
Correction

MPRI 2-6

Antoine Miné

October 1, 2018

Problem 1

1. The concrete evaluation gives:

wrap[−128, 127](wrap[0, 255]({−1, 0, 1}) + wrap[0, 255]({−1, 0, 1}))
= wrap[−128, 127]({0, 1, 255}+ {0, 1, 255})
= wrap[−128, 127]({0, 1, 2, 255, 256, 510})
= {−2,−1, 0, 1, 2}

2. We define the optimal wrap[`, h]]i as:

wrap[`, h]]i([a, b])

= αi(wrap[`, h]]i(γi([a, b])))
= [min {wrap[`, h](v) | v ∈ [a, b] }, max {wrap[`, h](v) | v ∈ [a, b] }]

where αi and γi are the interval abstraction and the interval concretization.

We then have two cases:

• either a and b are contained in a single interval of the form [`+h] + k(h− `+ 1), i.e.,

if ∃k : `+ k(h− `+ 1) ≤ a ≤ b ≤ h+ k(h− `+ 1). In that case, wrap[`, h]]i([a, b]) =
[a− k(h− `+ 1), b− k(h− `+ 1)] = [wrap[`, h](a),wrap[`, h](b)];

• otherwise, wrap[`, h]]i([a, b]) = [`, h], as the interval [a, b] contains both a point x such
that wrap[`, h](x) = ` and a point y such that wrap[`, h](y) = h.

The operator is exact if and only if:

• either we are in the first case: ∃k : `+ k(h− `+ 1) ≤ a ≤ b ≤ h+ k(h− `+ 1);

• or b − a ≥ h − `, which implies {wrap[`, h](v) | v ∈ [a, b] } = [`, h] in the concrete
anyway.

An example of non-exact application of the operator is wrap[0, 255]]([−1, 0]) = [0, 255] as,
in the concrete, we would get the set {0, 255}.

3. We get:

wrap[−128, 127]]i(wrap[0, 255]]i(x
]) +]

i wrap[0, 255]]i(y
]))

= wrap[−128, 127]]i(wrap[0, 255]]i([−1, 1]) +]
i wrap[0, 255]]i(y[−1, 1]))

= wrap[−128, 127]]i([0, 255] +]
i [0, 255])

= wrap[−128, 127]]i([0, 510])
= [−128, 127]

1

The concrete is, by question 1, {−2,−1, 0, 1, 2}. Note that it can be exactly represented
as an interval [−2, 2], yet, the evaluation of the expression in the interval domain gives a
much coarser result: [−128, 127]. Hence, the abstract result is neither exact nor optimal.

This imprecision is caused by the accumulated loss of precision due to applying several
optimal but non-exact operators in sequence (in general, the composition of optimal but
non-exact operators is not an optimal operator). In particular, the first applications of

wrap[0, 255]]i results in a non-recoverable loss of precision.

4. The set of values V
def
= {0, 1, 4} can be abstracted both as x]

def
= [0, 1] + 3Z and as

y]
def
= [0, 1] + 4Z. Moreover, both abstract values are minimal in Dm, i.e., no z] such that

γm(z]) (γm(x]) or γm(z]) (γm(y]) can satisfy V ⊆ γm(z]). If it existed, αm would allow
constructing a unique minimal element αm(V) overapproximating V .

5. To design an abstraction +]
m of + in Dm, we add separately the interval component and

the modular component:

([a1, b1] + k1Z) +]
m ([a2, b2] + k2Z)

def
= [a1 + a2, b1 + b2] + gcd(k1, k1)Z

The operator is sound because, given x1 = c1+k1n1, x2 = c2+k2n2 where c1 ∈ [a1, b1] and
c2 ∈ [a2, b2], we have x1 +x2 = (c1 +c2)+(k1n1 +k2n2), where c1 +c2 ∈ [a1 +a2, b1 +b2] =
[a1, b1]+[a2+b2] and k1n1+k2n2 ∈ k1Z+k2Z = gcd(k1, k2)Z. Note that, in this definition,
gcd is extended to N by defining ∀x : gcd(0, x) = gcd(x, 0) = x (similarly to the simple
congruence domain seen in the course).

For wrap[`, h]]m([a, b] + kZ) we consider two different cases:

(a) when the result, in the concrete, can be exactly represented as an interval, we return
this interval; this can be checked by ensuring that [a, b] + kZ does not cross any
boundary in `+ (h− `+ 1)Z, i.e., that [a, b] does not cross any boundary in `+ (h−
`+ 1)Z + kZ = `+ gcd(k, h− `+ 1)Z;

(b) otherwise, we keep the interval component intact and adjust the modular component
so that the result corresponds to the argument modulo h−`+1; i.e., we add (h−`+1)Z
to [a, b] + kZ to get [a, b] + gcd(h− `+ 1, k)Z.

We get:

wrap[`, h]]m([a, b] + kZ)
def
={

[wrap[`, h](a),wrap[`, h](b)] + 0Z if (`+ k′Z) ∩ [a+ 1, b] = ∅
[a, b] + k′Z otherwise

where k′
def
= gcd(k, h− `+ 1)

In our example, both applications of wrap[0, 255]]m exercise the second case of the definition,

while the application of wrap[−128, 127]]m exercises the first case. We get:

wrap[−128, 127]]m(wrap[0, 255]]m(x]) +]
m wrap[0, 255]]m(y]))

= wrap[−128, 127]]m(wrap[0, 255]]m([−1, 1] + 0Z) +]
m wrap[0, 255]]m(y[−1, 1] + 0Z))

= wrap[−128, 127]]m([−1, 1] + 256Z +]
m [−1, 1] + 256Z)

= wrap[−128, 127]]m([−2, 2] + 256Z)
= [−2, 2]

2

Hence, the result is optimal.

Problem 2

1. In the concrete, the set X ⊆ R of possible values for the variable X is given by the smallest
solution of the equation:

X = {0} ∪ {αx+ b | x ∈ X, b ∈ [0, β] }

which can be computed using Kleene iterations as:

X = ∪iF i(∅) where F (S)
def
= {0} ∪ {αx+ b | x ∈ S, b ∈ [0, β] }

We can prove by recurrence on i that F i(∅) = [0,
∑

k<i α
kβ]. The limit of this interval is

the following interval, open at its upper bound: ∪iF i = [0,
∑

k α
kβ[. We have two cases:

(a) if 0 ≤ α < 1, then the limit is [0,m[where m
def
= β/(1− α);

(b) if α ≥ 1, then the limit is [0,+∞[.

In the following, we will consider only the first case.

2. An interval [0,m′] is an inductive invariant if and only if it is a post-fixpoint of F , i.e.:
F ([0,m′]) ⊆ [0,m′]. As F ([0,m′]) = [0, αm′ + β], we deduce that [0,m′] is an inductive
invariant if and only if αm′ + β ≤ m′, i.e., m′ ≥ β/(1− α) = m.

3. An analysis using the interval domain and the widening with threshold set T will find the
smallest interval inductive invariant whose upper bound is in T . By the answer to the
previous question, it will thus find an interval of the form [0,m′] where m′ def

= min {m′ ∈
T | m′ ≥ β/(1− α) }.
In order to find a bounded interval invariant, it is necessary and sufficient to ensure that
T contains a value greater than or equal to β/(1− α) and strictly smaller than +∞.

The most precise invariant representable in the interval domain is [0, β/(1 − α)] (as we
cannot represent open intervals). In order to find the most precise interval invariant, it is
necessary and sufficient to have β/(1− α) ∈ T .

4. Assume that the result of an interval analysis is the interval [0, a] where a 6= +∞.

A first decreasing iteration will give F ([0, a]) = [0, αa + β]. We know, by the previous
question that a ≥ β/(1− α); this implies a(1− α) ≥ β and then a ≥ aα+ β. We thus get
F ([0, a]) ⊆ [0, a]. When the invariant is not optimal, i.e., a > β/(1 − α) the inclusion is
strict. By using decreasing iterations, we can compute a sequence F i([0, a]) that converges
to the optimal invariant [0, β/(1−α)]. The decreasing sequence of intervals is infinite, so,
a narrowing must be used to converge in finite time (possibly to an interval between the
optimal [0, β/(1− α)] and the original invariant found [0, a]).

5. The first increasing iterates in the interval domain are:

F 0(∅) = ∅
F 1(∅) = [0, 0]
F 2(∅) = [0, β]
F 3(∅) = [0, αβ + β]

3

Denoting xi the upper bound of F i(∅), we get that β = x2 and α = (x3−β)/β = x3/x2−1.
The exact concrete bound is then β/(1− α) = (x2)

2/(2x2 − x3).
We can modify the classic interval widening to check, after iteration 3, the stability of
(x2)

2/(2x2−x3). The new widening takes, as parameter, in addition to the two last iterates,
the iteration count i. More precisely, the increasing sequence of intervals computed will
now be Xi+1 = Xi Oi F (Xi) where, at iteration i, the widening is defined as:

[a, b] Oi [c, d]
def
=


[c, d] if c ≤ a = b ≤ d
[0, b2/(2b− d)] if a = c = 0 ∧ b2/(2b− d) ≥ b, d ∧ i = 2

[a, b] O [c, d] otherwise

where O is the classic interval widening:

[a, b] O [c, d]
def
=

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]

The first case c ≤ a = b ≤ d ensures that, at iteration 1, when the upper bound goes
from 0 to β, it is not immediately widened to +∞. The second case ensures that, at
iteration 2, the limit β/(1−α) = b2/(2b− d) is chosen as upper bound, if it is sound (test
a = c = 0 ∧ b2/(2b− d) ≥ b, d). The soundness of O completes the soundness proof of Oi.
To prove the termination, it is sufficient to remark that a strictly increasing sequence will
keep applying O after a certain iterate, and so, the sequence terminates by the termination
property of O.

4

