}_{i}^{k} & \text{otherwise} \end{cases}$ w.r.t. a fair schedule $\phi : \mathbb{N} \to [1, n]$ $\forall i \in [1, n]: \forall N > 0: \exists k > N: \phi(k) = i$

- worklist algorithms
- asynchonous iterations (parallel versions of chaotic iterations)

all give the same limit! (this will not be the case for abstract static analyses...)

Course 2

Alternate view: inductive abstract interpreter

Principle:

- follow the control-flow of the program
- replace the global fixpoint with local fixpoints (loops)

$$C[\![V \leftarrow e]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[V \mapsto v] \mid \rho \in \mathcal{X}, v \in E[\![e]\!] \rho \}$$

$$C[\![e \bowtie 0]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[\![\rho]\!] \rho : v \bowtie 0 \}$$

$$C[\![s_1; s_2]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![s_2]\!] (C[\![s_1]\!] \mathcal{X})$$

$$C[\![if e \bowtie 0 \text{ then } s]\!] \mathcal{X} \stackrel{\text{def}}{=} (C[\![s]\!] (C[\![e \bowtie 0]\!] \mathcal{X})) \cup (C[\![e \bowtie 0]\!] \mathcal{X})$$

$$C[\![while e \bowtie 0 \text{ do } s \text{ done}\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![e \not\bowtie 0]\!] (Ifp F)$$
where $F(\mathcal{Y}) \stackrel{\text{def}}{=} \mathcal{X} \cup C[\![s]\!] (C[\![e \bowtie 0]\!] \mathcal{Y})$

informal justification for the loop semantics:

All the C[[s]] functions are continuous, hence the fixpoints exist. By induction on k, $F^{k}(\emptyset) = \bigcup_{i \leq k} (C[[s]] \circ C[[e \bowtie 0]])^{i} \mathcal{X}$ hence, Ifp $F = \bigcup_{i} (C[[s]] \circ C[[e \bowtie 0]])^{i} \mathcal{X}$

We fall back to a special case of (transfinite) chaotic iteration that stabilizes loops depth-first.

From finite traces to reachability

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

A state in the state semantics corresponds to any partial execution trace terminating in this state.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xleftarrow{\gamma_p}{\alpha_p} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_p(T) \stackrel{\text{def}}{=} \{ \sigma \in \Sigma \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_n \}$ (last state in traces in T)
- $\gamma_p(S) \stackrel{\text{def}}{=} \{ \sigma_0, \ldots, \sigma_n \in \Sigma^* \mid \sigma_n \in S \}$

(traces ending in a state in S)

(proof on next slide)

Abstracting traces into states (proof)

proof of: (α_p, γ_p) forms a Galois embedding.

Instead of the definition $\alpha(c) \subseteq a \iff c \subseteq \gamma(a)$, we use the alternate characterization of Galois connections: α and γ are monotonic, $\gamma \circ \alpha$ is extensive, and $\alpha \circ \gamma$ is reductive. Embedding means that, additionally, $\alpha \circ \gamma = id$.

• α_p, γ_p are \cup -morphisms, hence monotonic

•
$$(\gamma_{p} \circ \alpha_{p})(T)$$

= { $\sigma_{0}, \ldots, \sigma_{n} \mid \sigma_{n} \in \alpha_{p}(T)$ }
= { $\sigma_{0}, \ldots, \sigma_{n} \mid \exists \sigma'_{0}, \ldots, \sigma'_{m} \in T : \sigma_{n} = \sigma'_{m}$ }
 $\supseteq T$

Abstracting prefix trace semantics into reachability

We can abstract semantic operators and their least fixpoint

Recall that:

•
$$\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$$
 where $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T^{\frown} \tau$

We have: $\alpha_p \circ F_p = F_{\mathcal{R}} \circ \alpha_p$ by fixpoint transfer, we get: $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$

(proof on next slide)

Abstracting prefix traces into reachability (proof)

)

proof: of
$$\alpha_{p} \circ F_{p} = F_{\mathcal{R}} \circ \alpha_{p}$$

$$(\alpha_{p} \circ F_{p})(T)$$

$$= \alpha_{p}(\mathcal{I} \cup T^{\frown}\tau)$$

$$= \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{I} \cup T^{\frown}\tau : \sigma = \sigma_{n} \}$$

$$= \mathcal{I} \cup \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T^{\frown}\tau : \sigma = \sigma_{n} \}$$

$$= \mathcal{I} \cup post_{\tau}(\{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma = \sigma_{n} \})$$

$$= \mathcal{I} \cup post_{\tau}(\alpha_{p}(T))$$

$$= (F_{\mathcal{R}} \circ \alpha_{p})(T)$$

From finite traces to reachability

Abstracting traces into states (example)

program	
<i>j</i> ← 0;	
$i \leftarrow 0;$	
while $i < 10$	00 do
$i \leftarrow i +$	- 1;
$j \leftarrow j +$	- [0, 1]
done	

prefix trace semantics:

i and j are increasing and $0 \leq j \leq i \leq 100$

forward reachable state semantics:

 $0 \le j \le i \le 100$

 \Longrightarrow the abstraction forgets the ordering of states

Another state/trace abstraction: ordering abstraction

Another Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_o}_{\alpha_o} (\mathcal{P}(\Sigma),\subseteq)$$

•
$$\alpha_o(T) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in T, i \leq n : \sigma = \sigma_i \}$$

(set of all states appearing in some trace in T)

• $\gamma_o(S) \stackrel{\text{def}}{=} \{ \sigma_0, \ldots, \sigma_n \mid n \ge 0, \forall i \le n : \sigma_i \in S \}$

(traces composed of elements from S)

proof sketch:

 α_o and γ_o are monotonic, and $\alpha_o \circ \gamma_o = id$.

$$(\gamma_o \circ \alpha_o)(T) = \{ \sigma_0, \ldots, \sigma_n \mid \forall i \leq n: \exists \sigma'_0, \ldots, \sigma'_m \in T, j \leq m: \sigma_i = \sigma'_j \} \supseteq T.$$

Semantic correspondence by ordering abstraction

We have: $\alpha_o(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$

proof:

We have $\alpha_{\rho} = \alpha_{\rho} \circ \rho_{\rho}$ (i.e.: a state is in a trace if it is the last state of one of its prefix). Recall the prefix trace abstraction into states: $\mathcal{R}(\mathcal{I}) = \alpha_{\rho}(\mathcal{T}_{\rho}(\mathcal{I}))$ and the fact that the prefix trace semantics is closed by prefix: $\rho_{\rho}(\mathcal{T}_{\rho}(\mathcal{I})) = \mathcal{T}_{\rho}(\mathcal{I})$. We get $\alpha_{o}(\mathcal{T}_{\rho}(\mathcal{I})) = \alpha_{\rho}(\rho_{\rho}(\mathcal{T}_{\rho}(\mathcal{I}))) = \alpha_{\rho}(\mathcal{T}_{\rho}(\mathcal{I})) = \mathcal{R}(\mathcal{I})$.

This is a direct proof, not a fixpoint transfer proof (our theorems do not apply...)

alternate proof: generalized fixpoint transfer

Recall that $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$ where $F_p(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T} \cap \tau$ and $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$, but $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ does not hold in general, so, fixpoint transfer theorems do not apply directly. However, $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ holds for sets of traces closed by prefix. By induction, the Kleene iterates a_p^n and $a_{\mathcal{R}}^n$ involved in the computation of lfp F_p and lfp $F_{\mathcal{R}}$ satisfy $\forall n: \alpha_o(a_p^n) = a_{\mathcal{R}}^n$, and so

 $\alpha_o(\operatorname{lfp} F_p) = \operatorname{lfp} F_{\mathcal{R}}.$

Backward state co-reachability semantics

Backward state co-reachability

 $\mathcal{C}(\mathcal{F})$: states co-reachable from \mathcal{F} in the transition system:

$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \ge 0, \sigma_0, \dots, \sigma_n : \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \operatorname{pre}_{\tau}^n(\mathcal{F})$$

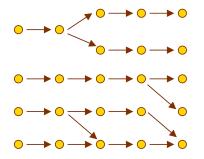
where
$$\operatorname{pre}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma' \in S : \sigma \to \sigma' \} \quad (\operatorname{pre}_{\tau} = \operatorname{post}_{\tau^{-1}})$$

 $\mathcal{C}(\mathcal{F})$ can also be expressed in fixpoint form:

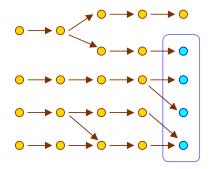
 $\mathcal{C}(\mathcal{F}) = \operatorname{lfp} F_{\mathcal{C}} \text{ where } F_{\mathcal{C}}(S) \stackrel{\text{\tiny def}}{=} \mathcal{F} \cup \operatorname{pre}_{\tau}(S)$

<u>Justification:</u> $C(\mathcal{F})$ in au is exactly $\mathcal{R}(\mathcal{F})$ in au^{-1}

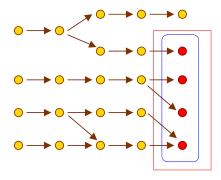
<u>Alternate characterization:</u> $C(\mathcal{F}) = \mathsf{lfp}_{\mathcal{F}} \ G_{\mathcal{C}} \ \mathsf{where} \ G_{\mathcal{C}}(S) = S \cup \mathsf{pre}_{\tau}(S)$

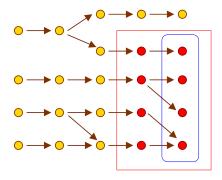


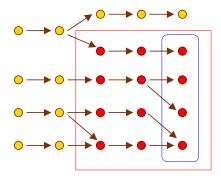
Transition system

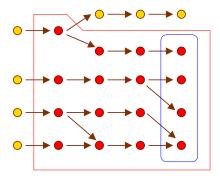


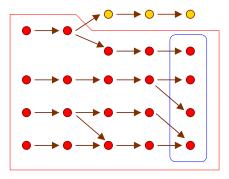
Final states ${\cal F}$











States co-reachable from ${\mathcal F}$

Application of backward co-reachability

 $\blacksquare \mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$

Initial states that have at least one erroneous execution

• $j \leftarrow 0$; while i > 0 do $i \leftarrow i - 1$; $j \leftarrow j + [0, 10]$ assert $(j \le 200)$ done •

- \blacksquare initial states $\mathcal{I}:~i\in[0,100]$ at \bullet
- final states *F*: any memory state at ●
- blocking states B: final, or j > 200 (assertion failure)
- $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$: at •, i > 20
- Over-approximating C is useful to isolate possibly incorrect executions from those guaranteed to be correct
- Iterate forward and backward analyses interactively
 abstract debugging [Bour93]

Backward co-reachability in equational form

Principle:

As before, reorganize transitions by label $\ell \in \mathcal{L}$, to get an equation system on $(\mathcal{X}_{\ell})_{\ell}$, with $\mathcal{X}_{\ell} \subseteq \mathcal{E}$

Example:

$$\begin{split} \mathcal{X}_1 &= \overleftarrow{\mathbb{C}} \llbracket j \to 0 \rrbracket \mathcal{X}_2 \\ \mathcal{X}_2 &= \mathcal{X}_3 \\ \mathcal{X}_3 &= \overleftarrow{\mathbb{C}} \llbracket i > 0 \rrbracket \mathcal{X}_4 \cup \overleftarrow{\mathbb{C}} \llbracket i \le 0 \rrbracket \mathcal{X}_6 \\ \mathcal{X}_4 &= \overleftarrow{\mathbb{C}} \llbracket i \leftarrow i - 1 \rrbracket \mathcal{X}_5 \\ \mathcal{X}_5 &= \overleftarrow{\mathbb{C}} \llbracket j \leftarrow j + [0, 10] \rrbracket \mathcal{X}_3 \\ \mathcal{X}_6 &= \mathcal{F} \end{split}$$

• final states $\{\ell 6\} \times \mathcal{F}$.

$$\bullet \overleftarrow{C} \llbracket V \leftarrow e \rrbracket \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \,|\, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : \rho [V \mapsto v] \in \mathcal{X} \}$$

• $\overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in \mathsf{E} \llbracket \rho \rrbracket \rho \colon v \bowtie 0 \} = \mathsf{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X}$

(also possible on control-flow graphs...)

Suffix trace semantics

Similarly to the finite prefix trace semantics from \mathcal{I} , we can build a suffix trace semantics going backwards from \mathcal{F} :

(traces following τ and ending in a state in \mathcal{F})

- $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \ge 0} (\tau^{n})^{\mathcal{F}}$
- $\mathcal{T}_s(\mathcal{F}) = \operatorname{lfp} F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^{\frown} T$

(F_s prepends a transition to each trace, and adds back \mathcal{F})

Backward state co-rechability abstracts the suffix trace semantics:

- $\alpha_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{C}(\mathcal{F})$ where $\alpha_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \ldots, \sigma_n \in \mathcal{T} : \sigma = \sigma_0 \}$
- $\rho_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{T}_s(\mathcal{F})$ where $\rho_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \Sigma^* : t \cdot u \in \mathcal{T}, u \neq \epsilon \}$ (closed by suffix)

(

$$\begin{array}{c} \begin{array}{c} & \mathcal{F} \stackrel{\text{def}}{=} \{c\} \\ \tau \stackrel{\text{def}}{=} \{(a,b), (b,b), (b,c)\} \end{array} \end{array}$$

$$\frac{\mathsf{lterates:}}{\mathsf{T}_s} \quad \mathcal{T}_s(\mathcal{F}) = \mathsf{lfp} \, \mathsf{F}_s \text{ where } \mathsf{F}_s(\mathsf{T}) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^\frown \mathsf{T}$$

$$F_s^0(\emptyset) = \emptyset F_s^1(\emptyset) = \mathcal{F} = \{c\} F_s^2(\emptyset) = \{c, bc\} F_s^3(\emptyset) = \{c, bc, bbc, abc\} F_s^n(\emptyset) = \{c, b^i c, ab^j c \mid i \in [1, n-1], j \in [1, n-2]\} T_s(\mathcal{F}) = \bigcup_{n \ge 0} F_s^n(\emptyset) = \{c, b^i c, ab^i c \mid i \ge 1\}$$

Symmetric finite partial trace semantics

Symmetric finite partial trace semantics

\mathcal{T} : all the finite partial execution traces.

(not necessarily starting in \mathcal{I} nor ending in \mathcal{F})

$$\begin{aligned} \mathcal{T} &\stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n | n \ge 0, \forall i : \sigma_i \to \sigma_{i+1} \} \\ &= \bigcup_{n \ge 0} \Sigma^{\frown} \tau^{\frown n} \\ &= \bigcup_{n \ge 0} \tau^{\frown n \frown} \Sigma \end{aligned}$$

The semantics (and iterates) are forward/backward symmetric:

- $\mathcal{T} = \mathcal{T}_p(\Sigma)$, hence $\mathcal{T} = \operatorname{lfp} F_{p*}$ where $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau$ (prefix partial traces from any initial state)
- $\mathcal{T} = \mathcal{T}_s(\Sigma)$, hence $\mathcal{T} = \operatorname{lfp} F_{s*}$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$ (suffix partial traces to any final state)

•
$$F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i} \Sigma = \mathcal{T} \cap \Sigma^{< n}$$

Abstracting partial traces into prefix traces

Prefix traces abstract partial traces

as we forget all about partial traces not starting in $\ensuremath{\mathcal{I}}$

Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow[\alpha_{\mathcal{I}}]{\gamma_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

$$\bullet \ \alpha_{\mathcal{I}}(\mathcal{T}) \stackrel{\text{\tiny def}}{=} \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$$

• $\gamma_{\mathcal{I}}(T) \stackrel{\text{\tiny def}}{=} T \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^*)$

(keep only traces starting in \mathcal{I})

(add all traces not starting in \mathcal{I})

We then have: $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$

similarly for the suffix traces: $\mathcal{T}_{s}(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$ where $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cap (\Sigma^{*} \cdot \mathcal{F})$

(proof on next slide)

Abstracting partial traces into prefix traces (proof)

proof

 $\alpha_{\mathcal{I}}$ and $\gamma_{\mathcal{I}}$ are monotonic. $(\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(T) = (T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = T \cap \mathcal{I} \cdot \Sigma^* \subseteq T$. $(\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(T) = (T \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq T$. So, we have a Galois connection.

A direct proof of $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ is straightforward, by definition of $\mathcal{T}_p, \alpha_{\mathcal{I}}$, and \mathcal{T} .

We can also retrieve the result by fixpoint transfer.

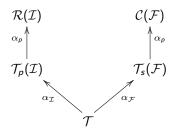
$$\mathcal{T} = \operatorname{lfp} F_{p*} \text{ where } F_{p*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T^{\frown} \tau.$$

$$\mathcal{T}_p = \operatorname{lfp} F_p \text{ where } F_p(T) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup T^{\frown} \tau.$$

We have:

$$(\alpha_{\mathcal{I}} \circ F_{p*})(\mathcal{T}) = (\Sigma \cup \mathcal{T}^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) = \mathcal{I} \cup ((\mathcal{T}^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) = \mathcal{I} \cup ((\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{*}))^{\frown} \tau) = (F_{p} \circ \alpha_{\mathcal{I}})(\mathcal{T}).$$

A first hierarchy of semantics



forward/backward states

prefix/suffix traces

partial finite traces

Sufficient precondition state semantics

Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$: states with executions staying in \mathcal{Y}

$$\mathcal{S}(\mathcal{Y}) \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall n \ge 0, \sigma_0, \dots, \sigma_n : (\sigma = \sigma_0 \land \forall i : \sigma_i \to \sigma_{i+1}) \implies \sigma_n \in \mathcal{Y} \} \\ = \bigcap_{n \ge 0} \widetilde{\mathsf{pre}}_{\tau}^n(\mathcal{Y})$$

where
$$\widetilde{\mathsf{pre}}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma' : \sigma \to \sigma' \implies \sigma' \in S \}$$

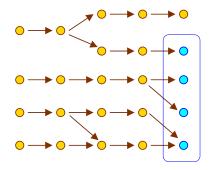
(states such that all successors satisfy S, pre is a complete \cap -morphism)

 $\mathcal{S}(\mathcal{Y})$ can be expressed in fixpoint form:

 $\mathcal{S}(\mathcal{Y}) = \operatorname{gfp} F_{\mathcal{S}}$ where $F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\operatorname{pre}}_{\tau}(S)$

proof sketch: similar to that of $\mathcal{R}(\mathcal{I})$, in the dual.

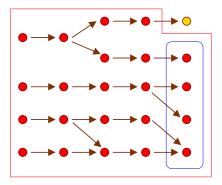
 $F_{\mathcal{S}}$ is continuous in the dual CPO $(\mathcal{P}(\Sigma), \supseteq)$, because $\widetilde{\operatorname{pre}}_{\tau}$ is: $F_{\mathcal{S}}(\cap_{i \in I} A_i) = \cap_{i \in I} F_{\mathcal{S}}(A_i)$. By Kleene's theorem in the dual, gfp $F_{\mathcal{S}} = \cap_{n \in \mathbb{N}} F_{\mathcal{S}}^n(\Sigma)$. We would prove by recurrence that $F_{\mathcal{S}}^n(\Sigma) = \cap_{i < n} \widetilde{\operatorname{pre}}_{\tau}^i(\mathcal{Y})$.



Final states ${\cal F}$ Goal: when stopping, stop in ${\cal F}$

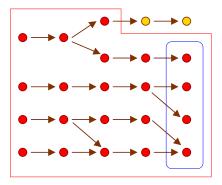
Sufficient precondition state semantics

Graphical illustration

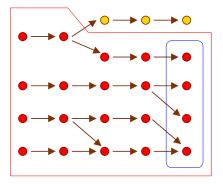


Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F^0_{\mathcal{S}}(\mathcal{Y})$ Sufficient precondition state semantics

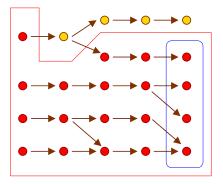
Graphical illustration



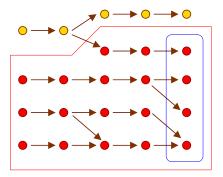
Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F_{\mathcal{S}}^1(\mathcal{Y})$



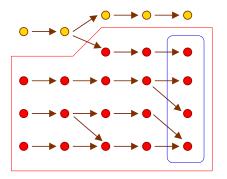
Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F_{\mathcal{S}}^2(\mathcal{Y})$



Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F^3_{\mathcal{S}}(\mathcal{Y})$



Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Sufficient preconditions $\mathcal{S}(\mathcal{Y})$ to stop in \mathcal{F}



 $\begin{array}{l} \mbox{Final states } \mathcal{F} \\ \mbox{Goal: stay in } \mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B}) \\ \mbox{Sufficient preconditions } \mathcal{S}(\mathcal{Y}) \mbox{ to stop in } \mathcal{F} \end{array}$

 $\mathcal{C}(\mathcal{F})$

Note: $\mathcal{S}(\mathcal{Y}) \subsetneq \mathcal{C}(\mathcal{F})$

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\mathcal{S}}{\mathcal{R}} (\mathcal{P}(\Sigma),\subseteq)$$

 $\begin{array}{l} \blacksquare \ \mathcal{R}(\mathcal{I}) \subseteq \mathcal{Y} \iff \mathcal{I} \subseteq \mathcal{S}(\mathcal{Y}) \\ \text{definition of a Galois connection} \\ \text{all executions from } \mathcal{I} \text{ stay in } \mathcal{Y} \\ \iff \mathcal{I} \text{ includes only sufficient pre-conditions for } \mathcal{Y} \end{array}$

• so $S(\mathcal{Y}) = \bigcup \{ X | \mathcal{R}(X) \subseteq \mathcal{Y} \}$ by Galois connection property

 $\mathcal{S}(\mathcal{Y})$ is the largest initial set whose reachability is in $\mathcal Y$

We retrieve Dijkstra's weakest liberal preconditions

(proof sketch on next slide)

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that $\mathcal{R}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} G_{\mathcal{R}}$ where $G_{\mathcal{R}}(S) = S \cup \mathsf{post}_{\tau}(S)$. Likewise, $S(\mathcal{Y}) = \mathsf{gfp}_{\mathcal{Y}} G_{\mathcal{S}}$ where $G_{\mathcal{S}}(S) = S \cap \widetilde{\mathsf{pre}}_{\tau}(S)$.

We have a Galois connection: $(\mathcal{P}(\Sigma), \subseteq) \xleftarrow{\operatorname{pre}_{\tau}}{\operatorname{post}_{\tau}} (\mathcal{P}(\Sigma), \subseteq).$

$$post_{\tau}(A) \subseteq B \quad \iff \quad \{\sigma' \mid \exists \sigma \in A: \sigma \to \sigma'\} \subseteq B \\ \iff \quad (\forall \sigma \in A: \sigma \to \sigma' \implies \sigma' \in B) \\ \iff \quad (A \subseteq \{\sigma \mid \forall \sigma': \sigma \to \sigma' \implies \sigma' \in B\}) \\ \iff \quad A \subseteq \widetilde{pre}_{\tau}(B)$$

As a consequence $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow[\mathcal{G}_{\mathcal{R}}]{\mathcal{G}_{\mathcal{R}}} (\mathcal{P}(\Sigma), \subseteq).$

The Galois connection can be lifted to fixpoint operators:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[x\mapsto \mathsf{lfp}_X G_{\mathcal{S}}]{} (\mathcal{P}(\Sigma),\subseteq).$$

Applications of sufficient preconditions

Initial states such that all executions are correct: $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$

(the only blocking states reachable from initial states are final states)

program

```
• i \leftarrow 0;

while i < 100 do

i \leftarrow i + 1;

j \leftarrow j + [0, 1]

assert (j \le 105)

done •
```

- initial states \mathcal{I} : $j \in [0, 10]$ at •
- final states *F*: any memory state at ●
- blocking states B: either final or j > 105 (assertion failure)
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$: at •, $j \in [0, 5]$ (note that $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ gives \mathcal{I})
- application to inferring function contracts
- application to inferring counter-examples
- requires under-approximations to build decidable abstractions but most analyses can only provide over-approximations!

Maximal trace semantics

The need for maximal traces

The partial trace semantics cannot distinguish between:

while a 0 = 0 do done

while a [0, 1] = 0 do done

we get a^* for both programs

<u>Solution:</u> restrict the semantics to complete executions only

- keep only executions finishing in a blocking state B
- add infinite executions

the partial semantics took into account infinite execution by including all their finite parts, but we no longer keep them as they are not maximal!

Benefits:

- avoid confusing prefix of infinite executions with finite executions
- allow reasoning on exact execution length
- allow reasoning on infinite executions (non-termination, inevitability, liveness)

Infinite traces

Notations:

- $\sigma_0, \ldots, \sigma_n, \ldots$: an infinite trace (length ω)
- Σ^{ω} : the set of all infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$: the set of all traces (finite and infinite)

Extending the operators:

- $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots$ (appending to a finite trace)
- $t \cdot t' \stackrel{\text{def}}{=} t$ if $t \in \Sigma^{\omega}$ (appending to an infinite trace does nothing)

•
$$(\sigma_0, \ldots, \sigma_n)^{\frown}(\sigma'_0, \sigma'_1 \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots$$
 when $\sigma_n = \sigma'_0$

•
$$t^{\frown}t' \stackrel{\text{def}}{=} t$$
, if $t \in \Sigma^{\omega}$

- prefix: $x \preceq y \iff \exists u \in \Sigma^{\infty} : x \cdot u = y$ (Σ^{ω}, \preceq) is a CPO
- \cdot distributes infinite \cup and \cap

\bigcirc distributes infinite \cup , but not infinite \cap !

 $\{a^{\omega}\}^{\frown} (\cap_{n \in \mathbb{N}} \{ a^{m} \mid n \geq m \}) = \{a^{\omega}\}^{\frown} \emptyset = \emptyset \text{ but } \cap_{n \in \mathbb{N}} (\{a^{\omega}\}^{\frown} \{ a^{m} \mid n \geq m \}) = \cap_{n \in \mathbb{N}} \{a^{\omega}\} = \{a^{\omega}\}$ However $A^{\frown} (\cap_{i \in I} B_{i}) = \bigcup_{i \in I} (A^{\frown} B_{i}) \text{ if } A \subseteq \Sigma^{*}.$

Maximal traces

<u>Maximal traces</u>: $\mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

- sequences of states linked by the transition relation au
- **start in any state** ($\mathcal{I} = \Sigma$, technical requirement for the fixpoint characterization)
- either finite and stop in a blocking state $(\mathcal{F} = \mathcal{B})$
- or infinite

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \, | \, \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to \sigma_{i+1} \right\} \cup \\ \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \, | \, \forall i < \omega: \sigma_{i} \to \sigma_{i+1} \right\}$$

(can be anchored at \mathcal{I} and \mathcal{F} as: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \cap ((\Sigma^* \cdot \mathcal{F}) \cup \Sigma^{\omega}))$

Maximal trace semantics

Partitioned fixpoint formulation of maximal traces

<u>Goal:</u> we look for a fixpoint characterization of \mathcal{M}_{∞}

We consider separately finite and infinite maximal traces

■ <u>Finite traces:</u> already done!

From the suffix partial trace semantics, recall: $\mathcal{M}_{\infty} \cap \Sigma^* = \mathcal{T}_s(\mathcal{B}) = \text{lfp } F_s$ where $F_s(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap \mathcal{T}$ in $(\mathcal{P}(\Sigma^*), \subseteq) \dots$

Infinite traces:

Additionally, we will prove: $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{gfp} \ \mathsf{G}_{\mathsf{s}}$ where $\mathsf{G}_{\mathsf{s}}(\mathcal{T}) \stackrel{\text{def}}{=} \tau^{\frown} \mathcal{T}$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$

Note: only backward fixpoint formulation of maximal traces exist!

(proof in following slides)

Maximal trace semantics

Infinite trace semantics: graphical illustration

$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$

$$\tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

Iterates:
$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$$
 where $G_{s}(T) \stackrel{\text{\tiny def}}{=} \tau^{\frown} T$

$$\begin{array}{l} G_s^0(\Sigma^{\omega}) = \Sigma^{\omega} \\ G_s^1(\Sigma^{\omega}) = ab\Sigma^{\omega} \cup bb\Sigma^{\omega} \cup bc\Sigma^{\omega} \\ G_s^2(\Sigma^{\omega}) = abb\Sigma^{\omega} \cup bbb\Sigma^{\omega} \cup abc\Sigma^{\omega} \cup bbc\Sigma^{\omega} \\ G_s^3(\Sigma^{\omega}) = abbb\Sigma^{\omega} \cup bbbb\Sigma^{\omega} \cup abbc\Sigma^{\omega} \cup bbbc\Sigma^{\omega} \\ G_s^n(\Sigma^{\omega}) = \{ab^nt, b^{n+1}t, ab^{n-1}ct, b^nct \mid t \in \Sigma^{\omega}\} \\ \\ \mathcal{M}_{\infty} \cap \Sigma^{\omega} = \bigcap_{n \geq 0} G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, b^{\omega}\} \end{array}$$

C

а

Infinite trace semantics: proof

$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$$

where $G_{s}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$

proof:

 $\begin{aligned} & G_s \text{ is continuous in } (\mathcal{P}(\Sigma^{\omega}), \supseteq) \colon \ G_s(\cap_{i \in I} \ T_i) = \cap_{i \in I} \ G_s(T_i). \\ & \text{By Kleene's theorem in the dual: gfp } G_s = \cap_{n \in \mathbb{N}} \ G_s^n(\Sigma^{\omega}). \\ & \text{We prove by recurrence on } n \text{ that } \forall n \colon G_s^n(\Sigma^{\omega}) = (\tau^{\frown n})^{\frown} \Sigma^{\omega} \colon \end{aligned}$

•
$$G_s^0(\Sigma^\omega) = \Sigma^\omega = (\tau^{-0})^{-}\Sigma^\omega,$$

• $G_s^{n+1}(\Sigma^\omega) = \tau^{-}G_s^n(\Sigma^\omega) = \tau^{-}((\tau^{-n})^{-}\Sigma^\omega) = (\tau^{-n+1})^{-}\Sigma^\omega.$

$$\begin{aligned} \mathsf{gfp} \ \mathcal{G}_s &= & \cap_{n \in \mathbb{N}} \left(\tau^{\frown n} \right)^{\frown} \Sigma^{\omega} \\ &= & \left\{ \sigma_0, \ldots \in \Sigma^{\omega} \mid \forall n \ge 0; \sigma_0, \ldots, \sigma_{n-1} \in \tau^{\frown n} \right\} \\ &= & \left\{ \sigma_0, \ldots \in \Sigma^{\omega} \mid \forall n \ge 0; \forall i < n; \sigma_i \to \sigma_{i+1} \right\} \\ &= & \mathcal{M}_{\infty} \cap \Sigma^{\omega} \end{aligned}$$

Maximal trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a least fixpoint formulation for whole \mathcal{M}_{∞} , we merge finite and infinite maximal trace least fixpoint forms

Fixpoint fusion:

$$\begin{split} \mathcal{M}_{\infty} \cap \Sigma^* \text{ is best defined on } (\mathcal{P}(\Sigma^*), \subseteq, \cup, \cap, \emptyset, \Sigma^*). \\ \mathcal{M}_{\infty} \cap \Sigma^{\omega} \text{ is best defined on } (\mathcal{P}(\Sigma^{\omega}), \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset), \text{ the dual lattice.} \\ (\text{we transform the greatest fixpoint into a least fixpoint!}) \end{split}$$

We mix them into a new complete lattice $(\mathcal{P}(\Sigma^{\infty}), \subseteq, \sqcup, \sqcap, \bot, \top)$:

- $\blacksquare A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$
- $A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cap (B \cap \Sigma^{\omega}))$
- $A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cup (B \cap \Sigma^{\omega}))$
- $\blacksquare \perp \stackrel{\text{def}}{=} \Sigma^{\omega}$
- $\blacksquare \top \stackrel{\text{def}}{=} \Sigma^*$

In this lattice, $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$

(proof on next slides)

Fixpoint fusion theorem

Theorem: fixpoint fusion

```
If X_1 = \text{lfp } F_1 in (\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1) and X_2 = \text{lfp } F_2 in (\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2)
and \mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset,
```

then $X_1 \cup X_2 = \text{lfp } F$ in $(\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq)$ where:

$$\bullet F(X) \stackrel{\text{\tiny def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2)$$

 $\blacksquare A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \land (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2)$

proof:

We have: $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap D_1) \cup F_2((X_1 \cup X_2) \cap D_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2$, hence $X_1 \cup X_2$ is a fixpoint of F.

Let Y be a fixpoint. Then $Y = F(Y) = F_1(Y \cap D_1) \cup F_2(Y \cap D_2)$, hence, $Y \cap D_1 = F_1(Y \cap D_1)$ and $Y \cap D_1$ is a fixpoint of F_1 . Thus, $X_1 \sqsubseteq_1 Y \cap D_1$. Likewise, $X_2 \sqsubseteq_2 Y \cap D_2$. We deduce that $X = X_1 \cup X_2 \sqsubseteq (Y \cap D_1) \cup (Y \cap D_2) = Y$, and so, X is F's least fixpoint.

<u>note:</u> we also have gfp $F = \text{gfp } F_1 \cup \text{gfp } F_2$.

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ with $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$

proof:

We have:

- $\mathcal{M}_{\infty} \cap \Sigma^* = \mathsf{lfp} \, F_s \text{ in } (\mathcal{P}(\Sigma^*), \subseteq),$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \text{lfp } G_s \text{ in } (\mathcal{P}(\Sigma^{\omega}), \supseteq) \text{ where } G_s(T) \stackrel{\text{def}}{=} \tau^{\frown} T,$
- in $\mathcal{P}(\Sigma^{\infty})$, we have $F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega})$.

So, by fixpoint fusion in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$, we have:

 $\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^{*}) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \mathsf{lfp} \, F_{s}.$

<u>Note</u>: a greatest fixpoint formulation in $(\Sigma^{\infty}, \subseteq)$ also exists!

Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics

Two steps to go from maximal traces to finite partial traces:

- add all partial traces (prefixes)
- remove infinite traces (in this order!)

Partial trace semantics \mathcal{T}_∞

all finite and infinite sequences of states linked by the transition relation τ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \forall i < n: \sigma_i \to \sigma_{i+1} \} \cup \\ \{ \sigma_0, \dots, \sigma_n, \dots \in \Sigma^\omega \mid \forall i < \omega: \sigma_i \to \sigma_{i+1} \}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$

<u>proof:</u> similar to the proof of $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$

Prefix abstraction

Idea: complete maximal traces by adding (non-empty) prefixes We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq) \xrightarrow{\gamma_{\preceq}} (\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq)$$

(set of all non-empty prefixes of traces in T)

• $\gamma_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} | \forall u \in \Sigma^{\infty} \setminus \{\epsilon\} : u \preceq t \implies u \in T \}$

(traces with non-empty prefixes in T)

proof:

 $\begin{array}{l} \alpha_{\preceq} \text{ and } \gamma_{\preceq} \text{ are monotonic.} \\ (\alpha_{\preceq} \circ \gamma_{\preceq})(T) = \{ \ t \in T \mid \rho_{\rho}(t) \subseteq T \} \subseteq T \quad (\text{prefix-closed trace sets}). \\ (\gamma_{\preceq} \circ \alpha_{\preceq})(T) = \rho_{\rho}(T) \supseteq T. \end{array}$

Abstraction from maximal traces to partial traces

Finite and infinite partial traces \mathcal{T}_{∞} are an abstraction of maximal traces \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \alpha_{\preceq}(\mathcal{M}_{\infty})$.

proof:

Firstly, \mathcal{T}_{∞} and $\alpha_{\preceq}(\mathcal{M}_{\infty})$ coincide on infinite traces. Indeed, $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$ and α_{\preceq} does not add infinite traces, so: $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$. We now prove that they also coincide on finite traces. Assume $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$, then $\forall i < n: \sigma_i \to \sigma_{i+1}, \text{ so, } \sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$. Assume $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$, then it can be completed into a maximal trace, either finite or infinite, and so, $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$.

Note: no fixpoint transfer applies here.

Finite trace abstraction

Finite partial traces \mathcal{T} are an abstraction of all partial traces \mathcal{T}_{∞} (forget about infinite executions)

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \xleftarrow{\gamma_{*}}{ \alpha_{*}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

• \sqsubseteq is the fused ordering on $\Sigma^* \cup \Sigma^{\omega}$: $A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$

 $\bullet \ \alpha_*(T) \stackrel{\text{\tiny def}}{=} \ T \cap \Sigma^*$

(remove infinite traces)

• $\gamma_*(T) \stackrel{\text{def}}{=} T$ (embedding)

 $\bullet \mathcal{T} = \alpha_*(\mathcal{T}_\infty)$

(proof on next slide)

Finite trace abstraction (proof)

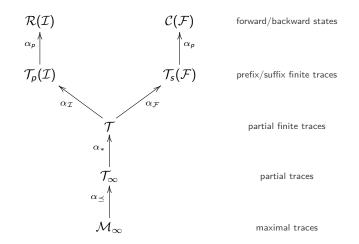
proof:

We have Galois embedding because:

- α_{*} and γ_{*} are monotonic,
- given $T \subseteq \Sigma^*$, we have $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$,
- $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \supseteq T$, as we only remove infinite traces.

Recall that $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ and $\mathcal{T} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{*}), \subseteq)$, where $F_{s*}(\mathcal{T}) \stackrel{\text{def}}{=} \Sigma \cup \mathcal{T}^{\frown} \tau$. As $\alpha_{*} \circ F_{s*} = F_{s*} \circ \alpha_{*}$ and $\alpha_{*}(\emptyset) = \emptyset$, we can apply the fixpoint transfer theorem to get $\alpha_{*}(\mathcal{T}_{\infty}) = \mathcal{T}$.

Enriched hierarchy of semantics



See [Cous02] for more semantics in this diagram.

Safety and liveness trace properties

Maximal trace properties

Trace property:
$$P \in \mathcal{P}(\Sigma^{\infty})$$

Verification problem: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$

or, equivalently, as $\mathcal{M}_{\infty} \subseteq P'$ where $P' \stackrel{\mathrm{def}}{=} P \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^{\infty})$

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$
- non-termination: $P \stackrel{\text{def}}{=} \Sigma^{\omega}$
- any state property $S \subseteq \Sigma$: $P \stackrel{\text{def}}{=} S^{\infty}$
- maximal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$
- minimal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$
- ordering, e.g.: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^{\infty}$

(a and b occur, and a occurs before b)

Safety properties for traces

Idea: a safety property *P* models that "nothing bad will ever occur"

- P is provable by exhaustive testing (observe the prefix trace semantics: T_p(I) ⊆ P)
- P is disprovable by finding a single finite execution not in P

Examples:

• any state property: $P \stackrel{\text{\tiny def}}{=} S^{\infty}$ for $S \subseteq \Sigma$

• ordering: $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ no *b* can appear without an *a* before, but we can have only *a*, or neither *a* nor *b* (not a state property)

• but termination $P \stackrel{\text{def}}{=} \Sigma^*$ is not a safety property disproving requires exhibiting an *infinite* execution

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow
$$\epsilon$$
)
 $(\mathcal{P}(\Sigma^{\infty}), \subseteq) \xrightarrow{\gamma_{*} \preceq} (\mathcal{P}(\Sigma^{*}), \subseteq)$
 $\alpha_{* \preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{*} | \exists u \in T : t \preceq u \}$
 $\gamma_{* \preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} | \forall u \in \Sigma^{*} : u \preceq t \implies u \in T \}$

The associated upper closure $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$ is: $\rho_{*\preceq} = \lim \circ \rho_p$ where:

$$\rho_p(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{\infty} \mid \exists t \in T : u \leq t \}$$

 $\blacksquare \lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* \colon u \leq t \implies u \in T \}$

<u>Definition</u>: $P \in \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{* \preceq}(P)$

Definition of safety properties (examples)

<u>Definition</u>: $P \subseteq \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*\preceq}(P)$

Examples and counter-examples:

■ state property
$$P \stackrel{\text{def}}{=} S^{\infty}$$
 for $S \subseteq \Sigma$:
 $\rho_p(S^{\infty}) = \lim(S^{\infty}) = S^{\infty} \Longrightarrow$ safety

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $\rho_{\rho}(\Sigma^{*}) = \Sigma^{*}$, but $\lim(\Sigma^{*}) = \Sigma^{\infty} \neq \Sigma^{*} \Longrightarrow$ not safety

• even number of steps $P \stackrel{\text{\tiny def}}{=} (\Sigma^2)^{\infty}$:

 $ho_{
ho}((\Sigma^2)^{\infty}) = \Sigma^{\infty}
eq (\Sigma^2)^{\infty} \Longrightarrow$ not safety

Proving safety properties

Proving that a program satisfies a safety property P is equivalent to proving that its finite prefix abstraction does

$$\mathcal{T}_p(\mathcal{I}) \subseteq P$$

proof sketch:

Soundness. Using the Galois connection between \mathcal{M}_{∞} and \mathcal{T} , we get: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{\ast \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{\ast \preceq} (\alpha_{\ast \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{\ast \preceq} (\alpha_{\ast \preceq} (\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{\ast \preceq} (\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{\ast})) = \gamma_{\ast \preceq} (\mathcal{T}_{\rho}(\mathcal{I})).$ As $\mathcal{T}_{\rho}(\mathcal{I}) \subseteq P$, we have, by monotony, $\gamma_{\ast \preceq} (\mathcal{T}_{\rho}(\mathcal{I})) \subseteq \gamma_{\ast \preceq} (P) = P$. Hence $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$.

Completeness. $\mathcal{T}_{p}(\mathcal{I})$ provides an inductive invariant for *P*.

Liveness properties

Idea: liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

 P cannot be proved by testing (if nothing good happens in a prefix execution, it can still happen in the rest of the execution)

disproving P requires exhibiting an infinite execution not in P

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$
- inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$

(a eventually occurs in all executions)

state properties are not liveness properties

Definition of liveness properties

Definition: $P \in \mathcal{P}(\Sigma^{\infty})$ is a liveness property if $\rho_{*\preceq}(P) = \Sigma^{\infty}$

Examples and counter-examples:

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $\rho_p(\Sigma^*) = \Sigma^* \text{ and } \lim(\Sigma^*) = \Sigma^\infty \Longrightarrow \text{ liveness}$

- inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$ $\rho_P(P) = P \cup \Sigma^*$ and $\lim(P \cup \Sigma^*) = \Sigma^{\infty} \Longrightarrow$ liveness
- state property $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$:

 $\rho_{\rho}(S^{\infty}) = \lim(S^{\infty}) = S^{\infty} \neq \Sigma^{\infty} \text{ if } S \neq \Sigma \implies \text{ not liveness}$

■ maximal execution time $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$: $\rho_p(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \Sigma^{\leq k} \neq \Sigma^{\infty} \implies \text{not liveness}$

 \blacksquare the only property which is both safety and liveness is Σ^∞

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens

Example: termination proof

find f : Σ → S where (S, ⊑) is well-ordered (cf. previous course) f is called a "ranking function"

•
$$\sigma \in \mathcal{B} \implies f = \min \mathcal{S}$$

• $\sigma \to \sigma' \implies f(\sigma') \sqsubset f(\sigma)$

generalizes the idea that f "counts" the number of steps remaining before termination

Trace topology

- A topology on a set can be defined as:
- either a family of open sets (closed under union)
- or family of closed sets (closed under intersection)

Trace topology: on sets of traces in Σ^{∞}

- the closed sets are: $\mathcal{C} \stackrel{\text{def}}{=} \{ P \in \mathcal{P}(\Sigma^{\infty}) | P \text{ is a safety property} \}$
- the open sets can be derived as $\mathcal{O} \stackrel{\text{def}}{=} \{ \Sigma^{\infty} \setminus c \, | \, c \in \mathcal{C} \}$

Topological closure: $\rho : \mathcal{P}(X) \to \mathcal{P}(X)$

- $\rho(x) \stackrel{\text{def}}{=} \cap \{ c \in \mathcal{C} \mid x \subseteq c \} \text{ (upper closure operator in } (\mathcal{P}(X), \subseteq)) \}$
- on our trace topology, $\rho = \rho_{* \preceq}$

Dense sets:

- $x \subseteq X$ is dense if $\rho(x) = X$
- on our trace topology, dense sets are liveness properties

Decomposition theorem

<u>Theorem</u>: decomposition of a set in a topological space Any set $x \subseteq X$ is the intersection of a closed set and a dense set

proof:

We have $x = \rho(x) \cap (x \cup (X \setminus \rho(x)))$. Indeed: $\rho(x) \cap (x \cup (X \setminus \rho(x))) = (\rho(x) \cap x) \cup (\rho(x) \cap (X \setminus \rho(x))) = \rho(x) \cap x = x \text{ as } x \subseteq \rho(x).$

- $\rho(x)$ is closed
- $x \cup (X \setminus \rho(x))$ is dense because: $\rho(x \cup (X \setminus \rho(x))) \supseteq \rho(x) \cup \rho(X \setminus \rho(x))$ $\supseteq \rho(x) \cup (X \setminus \rho(x))$ = X

Consequence: on trace properties

Every trace property is the conjunction of a safety property and a liveness property

proving a trace property can be decomposed into a soundness proof and a liveness proof

Bibliography

[Bour93] **F. Bourdoncle**. *Abstract debugging of higher-order imperative languages*. In PLDI, 46-55, ACM Press, 1993.

[Cous92] **P. Cousot & R. Cousot**. Abstract interpretation and application to logic programs. In Journal of Logic Programming, 13(2–3):103–179, 1992..

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.