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Programs and executions

Programs and executions

Course 2 Program Semantics and Properties Antoine Miné p. 2 / 99



Programs and executions

Language syntax

`stat` ::= `X ← exp` (assignment)
| `if exp ./ 0 then `stat` (conditional)
| `while `exp ./ 0 do `stat` done` (loop)
| `stat; `stat` (sequence)

exp ::= X (variable)
| −exp (negation)
| exp � exp (binary operation)
| c (constant c ∈ Z)
| [c, c ′] (random input, c, c′ ∈ Z ∪ {±∞})

Simple structured, numeric language
X ∈ V, where V is a finite set of program variables
` ∈ L, where L is a finite set of control points
numeric expressions: ./ ∈ {=,≤, . . .}, � ∈ {+,−,×, / }
random inputs: X ← [c, c ′]
model environment, parametric programs, unknown functions, . . .

Course 2 Program Semantics and Properties Antoine Miné p. 3 / 99



Programs and executions

Example

Example
aX ← [−∞,∞];
bwhile cX 6= 0 do dX ← X − 1 done e

Where:
control points L = {a, b, c, d , e}
variables V = {X}

We also define:
the entry control point: a
the exit control point: e
the memory states: E def= V→ Z

the program states: Σ def= L × E (control and memory state)
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Programs and executions

Transition systems

Program execution modeled as discrete transitions between states.
Σ: set of states
τ ⊆ Σ× Σ: a transition relation, written σ →τ σ

′, or σ → σ′

=⇒ a form of small-step semantics.

and also sometimes:
distinguished set of initial states I ⊆ Σ
distinguished set of final states F ⊆ Σ
labelled transition systems: τ ⊆ Σ×A× Σ, σ a→ σ′

where A is a set of labels, or actions
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Programs and executions

Transition system on our language

Application: on our programming language

Σ def= L × E : a control point and a memory state
where E def= V→ Z

initial states I def= {`} × E and
final states F def= {`′} × E for program `stat`

′

τ is defined by structural induction on `stat`
′

(next slides)

τ is non-deterministic
(several possible successors for X ← [a, b])
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Programs and executions

Transition semantics example

Example
aX ← [−∞,∞];
bwhile cX 6= 0 do dX ← X − 1 done e

 x≠0

x=0

x ← [-∞,+∞]

...

...

...

...

...

...

0 1 2 3-1-2-3 ...

x ← x-1

a

b

c

d

e
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Programs and executions

From programs to transition relations

Transitions: τ [`stat`′ ] ⊆ Σ× Σ

τ [`1X ← e`2] def= { (`1, ρ)→ (`2, ρ[X 7→ v ]) | ρ ∈ E , v ∈ EJ e K ρ }

τ [`1if e ./ 0 then `2s`3] def=
{ (`1, ρ)→ (`2, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪ τ [`2s`3]

τ [`1while `2e ./ 0 do `3s`4 done`5] def=
{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪ τ [`3s`4] ∪
{ (`4, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`5, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 }

τ [`1s1; `2s2
`3] def= τ [`1s1

`2] ∪ τ [`2s2
`3]

(Expression semantics EJ e K on next slide)
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Programs and executions

Expression semantics

EJ e K : (V→ Z)→ P(Z)

semantics of an expression in a memory state ρ ∈ E def= V→ Z
outputs a set of values in P(Z)

divisions by zero return no result (omit error states for simplicity)
random inputs lead to several values (non-determinism)

defined by structural induction

EJ [c, c ′] K ρ def= { x ∈ Z | c ≤ x ≤ c ′ }
EJ X K ρ def= { ρ(X ) }
EJ− e K ρ def= {−v | v ∈ EJ e K ρ }
EJ e1 + e2 K ρ def= { v1 + v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1− e2 K ρ def= { v1 − v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1× e2 K ρ def= { v1 × v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }
EJ e1 / e2 K ρ def= { v1/v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ, v2 6= 0 }
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Programs and executions

Another example: λ−calculus

syntax: λ−terms
t ::= x (variable)
| λx .t (abstraction)
| t u (application)

Small-step operational semantics: (call-by-value)

(λx .M)N  M[x/N]
M  M ′

M N  M ′ N
N  N ′

M N  M N ′

Models program execution as a sequence of term-rewriting  
exposing each transition (low level).

Σ def= {λ−terms}
τ

def=  
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Programs and executions

Program executions

Intuitive model of executions:
program traces
sequences of states encountered during execution
sequences are possibly unbounded
a program can have several traces
due to non-determinism

Trace semantics:

the domain is D def= P(Σ∗)

the semantics is:
Tp(I) def= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i :σi → σi+1 }

actually, execution prefixes observable in finite time
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Programs and executions

Trace semantics example

Example
aX ← [−∞,∞];
bwhile cX 6= 0 do dX ← X − 1 done e

 x≠0

x=0

x ← [-∞,+∞]

...

...

...

...

...

...

0 1 2 3-1-2-3... ...

x ← x-1

a

b

c

d

e
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Programs and executions

Semantics and abstract interpretation

Several other choices of semantic are possible:
reachable states
relations between input and output
going backward as well as forward
. . .

these are all uncomputable concrete semantics
(next course will consider computable approximations)

Goal: use abstract interpretation to
express all these semantics uniformly as fixpoints
(stay most of the time at the level of transition systems, not program syntax)

relate these semantics by abstraction relations
study which semantics to choose for which class of properties
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Finite prefix trace semantics

Finite prefix trace semantics
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Finite prefix trace semantics

Finite traces

Finite trace: finite sequence of elements from Σ

ε: empty trace (unique)

σ: trace of length 1 (assimilated to a state)

σ0, . . . , σn−1: trace of length n

Σn: the set of traces of length n
Σ≤n def= ∪i≤n Σi : the set of traces of length at most n
Σ∗ def= ∪i∈N Σi : the set of finite traces

Note: we assimilate
a set if states S ⊆ Σ with a set of traces of length 1
a relation R ⊆ Σ× Σ with a set of traces of length 2

so, I,F , τ ∈ P(Σ∗)
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Finite prefix trace semantics

Trace operations

Operations on traces:

length: |t| ∈ N of a trace t ∈ Σ∗

concatenation ·
(σ0, . . . , σn) · (σ′0, . . . , σ′m) def= σ0, . . . , σn, σ

′
0, . . . , σ

′
m

ε · t def= t · ε def= t

junction _

(σ0, . . . , σn)_(σ′0,σ′1 . . . , σ′m) def= σ0, . . . , σn,σ
′
1, . . . , σ

′
m

when σn = σ′0

undefined if σn 6= σ′0, and for ε
(join two consecutive traces, the common element σn = σ′0 is not repeated)
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Finite prefix trace semantics

Trace operations (cont.)

Extension to sets of traces:

A · B def= { a · b | a ∈ A, b ∈ B }
{ε} is the neutral element for ·

A_B def= { a_b | a ∈ A, b ∈ B, a_b defined }
Σ is the neutral element for _

A0 def= {ε} A_0 def= Σ
An+1 def= A · An A_n+1 def= A_A_n

A∗ def= ∪n<ωAn A_∗ def= ∪n<ωA_n

Note: An 6= { an | a ∈ A }, A_n 6= { a_n | a ∈ A } when |A| > 1

Note: · and _ distribute ∪ and ∩
(∪i∈I Ai )_(∪j∈J Bi ) = ∪i∈I,j∈J (Ai_Bj ), etc.
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Finite prefix trace semantics

Prefix trace semantics
Tp(I): finite partial execution traces starting in I.

Tp(I) def= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i :σi → σi+1 }
=
⋃

n≥0 I_(τ_n)

(traces of length n, for any n, starting in I and following τ)

Tp(I) can be expressed in fixpoint form:

Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ

(Fp appends a transition to each trace, and adds back I)

Alternate characterization: Tp(I) = lfpI Gp where Gp(T ) = T ∪ T_τ .
Gp extends T by τ and accumulates the result with T

(proofs on next slides)
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Finite prefix trace semantics

Prefix trace semantics: graphical illustration

cba

I def= {a}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ .

F 0
p (∅) = ∅

F 1
p (∅) = I = {a}

F 2
p (∅) = {a, ab}

F 3
p (∅) = {a, ab, abb, abc}

F n
p (∅) = { a, abi , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Tp(I) = ∪n≥0 F n

p (∅) = { a, abi , abic | i ≥ 1 }
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Finite prefix trace semantics

Prefix trace semantics: proof

proof of: Tp(I) = lfp Fp where Fp(T ) = I ∪ T_τ

Fp is continuous in a CPO (P(Σ∗),⊆):
Fp(∪i∈I Ti )

= I ∪ (∪i∈I Ti )_τ
= I ∪ (∪i∈I Ti_τ) = ∪i∈I (I ∪ Ti_τ)

hence (Kleene), lfp Fp = ∪n≥0 F i
p(∅)

We prove by recurrence on n that ∀n: F n
p (∅) = ∪i<n I_τ_ i :

F 0
p (∅) = ∅,

F n+1
p (∅)

= I ∪ F n
p (∅)_τ

= I ∪ (∪i<n I_τ_ i )_τ
= I ∪ ∪i<n (I_τ_ i )_τ
= I_τ_0 ∪ ∪i<n (I_τ_ i+1)
= ∪i<n+1 I_τ_ i

Thus, lfp Fp = ∪n∈N F n
p (∅) = ∪n∈N ∪i<n I_τ_ i = ∪i∈N I_τ_ i .

The proof is similar for the alternate form Tp(I) = lfpI Gp where Gp(T ) = T ∪ T_τ as
Gn

p (I) = F n+1
p (∅) = ∪i≤n I_τ_ i .
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Finite prefix trace semantics

Note: prefix closure

Prefix partial order: � on Σ∗

x � y def⇐⇒ ∃u ∈ Σ∗: x · u = y
Note: (Σ∗,�) is not a CPO

Prefix closure: ρp : P(Σ∗)→ P(Σ∗)

ρp(T ) def= { u | ∃t ∈ T : u � t, u 6= ε }

ρp is an upper closure operator on P(Σ∗ \ {ε}).
(monotonic, extensive T ⊆ ρp(T ), idempotent ρp ◦ ρp = ρp)

The prefix trace semantics is closed by prefix:
ρp(Tp(I)) = Tp(I).

(note that ε /∈ Tp(I), which is why we disallowed ε in ρp)
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General and restricted trace properties

General and restricted trace properties
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General and restricted trace properties

General properties

General setting:

given a program prog ∈ Prog

its semantics: J · K : Prog → P(Σ∗) is a set of finite traces

a property P is the set of correct program semantics
i.e., a set of sets of traces P ∈ P(P(Σ∗))
⊆ gives an information order on properties
P ⊆ P′ means that P′ is weaker than P (allows more semantics)
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General and restricted trace properties

General collecting semantics

The collecting semantics Col : Prog → P(P(Σ∗))
is the strongest property of a program

Hence: Col(prog) def= {J prog K }

Benefit:
given a program prog and a property P ∈ P(P(Σ∗)) the verification
problem is an inclusion checking:

Col(prog) ⊆ P

generally, the collecting semantics cannot be computed
we settle for a weaker property S] that

is sound: Col(prog) ⊆ S]
implies the desired property: S] ⊆ P
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General and restricted trace properties

Restricted properties

Reasoning on (and abstracting) P(P(Σ∗)) is hard!

In the following, we use a simpler setting:
a property is a set of traces P ∈ P(Σ∗)
the collecting semantics is a set of traces: Col(prog) def= J prog K
the verification problem remains an inclusion checking: J prog K ⊆ P
abstraction will over-approximate the set of traces J prog K

Example properties:

state property P def= S∗ (remain in the set S of safe states)

maximal execution time: P def= S≤k

ordering: P def= (Σ \ {b})∗ · a · Σ∗ · b · Σ∗ (a occurs before b)
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General and restricted trace properties

Proving restricted properties

Invariance proof method: find an inductive invariant I

set of finite traces I ⊆ Σ∗

I ⊆ I
(contains traces reduced to an initial state)

∀σ0, . . . , σn ∈ I:σn → σn+1 =⇒ σ0, . . . , σn, σn+1 ∈ I
(invariant by program transition)

and implies the desired property: I ⊆ P

Link with the finite prefix trace semantics Tp(I):

An inductive invariant is a post-fixpoint of Fp: Fp(I) ⊆ I
where Fp(T ) def= I ∪ T_τ .
Tp(I) = lfp Fp is the tightest inductive invariant.
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General and restricted trace properties

Limitations

Our semantics is closed by prefix
It cannot distinguish between:

non-terminating executions (infinite loops)
and unbounded executions

=⇒ we cannot prove termination and, more generally, liveness
(this will be solved using maximal trace semantics later in this course)

Some properties, such as non-interferences, cannot be expressed as
sets of traces, we need sets of sets of traces

P def= {T ∈ P(Σ∗) | ∀σ0, . . . , σn ∈ T :∀σ′0:σ0 ≡ σ′0 =⇒
∃σ′0, . . . , σ′m ∈ T :σ′m ≡ σm }

where (`, ρ) ≡ (`′, ρ′) ⇐⇒ ` = `′ ∧ ∀V 6= X : ρ(V ) = ρ′(V )
changing the initial value of X does not affect the set of final environments up to the
value of X
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Forward state reachability semantics

Forward state reachability semantics
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Forward state reachability semantics

State semantics and properties

Principle: reason on sets of states instead of sets of traces

simpler semantic Col : Prog → P(Σ)

state properties are also sets of states P ∈ P(Σ)
=⇒ sufficient for many purposes

easier to abstract

can be seen as an abstraction of traces
(forgets the ordering of states)
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Forward state reachability semantics

Forward reachability
Forward image: postτ : P(Σ)→ P(Σ)

postτ (S) def= {σ′ | ∃σ ∈ S:σ → σ′ }

postτ is a strict, complete ∪−morphism in (P(Σ),⊆,∪,∩, ∅,Σ).
postτ (∪i∈I Si ) = ∪i∈I postτ (Si ), postτ (∅) = ∅

Blocking states: B def= {σ | ∀σ′ ∈ Σ:σ 6→ σ′ }
(states with no successor: valid final states but also errors)

R(I): states reachable from I in the transition system

R(I) def= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, σ = σn, ∀i :σi → σi+1 }
=
⋃

n≥0 postn
τ (I)

(reachable ⇐⇒ reachable from I in n steps of τ for some n ≥ 0)

Course 2 Program Semantics and Properties Antoine Miné p. 30 / 99



Forward state reachability semantics

Fixpoint formulation of forward reachability

R(I) can be expressed in fixpoint form:

R(I) = lfp FR where FR(S) def= I ∪ postτ (S)

FR shifts S and adds back I

Alternate characterization: R = lfpI GR where GR(S) def= S ∪ postτ (S).
GR shifts S by τ and accumulates the result with S

(proofs on next slide)
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Forward state reachability semantics

Fixpoint formulation proof

proof: of R(I) = lfp FR where FR(S) def= I ∪ postτ (S)

(P(Σ),⊆) is a CPO and postτ is continuous, hence FR is continuous:
FR(∪i∈I Ai ) = ∪i∈I FR(Ai ).
By Kleene’s theorem, lfp FR = ∪n∈N F n

R(∅).
We prove by recurrence on n that: ∀n: F n

R(∅) = ∪i<n posti
τ (I).

(states reachable in less than n steps)
F 0
R(∅) = ∅

assuming the property at n,
F n+1
R (∅) = FR(

⋃
i<n posti

τ (I))
= I ∪ postτ (

⋃
i<n posti

τ (I))
= I ∪

⋃
i<n postτ (posti

τ (I))
= I ∪

⋃
1≤i<n+1 posti

τ (I)
=

⋃
i<n+1 posti

τ (I)

Hence: lfp FR = ∪n∈N F n
R(∅) = ∪i∈N posti

τ (I) = R(I).

The proof is similar for the alternate form, given that lfpI GR = ∪n∈NGn
R(I) and

Gn
R(I) = F n+1

R (∅) = ∪i≤n posti
τ (I).
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Forward state reachability semantics

Graphical illustration

Transition system.
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Forward state reachability semantics

Graphical illustration

Initial states I.
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Forward state reachability semantics

Graphical illustration

Iterate F 1
R(I).
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Forward state reachability semantics

Graphical illustration

Iterate F 2
R(I).
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Forward state reachability semantics

Graphical illustration

Iterate F 3
R(I).
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Forward state reachability semantics

Graphical illustration

Iterate F 4
R(I).
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Forward state reachability semantics

Graphical illustration

Iterate F 5
R(I).

F 6
R(I) = F 5

R(I) ⇒ we reached a fixpoint R(I) = F 5
R(I).
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Forward state reachability semantics

Multiple forward fixpoints

Recall: R(I) = lfp FR where FR(S) def= I ∪ postτ (S).
Note that FR may have several fixpoints.

Example:

Initial state I R(I) = lfp FR gfp FR

Exercise:
Compute all the fixpoints of GR(S) def= S ∪ postτ (S) on this example.
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Forward state reachability semantics

Example application of forward reachability

Infer the set of possible states at program end: R(I) ∩ F .

• i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at control point •,
final states F : any memory state at control point •,
=⇒ R(I) ∩ F : control at •, i = 100, and j ∈ [0, 110].

Prove the absence of run-time error: R(I) ∩ B ⊆ F .
(never block except when reaching the end of the program)

To ensure soundness, over-approximations are sufficient.
(if R](I) ⊇ R(I), then R](I) ∩ B ⊆ F =⇒ R(I) ∩ B ⊆ F)
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Forward state reachability semantics

Link with state-based invariance proof methods

Invariance proof method: find an inductive invariant I ⊆ Σ

I ⊆ I (contains initial states)

∀σ ∈ I:σ → σ′ =⇒ σ′ ∈ I (invariant by program transition)

that implies the desired property: I ⊆ P

Link with the state semantics R(I):

if I is an inductive invariant, then FR(I) ⊆ I
FR(I) = I ∪ postτ (I) ⊆ I ∪ I = I
=⇒ an inductive invariant is a post-fixpoint of FR
R(I) = lfp FR
=⇒ R(I) is the tightest inductive invariant
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Forward state reachability semantics

Link with the equational semantics
By partitioning forward reachability wrt. control points,
we retrieve the equation system form of program semantics

Grouping by control location: P(Σ) = P(L × E) ' L → P(E)
We have a Galois isomorphism:

(P(Σ),⊆) −−−−→−→←←−−−−−
αL

γL (L → P(E), ⊆̇)

X ⊆̇Y def⇐⇒ ∀` ∈ L: X (`) ⊆ Y (`)

αL(S) def= λ`.{ ρ | (`, ρ) ∈ S }

γL(X ) def= { (`, ρ) | ` ∈ L, ρ ∈ X (`) }

given Feq
def= αL ◦ FR ◦ γL

we get back an equation system
∧
`∈L X` = Feq,`(X1, . . . ,Xn)

αL ◦ γL = γL ◦ αL = id (no abstraction)

simply reorganize the states by control point
after actual abstraction, partitioning makes a difference (flow-sensitivity)
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Forward state reachability semantics

Example equation system

`1X ← [0, 10]; `2
Y ← 100;
while `3 X ≥ 0 do `4

X ← X − 1; `5
Y ← Y + 10

done `6



X1 = E
X2 = CJ X ← [0, 10] KX1
X3 = CJ Y ← 100 KX2 ∪ CJ Y ← Y + 10 KX5
X4 = CJ X ≥ 0 KX3
X5 = CJ X ← X − 1 KX4
X6 = CJ X < 0 KX3

(atomic command semantics CJ com K on next slide)

Xi ∈ P(E): set of memory states at program point i ∈ L
e.g.: X3 = { ρ ∈ E | ρ(X) ∈ [0, 10], 10ρ(X) + ρ(Y ) ∈ [100, 200] ∩ 10Z }

R corresponds to the smallest solution (Xi )i∈L of the system
I ⊆ E is invariant at i if Xi ⊆ I
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Forward state reachability semantics

Systematic derivation of equations
Atomic commands: CJ com K : P(E)→ P(E)
com def= {X ← exp, exp ./ 0 }: assignments and tests.

CJ X ← e KX def= { ρ[X 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }
CJ e ./ 0 KX def= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

CJ · K are ∪−morphisms: CJ s KX = ∪ρ∈XCJ s K {ρ}, monotonic, continuous

Systematic derivation of the equation system: eq(`stat`′)
by structural induction:
eq(`1X ← e`2) def= {X`2 = CJ X ← e KX`1 }

eq(`1s1; `2s2`3) def= eq(`1s1`2) ∪ (`2s2`3)

eq(`1if e ./ 0 then `2s`3) def=
{X`2 = CJ e ./ 0 KX`1 } ∪ eq(`2s`3′ ) ∪ {X`3 = X`3′ ∪ CJ e 6./ 0 KX`1 }

eq(`1while `2e ./ 0 do `3s`4 done`5) def=
{X`2 = X`1 ∪ X`4, X`3 = CJ e ./ 0 KX`2 } ∪ eq(`3s`4) ∪ {X`5 = CJ e 6./ 0 KX`2 }

where: X `3′ is a fresh variable storing intermediate results
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Forward state reachability semantics

Solving the equational semantics
Solve

∧
i∈[1,n] Xi = Fi (X1, . . . ,Xn)

Each Fi is continuous in P(E)n → P(E) (complete ∪−morphism)

aka ~F def= (F1, . . . ,Fn) is continuous in P(E)n → P(E)n

By Kleene’s fixpoint theorem, lfp ~F exists.

Kleene’s theorem: Jacobi iterations
X 0

1
def= ∅

. . .

X 0
i

def= ∅
. . .

X 0
n

def= ∅


X k+1

1
def= F1(X k

1 , . . . ,X
k
n )

. . .

X k+1
i

def= Fi (X k
1 , . . . ,X

k
n )

. . .

X k+1
n

def= Fn(X k
1 , . . . ,X

k
n )

The limit of (X k
1 , . . . ,X k

n ) is lfp ~F .

Näıve application of Kleene’s theorem
called Jacobi iterations by analogy with linear algebra
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Forward state reachability semantics

Solving the equational semantics (cont.)
Other iteration techniques exist [Cous92].

Gauss-Seidl iterations
X k+1

1
def= F1(X k

1 , . . . ,X
k
n )

. . .

X k+1
i

def= Fi (X k+1
1 , . . . ,X k+1

i−1 ,X
k
i , . . . ,X

k
n )

. . .

X k+1
n

def= Fn(X k+1
1 , . . . ,X k+1

n−1 ,X
k
n )

use new results as soon available

Chaotic iterations

X k+1
i

def=
{

Fi (X k
1 , . . . ,X

k
n ) if i = φ(k + 1)

X k
i otherwise

wrt. a fair schedule φ : N→ [1, n]
∀i ∈ [1, n]: ∀N > 0: ∃k > N:φ(k) = i

worklist algorithms
asynchonous iterations (parallel versions of chaotic iterations)

all give the same limit! (this will not be the case for abstract static analyses. . . )

Course 2 Program Semantics and Properties Antoine Miné p. 41 / 99



Forward state reachability semantics

Alternate view: inductive abstract interpreter
Principle:

follow the control-flow of the program
replace the global fixpoint with local fixpoints (loops)

CJ X ← e KX def= { ρ[X 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

CJ s1; s2 KX def= CJ s2 K (CJ s1 KX )

CJ if e ./ 0 then s KX def= (CJ s K (CJ e ./ 0 KX )) ∪ (CJ e 6./ 0 KX )

CJ while e ./ 0 do s done KX def= CJ e 6./ 0 K (lfp F )
where F (Y) def= X ∪ CJ s K (CJ e ./ 0 KY)

informal justification for the loop semantics:
All the CJ s K functions are continuous, hence the fixoints exist.
By induction on k, F k (∅) = ∪i≤k (CJ s K ◦ CJ e ./ 0 K )iX
hence, lfp F = ∪i (CJ s K ◦ CJ e ./ 0 K )iX
We fall back to a special case of (transfinite) chaotic iteration
that stabilizes loops depth-first.
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From finite traces to reachability

From finite traces to reachability
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From finite traces to reachability

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

A state in the state semantics
corresponds to any partial execution trace terminating in this state.

We have a Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆)

αp(T ) def= {σ ∈ Σ | ∃σ0, . . . , σn ∈ T :σ = σn }
(last state in traces in T )

γp(S) def= {σ0, . . . , σn ∈ Σ∗ |σn ∈ S }
(traces ending in a state in S)

(proof on next slide)
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From finite traces to reachability

Abstracting traces into states (proof)

proof of: (αp , γp) forms a Galois embedding.

Instead of the definition α(c) ⊆ a ⇐⇒ c ⊆ γ(a), we use the alternate characterization of
Galois connections: α and γ are monotonic, γ ◦ α is extensive, and α ◦ γ is reductive.
Embedding means that, additionally, α ◦ γ = id .

αp , γp are ∪−morphisms, hence monotonic
(γp ◦ αp)(T )
= {σ0, . . . , σn |σn ∈ αp(T ) }
= {σ0, . . . , σn | ∃σ′0, . . . , σ

′
m ∈ T :σn = σ′m }

⊇ T
(αp ◦ γp)(S)
= {σ | ∃σ0, . . . , σn ∈ γp(S):σ = σn }
= {σ | ∃σ0, . . . , σn:σn ∈ S, σ = σn }
= S
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From finite traces to reachability

Abstracting prefix trace semantics into reachability

We can abstract semantic operators and their least fixpoint.

Recall that:
Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ ,
R(I) = lfp FR where FR(S) def= I ∪ postτ (S),
(P(Σ∗),⊆) −−−→−→←−−−−

αp

γp
(P(Σ),⊆).

We have: αp ◦ Fp = FR ◦ αp;
by fixpoint transfer, we get: αp(Tp(I)) = R(I).

(proof on next slide)
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From finite traces to reachability

Abstracting prefix traces into reachability (proof)

proof: of αp ◦ Fp = FR ◦ αp

(αp ◦ Fp)(T )
= αp(I ∪ T_τ)
= {σ | ∃σ0, . . . , σn ∈ I ∪ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T :σn → σ }
= I ∪ postτ ({σ | ∃σ0, . . . , σn ∈ T :σ = σn })
= I ∪ postτ (αp(T ))
= (FR ◦ αp)(T )
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From finite traces to reachability

Abstracting traces into states (example)

program

j ← 0;
i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]

done

prefix trace semantics:
i and j are increasing and 0 ≤ j ≤ i ≤ 100

forward reachable state semantics:
0 ≤ j ≤ i ≤ 100

=⇒ the abstraction forgets the ordering of states.
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From finite traces to reachability

Another state/trace abstraction: ordering abstraction

Another Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αo

γo (P(Σ),⊆)

αo(T ) def= {σ | ∃σ0, . . . , σn ∈ T , i ≤ n:σ = σi }
(set of all states appearing in some trace in T )

γo(S) def= {σ0, . . . , σn | n ≥ 0,∀i ≤ n:σi ∈ S }
(traces composed of elements from S)

proof sketch:
αo and γo are monotonic, and αo ◦ γo = id .
(γo ◦ αo)(T ) = {σ0, . . . , σn | ∀i ≤ n: ∃σ′0, . . . , σ′m ∈ T , j ≤ m:σi = σ′j } ⊇ T .
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From finite traces to reachability

Semantic correspondence by ordering abstraction

We have: αo(Tp(I)) = R(I).

proof:
We have αo = αp ◦ ρp (i.e.: a state is in a trace if it is the last state of one of its prefix).
Recall the prefix trace abstraction into states: R(I) = αp(Tp(I)) and the fact that the prefix
trace semantics is closed by prefix: ρp(Tp(I)) = Tp(I).
We get αo(Tp(I)) = αp(ρp(Tp(I))) = αp(Tp(I)) = R(I).

This is a direct proof, not a fixpoint transfer proof (our theorems do not apply . . . )

alternate proof: generalized fixpoint transfer

Recall that Tp(I) = lfp Fp where Fp(T ) def= I ∪ T_τ and R(I) = lfp FR where
FR(S) def= I ∪ postτ (S), but αo ◦ Fp = FR ◦ αo does not hold in general, so, fixpoint transfer
theorems do not apply directly.
However, αo ◦ Fp = FR ◦ αo holds for sets of traces closed by prefix. By induction, the Kleene
iterates an

p and an
R involved in the computation of lfp Fp and lfp FR satisfy ∀n:αo(an

p) = an
R,

and so αo(lfp Fp) = lfp FR.
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Backward state and trace semantics

Backward state and trace semantics
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Backward state and trace semantics

Backward state co-reachability

C(F): states co-reachable from F in the transition system:

C(F) def= {σ | ∃n ≥ 0, σ0, . . . , σn:σ = σ0, σn ∈ F ,∀i :σi → σi+1 }
=
⋃

n≥0 pren
τ (F)

where preτ (S) def= {σ | ∃σ′ ∈ S:σ → σ′ } (preτ = postτ−1 )

C(F) can also be expressed in fixpoint form:

C(F) = lfp FC where FC(S) def= F ∪ preτ (S)

Justification: C(F) in τ is exactly R(F) in τ−1.

Alternate characterization: C(F) = lfpF GC where GC(S) = S ∪ preτ (S)
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Backward state and trace semantics

Graphical illustration

Transition system.
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Backward state and trace semantics

Graphical illustration

Final states F .
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Backward state and trace semantics

Graphical illustration
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Backward state and trace semantics

Graphical illustration
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Backward state and trace semantics

Graphical illustration

Course 2 Program Semantics and Properties Antoine Miné p. 53 / 99



Backward state and trace semantics

Graphical illustration
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Backward state and trace semantics

Graphical illustration

States co-reachable from F .

Course 2 Program Semantics and Properties Antoine Miné p. 53 / 99



Backward state and trace semantics

Application of backward co-reachability

I ∩ C(B \ F)
Initial states that have at least one erroneous execution.

• j ← 0;
while i > 0 do

i ← i − 1;
j ← j + [0, 10]
assert (j ≤ 200)

done •

initial states I: i ∈ [0, 100] at •

final states F : any memory state at •

blocking states B: final,
or j > 200 (assertion failure)

I ∩ C(B \ F): at •, i > 20

Over-approximating C is useful to isolate possibly incorrect
executions from those guaranteed to be correct.

Iterate forward and backward analyses interactively
=⇒ abstract debugging [Bour93].
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Backward state and trace semantics

Backward co-reachability in equational form
Principle:
As before, reorganize transitions by label ` ∈ L,
to get an equation system on (X`)`, with X` ⊆ E

Example:

`1 j ← 0;
`2 while `3 i > 0 do

`4 i ← i − 1;
`5 j ← j + [0, 10]

`6

X1 =
←−
C J j → 0 KX2

X2 = X3

X3 =
←−
C J i > 0 KX4 ∪

←−
C J i ≤ 0 KX6

X4 =
←−
C J i ← i − 1 KX5

X5 =
←−
C J j ← j + [0, 10] KX3

X6 = F

final states {`6} × F .
←−
C J X ← e KX def= { ρ | ∃v ∈ EJ e K ρ: ρ[X 7→ v ] ∈ X }.
←−
C J e ./ 0 KX def= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 } = CJ e ./ 0 KX

(also possible on control-flow graphs. . . )
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Backward state and trace semantics

Suffix trace semantics

Similarly to the finite prefix trace semantics from I,
we can build a suffix trace semantics going backwards from F :

Ts(F) def= {σ0, . . . , σn | n ≥ 0, σn ∈ F , ∀i :σi → σi+1 }
(traces following τ and ending in a state in F)

Ts(F) =
⋃

n≥0 (τ_n)_F

Ts(F) = lfp Fs where Fs(T ) def= F ∪ τ_T
(Fs prepends a transition to each trace, and adds back F)

Backward state co-rechability abstracts the suffix trace semantics:

αs (Ts (F)) = C(F) where αs (T ) def= {σ | ∃σ0, . . . , σn ∈ T :σ = σ0 }

ρs (Ts (F)) = Ts (F) where ρs (T ) def= { u | ∃t ∈ Σ∗: t · u ∈ T , u 6= ε }
(closed by suffix)
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Backward state and trace semantics

Graphical illustration

cba

F def= {c}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: Ts(F) = lfp Fs where Fs(T ) def= F ∪ τ_T .

F 0
s (∅) = ∅

F 1
s (∅) = F = {c}

F 2
s (∅) = {c, bc}

F 3
s (∅) = {c, bc, bbc, abc}

F n
s (∅) = { c, bic, ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Ts(F) = ∪n≥0 F n

s (∅) = { c, bic, abic | i ≥ 1 }
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Symmetric finite partial trace semantics

Symmetric finite partial trace semantics
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Symmetric finite partial trace semantics

Symmetric finite partial trace semantics

T : all the finite partial execution traces.
(not necessarily starting in I or ending in F)

T def= {σ0, . . . , σn | n ≥ 0, ∀i :σi → σi+1 }
=
⋃

n≥0 Σ_τ_n

=
⋃

n≥0 τ
_n_Σ

The semantics (and iterates) are forward/backward symmetric:

T = Tp(Σ), hence T = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ
(prefix partial traces from any initial state)

T = Ts(Σ), hence T = lfp Fs∗ where Fs∗(T ) def= Σ ∪ τ_T
(suffix partial traces to any final state)

F n
p∗(∅) = F n

s∗(∅) =
⋃

i<n Σ_τ_i =
⋃

i<n τ
_i_Σ = T ∩ Σ<n
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Symmetric finite partial trace semantics

Abstracting partial traces into prefix traces

Prefix traces abstract partial traces
as we forget all about partial traces not starting in I.

Galois connection:

(P(Σ∗),⊆) −−−→←−−−
αI

γI (P(Σ∗),⊆)

αI(T ) def= T ∩ (I · Σ∗) (keep only traces starting in I)

γI(T ) def= T ∪ ((Σ \ I) · Σ∗) (add all traces not starting in I)

We then have: Tp(I) = αI(T ).

similarly for the suffix traces: Ts (F) = αF (T ) where αF (T ) def= T ∩ (Σ∗ · F)

(proof on next slide)
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Symmetric finite partial trace semantics

Abstracting partial traces into prefix traces (proof)

proof
αI and γI are monotonic. (αI ◦ γI)(T ) = (T ∪ (Σ \ I) · Σ∗) ∩ I · Σ∗) = T ∩ I · Σ∗ ⊆ T .
(γI ◦ αI)(T ) = (T ∩ I · Σ∗) ∪ (Σ \ I) · Σ∗ = T ∪ (Σ \ I) · Σ∗ ⊇ T .
So, we have a Galois connection.

A direct proof of Tp(I) = αI(T ) is straightforward,
by definition of Tp , αI , and T .
We can also retrieve the result by fixpoint transfer.
T = lfp Fp∗ where Fp∗(T ) def= Σ ∪ T_τ .
Tp = lfp Fp where Fp(T ) def= I ∪ T_τ .
We have: (αI ◦ Fp∗)(T ) = (Σ ∪ T_τ) ∩ (I · Σ∗) = I ∪ ((T_τ) ∩ (I · Σ∗) =
I ∪ ((T ∩ (I · Σ∗))_τ) = (Fp ◦ αI)(T ).
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Symmetric finite partial trace semantics

A first hierarchy of semantics

R(I) C(F) forward/backward states

Tp(I)

αp

OO

Ts(F)

αp

OO

prefix/suffix traces

T

αI

bb

αF

<<

partial finite traces
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Sufficient precondition state semantics

Sufficient precondition state semantics
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Sufficient precondition state semantics

Sufficient preconditions
S(Y): states with executions staying in Y.

S(Y) def= {σ | ∀n ≥ 0, σ0, . . . , σn: (σ = σ0 ∧ ∀i :σi → σi+1) =⇒ σn ∈ Y }
=
⋂

n≥0 p̃ren
τ (Y)

where p̃reτ (S) def= {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ S }
(states such that all successors satisfy S, p̃re is a complete ∩−morphism)

S(Y) can be expressed in fixpoint form:

S(Y) = gfp FS where FS(S) def= Y ∩ p̃reτ (S)

proof sketch: similar to that of R(I), in the dual.

FS is continuous in the dual CPO (P(Σ),⊇), because p̃reτ is: FS(∩i∈I Ai ) = ∩i∈I FS(Ai ).
By Kleene’s theorem in the dual, gfp FS = ∩n∈N F n

S(Σ).
We would prove by recurrence that F n

S(Σ) = ∩i<n p̃rei
τ (Y).
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: when stopping, stop in F
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Iteration F 0

S(Y)
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Iteration F 1

S(Y)
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Iteration F 2

S(Y)
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Iteration F 3

S(Y)
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Sufficient preconditions S(Y) to stop in F
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Sufficient precondition state semantics

Graphical illustration

Final states F .
Goal: stay in Y = F ∪ (Σ \ B)
Sufficient preconditions S(Y) to stop in F C(F)

Note: S(Y) ( C(F)
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Sufficient precondition state semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(Σ),⊆) −−−→←−−−R
S (P(Σ),⊆)

R(I) ⊆ Y ⇐⇒ I ⊆ S(Y)
definition of a Galois connection
all executions from I stay in Y
⇐⇒ I includes only sufficient pre-conditions for Y

so S(Y) =
⋃
{X |R(X ) ⊆ Y }

by Galois connection property
S(Y) is the largest initial set whose reachability is in Y

We retrieve Dijkstra’s weakest liberal preconditions.

(proof sketch on next slide)
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Sufficient precondition state semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(I) = lfpI GR where GR(S) = S ∪ postτ (S).
Likewise, S(Y) = gfpY GS where GS(S) = S ∩ p̃reτ (S).

We have a Galois connection: (P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ (P(Σ),⊆).

postτ (A) ⊆ B ⇐⇒ {σ′ | ∃σ ∈ A:σ → σ′ } ⊆ B
⇐⇒ (∀σ ∈ A:σ → σ′ =⇒ σ′ ∈ B)
⇐⇒ (A ⊆ {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ B })
⇐⇒ A ⊆ p̃reτ (B)

As a consequence (P(Σ),⊆) −−−−→←−−−−
GR

GS (P(Σ),⊆).

The Galois connection can be lifted to fixpoint operators:

(P(Σ),⊆) −−−−−−−−−→←−−−−−−−−−
x 7→lfpx GR

x 7→gfpx GS (P(Σ),⊆).
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Sufficient precondition state semantics

Applications of sufficient preconditions
Initial states such that all executions are correct: I ∩ S(F ∪ (Σ \ B)).
(the only blocking states reachable from initial states are final states)

program

• i ← 0;
while i < 100 do

i ← i + 1;
j ← j + [0, 1]
assert (j ≤ 105)

done •

initial states I: j ∈ [0, 10] at •

final states F : any memory state at •

blocking states B: either final
or j > 105 (assertion failure)

I ∩ S(F ∪ (Σ \ B)): at •, j ∈ [0, 5]
(note that I ∩ C(F ∪ (Σ \ B)) gives I)

application to inferring function contracts

application to inferring counter-examples

requires under-approximations to build decidable abstractions
but most analyses can only provide over-approximations!
=⇒ research topic
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Sufficient precondition state semantics

Research topic
Inferring sound sufficient preconditions requires under-approximations.
if S(X ) is a sufficient precondition, any S](X ) ⊂ S(X ) is stronger, thus also sufficient

Most works in abstract interpretation only target over-approximations.
The search for effective under-approximations remains an uncharted area.

Applications:

infer function contracts
infer sufficient conditions on the input so that the function has no error
infer plausible specifications

optimization
e.g., hoist dynamic checks outside loops when possible
replace: for i in [0,n] get(a,i)
with: if (X) then for i in [0,n] unsafe-get(a,i)

else for i in [0,n] get(a,i)
where X ensures no array overflow in the loop

infer counterexamples
infer conditions that ensures program mis-behavior
even in the presence of non-determinism
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Maximal trace semantics

Maximal trace semantics
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Maximal trace semantics

The need for maximal traces
The partial trace semantics cannot distinguish between:

while a 0 = 0 do done while a [0, 1] = 0 do done
(we get a∗ for both programs)

Principle: restrict the semantics to complete executions only
keep only executions finishing in a blocking state B

add back infinite executions
the partial semantics took into account infinite execution by including all their finite
parts, but we no longer keep them as they are not maximal!

Benefit:

avoid confusing prefix of infinite executions with finite executions

allow reasoning on trace length

allow reasoning on infinite traces (non-termination, inevitability, liveness)
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Maximal trace semantics

Infinite traces
Notations:

σ0, . . . , σn, . . .: an infinite trace (length ω)

Σω: the set of all infinite traces
Σ∞ def= Σ∗ ∪ Σω: the set of all traces

Extending the operators:
(σ0, . . . , σn) · (σ′0, . . .)

def= σ0, . . . , σn, σ
′
0, . . .

(append to a finite trace)

t · t ′ def= t if t ∈ Σω (append to an infinite trace does nothing)

(σ0, . . . , σn)_(σ′0,σ′1 . . .)
def= σ0, . . . , σn,σ

′
1, . . . when σn = σ′0

t_t ′ def= t, if t ∈ Σω

prefix: x � y def⇐⇒ ∃u ∈ Σω: x · u = y (Σω ,�) is a CPO

· distributes infinite ∪ and ∩
_ distributes infinite ∪, but not infinite ∩
{aω}_(∩n∈N { am | n ≥ m }) = {aω}_∅ = ∅ but
∩n∈N ({aω}_{ am | n ≥ m }) = ∩n∈N {aω} = {aω}
However A_(∩i∈I Bi ) = ∪i∈I (A_Bi ) if A ⊆ Σ∗.
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Maximal trace semantics

Maximal traces

Maximal traces: M∞ ∈ P(Σ∞)
sequences of states linked by the transition relation τ ,
start in any state (I = Σ),
either finite and stop in a blocking state (F = B),
or infinite.

M∞
def= {σ0, . . . , σn ∈ Σ∗ |σn ∈ B,∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(can be anchored at I and F as: M∞ ∩ (I · Σ∞) ∩ ((Σ∗ · F) ∪ Σω))
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Maximal trace semantics

Partitioned fixpoint formulation of maximal traces
Goal: we look for a fixpoint characterization of M∞.

We consider separately finite and infinite maximal traces.

Finite traces: already done!
From the suffix partial trace semantics, recall:
M∞ ∩ Σ∗ = Ts(B) = lfp Fs

recall that Fs(T ) def= B ∪ τ_T in (P(Σ∗),⊆). . .

Infinite traces:
Additionally, we will prove: M∞ ∩ Σω = gfp Gs

where Gs(T ) def= τ_T in (P(Σω),⊆).

Note: only backward fixpoint formulation of maximal traces exist!

(proof in following slides)
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Maximal trace semantics

Infinite trace semantics: graphical illustration

cba

B def= {c}
τ

def= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σω = gfp Gs where Gs(T ) def= τ_T .

G0
s (Σω) = Σω

G1
s (Σω) = abΣω ∪ bbΣω ∪ bcΣω

G2
s (Σω) = abbΣω ∪ bbbΣω ∪ abcΣω ∪ bbcΣω

G3
s (Σω) = abbbΣω ∪ bbbbΣω ∪ abbcΣω ∪ bbbcΣω

Gn
s (Σω) = { abnt, bn+1t, abn−1ct, bnct | t ∈ Σω }
M∞ ∩ Σω = ∩n≥0 Gn

s (Σω) = {abω, bω}
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Maximal trace semantics

Infinite trace semantics: proof

M∞ ∩ Σω = gfp Gs
where Gs(T ) def= τ_T in (P(Σω),⊆)

proof:

Gs is continuous in (P(Σω),⊇): Gs(∩i∈I Ti ) = ∩i∈I Gs(Ti ).
By Kleene’s theorem in the dual: gfp Gs = ∩n∈N Gn

s (Σω).
We prove by recurrence on n that ∀n: Gn

s (Σω) = (τ_n)_Σω:

G0
s (Σω) = Σω = (τ_0)_Σω,

Gn+1
s (Σω) = τ_Gn

s (Σω) = τ_((τ_n)_Σω) = (τ_n+1)_Σω.

gfp Gs = ∩n∈N (τ_n)_Σω

= {σ0, . . . ∈ Σω | ∀n ≥ 0:σ0, . . . , σn−1 ∈ τ_n }
= {σ0, . . . ∈ Σω | ∀n ≥ 0:∀i < n:σi → σi+1 }
= M∞ ∩ Σω
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Maximal trace semantics

Least fixpoint formulation of maximal traces
Idea: To get a least fixpoint formulation for whole M∞,

merge finite and infinite maximal trace least fixpoint forms.

Fixpoint fusion

M∞ ∩ Σ∗ is best defined on (P(Σ∗),⊆,∪,∩, ∅,Σ∗).
M∞ ∩ Σω is best defined on (P(Σω),⊇,∩,∪,Σω , ∅), the dual lattice
(we transform the greatest fixpoint into a least fixpoint!)

We mix them into a new complete lattice (P(Σ∞),v,t,u,⊥,>):
AvB def⇐⇒ (A ∩ Σ∗)⊆ (B ∩ Σ∗) ∧ (A ∩ Σω)⊇ (B ∩ Σω)
AtB def= ((A ∩ Σ∗)∪ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∩ (B ∩ Σω))
AuB def= ((A ∩ Σ∗)∩ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∪ (B ∩ Σω))
⊥ def= Σω

> def= Σ∗

In this lattice, M∞ = lfp Fs where Fs(T ) def= B ∪ τ_T .
(proof on next slides)
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Maximal trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion

If X1 = lfp F1 in (P(D1),v1) and X2 = lfp F2 in (P(D2),v2)
and D1 ∩ D2 = ∅,
then X1 ∪ X2 = lfp F in (P(D1 ∪ D2),v) where:

F (X ) def= F1(X ∩ D1) ∪ F2(X ∩ D2),
A v B def⇐⇒ (A ∩ D1) v1 (B ∩ D1) ∧ (A ∩ D2) v2 (B ∩ D2).

proof:
We have:
F (X1 ∪ X2) = F1((X1 ∪ X2) ∩ D1) ∪ F2((X1 ∪ X2) ∩ D2) = F1(X1) ∪ F2(X2) = X1 ∪ X2, hence
X1 ∪ X2 is a fixpoint of F .
Let Y be a fixpoint. Then Y = F (Y ) = F1(Y ∩ D1) ∪ F2(Y ∩ D2), hence,
Y ∩ D1 = F1(Y ∩ D1) and Y ∩ D1 is a fixpoint of F1. Thus, X1 v1 Y ∩ D1. Likewise,
X2 v2 Y ∩ D2. We deduce that X = X1 ∪ X2 v (Y ∩ D1) ∪ (Y ∩ D2) = Y , and so, X is F ’s
least fixpoint.

note: we also have gfp F = gfp F1 ∪ gfp F2.
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Maximal trace semantics

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that M∞ = lfp Fs
in (P(Σ∞),v) with Fs(T ) def= B ∪ τ_T

proof:

We have:

M∞ ∩ Σ∗ = lfp Fs in (P(Σ∗),⊆),

M∞ ∩ Σω = lfp Gs in (P(Σω),⊇) where Gs(T ) def= τ_T ,

in P(Σ∞), we have
Fs(A) = (Fs(A) ∩ Σ∗) ∪ (Fs(A) ∩ Σω) = Fs(A ∩ Σ∗) ∪ Gs(A ∩ Σω).

So, by fixpoint fusion in (P(Σ∞),v), we have:
M∞ = (M∞ ∩ Σ∗) ∪ (M∞ ∩ Σω) = lfp Fs .

Note: a greatest fixpoint formulation in (Σ∞,⊆) also exists!
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Abstracting maximal traces into partial traces

Abstracting maximal traces into partial traces

Course 2 Program Semantics and Properties Antoine Miné p. 80 / 99



Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics
Two steps to go from maximal to finite partial traces:

add all partial traces
remove infinite traces (in this order!)

Partial trace semantics T∞
all finite and infinite sequences of states
linked by the transition relation τ :

T∞
def= {σ0, . . . , σn ∈ Σ∗ | ∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M∞:
T∞ = lfp Fs∗ in (P(Σ∞),v) where Fs∗(T ) def= Σ ∪ τ_T ,

proof: similar to the proof of M∞ = lfp Fs .
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Abstracting maximal traces into partial traces

Finite trace abstraction
Finite partial traces T are an abstraction of all partial traces T∞
(forget about infinite executions)

We have a Galois embedding:

(P(Σ∞),v) −−−→−→←−−−−
α∗

γ∗ (P(Σ∗),⊆)

v is the fused ordering on Σ∗ ∪ Σω:
A v B def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)

α∗(T ) def= T ∩ Σ∗
(remove infinite traces)

γ∗(T ) def= T
(embedding)

T = α∗(T∞)

(proof on next slide)
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Abstracting maximal traces into partial traces

Finite trace abstraction (proof)

proof:

We have Galois embedding because:
α∗ and γ∗ are monotonic,
given T ⊆ Σ∗, we have (α∗ ◦ γ∗)(T ) = T ∩ Σ∗ = T ,
(γ∗ ◦ α∗)(T ) = T ∩ Σ∗ w T , as we only remove infinite traces.

Recall that T∞ = lfp Fs∗ in (P(Σ∞),v) and T = lfp Fs∗ in (P(Σ∗),⊆), where
Fs∗(T ) def= Σ ∪ T_τ .
As α∗ ◦ Fs∗ = Fs∗ ◦ α∗ and α∗(∅) = ∅, we can apply the fixpoint transfer theorem to get
α∗(T∞) = T .
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Abstracting maximal traces into partial traces

Prefix abstraction

Idea: complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α�

γ�
(P(Σ∞ \ {ε}),⊆)

α�(T ) def= { t ∈ Σ∞ \ {ε} | ∃u ∈ T : t � u }
(set of all non-empty prefixes of traces in T )

γ�(T ) def= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∞ \ {ε}: u � t =⇒ u ∈ T }
(traces with non-empty prefixes in T )

proof:
α� and γ� are monotonic.
(α� ◦ γ�)(T ) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ� ◦ α�)(T ) = ρp(T ) ⊇ T .
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Abstracting maximal traces into partial traces

Abstraction from maximal traces to partial traces

Finite and infinite partial traces T∞ are an abstraction
of maximal traces M∞: T∞ = α�(M∞).

proof:
Firstly, T∞ and α�(M∞) coincide on infinite traces. Indeed, T∞ ∩ Σω =M∞ ∩ Σω and α�
does not add infinite traces, so: T∞ ∩ Σω = α�(M∞) ∩ Σω .
We now prove that they also coincide on finite traces. Assume σ0, . . . , σn ∈ α�(M∞), then
∀i < n:σi → σi+1, so, σ0, . . . , σn ∈ T∞.
Assume σ0, . . . , σn ∈ T∞, then it can be completed into a maximal trace, either finite or
infinite, and so, σ0, . . . , σn ∈ α�(M∞).

Note: no fixpoint transfer applies here.
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Abstracting maximal traces into partial traces

Enriched hierarchy of semantics

R(I) C(F) forward/backward states

Tp(I)

αp

OO

Ts(F)

αp

OO

prefix/suffix finite traces

T

αI

cc

αF

::

partial finite traces

T∞

α∗

OO

partial traces

M∞

α�

OO

maximal traces

See [Cous02] for more semantics in this diagram.
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Safety and liveness trace properties

Safety and liveness trace properties
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Safety and liveness trace properties

Maximal trace properties

Trace property: P ∈ P(Σ∞)

Verification problem: M∞ ∩ (I · Σ∞) ⊆ P
or, equivalently, as M∞ ⊆ P′ where P′ def= P ∪ ((Σ \ I) · Σ∞)

Examples:

termination: P def= Σ∗,
non-termination: P def= Σω,
any state property S ⊆ Σ: P def= S∞,
maximal execution time: P def= Σ≤k ,
minimal execution time: P def= Σ≥k ,
ordering, e.g.: P def= (Σ \ {b})∗ · a · Σ∗ · b · Σ∞.
(a and b occur, and a occurs before b)
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Safety and liveness trace properties

Safety properties for traces

Idea: a safety property P models that “nothing bad ever occurs”

P is provable by exhaustive testing;
(observe the prefix trace semantics: Tp(I) ⊆ P)

P is disprovable by finding a single finite execution not in P.

Examples:

any state property: P def= S∞ for S ⊆ Σ,

ordering: P def= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞),
no b can appear without an a before,
but we can have only a, or neither a nor b
(not a state property)

but termination P def= Σ∗ is not a safety property.
disproving requires exhibiting an infinite execution
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Safety and liveness trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ε)

(P(Σ∞),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗),⊆)

α∗�(T ) def= { t ∈ Σ∗ | ∃u ∈ T : t � u }
γ∗�(T ) def= { t ∈ Σ∞ | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }

The associated upper closure ρ∗�
def= γ� ◦ α� is:

ρ∗� = lim ◦ρp where:
ρp(T ) def= { u ∈ Σ∞ | ∃t ∈ T : u � t },
lim(T ) def= T ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }.

Definition: P ∈ P(Σ∞) is a safety property if P = ρ∗�(P).
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Safety and liveness trace properties

Definition of safety properties (examples)

Definition: P ⊆ P(Σ∞) is a safety property if P = ρ∗�(P).

Examples and counter-examples:

state property P def= S∞ for S ⊆ Σ:
ρp(S∞) = lim(S∞) = S∞ =⇒ safety;

termination P def= Σ∗:
ρp(Σ∗) = Σ∗, but lim(Σ∗) = Σ∞ 6= Σ∗ =⇒ not safety;

even number of steps P def= (Σ2)∞:
ρp((Σ2)∞) = Σ∞ 6= (Σ2)∞ =⇒ not safety.
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Safety and liveness trace properties

Proving safety properties

Proving that a program satisfies a safety property P
is equivalent to proving that its finite prefix abstraction does

Tp(I) ⊆ P
proof sketch:

Soundness. Using the Galois connection between M∞ and T , we get:
M∞ ∩ (I · Σ∞) ⊆ ρ∗�(M∞ ∩ (I · Σ∞)) = γ∗�(α∗�(M∞ ∩ (I · Σ∞))) =
γ∗�(α∗�(M∞) ∩ (I · Σ∗)) = γ∗�(T ∩ (I · Σ∗)) = γ∗�(Tp(I)).
As Tp(I) ⊆ P, we have, by monotony, γ∗�(Tp(I)) ⊆ γ∗�(P) = P.
Hence M∞ ∩ (I · Σ∞) ⊆ P.

Completeness. Tp(I) provides an inductive invariant for P.
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Safety and liveness trace properties

Liveness properties

Idea: liveness property P ∈ P(Σ∞)
Liveness properties model that“something good eventually occurs”

P cannot be proved by testing
(if nothing good happens in a prefix execution,
it can still happen in the rest of the execution)

disproving P requires exhibiting an infinite execution not in P

Examples:

termination: P def= Σ∗,

inevitability: P def= Σ∗ · a · Σ∞,
(a eventually occurs in all executions)

state properties are not liveness properties.
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Safety and liveness trace properties

Definition of liveness properties

Definition: P ∈ P(Σ∞) is a liveness property if ρ∗�(P) = Σ∞.

Examples and counter-examples:

termination P def= Σ∗:
ρp(Σ∗) = Σ∗ and lim(Σ∗) = Σ∞ =⇒ liveness;

inevitability: P def= Σ∗ · a · Σ∞

ρp(P) = P ∪ Σ∗ and lim(P ∪ Σ∗) = Σ∞ =⇒ liveness;

state property P def= S∞ for S ⊆ Σ:
ρp(S∞) = lim(S∞) = S∞ 6= Σ∞ if S 6= Σ =⇒ not liveness;

maximal execution time P def= Σ≤k :
ρp(Σ≤k ) = lim(Σ≤k ) = Σ≤k 6= Σ∞ =⇒ not liveness;

the only property which is both safety and liveness is Σ∞.
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Safety and liveness trace properties

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

find f : Σ→ S where (S,v) is well-ordered;
(f is called a “ranking function”)

σ ∈ B =⇒ f = min S;
σ → σ′ =⇒ f (σ′) @ f (σ).

(f counts the number of steps remaining before termination)
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Safety and liveness trace properties

Trace topology
A topology on a set can be defined as:
– either a family of open sets (closed under union)
– or family of closed sets (closed under intersection)

Trace topology: on sets of traces in Σ∞

the closed sets are: C def= {P ∈ P(Σ∞) |P is a safety property }

the open sets can be derived as O def= {Σ∞ \ c | c ∈ C }

Topological closure: ρ : P(X )→ P(X )

ρ(x) def= ∩ { c ∈ C | x ⊆ c } (upper closure operator in (P(X),⊆))

on our trace topology, ρ = ρ∗�.

Dense sets:

x ⊆ X is dense if ρ(x) = X ;

on our trace topology, dense sets are liveness properties.
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Safety and liveness trace properties

Decomposition theorem

Theorem: decomposition on a topological space
Any set x ⊆ X is the intersection of a closed set and a dense set.
proof:
We have x = ρ(x) ∩ (x ∪ (X \ ρ(x))). Indeed:
ρ(x) ∩ (x ∪ (X \ ρ(x))) = (ρ(x) ∩ x) ∪ (ρ(x) ∩ (X \ ρ(x))) = ρ(x) ∩ x = x as x ⊆ ρ(x).

ρ(x) is closed
x ∪ (X \ ρ(x)) is dense because: ρ(x ∪ (X \ ρ(x))) ⊇ ρ(x) ∪ ρ(X \ ρ(x))

⊇ ρ(x) ∪ (X \ ρ(x))
= X

Consequence: on trace properties
Every trace property is the conjunction of
a safety property and a liveness property.
proving a trace property can be decomposed into
a soundness proof and a liveness proof
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