
Backward Abstract Interpretation using Over
and Under-Approximations

Master 2 research internship proposal, 2021–2022

Supervisor: Antoine Miné (antoine.mine@lip6.fr)

Internship location: APR team, LIP6
Sorbonne Université
Jussieu Campus, Paris, France

Duration: 6 months

Related project: MOPSA project, MOPSA analyzer

Relevant courses: MPRI 2.6: Abstract interpretation: application to
verification and static analysis

Master 2 STL: Typage et analyse statique

The goal of the internship is to develop backward value analyses for MOPSA, a
modular static analyzer by abstract interpretation targeting realistic C and Python
programs but currently only supporting forward analyses. The internship may con-
sider both over-approximations and, if time permits, under-approximations.

Related Work

The theory of abstract interpretation allows the design of effective and efficient static
analyzers able to compute approximations of program semantics.

Over-approximations. The theory and implementation of abstract interpretation is
mostly concerned with over-approximations:

1. A classic forward analysis computes an over-approximation of the states reach-
able from the program entry.

2. A classic backward analysis computes the states co-reachable from some target
states (i.e., it computes the entry states from which an execution can go into one
of the target states). This set of entry states is also over-approximated. Thus, the
analysis infers necessary conditions on entry states for the program to reach the
target states. Any entry state that does not satisfy the conditions cannot possibly
lead to the target states, while an entry state that does satisfy them may or may
not lead to the target states.

3. Generally, a forward analysis must be performed before a backward analysis in
order to achieve a sufficient precision. Over-approximating forward and back-
ward computations can then be iterated to gain more precision or to specialize
the analysis to specific properties. Applications include: providing automatically
some context for the false positives of an imprecise analysis [6], refining automat-
ically the analysis into an abstract testing procedure[4], or performing interactive
abstract debugging [3].

antoine.mine@lip6.fr
https://www-apr.lip6.fr/web
https://www.lip6.fr/
https://mopsa.lip6.fr/
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/mopsa/mopsa-analyzer


In practice, backward over-approximating analysis is mostly supported in numeric
abstract domains, while analyzers also rely on abstract domains representing pointers
and memory structures, as well as complex compositions and interactions of several
domains [7]. Moreover, it is challenging to make backward analysis scale up due to
the need to store invariants. Thus, it is less frequently employed in industrial-strength
analyzers that target real languages, such as C: these are generally limited to a simple
forward pass. One aspect of the internship is to extend existing techniques for over-
approximating backward analyses to address some of these limitations, and integrate
them into an analyzer for C programs.

Under-approximations. In theory, an under-approximating backward analysis
could be employed to provide sufficient conditions for a target program state to be
reached (instead of necessary conditions). Applications include:

1. Proving that an alarm is a true error and not a false alarm by inferring a
counter-example execution [1].

2. Inferring procedure contracts: sufficient assertions to insert at the beginning
of a procedure to ensure that its execution will never fail [2].

3. Evaluating the uncertainty of an analysis by combining both over-
approximations and under-approximations, and quantifying the distance be-
tween them. Such analyses may be iterated to improve their precision.

So far, the lack of effective under-approximating infinite-state abstract domains has
limited the development of abstract interpretation techniques to solve these problems.
Counter-example generation with formal verification has been widely explored in the
context of model-checking, but requires reasoning in a finite or sufficiently regular
world that can be exactly represented explicitly or symbolically by the model-checker,
and is not directly applicable to general, infinite-state abstract interpretation. The
internship will thus explore novel methods that can handle large state spaces and
sound approximations. Procedure contract inference by abstract interpretation has
been proposed by Cousot et al. [2], but employs over-approximations of necessary
conditions to remove only erroneous executions. The internship will also consider
under-approximated sufficient conditions to keep only correct executions.

Effective under-approximations have been proposed for classic numeric domains
(intervals, polyhedra) in [1] to infer sufficient conditions for the absence of array bound
errors in simple programs, and later found applications in proving liveness properties
[5]. These can serve as the basis for the internship, but will require extensions to
ensure precision, scalability, and support for non-numeric variables such as pointers.

Expected Work

The intended work will include a theoretical side: developing abstract semantics and
proving formally their soundness. It will also include a practical side: implementing
the semantics and validating their benefit experimentally.

The host team is developing an open-source static analysis platform, MOPSA [7],
that includes an analysis of C and Python programs using several, ready-to-use ab-
stractions, and a framework to easily extend it to new abstractions. However, the
framework is currently limited to forward over-approximating analyses. A first step
will be to add support for backward iterations in MOPSA, and evaluate classic over-
approximating backward analyses, focusing for simplicity on small C programs fea-
turing numeric and pointer variables. Then, the intern will implement and evaluate

2

https://gitlab.com/mopsa/mopsa-analyzer


the novel over-approximating and/or under-approximating backward operators de-
veloped during the internship. Feedback from experiments throughout the internship
will guide the design of new abstractions tailored to concrete problems in realistic
settings.

Requested Skills

- The internship requires a strong knowledge of static analysis by abstract interpre-
tation.

- The intern should have followed one of the following Master 2 courses: “Abstract
interpretation: application to verification and static analysis” from MPRI, or “Typage
et analyse statique” from the STL Master at Sorbonne Université, or an equivalent
course.

- Knowledge of the OCaml language is required for the implementation effort within
the MOPSA platform [7].

Context of the Internship

The internship will take place in the APR team, in the LIP6 laboratory, Jussieu Cam-
pus, Sorbonne Université, Paris. It is proposed in the scope of the MOPSA research
project.

References

[1] A. Miné. Backward under-approximations in numeric abstract domains to auto-
matically infer sufficient program conditions. Science of Computer Programming
(SCP), 33 pages, Oct. 2013.

[2] P. Cousot, R. Cousot, & F. Logozzo. Precondition Inference from Intermittent As-
sertions and Application to Contracts on Collections. In 12th International Con-
ference on Verification, Model Checking, and Abstract Interpretation (VMCAI’11),
Austin, Texas, LNCS 6538, Springer, 2011, pp. 150–168.

[3] F. Bourdoncle. Assertion-Based Debugging of Imperative Programs by Abstract
Interpretation. In Proc. of 4th European Software Engineering Conf. (ESEC’93),
pp. 501–516, vol. 717 of LNCS. Springer, 1993.

[4] B. Yin, L. Chen, J. Liu, J. Wang, P. Cousot Verifying Numerical Programs via
Iterative Abstract Testing. In Proc. of International Static Analysis Symposium
(SAS 2019), pp. 247–267, vol. 11822 of LNCS. Springer, 2019.

[5] C. Urban, S. Ueltschi, and P. Müller Abstract Interpretation of CTL Properties. In
Proc. of SAS’18, 402–422, Freiburg, Germany. Springer.

[6] X. Rival. Understanding the origin of alarms in Astrée. In Proc. of SAS’05, 303–
319. Springer.

[7] M. Journault, A. Miné, M. Monat, and A. Ouadjaout. Combinations of reusable
abstract domains for a multilingual static analyzer. In Proc. of the 11th Working
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE19),
pages 1–17, Jul. 2019.

3

https://gitlab.com/mopsa/mopsa-analyzer
https://mopsa.lip6.fr/
https://mopsa.lip6.fr/

