Correction

MPRI 2-6

Antoine Miné

October 1, 2018

Problem 1

1. The concrete evaluation gives:

wrap[—128, 127](wrap|0, 255]({—1,0,1}) + wrap|0, 255]({—1,0,1}))
= wrap[—128,127]({0, 1,255} + {0,1,255})
wrap[—128,127]({0, 1, 2, 255, 256, 510})
= {-2,-1,0,1,2}

2. We define the optimal wrap|¢, hLjj as

wrapll, h]g([a, b))
= ai(wraplt, B} (3i([a. b))
— [min { wrap[t, A)(v) | v € [a,5] }, max { wraplt, K)(v) | v € [a, 5]}
where «a; and ~; are the interval abstraction and the interval concretization.

We then have two cases:

e cither a and b are contained in a single interval of the form [/ +h|+k(h—{¢+1), i.e
if3k:l+k(h—0+1)<a<b<h+k(h—{¢+1). In that case, wrap[l, h]g([a, b)) =
la— k(h— £+ 1),b— k(h — £+ 1)] = [wrap[¢, h](a), wraplé, h)(b)];

e otherwise, wrap[l, h] ([a,b]) = [¢, h], as the interval [a, b] contains both a point = such
that wrap[¢, h](z) = ¢ and a point y such that wrap[¢, h|(y) = h.

The operator is exact if and only if:

e cither we are in the first case: Ik : 0+ k(h—L+1)<a<b<h+k(h—{(+1),
e or b—a > h — ¢, which implies { wrap[¢, h](v) | v € [a,b] } = [¢,h] in the concrete
anyway.

An example of non-exact application of the operator is wrap[0, 255]%([—1,0]) = [0,255] as,
in the concrete, we would get the set {0,255}.

3. We get:

wrap|0, 255 (x) +ti wrapl0, 255] (v%))

wrapl0, 255] ([-1,1]) + wrapo, 255]3([—1,1]))
[0,255] + [0, 255])

[0,510])

wrap|—128, 127]5

wrap[—128, 127]5
= wrap[—128, 127]5

wrap[—128, 127]5
= [-128,127]

QL TES. T

(
(
(
(

The concrete is, by question 1, {—2,—1,0,1,2}. Note that it can be exactly represented
as an interval [—2,2], yet, the evaluation of the expression in the interval domain gives a
much coarser result: [—128,127]. Hence, the abstract result is neither exact nor optimal.

This imprecision is caused by the accumulated loss of precision due to applying several
optimal but non-exact operators in sequence (in general, the composition of optimal but
non-exact operators is not an optimal operator). In particular, the first applications of
wrap|0, 255]5 results in a non-recoverable loss of precision.

def def

. The set of values V. = {0,1,4} can be abstracted both as 2 = [0,1] + 3Z and as
- [0, 1] +47Z. Moreover, both abstract values are minimal in D,,, i.e., no z* such that
Y (28) € Y (xF) or Y (28) € Y (y?) can satisfy V' C v,,(2F). If it existed, a,,, would allow

constructing a unique minimal element a,, (V') overapproximating V.

. To design an abstraction +§n of + in D,,, we add separately the interval component and
the modular component:

(la1,b1] + k1Z) +2 ([ag, ba] + k2Z) & [a1 + ag, by + by] + ged(ky, k1)Z

The operator is sound because, given x1 = ¢1 +kiny, xo = ca+kang where ¢; € [a, b1] and
o € lag, ba], we have x1 +x9 = (¢1 +¢2) + (k1n1 + kang), where ¢1 +c¢2 € [a1 +az2, b1 +bo] =
[a1,b1] 4 [a2+b2] and kinq +kang € k1Z+koZ = ged(k1, ka)Z. Note that, in this definition,
ged is extended to N by defining Vz : ged(0,x) = ged(z,0) = x (similarly to the simple
congruence domain seen in the course).

For wrap[l, h]%([a, b] + kZ) we consider two different cases:

(a) when the result, in the concrete, can be exactly represented as an interval, we return
this interval; this can be checked by ensuring that [a,b] + kZ does not cross any
boundary in £+ (h — £+ 1)Z, i.e., that [a, b] does not cross any boundary in ¢ + (h —
04+ 1)Z+ kZ =+ ged(k,h — £+ 1)Z;

(b) otherwise, we keep the interval component intact and adjust the modular component
so that the result corresponds to the argument modulo h—/¢+1; i.e., we add (h—{+1)Z
to [a, b] + kZ to get [a,b] + gcd(h — € + 1, k)Z.

We get:

wrap[l, Wl ([a,b] + kZ) =
[wrap[l, h](a), wrap[¢, h](b)] + 0Z if ({+K'Z)N[a+1,b] =0
la,b] + K'Z otherwise

where & & ged(k,h — €+ 1)

In our example, both applications of wrap|0, 255]% exercise the second case of the definition,
while the application of wrap[—128, 127]7’1” exercises the first case. We get:

wrap|—128, 127k, (wrap|0, 2555, (%) +5, wrap|0, 255]5, ()
= wrap[—128,127)5, (wrap[0, 255]%, ([~ 1, 1] + 0Z) +5, wrap|0, 255)%, (y[—1, 1] + 0Z))
= wrap[—128,127)5, ([—1, 1] + 256Z +%, [~1, 1] + 256Z)
= wrap[—128,127)%,([-2, 2] + 256Z)
= [_27 2]

Hence, the result is optimal.

Problem 2

1.

In the concrete, the set X C R of possible values for the variable X is given by the smallest
solution of the equation:

X={0}U{azx+blze X, be0,0]}
which can be computed using Kleene iterations as:
X = U;F'() where F(S) & {0}U{az+b|zeS, be0,5]}

We can prove by recurrence on 4 that F'(f) = [0,Y",_; &*]. The limit of this interval is
the following interval, open at its upper bound: U; F* = [0, ", o*B[. We have two cases:

(a) if 0 < a < 1, then the limit is [0, m[where m = /(1 — a);
(b) if @ > 1, then the limit is [0, 4+o0].

In the following, we will consider only the first case.

. An interval [0,m/] is an inductive invariant if and only if it is a post-fixpoint of F, i.e.:

F([0,m']) C [0,m']. As F([0,m']) = [0,am’ + B], we deduce that [0,m] is an inductive
invariant if and only if am’ + 8 <m/, i.e., m' > /(1 —a) =m.

. An analysis using the interval domain and the widening with threshold set 7" will find the

smallest interval inductive invariant whose upper bound is in 7. By the answer to the
previous question, it will thus find an interval of the form [0, m'] where m/ < min {m’ €

T|m'=p/(1-a)}.
In order to find a bounded interval invariant, it is necessary and sufficient to ensure that
T contains a value greater than or equal to §/(1 — «) and strictly smaller than +o0.

The most precise invariant representable in the interval domain is [0, 3/(1 — «)] (as we
cannot represent open intervals). In order to find the most precise interval invariant, it is
necessary and sufficient to have 8/(1 — «) € T.

. Assume that the result of an interval analysis is the interval [0, a] where a # +oc.

A first decreasing iteration will give F([0,a]) = [0,aa +]. We know, by the previous
question that a > /(1 — «); this implies a(1 — «) > 8 and then a > ac+ 5. We thus get
F([0,a]) C [0,a]. When the invariant is not optimal, i.e., a > /(1 — «) the inclusion is
strict. By using decreasing iterations, we can compute a sequence F([0, a]) that converges
to the optimal invariant [0, 5/(1 — a)]. The decreasing sequence of intervals is infinite, so,
a narrowing must be used to converge in finite time (possibly to an interval between the
optimal [0, 3/(1 —)] and the original invariant found [0, a]).

. The first increasing iterates in the interval domain are:

FO0) =0
F'(0) =[0,0]
F3(0) = (0,08 + f]

Denoting x; the upper bound of F*()), we get that 8 = x5 and a = (z3—3)/8 = z3/12—1.
The exact concrete bound is then 5/(1 —) = (22)?/(2z2 — x3).

We can modify the classic interval widening to check, after iteration 3, the stability of
(22)? /(222 —23). The new widening takes, as parameter, in addition to the two last iterates,
the iteration count i¢. More precisely, the increasing sequence of intervals computed will
now be X; 11 = X; V; F(X;) where, at iteration ¢, the widening is defined as:

e, d] ife<a=b<d
[a,0] Vi [e,d] = {[0,02/(2b—d)] fa=c=0Ab%/(2b—d)>b,dAi="2
[a,b] V [c,d] otherwise

where V is the classic interval widening:

[a,b] V [e,d] = H“ ifa<e {b ﬁbzd]

.) .
—oo otherwise +o0o otherwise

The first case ¢ < a = b < d ensures that, at iteration 1, when the upper bound goes
from 0 to (3, it is not immediately widened to +o0o. The second case ensures that, at
iteration 2, the limit 3/(1 — a) = b%/(2b — d) is chosen as upper bound, if it is sound (test
a=c=0Ab%/(2b —d) > b,d). The soundness of V completes the soundness proof of V;.
To prove the termination, it is sufficient to remark that a strictly increasing sequence will
keep applying V after a certain iterate, and so, the sequence terminates by the termination
property of V.

