Partitioning abstractions MPRI — Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA, ENS, CNRS

Dec, 6th. 2021

Towards disjunctive abstractions

Extending the expressiveness of abstract domains

- disjunctions are often needed...
- ... but potentially costly

In this lecture, we will discuss:

- precision issues that motivate the use of abstract domains able to express disjunctions
- several techniques to express disjunctive properties using abstract domain combination methods (construction of abstract domains from other abstract domains):
 - disjunctive completion
 - cardinal power
 - state partitioning
 - trace partitioning

Introduction

Domain combinators (or combiners)

General combination of abstract domains

- takes one or more abstract domains as inputs
- produces a new abstract domain

Input and output abstract domains are characterized by an "interface":

- concrete domain,
- abstraction relation,
- and abstract operations (post-conditions, widening...)

Advantages:

- general definition, formalized and proved once
- can be implemented in a separate way, e.g., in ML:
 - abstract domain: module

module D = (struct ... end: I)

abstract domain combinator: functor

module C = functor (D: IO) -> (struct ... end: I1)

Example: product abstraction

Set notations:

Assumptions:

- V: values
- X: variables
- \mathbb{M} : stores $\mathbb{M} = \mathbb{X} \to \mathbb{V}$

- concrete domain $(\mathcal{P}(\mathbb{M}), \subseteq)$ with $\mathbb{M} = \mathbb{X} \to \mathbb{V}$
- \bullet we assume an abstract domain \mathbb{D}^{\sharp} that provides
 - concretization function $\gamma: \mathbb{D}^{\sharp} \to \mathcal{P}(\mathbb{M})$
 - ▶ element \bot with empty concretization $\gamma(\bot) = \emptyset$

Product combinator (implemented as a functor)

Given abstract domains $(\mathbb{D}_0^{\sharp}, \gamma_0, \bot_0)$ and $(\mathbb{D}_1^{\sharp}, \gamma_1, \bot_1)$, the **product abstraction** is $(\mathbb{D}_{\times}^{\sharp}, \gamma_{\times}, \bot_{\times})$ where:

- $\mathbb{D}^{\sharp}_{\times} = \mathbb{D}^{\sharp}_{0} \times \mathbb{D}^{\sharp}_{1}$
- $\gamma_{ imes}(x_0^{\sharp},x_1^{\sharp})=\gamma_0(x_0^{\sharp})\cap\gamma_1(x_1^{\sharp})$
- $\perp_{\times} = (\perp_0, \perp_1)$

This amounts to expressing conjunctions of elements of \mathbb{D}_0^{\sharp} and \mathbb{D}_1^{\sharp}

Introduction

Example: product abstraction, coalescent product

The product abstraction is not very precise and needs a reduction:

$$\forall x_0^{\sharp} \in \mathbb{D}_0^{\sharp}, x_1^{\sharp} \in \mathbb{D}_1^{\sharp}, \ \gamma_{\times}(\bot_0, x_1^{\sharp}) = \gamma_{\times}(x_0^{\sharp}, \bot_1) = \emptyset = \gamma_{\times}(\bot_{\times})$$

Coalescent product

Given abstract domains $(\mathbb{D}_0^{\sharp}, \gamma_0, \bot_0)$ and $(\mathbb{D}_1^{\sharp}, \gamma_1, \bot_1)$, the coalescent product abstraction is $(\mathbb{D}_{\times}^{\sharp}, \gamma_{\times}, \bot_{\times})$ where:

•
$$\mathbb{D}^{\sharp}_{\times} = \{\perp_{\times}\} \uplus \{(x_0^{\sharp}, x_1^{\sharp}) \in \mathbb{D}^{\sharp}_0 \times \mathbb{D}^{\sharp}_1 \mid x_0^{\sharp} \neq \perp_0 \land x_1^{\sharp} \neq \perp_1\}$$

•
$$\gamma_{\times}(\perp_{\times}) = \emptyset$$
, $\gamma_{\times}(x_0^{\sharp}, x_1^{\sharp}) = \gamma_0(x_0^{\sharp}) \cap \gamma_1(x_1^{\sharp})$

In many cases, this is not enough to achieve reduction:

- let \mathbb{D}_0^{\sharp} be the interval abstraction, \mathbb{D}_1^{\sharp} be the congruences abstraction
- $\gamma_{\times}(\{\mathrm{x}\in[3,4]\},\{\mathrm{x}\equiv0\mod5\})=\emptyset$

• how to define abstract domain combinators to add disjunctions ?

Outline

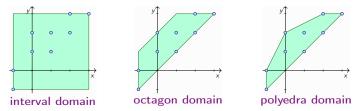
Introduction

- 2 Imprecisions in convex abstractions
 - 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- 5 State partitioning
- 6 Trace partitioning

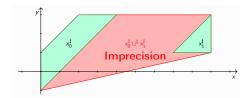
Conclusion

Convex abstractions

Many numerical abstractions describe convex sets of points



Imprecisions inherent in the **convexity**, and when computing **abstract join** (over-approximation of concrete union):



Such imprecisions may make analyses fail

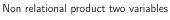
Similar issues also arise in non-numerical static analyses

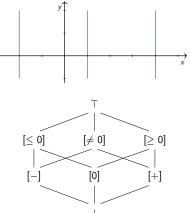
Non convex abstractions

We consider abstractions of $\mathbb{D} = \mathcal{P}(\mathbb{Z})$

Congruences:

- $\mathbb{D}^{\sharp} = \mathbb{Z} \times \mathbb{N}$
- $\gamma(n,k) = \{n+k \cdot p \mid p \in \mathbb{Z}\}$
- $-2 \in \gamma(1,2)$ and $1 \in \gamma(1,2)$ but $0 \not\in \gamma(1,2)$





Signs:

- $0 \not\in \gamma([\neq 0])$ so $[\neq 0]$ describes a non convex set
- other abstract elements describe convex sets

Example 1: verification problem

- if $\neg b_0$, then x < 0
- if $\neg b_1$, then x > 0
- $\bullet\,$ if either b_0 or b_1 is false, then $x\neq 0$
- $\bullet\,$ thus, if point ${\rm (I)}$ is reached the division is safe

How to verify the division operation ?

• Non relational abstraction (*e.g.*, intervals), at point ①:

$$\begin{array}{l} b_0 \in \{\texttt{FALSE}, \texttt{TRUE}\} \land b_1 \in \{\texttt{FALSE}, \texttt{TRUE}\}\\ x:\top \end{array}$$

• Signs, congruences do not help:

in the concrete, \boldsymbol{x} may take any value but $\boldsymbol{0}$

Example 1: program annotated with local invariants

```
bool b<sub>0</sub>, b<sub>1</sub>;
int x, y; (uninitialized)
b_0 = x > 0;
               (b_0 \land x > 0) \lor (\neg b_0 \land x < 0)
b_1 = x < 0:
               (b_0 \wedge b_1 \wedge x = 0) \vee (b_0 \wedge \neg b_1 \wedge x > 0) \vee (\neg b_0 \wedge b_1 \wedge x < 0)
if(b_0 \&\& b_1)
              (b_0 \wedge b_1 \wedge x = 0)
       v = 0:
               (\mathbf{b}_0 \wedge \mathbf{b}_1 \wedge \mathbf{x} = 0 \wedge \mathbf{y} = 0)
} else {
               (b_0 \land \neg b_1 \land x > 0) \lor (\neg b_0 \land b_1 \land x < 0)
       v = 100/x;
               (b_0 \land \neg b_1 \land x > 0) \lor (\neg b_0 \land b_1 \land x < 0)
}
```

The obvious way to sucessfully analyzing this program consists in adding symbolic disjunctions to our abstract domain

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Example 2: verification problem

$$\begin{array}{c} \text{int } \mathbf{x} \in \mathbb{Z};\\ \text{int } \mathbf{s};\\ \text{int } \mathbf{y};\\ \text{if}(\mathbf{x} \geq 0) \{\\ \mathbf{s} = 1;\\ \} \text{ else } \{\\ \mathbf{s} = -1;\\ \}\\ \textcircled{1} \quad \mathbf{y} = \mathbf{x}/\mathbf{s};\\ \textcircled{2} \quad \text{assert}(\mathbf{y} \geq 0); \end{array}$$

- s is either 1 or -1
- $\bullet\,$ thus, the division at ${\rm (1)}$ should not fail
- ${\ensuremath{\bullet}}$ moreover ${\ensuremath{s}}$ has the same sign as ${\ensuremath{x}}$
- thus, the value stored in y should always be positive at ⁽²⁾

• How to verify the division operation ?

- In the concrete, s is always non null: convex abstractions cannot establish this; congruences can
- Moreover, s has always the same sign as x expressing this would require a non trivial numerical abstraction

Example 2: program annotated with local invariants

```
int x \in \mathbb{Z}:
    int s:
    int v:
    if(x > 0)
               (x \ge 0)
          s = 1:
            (x \ge 0 \land s = 1)
    } else {
            (x < 0)
          s = -1;
               (x < 0 \land s = -1)
    }
               (x \ge 0 \land s = 1) \lor (x < 0 \land s = -1)
(1) v = x/s:
               (x \ge 0 \land s = 1 \land y \ge 0) \lor (x < 0 \land s = -1 \land y \ge 0)
2 assert(y \ge 0);
```

Again, the obvious solution consists in adding disjunctions to our abstract domain

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Outline

1 Introduction

2) Imprecisions in convex abstractions

Oisjunctive completion

- 4 Cardinal power and partitioning abstractions
- 5 State partitioning
- Trace partitioning

Conclusion

Distributive abstract domain

Principle:

- **④** consider concrete domain (D, ⊆), with least upper bound operator \sqcup
- **2** assume an abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization $\gamma : \mathbb{D}^{\sharp} \to \mathbb{D}$
- ${f 0}$ build a domain containing all the disjunctions of elements of ${\Bbb D}^{\sharp}$

Definition: distributive abstract domain

Abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization function $\gamma : \mathbb{D}^{\sharp} \to \mathbb{D}$ is **distributive** (or **disjunctive**, or **complete for disjunction**) if and only if:

$$orall \mathcal{E} \subseteq \mathbb{D}^{\sharp}, \ \exists x^{\sharp} \in \mathbb{D}^{\sharp}, \ \gamma(x^{\sharp}) = \bigsqcup_{y^{\sharp} \in \mathcal{E}} \gamma(y^{\sharp})$$

Examples:

- the lattice $\{\bot,<0,=0,>0,\leq0,\neq0,\geq0,\top\}$ is distributive
- the lattice of intervals is not distributive: there is no interval with concretization γ([0, 10]) ∪ γ([12, 20])

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Definition

Definition: disjunctive completion

The disjunctive completion of abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization function $\gamma : \mathbb{D}^{\sharp} \to \mathbb{D}$ is the smallest abstract domain $(\mathbb{D}^{\sharp}_{disj}, \sqsubseteq^{\sharp}_{disj})$ with concretization function $\gamma_{disj} : \mathbb{D}^{\sharp}_{disj} \to \mathbb{D}$ such that:

•
$$\mathbb{D}^{\sharp} \subseteq \mathbb{D}^{\sharp}_{\mathsf{dis}}$$

•
$$orall x^{\sharp} \in \mathbb{D}^{\sharp}, \; \gamma_{\mathsf{disj}}(x^{\sharp}) = \gamma(x^{\sharp})$$

• $(\mathbb{D}_{disj}^{\sharp}, \subseteq_{disj}^{\sharp})$ with concretization γ_{disj} is distributive

Building a disjunctive completion domain:

• include in $\mathbb{D}^{\sharp}_{disi}$ all elements of \mathbb{D}^{\sharp}

Theorem: this process constructs a disjunctive abstraction

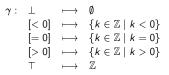
Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Disjunctive completion

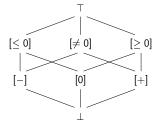
Example 1: completion of signs

We consider **concrete lattice** $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$ and $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ defined by:



Then, the disjunctive completion is defined by adding elements corresponding to:

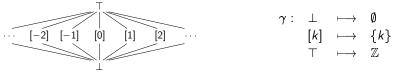
- ⊔{[−],[0]}
- 凵{[-],[+]}
- $\sqcup \{[0], [+]\}$



Disjunctive completion

Example 2: completion of constants

We consider **concrete lattice** $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$ and $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ defined by:



Then, the disjunctive completion coincides with the power-set:

- $\mathbb{D}_{disj}^{\sharp} \equiv \mathcal{P}(\mathbb{Z})$
- this abstraction loses no information: γ_{disj} is the identity function !
- obviously, this lattice contains infinite sets which are not representable

Middle ground solution: k-bounded disjunctive completion

- only add disjunctions of at most k elements
- e.g., if k = 2, pairs are represented precisely, other sets abstracted to \top

Example 3: completion of intervals

We consider concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$ and let $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ the domain of intervals

- $\mathbb{D}^{\sharp} = \{\bot, \top\} \uplus \{[a, b] \mid a \leq b\}$
- $\gamma([a, b]) = \{x \in \mathbb{Z} \mid a \leq x \leq b\}$

Then, the disjunctive completion is the set of unions of intervals :

- $\mathbb{D}_{disi}^{\sharp}$ collects all the families of disjoint intervals
- this lattice contains infinite sets which are not representable
- as expressive as the completion of constants, but more efficient representation

The disjunctive completion of $(\mathbb{D}^{\sharp})^n$ is **not equivalent** to $(\mathbb{D}^{\sharp}_{\text{disi}})^n$

- which is more expressive ?
- show it on an example !

Disjunctive completion

Example 3: completion of intervals and verification

We use the disjunctive completion of $(\mathbb{D}^{\sharp})^3$. The invariants below can be expressed in the disjunctive completion:

$$\begin{array}{l} \mbox{int } x \in \mathbb{Z}; \\ \mbox{int } s; \\ \mbox{int } y; \\ \mbox{if} (x \geq 0) \{ & (x \geq 0) \\ & (x \geq 0) \\ s = 1; \\ & (x \geq 0 \land s = 1) \\ \} \mbox{else } \{ & (x < 0) \\ s = -1; \\ & (x < 0 \land s = -1) \\ \} \\ & (x \geq 0 \land s = 1) \lor (x < 0 \land s = -1) \\ \} \\ & (x \geq 0 \land s = 1 \land y \geq 0) \lor (x < 0 \land s = -1 \land y > 0) \\ \mbox{assert}(y \geq 0); \end{array}$$

Static analysis

To carry out the analysis of a basic imperative language, we will define:

- Operations for the computation of post-conditions: sound over-approximation for basic program steps
 - concrete $post : \mathcal{P}(\mathbb{S}) \to \mathcal{P}(\mathbb{S})$ (where \mathbb{S} is the set of states);
 - the abstract $\mathit{post}^{\sharp}:\mathbb{D}^{\sharp}\to\mathbb{D}^{\sharp}$ should be such that

$$\textit{post} \circ \gamma \sqsubseteq \gamma \circ \textit{post}^{\sharp}$$

- ► case where *post* is an assignment: *post*[#] = *assign* inputs a variable, an expression, an abstract pre-condition, outputs an abstract post-condition
- ▶ case where *post* is a condition test: *post*[#] = *test* inputs a boolean expression, an abstract pre-condition, outputs an abstract post-condition
- An operator join for over-approximation of concrete unions
- A widening operator \bigtriangledown for the analysis of loops
- A conservative inclusion checking operator

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Static analysis with disjunctive completion

Transfer functions for the computation of abstract post-conditions:

- we assume a monotone concrete post-condition operation $post : \mathbb{D} \to \mathbb{D}$, and an abstract $post^{\sharp} : \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ such that $post \circ \gamma \sqsubseteq \gamma \circ post^{\sharp}$
- convention: if $\gamma(y^{\sharp}) = \bigsqcup \{ \gamma(z^{\sharp}) \mid z^{\sharp} \in \mathcal{E} \}$, we note $y^{\sharp} = [\sqcup \mathcal{E}]$
- then, we can simply use, for the disjunctive completion domain:

$$post_{disj}^{\sharp}([\sqcup \mathcal{E}]) = [\sqcup \{post^{\sharp}(x^{\sharp}) \mid x^{\sharp} \in \mathcal{E}\}]$$

(note it may be an element of the initial domain)

- the proof is left as exercise
- this works for assignment, condition tests...

Abstract join:

• disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise !

Widening: no general definition/solution to the disjunct explosion problem

Limitations of disjunctive completion

Combinatorial explosion:

- if D[#] is infinite, D[#]_{disj} may have elements that cannot be represented e.g., completion of constants or intervals
- even when D[#] is finite, D[#]_{disj} may be huge in the worst case, if D[#] has n elements, D[#]_{disi} may have 2ⁿ elements

Many elements useless in practice:

disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator

- most common approach to achieve that: k-limiting bound the numbers of disjuncts
 i.e. the size of the sets added to the base domain
 - *i.e.*, the size of the sets added to the base domain
- remaining issue: the join operator should "select" which disjuncts to merge

Outline

1 Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion

4 Cardinal power and partitioning abstractions

- 5 State partitioning
- 6 Trace partitioning

Conclusion

Principle

Observation

Disjuncts that are required for static analysis can usually be characterized by some semantic property

Examples: each disjunct is characterized by

- the sign of a variable
- the value of a boolean variable
- the execution path, e.g., side of a condition that was visited

Solution: perform a kind of indexing of disjuncts

- introduce a new abstraction to describe labels
 e.g., the sign of a variable, the value of a boolean, or another trace property...
- apply the store abstraction (or another abstraction) to the set of states associated to each label

Disjuncts indexing: example

$$\begin{array}{l} \text{int } x \in \mathbb{Z};\\ \text{int } s;\\ \text{int } y;\\ \text{if}(x \geq 0) \{ & (x \geq 0) \\ & s = 1;\\ & (x \geq 0 \land s = 1) \\ \} \text{else } \{ & (x < 0) \\ & s = -1;\\ & (x < 0 \land s = -1) \\ \} \\ & (x \geq 0 \land s = 1) \lor (x < 0 \land s = -1) \\ \} \\ & (x \geq 0 \land s = 1 \land y \geq 0) \lor (x < 0 \land s = -1 \land y > 0) \\ \text{assert}(y \geq 0); \end{array}$$

- natural "indexing": sign of x
- \bullet but we could also rely on the sign of ${\bf s}$

Cardinal power abstraction

We assume $(\mathbb{D}, \sqsubseteq) = (\mathcal{P}(\mathcal{E}), \subseteq)$, and two abstractions $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp}), (\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ given by their concretization functions:

$$\gamma_0: \mathbb{D}_0^{\sharp} \longrightarrow \mathbb{D} \qquad \gamma_1: \mathbb{D}_1^{\sharp} \longrightarrow \mathbb{D}$$

Definition

We let the cardinal power abstract domain be defined by:

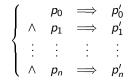
- $\mathbb{D}_{cp}^{\sharp} = \mathbb{D}_{0}^{\sharp} \xrightarrow{\mathcal{M}} \mathbb{D}_{1}^{\sharp}$ be the set of monotone functions from \mathbb{D}_{0}^{\sharp} into \mathbb{D}_{1}^{\sharp}
- $\sqsubseteq_{cp}^{\sharp}$ be the pointwise extension of \sqsubseteq_{1}^{\sharp}
- $\gamma_{\rm cp}$ is defined by:

$$egin{array}{rl} \gamma_{\mathsf{cp}} : & \mathbb{D}^\sharp_{\mathsf{cp}} & \longrightarrow & \mathbb{D} \ & X^{\sharp} & \longmapsto & \{y \in \mathcal{E} \mid orall z^\sharp \in \mathbb{D}^\sharp_0, \, y \in \gamma_0(z^\sharp) \Longrightarrow y \in \gamma_1(X^\sharp(z^\sharp))\} \end{array}$$

We sometimes denote it by $\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_1^{\sharp}$, $\gamma_{\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_1^{\sharp}}$ to make it more explicit.

Use of cardinal power abstractions

Intuition: cardinal power expresses properties of the form



Two independent choices:

- **1** \mathbb{D}_0^{\sharp} : set of partitions (the "labels"), represents p_0, \ldots, p_n
- **2** \mathbb{D}_1^{\sharp} : **abstraction of sets of states**, *e.g.*, a numerical abstraction, represents p'_0, \ldots, p'_n

Application $(x \ge 0 \land s = 1 \land y \ge 0) \lor (x < 0 \land s = -1 \land y > 0)$

- \mathbb{D}_0^{\sharp} : sign of s
- \mathbb{D}_1^{\sharp} : other constraints
- we get: $s > 0 \Longrightarrow (x \ge 0 \land s = 1 \land y \ge 0) \land s \le 0 \Longrightarrow (\dots)$

Another example, with a single variable

Assumptions:

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $(\sqsubseteq) = (\subseteq)$
- (D[#]₀, ⊑[#]₀) be the lattice of signs (strict inequalities only)
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

Example abstract values:

• [0, 8] is expressed by:
$$\begin{cases} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & \bot_1 \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 8] \\ \top & \longmapsto & [0, 8] \end{cases}$$

• $[-10, -3]$ $\textcircled{ }$ [7, 10] is expressed by:
$$\begin{cases} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [-10, -3] \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & [7, 10] \\ \top & \longmapsto & [-10, 10] \end{cases}$$

Cardinal power: why monotone functions ?

We have seen the reduced cardinal power intuitively denotes a conjunction of implications, thus, assuming that \mathbb{D}_0^{\sharp} has two comparable elements p_0 , p_1 and:

$$\left\{ egin{array}{ccc} p_0 \implies p_0' \ \wedge p_1 \implies p_1' \end{array}
ight.$$

Then:

- p_0, p_1 are comparable, so let us fix $p_0 \sqsubseteq_0^{\sharp} p_1$
- logically, this means $p_0 \Longrightarrow p_1$
- thus the abstract element represents states where $p_0 \Longrightarrow p_1 \Longrightarrow p_1'$
- as a conclusion, if p'_0 is not as strong as p'_1 , it is possible to reinforce it!
- new abstract state:

$$p_0 \implies p_0' \wedge p_1'$$

 $\wedge p_1 \implies p_1'$

This is a reduction operation.

Non monotone functions can be reduced into monotone functions

Example reduction (1): relation between the two domains

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

We let:

$$X^{\sharp} = \begin{cases} \bot & \longmapsto & \bot_{1} \\ [-] & \longmapsto & [1,8] \\ [0] & \longmapsto & [1,8] \\ [+] & \longmapsto & \bot_{1} \\ \top & \longmapsto & [1,8] \end{cases} \qquad Y^{\sharp} = \begin{cases} \bot & \longmapsto & \bot_{1} \\ [-] & \longmapsto & [2,45] \\ [0] & \longmapsto & [-5,-2] \\ [+] & \longmapsto & [-5,-2] \\ T & \longmapsto & T_{1} \end{cases} \qquad Z^{\sharp} = \begin{cases} \bot & \longmapsto & \bot_{1} \\ [-] & \longmapsto & \bot_{1} \\ [0] & \longmapsto & \bot_{1} \\ [+] & \longmapsto & \bot_{1} \\ T & \longmapsto & \bot_{1} \end{cases}$$

Then,

$$\gamma_{\mathsf{cp}}(X^{\sharp}) = \gamma_{\mathsf{cp}}(Y^{\sharp}) = \gamma_{\mathsf{cp}}(Z^{\sharp}) = \emptyset$$

Note: monotone functions may also benefit from reduction

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Example reduction (2): tightening relations

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

We let:
$$X^{\sharp} = \begin{cases} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [-5, -1] \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 5] \\ \top & \longmapsto & [-10, 10] \end{cases}$$

$$Y^{\sharp} = \begin{cases} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [-5, -1] \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 5] \\ \top & \longmapsto & [-5, 5] \end{cases}$$

- Then, $\gamma_{\sf cp}(X^{\sharp}) = \gamma_{\sf cp}(Y^{\sharp})$
- $\gamma_0([-]) \cup \gamma_0([0]) \cup \gamma([+]) = \gamma(\top)$ but

 $\gamma_0(X^{\sharp}([-])) \cup \gamma_0(X^{\sharp}([0])) \cup \gamma(X^{\sharp}([+])) \subset \gamma(X^{\sharp}(\top))$

In fact, we can improve the image of \top into [-5, 5]

Reduction, and improving precision in the cardinal power

In general, the cardinal power construction requires reduction

Hence, reduced cardinal power = cardinal power + reduction

Strengthening using both sides of \Rightarrow

Tightening of $y_0^{\sharp} \mapsto y_1^{\sharp}$ when: • $\exists z_1^{\sharp} \neq y_1^{\sharp}, \ \gamma_1(y_1^{\sharp}) \cap \gamma_0(y_0^{\sharp}) \subseteq \gamma(z_1^{\sharp})$

• in the example, $z_1^\sharp = \bot_1 ...$

Strengthening of one relation using other relations

Tightening of relation $(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\}) \mapsto x_1^{\sharp}$ when:

•
$$\bigcup \{\gamma_0(z^{\sharp}) \mid z^{\sharp} \in \mathcal{E}\} = \gamma_0(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\})$$

• $\exists y^{\sharp}, \bigcup \{\gamma_1(X^{\sharp}(z^{\sharp})) \mid z^{\sharp} \in \mathcal{E}\} \subseteq \gamma_1(y^{\sharp}) \subset \gamma_1(X^{\sharp}(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\}))$

 \bullet in the example, we use a set of elements that cover $\top...$

Representation of the cardinal power

Basic ML representation:

- using functions, *i.e.* type cp = d0 -> d1
 - \Rightarrow usually a bad choice, as it makes it hard to operate in the \mathbb{D}_0^\sharp side
- using some kind of dictionnaries type cp = (d0,d1) map
 - \Rightarrow better, but not straightforward...

Even the latter is not a very efficient representation:

- if \mathbb{D}_0^{\sharp} has N elements, then an abstract value in \mathbb{D}_{cp}^{\sharp} requires N elements of \mathbb{D}_1^{\sharp}
- if \mathbb{D}_0^\sharp is infinite, and \mathbb{D}_1^\sharp is non trivial, then \mathbb{D}_{cp}^\sharp has elements that cannot be represented
- the 2nd reduction shows it is unnecessary to represent bindings for all elements of D[#]₀
 example: this is the case of ⊥₀

More compact representation of the cardinal power

Principle:

- use a dictionnary data-type (most likely functional arrays)
- avoid representing information attached to redundant elements

A compact representation should be just sufficient to "represent" all elements of \mathbb{D}^\sharp_0 :

Compact representation

Reduced cardinal power of \mathbb{D}_0^\sharp and \mathbb{D}_1^\sharp can be represented by considering only a subset $\mathcal{C}\subseteq\mathbb{D}_0^\sharp$ where

$$\forall x^{\sharp} \in \mathbb{D}_{0}^{\sharp}, \; \exists \mathcal{E} \subseteq \mathcal{C}, \; \gamma_{0}(x^{\sharp}) = \cup \{\gamma_{0}(y^{\sharp}) \mid y^{\sharp} \in \mathcal{E}\}$$

In particular:

- $\bullet\,$ if possible, ${\cal C}$ should be minimal
- \bullet in any case, $\bot_0 \not\in \mathcal{C}$
- $\bullet\,$ also, when \top_0 can be generated by a union of a set of elements, it can be removed

Example: compact cardinal power over signs

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

Observations

 $\bullet \ \bot$ does not need be considered (obvious right hand side: $\bot_1)$

• $\gamma_0([< 0]) \cup \gamma_0([= 0]) \cup \gamma([> 0]) = \gamma(\top)$ thus \top does not need be considered Thus, we let $\mathcal{C} = \{[-], [0], [+]\}$

• [0,8] is expressed by:
$$\begin{cases} \begin{bmatrix} -1 & \longmapsto & \bot_1 \\ [0] & \longmapsto & [0,0] \\ [+] & \longmapsto & [1,8] \end{cases}$$

• $\begin{bmatrix} -10, -3 \end{bmatrix}$ \forall [7,10] is expressed by:
$$\begin{cases} \begin{bmatrix} -1 & \longmapsto & [-10, -3] \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & [7,10] \end{cases}$$

Lattice operations

Infimum:

• if \bot_1 is the infimum of \mathbb{D}_1^{\sharp} , $\bot_{cp} = \lambda(z^{\sharp} \in \mathbb{D}_0^{\sharp}) \cdot \bot_1$ is the infimum of \mathbb{D}_{cp}^{\sharp}

Ordering test (sound, not necessarily optimal):

• we define $\sqsubseteq_{cp}^{\sharp}$ as the **pointwise ordering**:

$$X_0^{\sharp} \sqsubseteq_{\mathsf{cp}}^{\sharp} X_1^{\sharp} \quad \stackrel{def}{::=} \quad \forall z^{\sharp} \in \mathbb{D}_0^{\sharp}, \, X_0^{\sharp}(z^{\sharp}) \sqsubseteq_1^{\sharp} X_1^{\sharp}(z^{\sharp})$$

• then,
$$X_0^{\sharp} \sqsubseteq_{\mathsf{cp}}^{\sharp} X_1^{\sharp} \Longrightarrow \gamma_{\mathsf{cp}}(X_0^{\sharp}) \subseteq \gamma_{\mathsf{cp}}(X_1^{\sharp})$$

Join operation:

- we assume that \sqcup_1 is a sound upper bound operator in \mathbb{D}_1^{\sharp}
- then, \sqcup_{cp} defined below is a sound upper bound operator in \mathbb{D}_{cp}^{\sharp} :

$$X_0^{\sharp} \sqcup_{\mathsf{cp}} X_1^{\sharp} \quad \stackrel{def}{::=} \quad \lambda(z^{\sharp} \in \mathbb{D}_0^{\sharp}) \cdot (X_0^{\sharp}(z^{\sharp}) \sqcup_1 X_1^{\sharp}(z^{\sharp}))$$

 \bullet the same construction applies to widening, if \mathbb{D}_0^\sharp is finite

Abstract post-conditions

The general definition is quite involved so we first assume $\mathbb{D}_1^{\sharp} = \mathbb{D}$ and consider $f : \mathbb{D} \to \mathcal{P}(\mathbb{D})$.

Definitions:

- for $x^{\sharp}, y^{\sharp} \in \mathbb{D}_{0}^{\sharp}$, we let $f_{x^{\sharp}, y^{\sharp}} : (\mathbb{D}_{0}^{\sharp} \to \mathbb{D}_{1}^{\sharp}) \to \mathbb{D}_{1}^{\sharp}$ be defined by $f_{x^{\sharp}, y^{\sharp}}(X^{\sharp})(z^{\sharp}) = \gamma_{0}(y^{\sharp}) \cap f(X^{\sharp}(x^{\sharp}) \cap \gamma_{0}(x^{\sharp}))$
- for $x^{\sharp} \in \mathbb{D}_0^{\sharp}$, we note $P(x^{\sharp})$ the set of "predecessor coverings" of x^{\sharp} :

$$\left\{ V \subseteq \mathbb{D}^{\sharp}_0 \mid orall c \in \mathbb{D}, orall c' \in f(c) \cap \gamma_0(x^{\sharp}), \exists y^{\sharp} \in V, c \in \gamma(y^{\sharp})
ight\}$$

Then the definition below provides a sound over-approximation of f:

$$f^{\sharp}: X^{\sharp} \longmapsto \lambda(x^{\sharp} \in \mathbb{D}_{0}^{\sharp}) \cdot \bigcap_{V \in P(x^{\sharp})} \left(\bigcup_{y^{\sharp} \in V} f_{x^{\sharp}, y^{\sharp}}(X^{\sharp}(x^{\sharp})) \right)$$

- this definition is **not practical**: using a direct abstraction will result in a prohibitive runtime cost!
- in the following, we set **specific instances**.

Composition with another abstraction

We assume three abstractions

- $(\mathbb{D}_0^\sharp, \sqsubseteq_0^\sharp)$, with concretization $\gamma_0 : \mathbb{D}_0^\sharp \longrightarrow \mathbb{D}$
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$, with concretization $\gamma_1 : \mathbb{D}_1^{\sharp} \longrightarrow \mathbb{D}$
- $(\mathbb{D}_2^{\sharp}, \sqsubseteq_2^{\sharp})$, with concretization $\gamma_2 : \mathbb{D}_2^{\sharp} \longrightarrow \mathbb{D}_1^{\sharp}$

Cardinal power abstract domains $\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_1^{\sharp}$ and $\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_2^{\sharp}$ can be bound by an **abstraction relation** defined by concretization function γ :

$$\begin{array}{cccc} \gamma : & (\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_2^{\sharp}) & \longrightarrow & (\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_1^{\sharp}) \\ & X^{\sharp} & \longmapsto & \lambda(z^{\sharp} \in \mathbb{D}_0^{\sharp}) \cdot \gamma_2(X^{\sharp}(z^{\sharp})) \end{array}$$

Applications:

- start with $\mathbb{D}_1^\sharp, \gamma_1$ defined as the identity abstraction
- compose an abstraction for right hand side of relations
- compose several cardinal power abstractions (or partitioning abstractions)

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Composition with another abstraction

- concrete lattice $\mathbb{D}=\mathcal{P}(\mathbb{Z}),$ with $\sqsubseteq=\subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the identity abstraction $\mathbb{D}_1^{\sharp} = \mathcal{P}(\mathbb{Z}), \ \gamma_1 = \mathsf{Id}$
- $(\mathbb{D}_2^{\sharp}, \sqsubseteq_2^{\sharp})$ be the lattice of intervals

Then, [-10, -3] $\ \ [7, 10]$ is abstracted in two steps:

• IN
$$\mathbb{D}_0^* \rightrightarrows \mathbb{D}_1^*$$
, $\begin{cases} [0] \longmapsto \emptyset \\ [+] \longmapsto \{7, 8, 9, 10\} \end{cases}$

(note that, at this stage, the right hand sides are simply sets of values)

• in
$$\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_2^{\sharp}$$
, $\begin{cases} [-] & \mapsto & [-10, -3] \\ [0] & \mapsto & \bot_1 \\ [+] & \mapsto & [7, 10] \end{cases}$

Outline

Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion

4 Cardinal power and partitioning abstractions

5 State partitioning

- Definition and examples
- Abstract interpretation with boolean partitioning

6 Trace partitioning

7 Conclusion

Definition

We consider **concrete domain** $\mathbb{D} = \mathcal{P}(\mathbb{S})$ where

- $\bullet~\mathbb{S}=\mathbb{L}\times\mathbb{M}$ where \mathbb{L} denotes the set of control states
- $\mathbb{M} = \mathbb{X} \longrightarrow \mathbb{V}$

State partitioning

A state partitioning abstraction is defined as the cardinal power of two abstractions $(\mathbb{D}_0^{\sharp}, \subseteq_0^{\sharp}, \gamma_0)$ and $(\mathbb{D}_1^{\sharp}, \subseteq_1^{\sharp}, \gamma_1)$ of the domain of sets of states $(\mathcal{P}(\mathbb{S}), \subseteq)$:

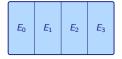
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp}, \gamma_0)$ defines the **partitions**
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}, \gamma_1)$ defines the abstraction of each element of partitions

Typical instances:

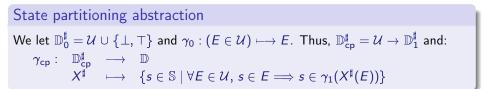
- either $\mathbb{D}_1^{\sharp} = \mathcal{P}(\mathbb{S}) = \mathbb{D}$
- or an abstraction of sets of memory states: numerical abstraction can be obtained by composing another abstraction on top of (P(S), ⊆)

Use of a partition: intuition

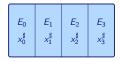
We fix a partition \mathcal{U} of $\mathcal{P}(\mathbb{S})$: • $\forall E, E' \in \mathcal{U}, E \neq E' \Longrightarrow E \cap E' = \emptyset$ • $\mathbb{S} = \bigcup \mathcal{U}$



We can apply the cardinal power construction:



- each *E* ∈ *U* is attached to a piece of information in D[#]₁
- exercise: what happens if we use only a covering, *i.e.*, if we drop property 1 ?
- we will often focus on $\mathcal U$ and drop \bot, \top



Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is **what we have been often doing already**, without formalizing it for instance, using the **the interval abstract domain**:

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction

We apply the cardinal power based partitioning abstraction with:

- $\mathcal{U} = \mathbb{L}$
- $\gamma_0: \ell \mapsto \{\ell\} \times \mathbb{M}$

It is induced by partition $\{\{\ell\} \times \mathbb{M} \mid \ell \in \mathbb{L}\}$

Then, if X^{\sharp} is an element of the reduced cardinal power,

$$\begin{array}{lll} \gamma_{\mathsf{cp}}(X^{\sharp}) & = & \{s \in \mathbb{S} \mid \forall x \in \mathbb{D}_{0}^{\sharp}, \ s \in \gamma_{0}(x) \Longrightarrow s \in \gamma_{1}(X^{\sharp}(x))\} \\ & = & \{(l,m) \in \mathbb{S} \mid m \in \gamma_{1}(X^{\sharp}(l))\} \end{array}$$

- after this abstraction step, \mathbb{D}_1^\sharp only needs to represent sets of memory states (numeric abstractions...)
- this abstraction step is *very common* as part of the design of abstract interpreters

Application 1: flow insensitive abstraction

Flow sensitive abstraction is sometimes too costly:

- *e.g.*, **ultra fast pointer analyses** (a few seconds for 1 MLOC) for compilation and program transformation
- context insensitive abstraction simply collapses all control states

Flow insensitive abstraction

We apply the cardinal power based partitioning abstraction with:

- $\mathbb{D}_0^{\sharp} = \{\cdot\}$
- $\gamma_0:\cdot\mapsto\mathbb{S}$
- $\mathbb{D}_1^{\sharp} = \mathcal{P}(\mathbb{M})$
- $\gamma_1: M \mapsto \{(\ell, m) \mid \ell \in \mathbb{L}, m \in M\}$

It is induced by a trivial partition of $\mathcal{P}(\mathbb{S})$

Application 1: flow insensitive abstraction

We compare with flow sensitive abstraction:

- the best global information is $x : \top \land y : \top$ (very imprecise)
- even if we exclude the entry point before the assumption point, we get $x : [0, +\infty[\land y : \top \text{ (still very imprecise)})$

For a few specific applications flow insensitive is ok In **most cases** (*e.g.*, numeric properties), flow sensitive is absolutely needed

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Application 2: context sensitive abstraction

We consider programs with procedures

Example: void main(){... l_0 : f();... l_1 : f();... l_2 : g()...} void f(){...} void g(){if(...} l_3 : g()}else{ l_4 : f()}}

- assumption: flow sensitive abstraction used inside each function
- we need to also describe the call stack state

Call stack (or, "call string")

Thus, $\mathbb{S} = \mathbb{K} \times \mathbb{L} \times \mathbb{M}$, where \mathbb{K} is the set of **call stacks** (or, "call strings")

κ	\in	\mathbb{K}	call stacks
κ	::=	ϵ	empty call stack
		$(f, l) \cdot \kappa$	call to f from stack κ at point ℓ

Application 2: context sensitive abstraction, ∞ -CFA

Fully context sensitive abstraction (∞ -CFA)

•
$$\mathbb{D}_0^{\sharp} = \mathbb{K} \times \mathbb{L}$$

•
$$\gamma_0:(\kappa,\ell)\mapsto\{(\kappa,\ell,m)\mid m\in\mathbb{M}\}$$

$$\begin{array}{l} \text{void main}()\{\dots \, \ell_0: \texttt{f}(); \dots \, \ell_1: \texttt{f}(); \dots \, \ell_2: \texttt{g}() \dots \} \\ \text{void } \texttt{f}()\{\dots\} \\ \text{void } \texttt{g}()\{\texttt{if}(\dots)\{\ell_3: \texttt{g}()\}\texttt{else}\{\ell_4: \texttt{f}()\}\} \end{array}$$

Abstract contexts in function f:

- one invariant per calling context, very precise
- infinite in presence of recursion (i.e., not practical in this case)

Application 2: context insensitive abstraction, 0-CFA

Context insensitive abstraction (0-CFA)

•
$$\mathbb{D}_0^{\sharp} = \mathbb{L}$$

• $\gamma_0: \ell \mapsto \{(\kappa, \ell, m) \mid \kappa \in \mathbb{K}, m \in \mathbb{M}\}$

$$\begin{array}{l} \text{void main}() \{ \dots \ \ell_0 : \texttt{f}(); \dots \ \ell_1 : \texttt{f}(); \dots \ \ell_2 : \texttt{g}() \dots \} \\ \text{void } \texttt{f}() \{ \dots \} \\ \text{void } \texttt{g}() \{ \texttt{if}(\dots) \{ \ell_3 : \texttt{g}() \} \texttt{else} \{ \ell_4 : \texttt{f}() \} \} \end{array}$$

Abstract contexts in function f are of the form $(?, f) \cdot \ldots$,

- 0-CFA merges all calling contexts to a same procedure, very coarse abstraction
- but is usually quite efficient to compute

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

•
$$\mathbb{D}_0^{\sharp} = \{\kappa \in \mathbb{K} \mid \mathsf{length}(\kappa) \leq k\} imes \mathbb{L}$$

• $\gamma_0: (\kappa, \ell) \mapsto \{(\kappa \cdot \kappa', \ell, m) \mid \kappa' \in \mathbb{K}, m \in \mathbb{M}\}$

$$\begin{array}{l} \text{void main}()\{\dots \, \ell_0: \texttt{f}(); \dots \, \ell_1: \texttt{f}(); \dots \, \ell_2: \texttt{g}() \dots \} \\ \text{void } \texttt{f}()\{\dots\} \\ \text{void } \texttt{g}()\{\texttt{if}(\dots)\{\ell_3: \texttt{g}()\}\texttt{else}\{\ell_4: \texttt{f}()\}\} \end{array}$$

Abstract contexts in function f, in 2-CFA:

 $(\mathit{l}_0, \mathtt{f}) \cdot \epsilon, \; (\mathit{l}_1, \mathtt{f}) \cdot \epsilon, \; (\mathit{l}_4, \mathtt{f}) \cdot (\mathit{l}_3, \mathtt{g}) \cdot (?, \mathtt{g}) \cdot \ldots, (\mathit{l}_4, \mathtt{f}) \cdot (\mathit{l}_2, \mathtt{g}) \cdot (?, \mathtt{main})$

- usually intermediate level of precision and efficiency
- can be applied to programs with recursive procedures

Application 3: partitioning by a boolean condition

- so far, we only used abstractions of the control states to partition
- we now consider abstractions of memory states properties

Function guided memory states partitioning

We let:

- $\mathbb{D}_0^{\sharp} = A$ where A finite set is a finite set of values / properties
- $\phi: \mathbb{M} \to A$ maps each store to its property
- γ_0 is of the form $(a \in A) \mapsto \{(\ell, m) \in \mathbb{S} \mid \phi(m) = a\}$

Common choice for A: the set of boolean values \mathbb{B} (or another finite set of values —convenient for enum types!)

Many choices for function ϕ are possible:

- value of one or several variables (boolean or scalar)
- sign of a variable

• ...

Application 3: partitioning by a boolean condition

We assume:

- X = X_{bool} ⊎ X_{int}, where X_{bool} (*resp.*, X_{int}) collects boolean (*resp.*, integer) variables
- $\mathbb{X}_{bool} = \{b_0, \dots, b_{k-1}\}$
- $\mathbb{X}_{int} = \{\mathbf{x}_0, \dots, \mathbf{x}_{I-1}\}$

Thus, $\mathbb{M} = \mathbb{X} \to \mathbb{V} \equiv (\mathbb{X}_{bool} \to \mathbb{V}_{bool}) \times (\mathbb{X}_{int} \to \mathbb{V}_{int}) \equiv \mathbb{V}_{bool}^k \times \mathbb{V}_{int}^{\prime}$

Boolean partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a function, with:

• $A = \mathbb{B}^k$

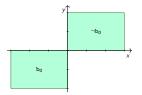
•
$$\phi(m) = (m(b_0), ..., m(b_{k-1}))$$

• we let $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}, \gamma_1)$ be any numerical abstract domain for $\mathcal{P}(\mathbb{V}_{int}^{\prime})$

Application 3: example

With $\mathbb{X}_{\texttt{bool}} = \{\texttt{b}_0,\texttt{b}_1\}, \mathbb{X}_{\texttt{int}} = \{\texttt{x},\texttt{y}\},$ we can express:

 $\left\{ \begin{array}{ccc} b_0 \wedge b_1 & \Longrightarrow & x \in [-3,0] \wedge y \in [-2,0] \\ b_0 \wedge \neg b_1 & \Longrightarrow & x \in [-3,0] \wedge y \in [-2,0] \\ \neg b_0 \wedge b_1 & \Longrightarrow & x \in [0,3] \wedge y \in [0,2] \\ \neg b_0 \wedge \neg b_1 & \Longrightarrow & x \in [0,3] \wedge y \in [0,2] \end{array} \right.$



- this abstract value expresses a relation between b₀ and x, y (which induces a relation between x and y)
- alternative: partition with respect to only some variables *e.g.*, here b₀ only since b₁ is irrelevant
- typical representation of abstract values: based on some kind of decision trees (variants of BDDs)

Application 3: example

- Left side abstraction shown in blue: boolean partitioning for b_0, b_1
- Right side abstraction shown in green: interval abstraction
- We omit the cases of the form $P \Longrightarrow \bot ...$

```
bool b<sub>0</sub>, b<sub>1</sub>;
int x, y; (uninitialized)
b_0 = x > 0;
                       (\mathbf{b}_0 \Longrightarrow \mathbf{x} > 0) \land (\neg \mathbf{b}_0 \Longrightarrow \mathbf{x} < 0)
b_1 = x < 0:
                       (\mathbf{b}_0 \wedge \mathbf{b}_1 \Longrightarrow \mathbf{x} = 0) \wedge (\mathbf{b}_0 \wedge \neg \mathbf{b}_1 \Longrightarrow \mathbf{x} > 0) \wedge (\neg \mathbf{b}_0 \wedge \mathbf{b}_1 \Longrightarrow \mathbf{x} < 0)
if(b_0 \&\& b_1){
                       (\mathbf{b}_0 \wedge \mathbf{b}_1 \Longrightarrow \mathbf{x} = 0)
           v = 0:
                       (\mathbf{b}_0 \wedge \mathbf{b}_1 \Longrightarrow \mathbf{x} = 0 \wedge \mathbf{v} = 0)
}else{
                        (\mathbf{b}_0 \land \neg \mathbf{b}_1 \Longrightarrow \mathbf{x} > 0) \land (\neg \mathbf{b}_0 \land \mathbf{b}_1 \Longrightarrow \mathbf{x} < 0)
           v = 100/x;
                        (\mathbf{b}_0 \land \neg \mathbf{b}_1 \Longrightarrow \mathbf{x} > 0 \land \mathbf{y} > 0) \land (\neg \mathbf{b}_0 \land \mathbf{b}_1 \Longrightarrow \mathbf{x} < 0 \land \mathbf{y} < 0)
}
```

Application 3: partitioning by the sign of a variable

We now consider a **semantic property**: the **sign of a variable** We assume:

- $\mathbb{X} = \mathbb{X}_{int}$, *i.e.*, all variables have **integer** type
- $\mathbb{X}_{int} = \{\mathbf{x}_0, \dots, \mathbf{x}_{l-1}\}$

Thus, $\mathbb{M}=\mathbb{X}\rightarrow\mathbb{V}\equiv\mathbb{V}_{\mathrm{int}}'$

Sign partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a function, with:

•
$$A = \{[< 0], [= 0], [> 0]\}$$

• $\phi(m) = \begin{cases} [< 0] & \text{if } m(x_0) < 0 \\ [= 0] & \text{if } m(x_0) = 0 \\ [> 0] & \text{if } m(x_0) > 0 \end{cases}$
• $(\mathbb{D}^{\sharp}_{1}, \sqsubseteq^{\sharp}_{1}, \gamma_{1})$ an abstraction of $\mathcal{P}(\mathbb{V}_{\text{int}}^{l-1})$ (no need to abstract x_{0} twice)

Application 3: example

- Sign abstraction fixing partitions shown in blue
- States abstraction shown in green: interval abstraction
- We omit the cases of the form $P \Longrightarrow \bot ...$

```
int x \in \mathbb{Z};
      int s:
      int v:
      if(x > 0){
                     (x < 0 \Rightarrow \bot) \land (x = 0 \Rightarrow \top) \land (x > 0 \Rightarrow \top)
              s = 1
                     (x < 0 \Rightarrow \bot) \land (x = 0 \Rightarrow s = 1) \land (x > 0 \Rightarrow s = 1)
      } else {
                     (x < 0 \Rightarrow \top) \land (x = 0 \Rightarrow \bot) \land (x > 0 \Rightarrow \bot)
              s = -1
                     (x < 0 \Rightarrow s = -1) \land (x = 0 \Rightarrow \bot) \land (x > 0 \Rightarrow \bot)
      }
                     (x < 0 \Rightarrow s = -1) \land (x = 0 \Rightarrow s = 1) \land (x > 0 \Rightarrow s = 1)
(1) y = x/s;
                     (x < 0 \Rightarrow s = -1 \land y > 0) \land (x = 0 \Rightarrow s = 1 \land y = 0) \land (x > 0 \Rightarrow s = 1 \land y > 0)
      assert(y > 0);
(2)
```

Outline

Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion

4 Cardinal power and partitioning abstractions

5 State partitioning

- Definition and examples
- Abstract interpretation with boolean partitioning

6 Trace partitioning

7 Conclusion

Computation of abstract semantics and partitioning

We present abstract operations in the context of an analysis that **combines two forms of partitioning**:

- by control states (as previously), using a chaotic iteration strategy
- by the values of the boolean variables

Intuitively, the abstract values are of the form:

 $f^{\sharp}: (\mathbb{L} \times \mathbb{V}^k_{\mathrm{bool}}) \longrightarrow \mathbb{D}^{\sharp}_1$

Yet, this is not a very good representation:

• program transition from one control state to another are known before the analysis:

they correspond to the program transitions

• program transition from one boolean configuration to another are not known before the analysis: we need to know information about the values of the boolean variables, which the analysis is supposed to compute

A combination of two cardinal powers

Sequence of abstractions:

- concrete states: $\mathcal{P}(\mathbb{L} \times \mathbb{M}) \equiv \mathcal{P}(\mathbb{L} \times (\mathbb{V}_{bool}^k \times \mathbb{V}_{int}^l))$
- Partitioning of states by the control state:

$$\mathbb{L} \longrightarrow \mathcal{P}(\mathbb{M}) \equiv \mathbb{L} \longrightarrow \mathcal{P}((\mathbb{V}_{\mathrm{bool}}^k \times \mathbb{V}_{\mathrm{int}}^{\prime}))$$

Partitioning by the boolean configuration:

$$\mathbb{L} \longrightarrow (\mathbb{V}_{\text{bool}}^k \longrightarrow \mathcal{P}(\mathbb{V}_{\text{int}}^{\prime}))$$

Inumerical abstraction of numerical stores:

$$\mathbb{L} \longrightarrow (\mathbb{V}^k_{\mathrm{bool}} \longrightarrow \mathbb{D}^\sharp_1)$$

Computer representation:

type abs1 = ... (* abstract elements of \mathbb{D}_1^{\sharp} *) type abs_state = ... (*

boolean trees with elements of type abs1 at the leaves *)
type abs_cp = (labels, abs_state) Map.t

Abstract operations

Abstract post-conditions

- concrete $post : \mathcal{P}(\mathbb{S}) \to \mathcal{P}(\mathbb{S})$ (where \mathbb{S} is the set of states);
- the **abstract** $post^{\sharp} : \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ should be such that

 $post \circ \gamma \sqsubseteq \gamma \circ post^{\sharp}$

In the next part, we seek for **abstract post-conditions** for the following operations, in the cardinal power domain, assuming similar functions are defined in the underlying domain (numeric abstract domain, cf previous course):

- assignment to scalar, e.g., x = 1 x;
- assignment to boolean, e.g., $b_0 = x \le 7$
- scalar test, e.g., $if(x \ge 8) \dots$
- boolean test, e.g., $if(\neg b_1) \dots$

Other lattice operations (inclusion check, join, widening) are left as exercise

Transfer functions: assignment to scalar (1/2)

Computation of an abstract post-condition

 $\mathbf{x}_k = \mathbf{e};$

Example:

- statement x = 1 x;
- abstract pre-condition:

$$\left\{\begin{array}{ccc} \mathbf{b} & \Rightarrow & \mathbf{x} \ge \mathbf{0} \\ \wedge & \neg \mathbf{b} & \Rightarrow & \mathbf{x} \le \mathbf{0} \end{array}\right\}$$

Intuition:

- the values of the boolean variables do not change
- the values of the numeric values can be updated separately for each partition

Transfer functions: assignment to scalar (2/2)

Definition of the abstract post-condition

$$assign_{cp}(\mathbf{x}, \mathbf{e}, X^{\sharp}) = \lambda(z^{\sharp} \in \mathbb{V}_{bool}^{k}) \cdot assign_{1}(\mathbf{x}, \mathbf{e}, X^{\sharp}(z^{\sharp}))$$

This post-condition is sound:

Soundness

If $assign_1$ is sound, so is $assign_{cp}$, in the sense that:

 $\forall X^{\sharp} \in \mathbb{D}_{cp}^{\sharp}, \forall m \in \gamma_{cp}(X^{\sharp}), m[x \leftarrow [\![e]\!](m)] \in \gamma_{cp}(assign_{cp}(x, e, X^{\sharp}))$

• proof by case analysis over the value of the boolean variables

Example:

$$\textit{assign}_{cp}\left(x,1-x,\left\{\begin{array}{ccc} b \Rightarrow x \ge 0\\ \wedge \neg b \Rightarrow x \le 0\end{array}\right\}\right) = \left\{\begin{array}{ccc} b \Rightarrow x \le 1\\ \wedge \neg b \Rightarrow x \ge 1\end{array}\right\}$$

Transfer functions: scalar test (1/2)

Computation of an abstract post-condition

 $if(e)\{\ldots$

where e only refers to numeric variables (analysis of a condition test, of a loop test, of an assertion)

Example:

- statement: $if(x \ge 8) \{\ldots$
- abstract pre-condition:

$$\left\{\begin{array}{ccc} b & \Rightarrow & x \ge 0 \\ \wedge & \neg b & \Rightarrow & x \le 0 \end{array}\right\}$$

Intuition:

- the values of the variables do not change, no relations between boolean and numeric variables can be inferred
- new conditions on the numeric variables can be inferred, separately for each partition (possibly leading to empty abstract states)

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Transfer functions: scalar test (2/2)

Definition of the abstract post-condition

$$test_{cp}(c, X^{\sharp}) = \lambda(z^{\sharp} \in \mathbb{V}_{bool}^{k}) \cdot test_{1}(c, X^{\sharp}(z^{\sharp}))$$

This post-condition is sound:

Soundness

If $test_1$ is sound, so is $test_{cp}$, in the sense that:

 $\forall X^{\sharp} \in \mathbb{D}_{cp}^{\sharp}, \ \forall m \in \gamma_{cp}(X^{\sharp}), \ [c](m) = \text{TRUE} \Longrightarrow m \in \gamma_{cp}(\textit{test}_{cp}(x, e, X^{\sharp}))$

• proof by case analysis over the value of the boolean variables

Example:

$$\textit{test}_{cp}\left(x \ge 8, \left\{ \begin{array}{ccc} b & \Rightarrow & x \ge 0 \\ \land & \neg b & \Rightarrow & x \le 0 \end{array} \right\} \right) = \left\{ \begin{array}{ccc} b & \Rightarrow & x \ge 8 \\ \land & \neg b & \Rightarrow & \bot \end{array} \right\}$$

Transfer functions: boolean condition test (1/3)

Computation of an abstract post-condition

if(e){...

where e only refers to boolean variables (analysis of a condition test, of a loop test, of an assertion)

Example:

• statement:
$$if(\neg b_1) \dots$$

statement: if(
$$\neg b_1$$
)...
abstract pre-condition:

$$\begin{cases}
b_0 \land b_1 \Rightarrow 15 \le x \\
\land b_0 \land \neg b_1 \Rightarrow 9 \le x \le 14 \\
\land \neg b_0 \land b_1 \Rightarrow 6 \le x \le 8 \\
\land \neg b_0 \land \neg b_1 \Rightarrow x \le 5
\end{cases}$$

Intuition:

٠

- the values of the variables do not change, no new relations between boolean and numeric variables can be inferred
- certain boolean configurations get discarded or refined

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Transfer functions: boolean condition test (2/3)

Definition of the abstract post-condition

$$test_{cp}(c, X^{\sharp}) = \lambda(z^{\sharp} \in \mathbb{V}_{bool}^{k}) \cdot \begin{cases} X^{\sharp}(z^{\sharp}) & \text{if } test_{0}(c, X^{\sharp}(z^{\sharp})) \neq \bot_{0} \\ \bot_{1} & \text{otherwise} \end{cases}$$

This post-condition is sound:

Soundness

If $test_0$ is sound, so is $test_{cp}$, in the sense that:

 $\forall X^{\sharp} \in \mathbb{D}_{cp}^{\sharp}, \ \forall m \in \gamma_{cp}(X^{\sharp}), \ [c](m) = \text{TRUE} \Longrightarrow m \in \gamma_{cp}(\textit{test}_{cp}(\mathbf{x}, \mathbf{e}, X^{\sharp}))$

Proof:

- case analysis over the boolean configurations
- in each situation, two cases depending on whether or not the condition test evaluates to TRUE or to FALSE

Transfer functions: boolean condition test (3/3)

Example abstract post-condition:

$$test_{cp} \begin{pmatrix} b_0 \wedge b_1 \implies 15 \le x \\ \wedge & b_0 \wedge \neg b_1 \implies 9 \le x \le 14 \\ \wedge & \neg b_0 \wedge b_1 \implies 6 \le x \le 8 \\ \wedge & \neg b_0 \wedge \neg b_1 \implies x \le 5 \end{pmatrix} \\ = \begin{cases} b_0 \wedge b_1 \implies -1_1 \\ \wedge & b_0 \wedge \neg b_1 \implies 9 \le x \le 14 \\ \wedge & \neg b_0 \wedge b_1 \implies -1_1 \\ \wedge & \neg b_0 \wedge \neg b_1 \implies x \le 5 \end{cases}$$

Transfer functions: assignment to boolean (1/3)

Computation of an abstract post-condition

$$b_j = e;$$

where e only refers to numeric variables

Example:

• statement: $b_0 = x \le 7$ • abstract pre-condition: $\begin{cases} b_0 \land b_1 \implies 15 \le x \\ \land b_0 \land \neg b_1 \implies 9 \le x \le 14 \\ \land \neg b_0 \land b_1 \implies 6 \le x \le 8 \\ \land \neg b_0 \land \neg b_1 \implies x \le 5 \end{cases}$

Intuition:

- the value of the boolean variable in the left hand side changes, thus partitions need to be recomputed
- new relations between boolean variables and numeric variables emerge (old relations get discarded)

Transfer functions: assignment to boolean (2/3)

Definition of the abstract post-condition					
$\textit{assign}_{cp}(b, e, X^{\sharp})(z^{\sharp}[b \leftarrow TRUE])$	=	$\left\{ \begin{array}{c} & \\ & \sqcup_1 \end{array} \right.$	$test_1(e, X^{\sharp}(z^{\sharp}[b \leftarrow TRUE]))$ $test_1(e, X^{\sharp}(z^{\sharp}[b \leftarrow FALSE]))$		
$\operatorname{assign}_{cp}(\mathtt{b},\mathtt{e},X^{\sharp})(z^{\sharp}[\mathtt{b}\leftarrow \mathtt{FALSE}])$	=	$\left\{ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$test_1(\neg e, X^{\sharp}(z^{\sharp}[b \leftarrow TRUE])) \\ test_1(\neg e, X^{\sharp}(z^{\sharp}[b \leftarrow FALSE]))$		

Soundness

$$\forall X^{\sharp} \in \mathbb{D}_{cp}^{\sharp}, \ \forall m \in \gamma_{cp}(X^{\sharp}), \ m[b \leftarrow [\![e]\!](m)] \in \gamma_{cp}(\mathit{assign}_{cp}(b, e, X^{\sharp}))$$

Proof: if $z^{\sharp} \in \mathbb{D}_{0}^{\sharp}$ and $z^{\sharp}(b) = \text{TRUE}$, then, $\operatorname{assign}_{cp}(b, e[x_{0}, \dots, x_{i}], X^{\sharp})(z^{\sharp})$ should account for all states where b becomes true, whatever the previous value, other boolean variables remaining unchanged; the case where $z^{\sharp}(b) = \text{FALSE}$ is symmetric.

The partitions get modified (this is a costly step, involving join)

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Transfer functions: assignment to boolean (3/3)

Example abstract post-condition:

$$assign_{cp} \left(b_0, x \le 7, \begin{cases} b_0 \wedge b_1 \Rightarrow 15 \le x \\ \wedge b_0 \wedge \neg b_1 \Rightarrow 9 \le x \le 14 \\ \wedge \neg b_0 \wedge b_1 \Rightarrow 6 \le x \le 8 \\ \wedge \neg b_0 \wedge \neg b_1 \Rightarrow x \le 5 \end{cases} \right) \\ = \begin{cases} b_0 \wedge b_1 \Rightarrow 6 \le x \le 7 \\ \wedge b_0 \wedge \neg b_1 \Rightarrow x \le 5 \\ \wedge \neg b_0 \wedge b_1 \Rightarrow 8 \le x \\ \wedge \neg b_0 \wedge \neg b_1 \Rightarrow 9 \le x \le 14 \end{cases}$$

The partitions get modified (this is a costly step, involving join)

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean and scalar variables, but these relations are expensive to maintain:

- partitioning with respect to N boolean variables translates into a 2^N space cost factor
- 3 after assignments, partitions need be recomputed (use of join)

Packing addresses the first issue

- select groups of variables for which relations would be useful
- can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result (but possibly not the most precise one)

In the last part of this course, we present another form of partitioning that can sometimes alleviate these issues

Outline

Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- 5 State partitioning

6 Trace partitioning

- Principles and examples
- Abstract interpretation with trace partitioning

Conclusion

Definition of trace partitioning

Principle

We start from a trace semantics and rely on an abstraction of execution history for partitioning

- concrete domain: $\mathbb{D} = \mathcal{P}(\mathbb{S}^*)$
- left side abstraction $\gamma_0 : \mathbb{D}_0^{\sharp} \to \mathbb{D}$: a trace abstraction to be defined precisely later
- right side abstraction, as a composition of two abstractions:
 - ▶ the final state abstraction defined by $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}) = (\mathcal{P}(\mathbb{S}), \subseteq)$ and:

 $\gamma_1: M \longmapsto \{ \langle s_0, \ldots, s_k, (\ell, m) \rangle \mid m \in M, \ell \in \mathbb{L}, s_0, \ldots, s_k \in \mathbb{S} \}$

▶ a store abstraction applied to the traces final memory state $\gamma_2 : \mathbb{D}_2^{\sharp} \to \mathbb{D}_1^{\sharp}$

Trace partitioning

Cardinal power abstraction defined by abstractions γ_0 and $\gamma_1 \circ \gamma_2$

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Application 1: partitioning by control states

Flow sensitive abstraction

- We let $\mathbb{D}_0^{\sharp} = \mathbb{L} \cup \{\top\}$
- Concretization is defined by:

$$egin{array}{rll} \gamma_{0}:&\mathbb{D}_{0}^{\sharp}&\longrightarrow&\mathcal{P}(\mathbb{S}^{*})\ \ell&\longmapsto&\mathbb{S}^{*}\cdot(\{\ell\} imes\mathbb{M}) \end{array}$$

This produces the same flow sensitive abstraction as with state partitioning; in the following we always compose context sensitive abstraction with other abstractions...

Trace partitioning is more general than state partitioning

Any state partitioning abstraction is also a trace partitioning abstraction:

- context-sensitivity, partial context sensitivity
- partitioning guided by a **boolean condition**...

Application 2: partitioning guided by a condition

We consider a program with a **conditional statement**:

Domain of partitions

The partitions are defined by $\mathbb{D}_0^{\sharp} = \{\tau_{if:t}, \tau_{if:f}, \top\}$ and:

$$\begin{array}{rcl} \gamma_0: & \tau_{\mathrm{if:t}} & \longmapsto & \{\langle (\ell_0, m), (\ell_1, m'), \ldots \rangle \mid m \in \mathbb{M}, m' \in \mathbb{M}\} \\ & \tau_{\mathrm{if:f}} & \longmapsto & \{\langle (\ell_0, m), (\ell_3, m'), \ldots \rangle \mid m \in \mathbb{M}, m' \in \mathbb{M}\} \\ & \top & \longmapsto & \mathbb{S}^* \end{array}$$

Application:

discriminate the executions depending on the branch they visited

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Application 2: partitioning guided by a condition

This partitioning resolves the second example:

```
int x \in \mathbb{Z}:
int s:
int y;
if(x > 0)
                         \tau_{\rm if:t} \Rightarrow (0 \le x) \land \tau_{\rm if:f} \Rightarrow \bot
             s = 1:
                         \tau_{ift} \Rightarrow (0 \le x \land s = 1) \land \tau_{iff} \Rightarrow \bot
} else {
                         \tau_{iff} \Rightarrow (x < 0) \land \tau_{iff} \Rightarrow \bot
            s = -1^{.}
                         \tau_{\rm if:f} \Rightarrow (x < 0 \land s = -1) \land \tau_{\rm if:f} \Rightarrow \bot
}
                       \left\{egin{array}{ll} 	au_{	ext{if:t}}&\Rightarrow&(0\leq 	ext{x}\wedge	ext{s}=1)\ \wedge&	au_{	ext{if:f}}&\Rightarrow&(	ext{x}<0\wedge	ext{s}=-1) \end{array}
ight.
y = x/s;
                        \begin{cases} \tau_{\text{if:t}} \Rightarrow (0 \le x \land s = 1 \land 0 \le y) \\ \land \tau_{\text{rec}} \Rightarrow (x < 0 \land s = -1 \land 0 < y) \end{cases}
```

Application 3: partitioning guided by a loop

We consider a program with a **loop statement**:

```
l_0: while(c){
l_1: ...
l_2: }
l_3: ...
```

Domain of partitions

```
For a given k \in \mathbb{N}, the partitions are defined by

\mathbb{D}_0^{\sharp} = \{\tau_{\text{loop:0}}, \tau_{\text{loop:1}}, \dots, \tau_{\text{loop:k}}, \top\} and:

\gamma_0: \quad \tau_{\text{loop:i}} \quad \mapsto \quad \text{traces that visit } \ell_1 \text{ i times}

\top \quad \mapsto \quad \mathbb{S}^*
```

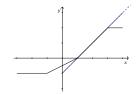
Application:

discriminate executions depending on the number of iterations in a loop

Application 3: partitioning guided by a loop

An interpolation function:

$$y = \left\{ \begin{array}{ll} -1 & \text{if } x \leq -1 \\ -\frac{1}{2} + \frac{x}{2} & \text{if } x \in [-1,1] \\ -1 + x & \text{if } x \in [1,3] \\ 2 & \text{if } 3 < x \end{array} \right.$$



Typical implementation:

- ${\ensuremath{\,\circ}}$ use tables of coefficients and loops to search for the range of x
- here we assume the entrance is positive:

$$\begin{array}{l} \text{int } i=0; \\ \text{while}(i < 4 \text{ & x } > t_x[i+1]) \{ \\ i+; \\ \} \\ & \left\{ \begin{array}{c} \tau_{loop:0} \Rightarrow \bot & (\text{case } x \leq -1) \\ \tau_{loop:1} \Rightarrow 0 \leq x \leq 1 \wedge i = 1 \\ \tau_{loop:2} \Rightarrow 1 \leq x \leq 3 \wedge i = 2 \\ \tau_{loop:3} \Rightarrow 3 \leq x \wedge i = 3 \end{array} \right. \\ y = t_c[i] \times (x - t_x[i]) + t_y[i] \end{array}$$

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point l:

int $x;\ldots;\ell:\ldots$

Domain of partitions: partitioning by the value of a variable For a given $\mathcal{E} \subseteq \mathbb{V}_{int}$ finite set of integer values, the partitions are defined by $\mathbb{D}_0^{\sharp} = \{\tau_{val:i} \mid i \in \mathcal{E}\} \uplus \{\top\}$ and:

$$\begin{array}{rcl} \gamma_0: & \tau_{\mathrm{val}:k} & \longmapsto & \{\langle \dots, (\ell, m), \dots \rangle \mid m(\mathbf{x}) = k\} \\ & \top & \longmapsto & \mathbb{S}^* \end{array}$$

Domain of partitions: partitioning by the property of a variable

For a given abstraction $\gamma : (V^{\sharp}, \sqsubseteq^{\sharp}) \to (\mathcal{P}(\mathbb{V}_{int}), \subseteq)$, the partitions are defined by $\mathbb{D}_{0}^{\sharp} = \{\tau_{\operatorname{var}:v^{\sharp}} \mid v^{\sharp} \in V^{\sharp}\}$ and:

 $\gamma_0: \quad \tau_{\operatorname{val}:\nu^{\sharp}} \quad \longmapsto \quad \{\langle \dots, (\ell, m), \dots \rangle \mid m(\mathbf{x}) \in \tau_{\operatorname{var}:\nu^{\sharp}}\}$

Application 4: partitioning guided by the value of a variable

- Left side abstraction shown in blue: sign of x at entry
- Right side abstraction shown in green: non relational abstraction (we omit the information about x)
- Same precision and similar results as boolean partitioning, but very different abstraction, fewer partitions, no re-partitioning

```
bool b<sub>0</sub>, b<sub>1</sub>;
              int x. v:
                                     (uninitialized)
1
                             (x < 0@1 \Rightarrow T) \land (x = 0@1 \Rightarrow T) \land (x > 0@1 \Rightarrow T)
              b_0 = x > 0;
                             (x < 0@1 \Rightarrow \neg b_0) \land (x = 0@1 \Rightarrow b_0) \land (x > 0@1 \Rightarrow b_0)
              b_1 = x < 0;
                             (x < 0@ \Rightarrow \neg b_0 \land b_1) \land (x = 0@ \Rightarrow b_0 \land b_1) \land (x > 0@ \Rightarrow b_0 \land \neg b_1)
              if(b<sub>0</sub> && b<sub>1</sub>){
                             (x < 0@1 \Rightarrow \bot) \land (x = 0@1 \Rightarrow b_0 \land b_1) \land (x > 0@1 \Rightarrow \bot)
                      v = 0:
                             (x < 0@1 \Rightarrow \bot) \land (x = 0@1 \Rightarrow b_0 \land b_1 \land y = 0) \land (x > 0@1 \Rightarrow \bot)
              } else {
                             (x < 0@1 \Rightarrow \neg b_0 \land b_1) \land (x = 0@1 \Rightarrow \bot) \land (x > 0@1 \Rightarrow b_0 \land \neg b_1)
                      v = 100/x;
                             (x < 0@1 \Rightarrow \neg b_0 \land b_1 \land y < 0) \land (x = 0@1 \Rightarrow \bot) \land (x > 0@1 \Rightarrow b_0 \land \neg b_1 \land y > 0)
               }
```

Outline

Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- 5 State partitioning

6 Trace partitioning

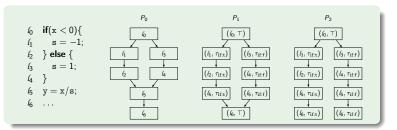
- Principles and examples
- Abstract interpretation with trace partitioning

Conclusion

Trace partitioning induced by a refined transition system

We consider the partitions for a condition, and formalize the analysis:

- P₀: the analysis does merge them *right after the condition*, at l₅ (this amounts to doing no partitioning at all)
- *P*₁: the analysis may merge them *at a further point l*₆ (more precise, but more expensive)
- P₂: the analysis may *never* merge traces from both branches (very precise, but very expensive)



Intuition: we can view this form of trace partitioning as the use of a refined control flow graph Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Dec. 6th. 2021 82/93

Trace partitioning induced by a refined transition system

We now formalize this intuition:

- we augment control states with partitioning tokens: $\mathbb{L}' = \mathbb{L} \times \mathbb{D}_0^{\sharp}$ and let $\mathbb{S}' = \mathbb{L}' \times \mathbb{M}$
- let $\rightarrow' \subseteq \mathbb{S}' \times \mathbb{S}'$ be an extended transition relation

Definition: partitioning transition system

We say that system $S' = (S', \to', S'_{\mathcal{I}})$ is a **partition** of the transition system $S = (S, \to, S_{\mathcal{I}})$ if and only if:

- (initial states) $\forall (\ell, m) \in \mathbb{S}_{\mathcal{I}}, \ \exists \tau \in \mathbb{D}_{0}^{\sharp}, \ ((\ell, \tau), m) \in \mathbb{S}_{\mathcal{I}}'$
- (transitions) $\forall (\ell, m), (\ell', m') \in \mathbb{S}, \forall \tau \in \mathbb{D}_0^{\sharp}, \text{ if } ((\ell, \tau), m) \in \llbracket S \rrbracket_{\mathcal{R}} \text{ then,}$ $(\ell, m) \rightarrow (\ell', m') \Longrightarrow \exists \tau' \in \mathbb{D}_0^{\sharp}, ((\ell, \tau), m) \rightarrow ((\ell', \tau'), m')$

In that case, we write:

$$S' \prec S$$

Meaning: system \mathcal{S}' refines system \mathcal{S} with additional execution history information

Partitionned transition system and semantics

The partitioned transition system over-approximates the behaviors of the initial system:

Partitioned system and semantic approximation

Let us assume that $S' \prec S$. We let $[\![S]\!]_{\mathcal{T}^{*\omega}}$ (*resp.*, $[\![S']\!]_{\mathcal{T}^{*\omega}}$) denote the trace semantics of S (*resp.*, S'). Then:

$$\forall \langle (l_0, m_0), \dots, (l_n, m_n) \rangle \in \llbracket S \rrbracket_{\mathcal{T}^{*\omega}}, \\ \exists \tau_0, \dots, \tau_n \in \mathbb{D}_0^{\sharp}, \langle ((l_0, \tau_0), m_0), \dots, ((l_n, \tau_n), m_n) \rangle \in \llbracket S' \rrbracket_{\mathcal{T}^{*\omega}},$$

Proof: by induction over the length of executions (exercise).

Properties of $\mathcal{S}' \prec \mathcal{S}$

- all traces of S have a counterpart in S' (up to token addition)
- \bullet a trace in \mathcal{S}' embeds more information than a trace in \mathcal{S}
- moreover, if we reason up to isomorphisms (*e.g.*, either $l \equiv (l, \bullet)$ or $((l, \tau), \tau') \equiv (l, (\tau, \tau'))), \prec$ extends into a pre-order

Trace partitioning induced by a refined transition system

Assumptions:

- refined control system $(\mathbb{S}', \to', \mathbb{S}'_{\mathcal{I}}) \prec (\mathbb{S}, \to, \mathbb{S}_{\mathcal{I}})$
- \bullet erasure function: $\Psi: \left(\mathbb{S}'\right)^* \to \mathbb{S}^*$ removes the tokens

Definition of a trace partitioning

The abstraction defining partitions is defined by:

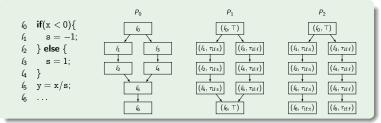
$$\begin{array}{rcl} \gamma_{0}: & \mathbb{D}_{0}^{\sharp} & \longrightarrow & \mathcal{P}(\mathbb{S}^{*}) \\ & \tau & \longmapsto & \{\sigma \in \mathbb{S}^{*} \mid \exists \sigma' = \langle \dots, ((\ell, \tau), m) \rangle \in (\mathbb{S}')^{*}, \ \Psi(\sigma') = \sigma \} \end{array}$$

Not all instances of trace partitionings can be expressed that way but **many interesting instances can**:

- control states and call stack partitioning
- partitioning guided by conditions and loops
- partitioning guided by the value of a variable

Trace partitioning induced by a refined transition system

Example of the partitioning guided by a condition:



• each system induces a partitioning, with different merging points:

$$P_1 \prec P_0 \qquad \qquad P_2 \prec P_1$$

• these systems induce hierarchy of refining control structures

 $P_2 \prec P_1 \prec P_0$ thus, $\llbracket P_0 \rrbracket_{\mathcal{T}^{*\omega}} \subseteq \llbracket P_1 \rrbracket_{\mathcal{T}^{*\omega}} \subseteq \llbracket P_2 \rrbracket_{\mathcal{T}^{*\omega}}$

- this approach also applies to:
 - partitioning induced by a loop
 - partitioning induced by the value of a variable at a given point...

Transfer functions: example

$$\begin{array}{ll} \mbox{int } x\in\mathbb{Z};\\ \mbox{int } s;\\ \mbox{int } y;\\ \mbox{if}(x\geq 0) \{ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ s=1;\\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ r_{if:t}\Rightarrow(0\leq x\wedge s=1)\wedge\tau_{if:f}\Rightarrow\perp & & & \\ \mbox{normalization of partitions} \\ \} \mbox{else} \{ & & & \\ & & & & \\ & & & & \\ r_{if:f}\Rightarrow(x<0)\wedge\tau_{if:t}\Rightarrow\perp & & & \\ & & & & \\ & & & & \\ s=-1;\\ & & & & & \\ & & & & \\ r_{if:f}\Rightarrow(x<0\wedge s=-1)\wedge\tau_{if:t}\Rightarrow\perp & & \\ \mbox{normalization of partitions} \\ \} \\ \\ \{ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ r_{if:f}\Rightarrow(x<0\wedge s=-1) \wedge \sigma(s) \\ \end{pmatrix} & & & & \\ \mbox{normalization of partitions} \\ y=x/s;\\ \\ \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Partitions are rarely modified, and only some (branching) points

Xavier Rival (INRIA, ENS, CNRS)

Partitioning abstractions

Dec, 6th. 2021 87/93

Transfer functions: partition creation

Analysis of an if statement, with partitioning

l ₀ :	if(c){	δ^{\sharp} (X ^{\sharp})	_	$[au_{ ext{if:t}}\mapsto \textit{test}(c,\sqcup X^{\sharp}(au)), au_{ ext{if:f}}\mapsto \bot]$
l_1 :				
l_2 :	}else{	$\delta^{\sharp}_{l_{0},l_{3}}(X^{\sharp})$	=	$[au_{ ext{if:t}}\mapsto ot, au_{ ext{if:f}}\mapsto \textit{test}(\neg c,\sqcup X^{\sharp}(au))]$
l3 :		$\delta^{\sharp}_{\ell_2,\ell_5}(X^{\sharp})$	=	X♯
l4 :	}	$\delta^{\sharp}_{(a,b)}(X^{\sharp})$	=	X [#]
<i>l</i> 5 :		4,15		

Observations:

.

- in the body of the condition: either $\tau_{if:t}$ or $\tau_{if:f}$ *i.e.*, no partition modification there
- effect at point $\mathit{l}_{5}:$ both $\tau_{if:t}$ and $\tau_{if:f}$ exist
- partitions are modified only at the condition point, that is only by $\delta^{\sharp}_{\ell_0,\ell_1}(X^{\sharp})$ and $\delta^{\sharp}_{\ell_0,\ell_2}(X^{\sharp})$

Transfer functions: partition fusion

When partitions are not useful anymore, they can be merged

$$\delta^{\sharp}_{\ell_{0},\ell_{1}}(X^{\sharp}) = [_ \mapsto \sqcup_{\tau} X^{\sharp}(\ell_{0})(\tau)]$$

Remarks:

- at this point, all partitions are effectively collapsed into just one set
- example: fusion of the partition of a condition when not useful
- choice of fusion point:
 - precision: merge point should not occur as long as partitions are useful
 - efficiency: merge point should occur as early as partitions are not needed anymore

Choice of partitions

How are the partitions chosen ?

Static partitioning [always the case in this lecture]

- a fixed partitioning abstraction \mathbb{D}_0^{\sharp} , γ_0 is fixed before the analysis
- usually $\mathbb{D}_0^{\sharp}, \gamma_0$ are chosen by a pre-analysis
- static partitioning is rather easy to formalize and implement
- but it might be limiting, when choosing partitions beforehand is hard

Dynamic partitioning

- the partitioning abstraction $\mathbb{D}_0^{\sharp}, \gamma_0$ is not fixed before the analysis
- instead, it is computed as part of the analysis
- *i.e.*, the analysis uses on a lattice of partitioning abstractions \mathcal{D}^{\sharp} and computes $(\mathbb{D}_{0}^{\sharp}, \gamma_{0})$ as an element of this lattice

Outline

1 Introduction

- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- 5 State partitioning
- Trace partitioning

7 Conclusion

Conclusion

Adding disjunctions in static analyses

Disjunctive completion: brutally adds disjunctions too expensive in practice

$$P_0 \vee \ldots \vee P_n$$

Cardinal power abstraction expresses collections of implications between abstract facts in **two abstract domains**

$$(P_0 \Longrightarrow Q_0) \land \ldots \land (P_n \Longrightarrow Q_n)$$

Two major cases:

- **State partitioning** is **easier** to use when the criteria for partitioning can be easily expressed at the state level
- Trace partitioning is more expressive in general it can also allow the use of simpler partitioning criteria, with less "re-partitioning"

Assignment: proofs and paper reading

Proof 1:

prove the disjunctive completion algorithm (Slide 15)

Proof 2 (hard):
 justify the general cardinal power post-condition (Slide 37)

Proof 3:

what happens in the case we use coverings instead of partitions (Slide 42)

Refining static analyses by trace-partitioning using control flow Maria Handjieva and Stanislas Tzolovski, Static Analysis Symposium, 1998, http://link.springer.com/chapter/10.1007/3-540-49727-7_12