Correction MPRI 2-6

Antoine Miné

October 1, 2018

Problem 1

1. The concrete evaluation gives:

```
wrap[-128, 127](wrap[0, 255](\{-1, 0, 1\}) + wrap[0, 255](\{-1, 0, 1\}))
= wrap[-128, 127](\{0, 1, 255\} + \{0, 1, 255\})
= wrap[-128, 127](\{0, 1, 2, 255, 256, 510\})
= \{-2, -1, 0, 1, 2\}
```

2. We define the optimal $wrap[\ell, h]_{i}^{\sharp}$ as:

```
wrap[\ell, h]_{i}^{\sharp}([a, b])
= \alpha_{i}(wrap[\ell, h]_{i}^{\sharp}(\gamma_{i}([a, b])))

= [\min \{ wrap[\ell, h](v) \mid v \in [a, b] \}, \max \{ wrap[\ell, h](v) \mid v \in [a, b] \}]
```

where α_i and γ_i are the interval abstraction and the interval concretization.

We then have two cases:

- either a and b are contained in a single interval of the form $[\ell+h]+k(h-\ell+1)$, i.e., if $\exists k: \ell+k(h-\ell+1) \leq a \leq b \leq h+k(h-\ell+1)$. In that case, $wrap[\ell,h]_i^{\sharp}([a,b]) = [a-k(h-\ell+1),b-k(h-\ell+1)] = [wrap[\ell,h](a), wrap[\ell,h](b)];$
- otherwise, $wrap[\ell, h]_i^{\sharp}([a, b]) = [\ell, h]$, as the interval [a, b] contains both a point x such that $wrap[\ell, h](x) = \ell$ and a point y such that $wrap[\ell, h](y) = h$.

The operator is exact if and only if:

- either we are in the first case: $\exists k : \ell + k(h \ell + 1) \le a \le b \le h + k(h \ell + 1);$
- or $b-a \ge h-\ell$, which implies $\{ wrap[\ell,h](v) \mid v \in [a,b] \} = [\ell,h]$ in the concrete anyway.

An example of non-exact application of the operator is $wrap[0, 255]^{\sharp}([-1, 0]) = [0, 255]$ as, in the concrete, we would get the set $\{0, 255\}$.

3. We get:

$$\begin{array}{ll} wrap[-128,127]_{i}^{\sharp}(wrap[0,255]_{i}^{\sharp}(x^{\sharp})+_{i}^{\sharp}wrap[0,255]_{i}^{\sharp}(y^{\sharp}))\\ =& wrap[-128,127]_{i}^{\sharp}(wrap[0,255]_{i}^{\sharp}([-1,1])+_{i}^{\sharp}wrap[0,255]_{i}^{\sharp}(y[-1,1]))\\ =& wrap[-128,127]_{i}^{\sharp}([0,255]+_{i}^{\sharp}[0,255])\\ =& wrap[-128,127]_{i}^{\sharp}([0,510])\\ =& [-128,127] \end{array}$$

The concrete is, by question 1, $\{-2, -1, 0, 1, 2\}$. Note that it can be exactly represented as an interval [-2, 2], yet, the evaluation of the expression in the interval domain gives a much coarser result: [-128, 127]. Hence, the abstract result is neither exact nor optimal.

This imprecision is caused by the accumulated loss of precision due to applying several optimal but non-exact operators in sequence (in general, the composition of optimal but non-exact operators is not an optimal operator). In particular, the first applications of $wrap[0, 255]^{\sharp}_{i}$ results in a non-recoverable loss of precision.

- 4. The set of values $V \stackrel{\text{def}}{=} \{0,1,4\}$ can be abstracted both as $x^{\sharp} \stackrel{\text{def}}{=} [0,1] + 3\mathbb{Z}$ and as $y^{\sharp} \stackrel{\text{def}}{=} [0,1] + 4\mathbb{Z}$. Moreover, both abstract values are minimal in \mathcal{D}_m , i.e., no z^{\sharp} such that $\gamma_m(z^{\sharp}) \subsetneq \gamma_m(x^{\sharp})$ or $\gamma_m(z^{\sharp}) \subsetneq \gamma_m(y^{\sharp})$ can satisfy $V \subseteq \gamma_m(z^{\sharp})$. If it existed, α_m would allow constructing a *unique* minimal element $\alpha_m(V)$ overapproximating V.
- 5. To design an abstraction $+_m^{\sharp}$ of + in \mathcal{D}_m , we add separately the interval component and the modular component:

$$([a_1,b_1]+k_1\mathbb{Z})+_m^{\sharp}([a_2,b_2]+k_2\mathbb{Z}) \stackrel{\text{def}}{=} [a_1+a_2,b_1+b_2]+\gcd(k_1,k_1)\mathbb{Z}$$

The operator is sound because, given $x_1 = c_1 + k_1 n_1$, $x_2 = c_2 + k_2 n_2$ where $c_1 \in [a_1, b_1]$ and $c_2 \in [a_2, b_2]$, we have $x_1 + x_2 = (c_1 + c_2) + (k_1 n_1 + k_2 n_2)$, where $c_1 + c_2 \in [a_1 + a_2, b_1 + b_2] = [a_1, b_1] + [a_2 + b_2]$ and $k_1 n_1 + k_2 n_2 \in k_1 \mathbb{Z} + k_2 \mathbb{Z} = \gcd(k_1, k_2) \mathbb{Z}$. Note that, in this definition, gcd is extended to \mathbb{N} by defining $\forall x : \gcd(0, x) = \gcd(x, 0) = x$ (similarly to the simple congruence domain seen in the course).

For $wrap[\ell, h]_m^{\sharp}([a, b] + k\mathbb{Z})$ we consider two different cases:

- (a) when the result, in the concrete, can be exactly represented as an interval, we return this interval; this can be checked by ensuring that $[a, b] + k\mathbb{Z}$ does not cross any boundary in $\ell + (h \ell + 1)\mathbb{Z}$, i.e., that [a, b] does not cross any boundary in $\ell + (h \ell + 1)\mathbb{Z} + k\mathbb{Z} = \ell + \gcd(k, h \ell + 1)\mathbb{Z}$;
- (b) otherwise, we keep the interval component intact and adjust the modular component so that the result corresponds to the argument modulo $h-\ell+1$; i.e., we add $(h-\ell+1)\mathbb{Z}$ to $[a,b]+k\mathbb{Z}$ to get $[a,b]+\gcd(h-\ell+1,k)\mathbb{Z}$.

We get:

$$wrap[\ell, h]_{m}^{\sharp}([a, b] + k\mathbb{Z}) \stackrel{\text{def}}{=} \begin{cases} [wrap[\ell, h](a), wrap[\ell, h](b)] + 0\mathbb{Z} & \text{if } (\ell + k'\mathbb{Z}) \cap [a + 1, b] = \emptyset \\ [a, b] + k'\mathbb{Z} & \text{otherwise} \end{cases}$$
where $k' \stackrel{\text{def}}{=} \gcd(k, h - \ell + 1)$

In our example, both applications of $wrap[0, 255]_m^{\sharp}$ exercise the second case of the definition, while the application of $wrap[-128, 127]_m^{\sharp}$ exercises the first case. We get:

```
 \begin{array}{lll} & wrap[-128,127]_m^\sharp(wrap[0,255]_m^\sharp(x^\sharp)+_m^\sharp wrap[0,255]_m^\sharp(y^\sharp))\\ = & wrap[-128,127]_m^\sharp(wrap[0,255]_m^\sharp([-1,1]+0\mathbb{Z})+_m^\sharp wrap[0,255]_m^\sharp(y[-1,1]+0\mathbb{Z}))\\ = & wrap[-128,127]_m^\sharp([-1,1]+256\mathbb{Z}+_m^\sharp [-1,1]+256\mathbb{Z})\\ = & wrap[-128,127]_m^\sharp([-2,2]+256\mathbb{Z})\\ = & [-2,2] \end{array}
```

Hence, the result is optimal.

Problem 2

1. In the concrete, the set $X \subseteq \mathbb{R}$ of possible values for the variable X is given by the smallest solution of the equation:

$$X = \{0\} \cup \{ \alpha x + b \mid x \in X, b \in [0, \beta] \}$$

which can be computed using Kleene iterations as:

$$X = \bigcup_i F^i(\emptyset)$$
 where $F(S) \stackrel{\text{def}}{=} \{0\} \cup \{\alpha x + b \mid x \in S, b \in [0, \beta]\}$

We can prove by recurrence on i that $F^i(\emptyset) = [0, \sum_{k < i} \alpha^k \beta]$. The limit of this interval is the following interval, open at its upper bound: $\bigcup_i F^i = [0, \sum_k \alpha^k \beta]$. We have two cases:

- (a) if $0 \le \alpha < 1$, then the limit is [0, m[where $m \stackrel{\text{def}}{=} \beta/(1-\alpha);$
- (b) if $\alpha \geq 1$, then the limit is $[0, +\infty[$.

In the following, we will consider only the first case.

- 2. An interval [0, m'] is an inductive invariant if and only if it is a post-fixpoint of F, i.e.: $F([0, m']) \subseteq [0, m']$. As $F([0, m']) = [0, \alpha m' + \beta]$, we deduce that [0, m'] is an inductive invariant if and only if $\alpha m' + \beta \le m'$, i.e., $m' \ge \beta/(1-\alpha) = m$.
- 3. An analysis using the interval domain and the widening with threshold set T will find the smallest interval inductive invariant whose upper bound is in T. By the answer to the previous question, it will thus find an interval of the form [0, m'] where $m' \stackrel{\text{def}}{=} \min \{ m' \in T \mid m' \geq \beta/(1-\alpha) \}$.

In order to find a bounded interval invariant, it is necessary and sufficient to ensure that T contains a value greater than or equal to $\beta/(1-\alpha)$ and strictly smaller than $+\infty$.

The most precise invariant representable in the interval domain is $[0, \beta/(1-\alpha)]$ (as we cannot represent open intervals). In order to find the most precise interval invariant, it is necessary and sufficient to have $\beta/(1-\alpha) \in T$.

4. Assume that the result of an interval analysis is the interval [0,a] where $a \neq +\infty$.

A first decreasing iteration will give $F([0,a]) = [0,\alpha a + \beta]$. We know, by the previous question that $a \geq \beta/(1-\alpha)$; this implies $a(1-\alpha) \geq \beta$ and then $a \geq a\alpha + \beta$. We thus get $F([0,a]) \subseteq [0,a]$. When the invariant is not optimal, i.e., $a > \beta/(1-\alpha)$ the inclusion is strict. By using decreasing iterations, we can compute a sequence $F^i([0,a])$ that converges to the optimal invariant $[0,\beta/(1-\alpha)]$. The decreasing sequence of intervals is infinite, so, a narrowing must be used to converge in finite time (possibly to an interval between the optimal $[0,\beta/(1-\alpha)]$ and the original invariant found [0,a]).

5. The first increasing iterates in the interval domain are:

$$\begin{split} F^0(\emptyset) &= \emptyset \\ F^1(\emptyset) &= [0,0] \\ F^2(\emptyset) &= [0,\beta] \\ F^3(\emptyset) &= [0,\alpha\beta+\beta] \end{split}$$

Denoting x_i the upper bound of $F^i(\emptyset)$, we get that $\beta = x_2$ and $\alpha = (x_3 - \beta)/\beta = x_3/x_2 - 1$. The exact concrete bound is then $\beta/(1-\alpha) = (x_2)^2/(2x_2-x_3)$.

We can modify the classic interval widening to check, after iteration 3, the stability of $(x_2)^2/(2x_2-x_3)$. The new widening takes, as parameter, in addition to the two last iterates, the iteration count i. More precisely, the increasing sequence of intervals computed will now be $X_{i+1} = X_i \nabla_i F(X_i)$ where, at iteration i, the widening is defined as:

$$[a,b] \nabla_i [c,d] \stackrel{\text{def}}{=} \begin{cases} [c,d] & \text{if } c \leq a = b \leq d \\ [0,b^2/(2b-d)] & \text{if } a = c = 0 \land b^2/(2b-d) \geq b, d \land i = 2 \\ [a,b] \nabla [c,d] & \text{otherwise} \end{cases}$$

where ∇ is the classic interval widening:

$$[a,b] \vee [c,d] \stackrel{\text{\tiny def}}{=} \left[\begin{cases} a & \text{if } a \leq c \\ -\infty & \text{otherwise} \end{cases}, \begin{cases} b & \text{if } b \geq d \\ +\infty & \text{otherwise} \end{cases} \right]$$

The first case $c \leq a = b \leq d$ ensures that, at iteration 1, when the upper bound goes from 0 to β , it is not immediately widened to $+\infty$. The second case ensures that, at iteration 2, the limit $\beta/(1-\alpha) = b^2/(2b-d)$ is chosen as upper bound, if it is sound (test $a = c = 0 \wedge b^2/(2b-d) \geq b, d$). The soundness of ∇ completes the soundness proof of ∇_i . To prove the termination, it is sufficient to remark that a strictly increasing sequence will keep applying ∇ after a certain iterate, and so, the sequence terminates by the termination property of ∇ .