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Abstract
The goal of this thesis is to build and train machine learning models capable of

understanding the content of videos. Current video understanding approaches mainly

rely on large-scale manually annotated video datasets for training. However, collect-

ing and annotating such dataset is cumbersome, expensive and time-consuming. To

address this issue, this thesis focuses on leveraging large amounts of readily-available,

but noisy annotations in the form of natural language. In particular, we exploit a

diverse corpus of textual metadata such as movie scripts, web video titles and descrip-

tions or automatically transcribed speech obtained from narrated videos. Training

video models on such readily-available textual data is challenging as such annota-

tion is often imprecise or wrong. In this thesis, we introduce learning approaches

to deal with weak annotation and design specialized training objectives and neural

network architectures. In the first contribution, we propose a neural network ar-

chitecture specifically designed for long-term representation of video and apply it to

the YouTube-8M dataset with weak labels automatically obtained from metadata.

Our proposed approach notably ranked first at the YouTube-8M video understanding

challenge. In the next contribution, we use multiple-instance learning and propose

a scalable discriminative clustering algorithm to recognize actors and their actions

in movies given movie scripts as supervision. In the following contribution, we pro-

pose the HowTo100M dataset, a large-scale uncurated narrated instructional video

dataset with annotations obtained using automatic speech recognition. Equipped

with this data, we learn a joint text-video embedding that performs well on several

text-video retrieval downstream tasks despite the highly noisy annotations. In the

last contribution, we propose a multiple-instance contrastive loss for learning a vi-

sual representation only from the weakly annotated HowTo100M dataset and show

the learned video representation can outperform fully-supervised methods on several

downstream tasks.
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Résumé
Nous nous intéressons à l’apprentissage automatique d’algorithmes pour la com-

préhension automatique de vidéos. Une majorité des approaches en compréhension

de vidéos dépend de large base de données de vidéos manuellement annotées pour

l’entraînement. Cependant, la collection et l’annotation de telles base de données est

fastidieuse, coûte cher et prend du temps. Pour palier à ce problème, cette thèse se

concentre sur l’exploitation de large quantité d’annotations publiquement disponible,

cependant bruitées, sous forme de language naturel. En particulier, nous nous in-

téressons à un corpus divers de métadonnées textuelles incluant des scripts de films,

des titres et descriptions de vidéos internet ou encore des transcriptions de paroles.

L’usage de ce type de données publiquement disponibles est difficile car l’annotation

y est faible. Pour cela, nous introduisons différentes approches d’apprentissage telles

que de nouvelles fonctions de coûts ou architectures de réseaux de neurones, adaptées

à de faibles annotations. En première contribution, nous présentons une architecture

de réseau de neurones adaptées à la représentation de vidéos à longue durée. Nous

évaluons notre modèle sur YouTube-8M, base de données faiblement annotée grâce à

des métadonnées textuelles. Notre approche s’est notamment distinguée en obtenant

la première place au challenge YouTube-8M. Dans la contribution suivante, nous in-

troduisons un algorithme de clustering discriminatif à faible complexité spatiale et

temporelle dans le cadre d’apprentissage multi-instance pour identifier des acteurs et

leurs actions dans des films étant donnés des scripts de films pour supervision. Dans

la prochaine contribution, nous présentons HowTo100M, une large base de données de

vidéos narratives instructionelles avec pour annotation, la transcription automatique

des paroles. Nous montrons qu’il est possible d’apprendre depuis cette données, une

représentation jointe entre texte et vidéo particulièrement efficace sur plusieurs tâches

de recherches de vidéos par language naturel, malgré les annotations très bruitées. En

dernière contribution, nous proposons une approche d’apprentissage multi-instance et

contrastive pour l’apprentissage d’une représentation visuelle depuis HowTo100M et

montrons que la représentation apprise obtient de meilleurs performances que des

représentations fortement supervisées sur plusieurs tâches.
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Chapter 1

Introduction

1.1 Goal

The goal of this thesis is to design machine learning models and algorithms enabling

the understanding of video content. For instance, we wish to create models with

the ability to understand basics concepts such as: Where does the scene take place?

What objects are seen? Who is in the scene? or What are the performed actions.

Figure 1-1: A typical YouTube video depicting three people: a man, likely a dad
with his two young children, having a good time sledgehammering a microwave in a
backyard.

In this thesis, we focus our efforts on leveraging readily-available natural language

resources for supervising video models. To learn such video models, we need a way to

bridge the gap between the vast knowledge of the world on the one hand, and video

data represented as raw pixel-wise values, on the other hand. Natural language can

be used to express in a semantically dense manner, the content of visual data. As an
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illustration, the caption from the Figure 1-1 provides useful information about the

content of the shown video: i.e. Where does the scene take place? In the backyard.

Who is in the scene? a dad with his two young children. What are they doing?

They are sledgehammering a microwave. Why are they doing that? To have a good

time. In this thesis, we consider a wide range of readily-available and large-scale

natural language resources such as movie scripts, transcripts of audio description

from movies aimed at visually impaired people, titles and descriptions of web video

or speech transcripts of narrated instructional videos.

We apply and evaluate our learnt video models on two main tasks. The first one

is video category classification: i.e. given an input video, what are the most relevant

labels, that accurately describe the video content? The second one is text-video

retrieval: i.e. given an input text query and a pool of thousands of testing videos,

what are the most relevant videos best matching the text query? Conversely, given

an input video and a set of textual descriptions, what is the best description for the

input video? Note that as opposed to video classification, the retrieval task requires

jointly modeling video and natural language. We believe being able to solve these

two tasks provides the first step toward basic video understanding by machines.

1.2 Motivation

Videos are widely used to share content on social media, to archive special moments

of life, for news and entertainment, for surveillance and as a means of communication

in video calls. Due to the growth of video data and its consumption, the automatic

understanding of video content is becoming useful and sometimes critical for a wide

range of applications. For example, being able to automatically moderate newly up-

loaded videos that show inappropriate content is essential for social media platforms.

It can also be useful to sort videos based on categories or to provide a way to search

for videos given textual queries to enhance user experience. Similarly, being able to

automatically search within a collection of personal videos is convenient when one

needs to find back a specific video recorded years ago among hundreds of others. In

3



video surveillance, the manual inspection of videos is becoming impractical and pre-

vents scalability. On the other hand, machines could enable real-time, accurate and

large-scale processing of surveillance footage.

One drawback with current methods for video understanding is that they mostly

rely on visual datasets with clean manual labels such as ImageNet [Russakovsky

et al., 2015] for images or Kinetics [Carreira and Zisserman, 2017] for videos. Manual

annotation of videos and images is time-consuming, expensive and thus not scalable.

While it is a necessary step to annotate video datasets for evaluation, it would be

highly beneficial to avoid manual annotation for training. Moreover, labeling videos

is not trivial: Which videos should be annotated? How to collect the videos? What

annotation platform to use? What taxonomy to consider? How to check that the

collected annotation is consistent and reliable? In this thesis, we aim at leveraging

readily available natural language resources to avoid this burdensome process when

training video models. Another motivation for considering natural language is that

it enables to train video models for text-to-video retrieval, which as described above,

is useful in many practical applications.

1.3 Challenges

Automatic video understanding from readily-available natural language data is an

emerging research field with many challenges. The first one being the video under-

standing part, and more precisely, how we can design a representation for video that

can effectively encode all of its useful information? Second, working with readily avail-

able natural language data for video modeling is challenging since the supervision is

often weak, unreliable and sparse. It is thus often crucial to consider video models

and training methods compatible with such supervision. Finally, training models on

large-scale video datasets implies high computational demands. One challenge we

also need to address is in designing computationally efficient video models. We will

individually elaborate on these challenges next.

4



Figure 1-2: An image from Wikipedia with its descriptive caption.

Video representation. One of the main challenges addressed in this thesis is the

design of efficient video representations that can capture useful high-level semantic

information about the video content. As opposed to 2D convolutional neural network

(CNN) which have consistently demonstrated great efficiency in encoding high-level

semantic information in images, it is not clear yet which representation or neural

network architecture could show a similar unanimous success for videos. In fact,

as opposed to image representations, video representations should capture temporal

dynamics in videos, for example, to differentiate between Opening Door and Closing

Door actions. Moreover, it is desirable to encode videos of variable length within a

fixed-size representation while preserving temporal information.

In this thesis, we first propose and analyze alternative neural network architec-

tures in aggregating visual information over time in Chapter 3 In Chapter 6, we

demonstrate that the training of complex state-of-the-art 3D CNNs can be done from

scratch without using manually labeled videos.

Learning visual models from readily-available natural language resources.

There is an abundant amount of readily=available textual data on the Internet (e.g.
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Wikipedia or Google News). However, the first challenge for computer vision ap-

plications is to identify resources that can provide useful supervision to train vision

models. More specifically, a corpus of natural language could be more useful for com-

puter vision if it is describing the content of visual data. Figure 1-2 illustrates an

example of a picture from Wikipedia with its underlying descriptive caption. This

readily-available caption can be considered as a useful supervisory signal for training

visual models as it provides the information of what is in this picture (a Bengal ti-

gress) and also where the picture was taken (in a National Park). In this thesis, we

leverage supervisory information obtained from readily-available natural language re-

sources, namely, web video title and description metadata in Chapter 3, movie scripts

in Chapter 4 and automatic speech transcripts from narrated videos in Chapters 5

and 6.

Using readily-available natural language resources implies two main advantages.

First, we can eliminate all burden of manual video annotation. Second, such data

typically contains high diversity and can be found in large quantities. However, the

downside when considering such data is that it is often not reliable and thus challeng-

ing to exploit. Since the textual data is not specifically created for machine learning

purposes, it may lead to multiple issues such as sparse supervision (i.e. only one word

in an entire paragraph is useful for the supervision), wrong supervision (i.e. textual

information is unrelated to the visual content) or missing correspondence (i.e. which

part of the video corresponds to which sentence). For illustration, Figure 1-3 shows

a YouTube video on a race of remotely controlled cars with the video title: Turkey

Farm Nate and Duck. As opposed to the Wikipedia image example from Figure 1-2,

here the title of the video does not correspond to its visual content. Moreover, the

title provides misleading visual cues such as Duck which is a kid name and not the

animal and Turkey which is the name of the place and not the animal. In this thesis,

we address these issues and design models and training methods enabling learning

from weak and noisy supervision.

Learning from large-scale video datasets and the computational challenge.
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Figure 1-3: A YouTube video on a race of remotely controlled cars (www.youtube.
com/watch?v=--7brUsSjvQ) and its misleading title: Turkey Farm Nate and Duck.

To fully leverage large-scale resources with weak supervision, we need to design mod-

els and learning methods with the ability to scale to potentially millions of training

videos. Video processing requires significantly more computational and memory re-

sources compared to images, audio or textual data. For this reason, we address

computational complexity and design efficient methods that can seamlessly scale to

large number of training videos.

1.4 Contributions

This thesis provides the following four contributions. First, we introduce a state-of-

the-art neural network architecture for long-term video representation and apply it

on the large-scale YouTube-8M dataset [Abu-El-Haija et al., 2016] with labels auto-

matically generated from natural language metadata. Second, we propose a video

model capable of learning to recognize people and their actions in movies by min-

ing supervision from a large corpus of readily-available movie scripts. Third, we

collect a new large-scale uncurated dataset of narrated instructional videos named

7
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HowTo100M and show how to leverage it for learning a joint text-video representa-

tion by only using readily available speech transcripts. Finally, we propose a new

MIL-NCE loss and demonstrate its ability to learn a state-of-the-art video represen-

tation from HowTo100M without any manually annotated visual data. These four

contributions are outlined in more detail below.

User generated video title and description Machine generated labels

Baby
Mirror

Figure 1-4: A YouTube video with its user generated title and description that are
used to automatically generate visual labels in the YouTube-8M dataset.

1.4.1 Learnable pooling with context gating for video

An enormous amount of internet videos such as YouTube videos come with readily

available descriptive metadata in the form of natural language such as video titles

or descriptions. The YouTube-8M dataset [Abu-El-Haija et al., 2016] leverages these

metadata by automatically extracting video labels from such metadata using NLP

methods 1, as illustrated in Figure 1-4. However, despite having a large number of

training videos, the YouTube-8M dataset comes with two issues. First, the machine-
1https://www.youtube.com/watch?v=wf_77z1H-vQ
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generated labels are not fully reliable since they are not manually verified. Second,

because these labels are generated at the video level, we need to deal with full videos

with duration in the order of several minutes. In our first contribution, we propose

a neural network architecture for aggregating visual features for minute-long videos,

capable of classifying these videos despite noisy labels. Our proposed method achieves

state-of-the-art results on the YouTube-8M dataset and reached the first place at

the Google Cloud and YouTube-8M Video Understanding Challenge 2 over 655 other

participating teams. Besides, our method enables better scalability and requires fewer

training examples to perform well compared to competing approaches.

1.4.2 Learning from movie scripts via large-scale discrimina-

tive clustering

A large number of movie scripts are freely available on the Internet 3. These scripts

provide detailed information about the dialogues, speakers and the actions of actors

in the movies. As a second contribution of this thesis, we propose a video model that

learns to recognize actors and actions in movies using movie scripts as the sole source

of supervision. We formulate the problem in the framework of multiple-instance learn-

ing and introduce a model based on discriminative clustering [Bach and Harchaoui,

2007]. To scale the training algorithm to many movies, we also propose a novel op-

timization method based on the Block-Coordinate Frank-Wolfe [Osokin et al., 2016]

algorithm that enables efficient optimization of the training objective. We train our

model on 66 feature-length movies and show significant improvements in action and

actor recognition compared to the prior state-of-the-art.
2https://www.kaggle.com/c/youtube8m
3https://www.imsdb.com/
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1.4.3 HowTo100M: Learning a text-video embedding from

millions of uncurated narrated instructional videos

State-of-the-art approaches to automatic speech recognition (ASR) have made signif-

icant advances in the past few years. In our third contribution, we leverage the recent

advances in ASR by collecting HowTo100M, a large-scale dataset of 1.2 millions of

uncurated narrated instructional videos together with their automatically generated

speech transcripts. We propose a fast procedure for data collection and do not rely

on any manually annotated video. Instructional videos typically contain thorough

narrations explaining the actions and the setup required to perform a task. We ex-

ploit this and learn a joint text-video embedding by matching video clips to ASR

outputs on HowTo100M and show that our learnt text-video embedding can be used

on several downstream tasks despite not being trained on any manually annotated

videos. We evaluate our learnt text-video embedding on the retrieval task and show

that our model can outperform models trained on manually annotated videos from

a similar domain to instructional videos. For videos with a larger domain gap such

as movies, we show that our HowTo100M pretrained text-video embedding can still

be used as a strong pretraining initialization leading to significant improvements over

randomly initialized models. We emphasize this work being first to train an efficient

joint text-video embedding without any manually labeled video description dataset.

1.4.4 Learning of visual representations from HowTo100M

In the previous contributions, we avoid video annotations by leveraging readily avail-

able natural language resources. Our visual models, however, were initialized by pre-

training them on manually annotated datasets such as ImageNet [Russakovsky et al.,

2015] or Kinetics [Carreira and Zisserman, 2017]. In this last contribution, we address

this issue by showing we can also learn the video representation from scratch with-

out relying on any manually annotated visual data. We propose a multiple-instance

learning loss (MIL-NCE), capable of learning a state-of-the-art video representation

from scratch using HowTo100M. We evaluate our learnt representations on several
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downstream tasks, namely, action recognition, action segmentation, text-video video

retrieval and action localization and show that our weakly-supervised representations

can outperform fully-supervised ones on many downstream tasks. We emphasize this

approach to be the first published method demonstrating improvements over fully

supervised state-of-the-art video representations while using no manual annotation.

1.5 Publications

This thesis is based on the following four publications:

∙ [Miech et al., 2017b]: Antoine Miech, Ivan Laptev and Josef Sivic. Learnable

pooling with Context Gating for video classification. In CVPRW YouTube-8M

workshop, 2017. (based on Chapter 3)

∙ [Miech et al., 2017a]: Antoine Miech, Jean-Baptiste Alayrac, Piotr Bojanowski,

Ivan Laptev and Josef Sivic. Learning From Video and Text via Large-Scale

Discriminative Clustering. In ICCV (Spotlight), 2017. (based on Chapter 4)

∙ [Miech et al., 2019b]: Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,

Makarand Tapaswi, Ivan Laptev and Josef Sivic. HowTo100M: Learning a

Text-Video Embedding by Watching Hundred Million Narrated Video Clips.

In ICCV, 2019. (based on Chapter 5)

∙ [Miech et al., 2020]: Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan

Laptev, Josef Sivic, Andrew Zisserman. End-to-End Learning of Visual Repre-

sentations from Uncurated Instructional Videos. In CVPR (Oral), 2020. (based

on Chapter 6)

Other work by the author not included in this thesis is described in the following

papers:

∙ [Miech et al., 2018]: Antoine Miech, Ivan Laptev and Josef Sivic. Learning

a Text-Video Embedding from Incomplete and Heterogeneous Data. arXiv

preprint arXiv:1804.02516, 2018.
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∙ [Miech et al., 2019a]: Antoine Miech, Ivan Laptev, Josef Sivic, Heng Wang,

Lorenzo Torresani and Du Tran. Leveraging the Present to Anticipate the

Future in Videos. In CVPR Precognition workshop, 2019.

1.5.1 The kaggle YouTube-8M challenge winning entry

The workshop publication [Miech et al., 2017b] is the report describing the winning

entry of the kaggle Google Cloud and YouTube-8M Video Understanding Challenge

(https://www.kaggle.com/c/youtube8m). The goal of this challenge was to cor-

rectly predict the visual tags of hundreds of thousands of YouTube videos by training

video models on the YouTube-8M dataset [Abu-El-Haija et al., 2016]. Our proposed

approach, described in Chapter 3 has been ranked first among 655 other participat-

ing teams 4. We open-sourced the Tensorflow code reproducing the winning entry at

https://github.com/antoine77340/Youtube-8M-WILLOW.

1.5.2 The HowTo100M dataset and web search demo

We have publicly release the HowTo100M dataset (https://www.di.ens.fr/willow/

research/howto100m/) with the publication of [Miech et al., 2019b] (Chapter 5). We

provide for downloading the collected speech transcripts as well as mirror links for

the 1.2 million videos (12 TB of data).

For demonstration purposes, we have also implemented a real-time and interactive

text-to-video search demo available on the HowTo100M project website. This demo

allows searching given an input text query, localized video clips from the full 15 years

of HowTo100M videos using a compressed version of the model described in Chapter 5.

The demo runs in real-time on a single CPU machine using the approximate similarity

search library FAISS 5.
4https://www.kaggle.com/c/youtube8m/leaderboard
5https://github.com/facebookresearch/faiss
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1.5.3 HowTo100M pretrained text-video model

We have publicly open-sourced the Tensorflow I3D6 as well the Tensorflow7 and the

PyTorch8 S3D HowTo100M pretrained text-video model using the MIL-NCE method

from the publication [Miech et al., 2020] (Chapter 6).

Moreover, a zero-shot YouCook2 [Zhou et al., 2018b] interactive web search demo

using the S3D based pretrained HowTo100M text-video model is publicly available

at https://www.di.ens.fr/willow/research/mil-nce/.

1.6 Manuscript outline

The thesis is organized into seven chapters, including this introduction.

The Chapter 2 is a literature review of work related to this thesis. The chapter is

divided into three main sections: (i) Video representation, (ii) Video and natural

language and finally (iii) Learning from readily available data in computer vision.

Chapter 3 presents details of our first contribution on learnable representations for

long-term video modeling using machine generated labels from the YouTube-8M

dataset [Abu-El-Haija et al., 2016], as summarized in section 1.4.1.

In Chapter 4, we describe the second contribution on scaling-up the training from

readily available movies scripts to improve actor and action recognition in movies, as

summarized in section 1.4.2.

In Chapter 5, we present the HowTo100M dataset with uncurated narrated instruc-

tional videos and demonstrate how we can use it to train a text-video embedding

model without manual annotation, as summarized in section 1.4.3.

6https://tfhub.dev/deepmind/mil-nce/i3d/1
7https://tfhub.dev/deepmind/mil-nce/s3d/1
8https://github.com/antoine77340/S3D_HowTo100M
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Chapter 6 describes details of our final contribution where we introduce the MIL-

NCE loss and demonstrate state-of-the-art video representations learned entirely on

the HowTo100M dataset as summarized in section 1.4.4

Finally, in Chapter 7, we summarize the thesis and outline perspectives on open prob-

lems and work.
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Chapter 2

Related work

In this chapter, we review the literature closely related to this thesis. The chapter is

divided into three main sections. We start first with foundational work related to the

visual representation of videos in section 2.1. Next, we study works at the interface

between video and natural language in section 2.2. Finally, this chapter ends with

a review of works that leverage large-scale readily available data for learning visual

models 2.3.

2.1 Video representations

Video representations (or descriptors) aim at encoding a raw video input into a com-

pact code, rich of visual semantics. It is thus fundamental and necessary to consider

an efficient video descriptor for its understanding. In particular, it should be made

easy to decode basic information such as: what objects can be seen, where the video

takes place, how many people there are, or what a person is doing in the video. We

will review in this section, work related to the design or the learning of efficient video

representations for video understanding.
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2.1.1 Image representations

Before diving into the specific topic of video representation, it is first important to

briefly review the key literature in the image domain as many of these works have

influenced or have been extended to the video domain.

More than a decade ago, the most popular and efficient image representation tech-

niques were based on hand-crafted descriptors. For example, [Lowe, 1999] proposed

the highly known Scale Invariant Feature Transform (SIFT). The method, initially

proposed for matching points between objects from different views, detects salient

keypoints from an image and extracts scale invariant descriptors from these points.

[Dalal and Triggs, 2005] proposed the Histogram of Oriented Gradient (HOG) by

computing the gradient of images divided into grids and encoding each grid with

histograms of the orientation of the gradients.

A major breakthrough in image recognition was made in 2012, when a convo-

lutional neural network (CNN) [Krizhevsky et al., 2012] achieved first place at the

ILSVRC-2012 challenge based on the ImageNet dataset [Russakovsky et al., 2015],

outperforming all hand-crafted image representations for the first time. Instead of

hand-crafting the image representation, the goal of such an approach is instead to

learn in a supervised manner, a good image representation for recognition. This key

contribution lead to many other improvements in CNNs [Simonyan and Zisserman,

2015; He et al., 2016] that kept improving the recognition accuracy on the ImageNet

dataset. After 2012, CNNs quickly became the standard in image representations and

we will see next that it also enabled similar breakthroughs in the video domain.

2.1.2 Action recognition as a benchmark for video models

In the video domain, the task of human action recognition quickly became the de

facto standard for evaluating video representations. In fact, to recognize complex

human action in videos, it is often required to understand the content of the images,

frame by frame, to identify for example: where the video takes place or what object

a person is interacting with. But more importantly, it is crucial to also model the
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Figure 2-1: Manually annotated action recognition dataset number of videos through
years.

temporal dynamic required to distinguish an action Opening a door from an action

Closing a door, or to distinguish an action Jogging from an action Sprinting. Next,

we briefly review in chronological order, the main action recognition datasets used

for evaluating video representations and how each one of them has influenced the

current datasets. The Figure 2-1 summarizes via a plot, the growing size of the main

manually annotated action recognition datasets over time.

Action recognition datasets. The early days action recognition video datasets

were small, with a limited diversity of action classes. The KTH [Schüldt et al., 2004]

dataset is a manually recorded set of 2391 videos annotated with 6 simple action

classes: walking, jogging, running, boxing, hand waving and hand clapping. The

Hollywood [Laptev et al., 2008] dataset focused on human actions from Hollywood

movies. It leveraged for the first time movie scripts to mine action descriptions as
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opposed to manually recorded videos. The dataset contains 687 videos annotated

with 8 action classes. It was later on extended to Hollywood2 [Marszalek et al., 2009]

with 12 classes and 1694 annotated videos. The YouTube action dataset [Liu et al.,

2009] was the first action recognition video dataset collected from a public video

sharing platform of 1600 videos with 11 action labels. These videos introduced novel

challenges in video understanding such as severe camera motions, inconsistent video

quality across the dataset, or user edited videos.

The HMDB-51 [Kuehne et al., 2011] is a collection of movie clips uploaded to

YouTube. It both significantly increased the number of annotated videos to 6766 as

well as the number of action classes to a diverse set of 51 actions. One year later

was published another larger-scale video dataset, UCF-101 [Soomro et al., 2012], also

collected from YouTube, which doubled the size of annotated videos and action classes

of HMDB-51. These two datasets are still as of today, one of the most popular action

recognition benchmarks.

In 2014, the Sports-1M [Karpathy et al., 2014b] dataset significantly outsized

UCF-101 by reaching the symbolic number of 1 million of sports videos from YouTube,

as well as increasing the number of action classes to 487. This significantly larger-scale

dataset was motivated by the recent adoption of CNN models and their need for even

more training data compared to prior traditional computer vision models. To scale-up

the annotation, they were the first to automatically generate labels from metadata

which are not as reliable as labels annotated manually. Another downside of the

dataset is that the action classes are not fine-grained as they represent sports rather

than atomic actions. In many cases, there is no need to model temporal dynamics

from these videos as one frame can be enough to predict the sport class.

In 2016, the ActivityNet-200 dataset [Caba Heilbron et al., 2015] was published.

It contains more than 28k videos and 200 action classes. One key feature about the

provided annotations is the precise start and end time information for each annotated

action sample, which can be used for action localization. This benchmark became

popular due to its yearly challenge in action recognition and localization 1.
1http://activity-net.org/challenges/2020/index.html
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Many of these datasets are focused on actions that are interesting enough so they

can be easily collected from video sharing platforms or frequently occur in movies.

[Sigurdsson et al., 2016a] argue that in many practical applications of computer vision,

it is useful to also recognize boring actions: i.e. daily actions representing our everyday

lives such as Opening a refrigerator or Drinking from a cup. However, such actions

are more challenging to mine from movies or video-sharing platforms as they are

ordinary. To address this issue, they collected Charades [Sigurdsson et al., 2016a],

a dataset of 9848 videos with 157 classes, collected by instructing people to record

themselves performing an ordinary action. Later, [Fouhey et al., 2018] propose to

mine such daily activities from Lifestyle VLOGs, which can be found at scale on

social media platforms.

Next, in 2017 was published the Kinetics-400 [Carreira and Zisserman, 2017]

dataset, which quickly became as of today, the most popular benchmark in action

recognition and video representation learning due to its size, label diversity and qual-

ity of annotations. The dataset consists of more than 300k short 10 seconds video

clips annotated with 400 different action labels, making it the largest manually an-

notated video dataset. It was then extended in 2018 to Kinetics-600 [Carreira et al.,

2018] (500k videos, 600 classes) and more recently in 2019 to Kinetics-700 [Carreira

et al., 2019] (650k videos, 700 classes).

Another very popular dataset in modern action recognition is the Atomic Visual

Actions (AVA) dataset [Gu et al., 2018], a collection of movie clips publicly available

on YouTube and annotated with 80 atomic actions. The dataset is commonly used

for benchmarking video representations that require spatio-temporal localization of

actions as each of them is delimited with a spatio-temporal bounding box.

For many of these datasets, a significant number of actions can be recognized from

a single frame. Such actions can often be discriminated by recognizing the context

from objects or surroundings. For instance, someone holding a bow is very likely

to do archery or someone in a swimming pool is likely to be swimming. In these

examples, image recognition models work fine and no model of the temporal dynamic

of the frames is required. To put more emphasis on the temporal aspect of videos,
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Figure 2-2: Number of action labels in manually annotated action recognition datasets
through years.

[Goyal et al., 2017] published the Something-Something dataset, a large-scale dataset

of 108k crowdsourced videos with 174 annotated actions. Each action from this

dataset is specifically chosen to be impossible to recognize from one single image and

instead require to understand the temporal dynamics of the video. Such challenging

actions include: Putting something on a surface, Stuffing something into something

or Pretending to spread air onto something. The dataset was later extended to a total

of 220k videos.

All of these action recognition datasets are mainly third-person view recorded

videos, which is problematic for mixed-reality or augmented-reality applications where

the input videos have typically the first-person view. [Damen et al., 2018] introduced

the EPIC-KITCHENS dataset, the largest published ego-centric action recognition

dataset with roughly 40k annotated video clips. Moreover, as opposed to many action
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recognition datasets, the notion of the action label is defined as a composition of a

verb (e.g. Cut, Open or Wash) plus a noun (e.g. Carrot, Cup or Fridge). With

a taxonomy of 125 verbs and 331 nouns, the theoretical number of possible action

labels in EPIC-KITCHENS is 125 × 331 = 41375, which exceeds by far the number

of action labels from prior non-compositional action recognition datasets. This is

valuable as the growth of the number of action labels from these non-compositional

action recognition dataset saturates to a number below 1000 labels, as shown in

Figure 2-2.

In this thesis, we instead focus on supervising video models with natural language

as opposed to simple labels. It can be considered as an approach to address the label

diversity limitation we are currently witnessing in categorized video datasets.

Next, we review work related to short-term (i.e. a few seconds) video representa-

tions that were mainly benchmarked on these action recognition datasets.

2.1.3 Short-term video representations

Identically to image representation approaches, the main methods for short-term

video representation can be separated into two distinct categories: the hand-crafted

video representations and the learned video representations, which rely on deep con-

volutional neural networks.

Hand-crafted descriptors. The first short-term video representation methods

were exclusively hand-crafted local video features. [Laptev and Lindeberg, 2003]

introduced the space-time interest point (STIP) descriptors, which aims at detecting

local structures in space and time where image frames have significant local varia-

tions. Local spatio-temporal and scale-invariant descriptors are then extracted from

these interest points to represent the video. Later, [Laptev et al., 2008] extended

the STIP by dividing the video input into different spatio-temporal grids and com-

puting bag-of-features representation of histogram of oriented gradient (HOG) and

histogram of optical flow (HOF) features inside each bin. The method outperformed

21



the prior state-of-the-art action recognition models on KTH [Schüldt et al., 2004] by

a significant margin.

[Wang et al., 2011] introduced a novel video description method based on dense

trajectories (DT). They proposed an efficient approach for densely sampling points

within a video and tracking them using the optical flow fields. Additionally to the

HOF and HOG local descriptors, [Wang et al., 2011] also proposed to extract motion

boundary histograms (MBH) features along these trajectories to represent videos in a

manner less sensitive to camera motion. Dense trajectories outperformed prior state-

of-the-art on Hollywood2 [Marszalek et al., 2009] and the YouTube action [Liu et al.,

2009] datasets by a large margin.

[Wang and Schmid, 2013] improved the dense trajectories by proposing a method

to efficiently filter out the trajectories induced by camera motion. The improved dense

trajectories were thus more effective at capturing human motion rather than noisy

camera motion and demonstrated state-of-the-art-results on the HMDB-51 [Kuehne

et al., 2011] dataset. This video representation is, as of today, the best hand-crafted

video representation for action recognition and can, in some cases, still compete with

convolutional neural network based video representations we review next.

Representations based on convolutional neural networks. As opposed to

hand-crafted video features, the philosophy behind convolutional neural network

based approaches is to learn the representation while still hand-crafting a particu-

lar convolutional neural network architecture. These CNN based methods quickly

emerged after the breakthrough by CNNs in image recognition.

[Karpathy et al., 2014b] explored the use of 2D CNNs for sports video classification

on their large-scale Sports-1M dataset. They study how to leverage image CNN

architectures to model the temporal dimension in videos with Early Fusion, Late

Fusion and Slow Fusion approaches. The study, however, did not conclude with an

approach capable of efficiently leveraging the temporal information to get a better

classification accuracy.

Thus, to model motion between subsequent frames, [Simonyan and Zisserman,
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2014] proposed a two-stream approach. In this method, the first branch (the appear-

ance branch) consists of a 2D CNN operating on an RGB stream while the second

branch (the motion branch) consists of another 2D CNN operating on a two channels

optical flow stream representing the motion between two subsequent frames. The

proposed method reported significant improvements by combining the appearance

branch with the motion branch. Two-stream approaches were further studied and

improved in [Feichtenhofer et al., 2017; Wang et al., 2016a].

Another popular alternative to better model spatio-temporal patterns with CNNs

is to instead replace 2D spatial convolutions by 3D spatio-temporal convolutions

blocks as proposed by [Baccouche et al., 2011; Ji et al., 2013] for the task of human

action recognition. However, [Baccouche et al., 2011] only experimented on the small

KTH dataset [Schüldt et al., 2004] while [Ji et al., 2013] relied on multiple pre-

processing steps such as running a human detector and a head tracking system to

segment humans in videos. Later, [Tran et al., 2015] demonstrated the use of 3D

CNNs in a larger-scale setup by training on UCF-101 [Soomro et al., 2012] and without

using any preprocessing of the video frames. Moreover, this study has shown that as

opposed to hand-crafted features, it is possible to learn a compact and strong video

representation with convolutional neural networks as they reported a 52, 8% top-1

accuracy on UCF-101 with a video representation of only 10 dimensions. [Varol et al.,

2017] study the benefits of using 3D CNNs for representing longer videos, i.e. 100

frames instead of only 16 frames. [Carreira and Zisserman, 2017] propose to inflate

2D convolution kernels from a CNN pretrained on images to 3D convolution kernels as

initialization for training 3D CNNs. They demonstrate the benefit of doing so even

in the large-scale training regime on the Kinetics dataset. Interestingly, [Carreira

and Zisserman, 2017; Varol et al., 2017] also shows that although 3D convolutions

are theoretically able to model motion between subsequent frames, adding a motion

stream based on optical flow input yields further improvements. This suggests that

vanilla 3D CNNs architectures might be over parametrized or not constrained enough

for learning motion patterns.

Instead of using vanilla 3D convolutions to capture spatio-temporal patterns, [Qiu

23



et al., 2017; Tran et al., 2018; Xie et al., 2018] study CNN architectures that factor

out a 3D convolution as a separated 2D convolution for capturing spatial features

and a 1D convolution for encoding the temporal features. More specifically, [Qiu

et al., 2017] explore how to combine the 2D and 1D convolutions and [Tran et al.,

2018; Xie et al., 2018] study at which layer decomposing the 3D convolutions is the

most effective. They show that decomposing 3D convolutions as 2D and 1D sepa-

rated convolutions leads to better performance while also reducing the complexity

of the models. [Feichtenhofer et al., 2019] also use such decomposition in their pro-

posed SlowFast neural network. In this approach, the network is composed of a fast

pathway that processes the video at a high frame rate while a second slow pathway

processes the video input at a low frame rate but at a higher spatial resolution. The

motivation is that the fast pathway can better focus on short and subtle motion

patterns while the slow pathway is rather dedicated to the global appearance of the

video. [Chen et al., 2019] propose OctConv, which aims at separating 3D vanilla

convolutions by high-frequency and low-frequency 3D convolutions. They show that

this decomposition allows reducing the time complexity of 3D CNNs while also im-

proving their performance on the Kinetics dataset. More recently, [Lin et al., 2019]

proposed TSM, a method that replaces 3D convolutions by a temporal shifting of in-

put channels before applying 2D convolutions. The temporal shifting of the channels

followed by a 2D convolution has a similar effect to 3D convolutions but is compu-

tationally cheaper than conventional 3D convolutions. On top of that, the authors

show that their proposed approach achieves state-of-the-art results on the challenging

Something-Something dataset [Goyal et al., 2017], which demonstrates that TSM is

moreover efficient at capturing temporal patterns.

Another alternative to decrease the size of video models and their complexity

while improving the accuracy is to replace the standard dense 3D convolutions with

cheaper group convolutions [Hara et al., 2018] or depth-wise convolutions [Tran et al.,

2019; Feichtenhofer, 2020]. These latest video architectures are currently achieving

state-of-the-art results on many challenging action recognition benchmarks such as

AVA or Kinetics.
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All of the reviewed video representations are short-term representations for video

inputs in the order of a few seconds. However, in many cases, it is required to consider

long-term reasoning for minute-long videos for recognizing more elaborated events or

actions. Next, we review longer-term video representation methods.

2.1.4 Longer-term video representations

Designing video representations that go beyond a few seconds is critical for a wide

range of applications. For example, only watching a few seconds of a cooking video

might not be sufficient to understand what is being cooked or which ingredients are

needed to prepare the meal. In action anticipation, it is often crucial to accumulate a

long video input of the present to better anticipate what is going to happen next [Sun

et al., 2019a; Miech et al., 2019a]. It is also critical to design long-term video repre-

sentations for video summarization where the goal is to output the set of main labels

from minute-long videos [Abu-El-Haija et al., 2016].

In all cases, these long-term video representations model a hierarchical tempo-

ral structure. First, short-term video representations are extracted throughout the

video to capture temporally low-level semantics. Then follows the aggregation of

these short-term representations to form a single representation capturing high-level

semantic cues for the whole video.

The simplest form of aggregation is the average or maximum pooling of video

features [Wang et al., 2016a] over time. The average and maximum pool quickly

becomes sub-optimal when considering long videos with a large number of short-term

video representations to aggregate. To overcome this issue, several non-differentiable

methods for aggregating vectors over time rely on a codebook usually learnt with

unsupervised clustering algorithms. Each feature of the video is encoded using this

learnt codebook to form the video level representation. These methods include bag-

of-visual-words [Csurka et al., 2004; Sivic and Zisserman, 2003], Vector of Locally

aggregated Descriptors (VLAD) [Jegou et al., 2010] or Fisher Vectors (FV) [Perronnin

and Dance, 2007]. They have been extensively used for aggregating hand-crafted local

video descriptors [Laptev et al., 2008; Marszalek et al., 2009; Wang et al., 2011; Wang
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and Schmid, 2013]. These methods, however, have the following two main limitations.

First, they are non-differentiable, which makes it difficult to include them in end-to-

end trainable neural architectures. Second, they are orderless aggregation methods,

which do not model the sequential order of the features.

To address the first issue, [Arandjelović et al., 2016; Peng et al., 2014a; Girdhar

et al., 2017] explore the use of a differentiable approach for VLAD while [Peng et al.,

2014b] study the use of a differentiable FV encoding for action recognition.

To model the sequential nature of videos, many works [Donahue et al., 2014;

Ibrahim et al., 2016; Lev et al., 2016; Yue-Hei Ng et al., 2015] rely on the use of recur-

rent neural networks (RNN), such as Long Short-Term Memory (LSTM) [Hochreiter

and Schmidhuber, 1997] or Gated Reccurent Units (GRU) [Cho et al., 2014], which

allows modeling sequential patterns as well as an implicit memory. In detail, [Lev

et al., 2016] combine the concept of RNN with Fisher Vectors for video feature ag-

gregation. Instead of using RNNs, [Basura et al., 2015] proposed the rank pooling

approach, which consists of modeling the evolution of video frames by learning a lin-

ear ranking function for ordering frames for all action classes. More recently, [Hussein

et al., 2019] proposed the Timeception module, which consists of many lightweight

3D convolutional blocks for aggregating the video features spatio-temporally.

For long videos, it is critical to have an aggregation method capable of encoding

all the relevant video descriptors without losing too much information over time. To

address this issue, [Wu et al., 2019] introduce the concept of a long-term feature bank

that acts as a non-differentiable memory. The feature bank aims at storing relevant

video descriptors over time. [Korbar et al., 2019] instead propose to learn a short

video clip sampler capable of detecting the salient moments of long videos. Then it

only uses a sparse amount of these salients clips for classification.

The first contribution of the thesis, in Chapter 3, is closely related to long-term

video representations where we propose an efficient and differentiable approach for

video descriptor aggregation for minute-long videos from the YouTube-8M dataset [Abu-

El-Haija et al., 2016].

Next, we review works related to joint modeling of video and language.
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Figure 2-3: The task of video captioning (left part) is to generate a global descriptive
caption given an input video. On the other hand, the task of image captioning (middle
part) is to generate a descriptive caption for a single image frame. Finally, the task of
dense video captioning (right part) is to temporally localize events of interest within
a given input video and generate a descriptive caption for each localized event. This
illustration was taken from [Aafaq et al., 2019].

2.2 Video and Language

In this section, we review the wide variety of research topics at the interface be-

tween video and natural language modeling. We start first with video captioning in

section 2.2.1, one of the most popular tasks in the field. Follows the task of video

and text retrieval in section 2.2.2. Finally, we review video and text alignment in sec-

tion 2.2.3, visual grounding for machine translation in section 2.2.3 and video question

answering in section 2.2.5.

2.2.1 Video captioning

Video captioning is one typical and popular sub-field of the joint modeling of video

and natural language. Given an input video, the task of video captioning is to generate

grammatically correct sentences describing the content of the input video. The very

left part of Figure 2-3 illustrates an example of video captioning. One practical

application of video captioning is for helping visually impaired people to understand

the visual content of videos.

Most of the very first and successful works on visual captioning are in the im-
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age domain (See Figure 2-3 for an illustration of image captioning). Many of these

works [Chen and Zitnick, 2014; Donahue et al., 2014; Vinyals et al., 2015; You et al.,

2016] use the combination of a CNN encoder for the image and a RNN for encoding

and decoding sentences while others [Ordonez et al., 2011; Fang et al., 2015; Lebret

et al., 2015] use non RNN based language models instead. More recently, [Lu et al.,

2019a] instead leveraged a transformer [Vaswani et al., 2017] based language model

for captioning.

[Johnson et al., 2016] proposed the task of dense captioning, which is to generate

bounding boxes around regions of interests of an image and to generate a caption for

each bounding box. A large majority of these works rely on a few manually annotated

image description datasets such as COCO [Lin et al., 2014], Flickr 8K [Hodosh et al.,

2013], Flickr 30K [Young et al., 2014] or Visual Genome [Krishna et al., 2016] well

suited for dense captioning.

The evaluation of such models either relies on automated evaluation or human

evaluation. However, performing human evaluations on thousands of generated sen-

tences is burdensome as it takes times and is costly, so many works only rely on auto-

mated evaluation using metrics such as BLEU [Papineni et al., 2002], ROUGE [Lin,

2004], METEOR [Banerjee and Lavie, 2005] or CIDEr [Vedantam et al., 2015].

Visual captioning models in the video domain are very similar to their image

counterparts. Many of these approaches also use CNNs to encode the video frames

and RNNs to encode and decode sentences [Pan et al., 2016a; Yu et al., 2016a, 2017b;

Wang et al., 2018c]. Slightly different from video captioning, [Zeng et al., 2016] instead

propose to only summarize videos with their most salient moment. [Krishna et al.,

2017; Shen et al., 2017] focus on the task of dense video captioning where the goal is

to localize temporal events of interest and generate a caption for each localized event.

More recently, [Zhou et al., 2018c] leveraged a transformer based [Vaswani et al.,

2017] language model for dense video captioning. An illustration of dense video

captioning can be found in the right part of Figure 2-3. While all of these works rely

on supervised learning for training the video captioning model, [Wang et al., 2018b]

instead propose to use a reinforcement learning framework for training such models.
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The advantage of reinforcement learning is that the models can be trained to optimize

the non-differentiable metrics often used when evaluating captioning models instead

of maximizing the log-likelihood. Similarly to their image work counterpart, a large

majority of these works rely on manually annotated video description datasets such as:

MSR-VTT [Xu et al., 2016], MSVD [Chen and Dolan, 2011], YouCook2 [Zhou et al.,

2018b] and more recently VATEX [Wang et al., 2019b], which are all YouTube based

datasets. [Krishna et al., 2017] also introduced the ActivityNet Captions dataset,

which is specifically dedicated to the task of dense video captioning. For more details

about video captioning datasets, approaches and evaluation metrics, we invite the

reader to check this thorough survey paper [Aafaq et al., 2019].

As described in [Aafaq et al., 2019], automatic evaluation of captioning models is

challenging as the models are usually evaluated on how close the generated caption

is similar to a groundtruth one or a set of groundtruth captions. However, in many

cases, captions that are not part of the groundtruth of a video can also be possible

and the usual BLEU, ROUGE, METEOR or CIDEr metrics would fail to measure

that. Because evaluating video captioning models is highly subjective to the collected

groundtruth, in this thesis, we instead focus our work on the task of text-video re-

trieval, which can be evaluated in a more objective manner. We review next, works

related to text-video retrieval.

2.2.2 Text-Video retrieval

The task of text-video retrieval, often named as the task of text-to-video retrieval, is

to retrieve the most relevant video from a large pool of unseen testing videos given

an input query in the form of natural language. One of the most popular and natural

practical application of retrieval is in video search engines, as illustrated in Figure 2-

4. The goal is to enable people to quickly find a video given a short description of

it. In this thesis, we have implemented different video search engine demos such as

the HowTo100M search engine 2 as the result of Chapter 5 and the YouCook2 search
2https://www.di.ens.fr/willow/research/howto100m/
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Someone eats an apple

Database of testing videos

Input text query

Top retrieved videos

Top 1 Top 2 Top 3

Figure 2-4: The task of text to video retrieval is to retrieve the top videos from a
database given an input text query.

engine 3 as the result of Chapter 6.

A large majority of text and visual retrieval approaches [Chowdhury et al., 2018;

Dong et al., 2019; Gong et al., 2014a,b; Mithun et al., 2018; Pan et al., 2016b; Xu

et al., 2015a; Wang et al., 2018a, 2016b; Wu et al., 2017; Liu et al., 2019] aim at

learning a joint text and visual embedding space where visual and textual inputs are

close in that space if and only if they are semantically similar. Overall, many neural

network based approaches use a bi-directional max-margin ranking loss [Karpathy

et al., 2014a] while non neural network based approaches tend to rely on a Canonical

Correlation Analysis (CCA) [Hotelling, 1992] training objective. Instead of learning

a joint text-video embedding, [Yu et al., 2018] propose an early fusion approach of

all video frames to all words by constructing a spatio-temporal correlation tensor of

the video with the input sentence. This tensor is then used to compute the overall

similarity scores between the video and the textual description.

One clear advantage of the text-video retrieval task over video captioning is that
3https://www.di.ens.fr/willow/research/mil-nce/
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the retrieval evaluation metrics are less subjective than the captioning ones. In fact,

the retrieval metrics measure the rank of the retrieved results of each input query. A

good retrieval method would minimize the rank of each retrieved result. It is a more

objective metric than the ones used in video captioning which are highly sensitive to

the groundtruth descriptions. For example, a captioning model would be penalized

when generating the caption A man gets in a vehicle if the groundtruth caption

is A man enters a car. While the two sentences have several words in difference,

they, however, share the same semantic and current captioning metrics fail to take

into account that different sentences can have the same meaning.

A sub-field of text-to-video retrieval instead consists of retrieving and localizing

a moment in a long video given an input text query. For that purpose, [Hendricks

et al., 2017] introduced the DiDeMo dataset with precise temporal annotations of the

events, additionally to the existing ActivityNet Captions [Krishna et al., 2017] and

the Charades-STA [Gao et al., 2017] datasets. The retrieval localization method was

then significantly improved in [Zhang et al., 2019] with the idea of an iterative graph

adjustment network for the localization of moments. Differently to [Hendricks et al.,

2017; Zhang et al., 2019], [Mithun et al., 2019] propose an approach for moment

retrieval in a weakly-supervised setup, where no localization annotation is used at

training. DiDeMo was later extended in [Hendricks et al., 2018] with input queries

that aim at measuring the temporal compositionality of events. For instance, a query

from this dataset looks like Someone is clapping after standing up instead of Someone

is clapping.

All of these works have in common training on manually annotated video de-

scription datasets. In this thesis, we instead focus on learning such joint text-video

embeddings from readily available and uncurated data in Chapter 5 and Chapter 6.

2.2.3 Text and Video alignment

Another useful task in video and text, similar to the video moment retrieval task,

consists of aligning videos with natural language data. It is useful when a long

video comes with an unaligned description of it and one wishes to synchronize the
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Common 
Visual Ground

-visual loss -visual loss

"...squeeze the orange..." "...peindre en orange..."

Figure 2-5: The visual world can be used as a common ground for different languages
without requiring manual annotation. This illustration was taken from [Sigurdsson
et al., 2020].

video with its description. For example, [Plummer et al., 2017] propose to perform

video summarization by aligning the salient moments of a video to an input textual

description.

Video and language alignment is particularly well studied in the domain of cooking

videos [Bojanowski et al., 2015] and more generally in instructional videos [Alayrac

et al., 2016; Huang et al., 2016; Richard et al., 2017] where the goal is to align step

by step instructions to their corresponding moments in the video.

Other works have studied the alignment of movie screenplays to movies [Cour

et al., 2008; Laptev et al., 2008]. [Tapaswi et al., 2015] instead address the problem

of aligning movies with extracts from their book version.

In this thesis, Chapter 4 reuses the work of [Laptev et al., 2008] to align movies

scripts to the video for action and person recognition while Chapter 6 aims at ad-

dressing the temporal misalignment between instructional videos and their narration

transcripts for learning video representations.

2.2.4 Visual grounding for translation

A recent and emergent field in jointly modeling video and natural language is for

machine translation. One issue in machine translation is that many translation ap-

proaches rely on a huge amount of training examples of paired multilingual sentences.
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What is the woman doing ?

VQA model She is making
a table

Question

Answer

Figure 2-6: The task of video question answering is to answer a question about the
content of the input video.

This is not such a problem for paired high-resource languages such as English and

French, but it becomes quickly problematic for low-resource languages such as Tamil

or Urdu. One way to address this issue is by grounding in the visual world to bridge

the gap between different languages, as illustrated in Figure 2-5.

In that direction, [Wang et al., 2019b] proposed the VATEX dataset, which is video

captioning dataset with both English and Chinese descriptions of videos. [Sanabria

et al., 2018] instead propose to leverage English narration from instructional videos

and a translation of these narrations to Portuguese in their How2 video dataset. These

two works, unfortunately, rely on manually annotated data hard to get at scale as

they either require collecting video descriptions in multiple languages or translating

sentences. To address this issue, [Sigurdsson et al., 2020] propose to collect the

HowTo-World dataset, an extension of our HowTo100M dataset from Chapter 5 with

English, French, Korean and Japanese narrated videos. The method thus does not rely

on any manually annotated data and can scale to millions of training examples from

different languages. In particular, [Sigurdsson et al., 2020] propose to improve word

translation by leveraging the Text-Video retrieval-based approach from Chapter 6

and they show improvement in unsupervised word translation compared to language-

based only methods. Figure 2-5 illustrates the proposed approach.
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2.2.5 Video question answering

Another task which involves natural language in video understanding is Video Ques-

tion Answering (VQA). VQA consists of watching a video and answering a question

about its content, as illustrated in Figure 2-6. VQA can be especially useful for

helping visually impaired people to better understand the content of a video through

questions and answers. Most of the initial and influential works in free-form and

open-ended visual question answering are in the image domain [Antol et al., 2015;

Malinowski and Fritz, 2014; Malinowski et al., 2015; Fukui et al., 2016; Zhu et al.,

2016] with manually annotated image question-answering datasets such as COCO-

QA [Lin et al., 2014], DAQUAR [Malinowski and Fritz, 2014], Visual7W [Zhu et al.,

2016] or VQA [Antol et al., 2015].

In contrast to image question answering, less work has explored question answering

for videos, notably because there are fewer existing benchmarks in video. For example,

[Tapaswi et al., 2016] propose the MovieQA dataset, a collection of movies with

the corresponding plot, subtitles, scripts and a set of questions with multiple choice

answers. This benchmark focuses on the global understanding of the plot of the movies

rather than what is visually seen. Thus the scripts and subtitles often play a more

important role than the video. In contrast to MovieQA, [Lei et al., 2018] propose the

TVQA dataset a TV shows based dataset which instead focuses on the understanding

of the visual content rather than the plot. The most popular and largest video

question answering dataset is TGIF-QA dataset [Jang et al., 2017] which is composed

of short 71k GIFs instead of videos. The dataset has five different benchmarks to

assess different video understanding capabilities: the counting task, the repeated

action task (i.e. how many time an action is repeated), the state transition task

(e.g. What does the bear do after sitting ? Stand) and the open-ended FrameQA task

where most questions can be answered by only looking at a single frame.

To address the lack of video datasets for question answering, [Zeng et al., 2017; Xu

et al., 2017] propose to generate questions and answers for videos already annotated

with textual descriptions. They leverage question generation models based on textual
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description only [Heilman and Smith, 2010] to generate questions and answers for each

video. In particular, [Xu et al., 2017] apply their method on the MSR-VTT [Xu et al.,

2016] and the MSVD [Chen and Dolan, 2011] video description datasets to generate

their video question answering counterparts: MSR-VTT-QA and MSVD-QA 4.

Most of the methods in image or video question answering follow a similar ap-

proach [Malinowski and Fritz, 2014; Zhu et al., 2016; Antol et al., 2015; Fukui et al.,

2016], which consists of encoding the visual data with a CNN and the question with

an RNN. Then the encoded image and questions are fused to form a single represen-

tation that is later on used to perform a classification over the set of most frequent

answers or by generating the answer word by word. [Hu et al., 2018] instead, propose

an approach similar to retrieval where the inputs (𝑣𝑖𝑑𝑒𝑜, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛) and the 𝑎𝑛𝑠𝑤𝑒𝑟

are embedded into a joint space.

In this thesis, we do not tackle the task of video question answering but we propose

approaches that share many similarities in the way video and language representa-

tions are combined.

We have seen through this related work section the wide range of tasks involv-

ing video and natural language and all of the useful practical applications. Notably,

leveraging natural language enables to incorporate more semantically nuanced super-

vision than simple categories. However, one drawback of the reviewed approaches is

that they mostly rely on few manually annotated videos with annotation in the form

of natural language. This is problematic as annotating videos with natural language

is cumbersome and thus few publicly available and large-scale annotated videos with

natural language exist. As an illustration, Figure 2-7 shows the size of video datasets

with annotation in the form of natural language compared to video action recognition

datasets with simple labels as annotation. The figure clearly illustrates that the scale

of the video datasets with natural language annotations is overall significantly smaller

than their counterpart with label annotations. To address this issue, one alternative

to the annotation of video with natural language is to leverage readily available data
4https://github.com/xudejing/video-question-answering
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Figure 2-7: A summary of manually curated video dataset sizes through years. The
blue points represent video datasets with class labels while the orange points represent
video datasets with annotation in the form of natural language descriptions.

instead. Next, we review works exploiting readily available data for the supervision

of video models and the challenges implied with these weaker annotations.

2.3 Learning from readily available data

We review here, works that have considered using readily available data instead of

manually annotated data for the supervision of visual models.

2.3.1 Self-supervised learning

Self-supervised learning consists of using the data itself for supervision through a

pretext task. It is thus the simplest form using readily available data for supervi-
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sion. Recent work in the image domain has demonstrated great improvements over

fully-supervised approaches in the learning of visual representations using contrastive

learning [He et al., 2019; Chen et al., 2020]. In the video domain, many other works

have considered self-supervised learning using only the video as supervision [Lee et al.,

2017; Misra et al., 2016; Tian et al., 2019; Xu et al., 2019; Jing and Tian, 2018; Han

et al., 2019] but none of them have reported equivalent successes to the image domain.

Instead, the top performing self-supervised video representation approaches also ex-

ploit the available audio data through the tasks of video to audio matching [Arand-

jelović and Zisserman, 2017; Alwassel et al., 2019] or synchronization [Korbar et al.,

2018; Piergiovanni et al., 2020].

In this thesis, we propose an approach similar to self-supervised learning in Chap-

ter 6. We learn a video representation from narrated videos through the pretext task

of matching videos to speech transcripts instead. While this is not exactly a self-

supervised approach as the method relies on a speech recognition model trained on

manually annotated speech data, our pretext task shows a valuable benefit. In fact,

our pretext task is not only useful for learning a visual representation but also for

learning a joint text-video representation without manual annotation. This is valu-

able as all the self-supervised visual approaches eventually require a few manually

annotated data for target downstream tasks such as classification or detection while

our method can be used out of the box without manual annotation on downstream

tasks such as text-video retrieval or classification. We will next review work also using

readily-available speech for supervising video models.

2.3.2 Learning from speech

Many works have explored using available speech from videos as a supervision signal.

This has become recently possible thanks to recent significant advances in automatic

speech recognition [Wang et al., 2020; Synnaeve et al., 2019].

A large majority of these works focus on narrated instructional videos [Alayrac

et al., 2016; Sener et al., 2015; Malmaud et al., 2015; Sanabria et al., 2018; Yu et al.,

2014; Sun et al., 2019b]. In fact, in these videos, the narration tends to describe what

37



Figure 2-8: An illustration of an instructional video with its narration transcript.

is visually seen on the video for demonstration purposes as illustrated in Figure 2-8.

There is thus a strong correlation between the narration and the video, which can be

leveraged for supervising visual models.

For example, [Alayrac et al., 2016; Sener et al., 2015] leverage the narration of

such videos to automatically discover and localize the key steps of a given a task. [Yu

et al., 2014] propose to harvest action examples using narrations for action recognition.

[Sanabria et al., 2018] propose to tackle the task of machine translation and video

summarization. In particular, [Malmaud et al., 2015] focuses on cooking instructional

videos and propose to learn a model to align cooking recipes to their corresponding

instructional videos. [Sun et al., 2019b] also focuses on cooking videos and propose

VideoBERT: a joint model for video and language. They use a large number of videos

with narrations for pre-training their cross-modal Transformer [Vaswani et al., 2017].

One issue with these prior works is: either the dataset only contains cooking

videos [Malmaud et al., 2015; Sun et al., 2019b], is small [Alayrac et al., 2016; Sener

et al., 2015; Yu et al., 2014; Sanabria et al., 2018] or not publicly available [Sun et al.,

2019b]. We address this issue in Chapter 5 by introducing the HowTo100M dataset, a
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large-scale collection of 1.2M of uncurated narrated instructional videos from a wide

range of more than 23k different activities. We showed we can use HowTo100M to

learn a text-video embedding in Chapter 5 and a state-of-the-art video representation

in Chapter 6. HowTo100M was later extended to HowTo-World in [Sigurdsson et al.,

2020], a collection also containing narrated videos in French, Japanese and Korean

for the purpose of unsupervised machine translation through visual grounding.

Apart from instructional videos, [Chen et al., 2017a] use speech from documen-

taries to automatically obtain object labels. They focus on learning an object detector

from a dataset containing 9 documentary movies. And more recently, [Nagrani et al.,

2020] exploit the speech from a large-scale amount of 288K movies to mine action

examples for simple classes such as running, kissing or dancing. We will see next that

movies and TV series are also a great source of readily available annotation in the

form of natural language.

2.3.3 Movie scripts, subtitles and DVS

Movie scripts or screenplays are also a great source of readily available 5 annotations

in the form of natural language. They aim at describing precisely how the scenes

should look like before shooting them. They are thus perfectly suited for supervising

visual models as illustrated in Figure 2-9. One of the earlier works [Laptev et al., 2008]

leveraged movie scripts as a way to mine action clips from Hollywood movies in a time

where action recognition video datasets are small and scarce. [Duchenne et al., 2009]

later on propose to perform localization of actions using scripts from the Hollywood2

dataset [Laptev et al., 2008]. An extension of this work [Bojanowski et al., 2014]

exploits the temporal order of actions as a learning constraint. [Bojanowski et al.,

2013; Everingham et al., 2006; Sivic et al., 2009; Parkhi et al., 2015a] propose to

also recognize the actors given in movie or TV series scripts as they also contain the

identity of the actor speaking (see Figure 2-9). Our contribution from Chapter 4

extends and improves [Bojanowski et al., 2013] by proposing a large-scale algorithm
5They are publicly available on websites such as https://www.imsdb.com/ or https://www.

weeklyscript.com/
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Figure 2-9: An extract of a script from the Casablanca movie synchronized using the
subtitles. The script provides the information of what is being seen and also which
person is speaking. The illustration was taken from [Laptev et al., 2008].

that can scale to significantly more data.

Additionally to movie scripts, [Torabi et al., 2015; Rohrbach et al., 2015] introduce

the M-VAD and the MPII movie description datasets which also leverage Descriptive

Video Service (DVS). DVS is an audio narration describing the visual elements and

actions in a movie for the visually impaired, which makes them perfectly suitable for

supervising video models. They are readily available in many movie DVDs which

makes their collection cheap and fast. These movie datasets with perfectly aligned

descriptions are used for many language tasks such as retrieval, captioning or multiple

choice answers [Torabi et al., 2016; Yu et al., 2016b; Kauman et al., 2017; Yu et al.,

2017b, 2018].

More recently, [Liu et al., 2020; Lei et al., 2020; Nagrani et al., 2020] propose to

leverage subtitles from popular TV shows and movies. As opposed to movie scripts

that contain rich visual information about a movie, the subtitles mostly inform about

the plot. However, subtitles can be obtained from any movies or TV series as opposed

to movie scripts. The collection of subtitles can be thus scaled to several order of

magnitude higher than movie scripts. For example, [Nagrani et al., 2020] leverage an

internal collection of 288k movies with subtitles while the largest publicly available
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Figure 2-10: The Conceptual Caption dataset leverages alternative text attributes
(Alt-text) from HTML pages to mine clean descriptive captions for millions of images.
This illustration was taken from [Sharma et al., 2018].

movie scripts database 6 contains roughly 1k scripts.

2.3.4 Metadata from the internet

Titles, descriptions and tags. User uploaded medias such as images or videos

often come with descriptive metadata such as a title, tags and even a short description.

Such readily available metadata can be used as a form of weak annotation for a large

amount of uploaded images or videos. Moreover, these images or videos can be found

at an unprecedented scale since billions of images or videos are uploaded on social

media such as Flickr, YouTube or Instagram.

For example, [Thomee et al., 2016] propose the YFCC100M, a collection of 99

million images and 800k videos from Flickr with diverse metadata collected from title,

descriptions and tags. [Ordonez et al., 2011] also leverage Flickr to mine a collection

of 1 million photographs with clean descriptive captions. [Abu-El-Haija et al., 2016]

introduce the YouTube-8M dataset, a dataset of more than 7 million minute-long
6https://www.imsdb.com/
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YouTube videos with machine-generated weak visual labels from metadata such as

titles and descriptions. In Chapter 3, we specifically focus on learning a long-term

video representation on this dataset. More specifically related to sports, [Karpathy

et al., 2014b] propose the Sports-1M dataset of sports videos from YouTube, also

annotated with machine-generated sports labels from metadata. [Zeng et al., 2016]

leverage the titles of YouTube videos for the task of title generation. One advantage

of producing a title for a long video is that they tend to describe the most salient

event in the video as opposed to describing a video as a whole.

One issue with the above datasets is that they provide coarsely localized labels

for minute-long videos. This makes them not suitable for learning visual representa-

tions. Instead, the learning of visual representations has been specially studied with

images, which do not suffer from any localization issue. For example, [Sun et al.,

2017] leverage the Google Image Search engine to mine 300 million images with weak

labels. [Mahajan et al., 2018b] goes further by collecting a dataset of more than 1

billion Instagram images with visual hashtags. More recently, an extension of this

work [Ghadiyaram et al., 2019] in the video domain collected a dataset of 65M videos

with visual hashtags. All of these works [Sun et al., 2017; Mahajan et al., 2018b;

Ghadiyaram et al., 2019] demonstrated significant improvements when pretraining

visual models on such large-scale, yet weakly labeled datasets. Our main contri-

bution from Chapter 6 also shows significant improvements by pretraining a video

representation on millions of video clips with annotation in the form of speech tran-

scripts. One advantage of leveraging speech transcripts over metadata such as titles,

descriptions or tags [Abu-El-Haija et al., 2016; Ghadiyaram et al., 2019] is the precise

temporal localization that comes with the transcripts.

Alternative text HTML attributes. Recent works [Sharma et al., 2018; Qi et al.,

2020] have exploited readily available alternative (alt) text html attributes from pop-

ular web pages. The alt text attribute specifies an alternative text for an image

that cannot be displayed in HTML web pages 7. They are hence likely to describe
7https://moz.com/learn/seo/alt-text
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the content of their corresponding images, as illustrated in Figure 2-10. One other

main advantage of this approach is that the data collection can scale up to millions

of examples. For example, [Sharma et al., 2018] introduced the Conceptual Caption

dataset with more than 3.3 million images and [Qi et al., 2020] introduced LAIT

dataset with more than 10 million images. The images all come with clean captions

generated from alt text attributes, as illustrated in Figure 2-10.

These datasets are 10× to 100× larger than manually annotated image description

datasets such as COCO [Lin et al., 2014], Flickr 30K [Young et al., 2014] or Visual

Genome [Krishna et al., 2016], making them particularly suited for large-scale vision

and language pretraining methods [Lu et al., 2019a,b; Qi et al., 2020].
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Chapter 3

Learnable Pooling with Context

Gating for Video Understanding

In this chapter, we tackle the problem of learning a video feature aggregation method

for learning long-term video representations. Having an efficient video representation

is a key prerequisite for designing strong video models for various applications. That

is why we will reuse building blocks from this chapter later in the video representation

described in Chapter 5.

In detail, this chapter will first explore clustering-based aggregation layers and

propose a two-stream architecture aggregating audio and visual features. We then in-

troduce a learnable non-linear unit, named Context Gating, aiming to model interde-

pendencies among network activations. Our experimental results show the advantage

of our video representation for the tasks of text-video retrieval and video classification.

In particular, we evaluate our method on the large-scale weakly-labeled Youtube-8M

dataset for classification and the MPII Movie Description dataset for text-video re-

trieval. Our proposed approach outperforms state-of-the-art models on both datasets

and tasks.
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3.1 Introduction

Understanding and recognizing video content is a major challenge for numerous appli-

cations including surveillance, personal assistance, smart homes, autonomous driving,

stock footage search and sports video analysis. In this chapter, we address both the

problems of multi-label video classification for user-generated videos on the Internet

and text-video retrieval when working with a set of pre-extracted temporal video

features. The analysis of such data involves several challenges. Internet videos have

a great variability in terms of content and quality (see Figure 3-1). Moreover, user-

generated labels are typically incomplete, ambiguous and may contain errors.

Current approaches for video analysis typically represent videos by features ex-

tracted from consecutive frames, followed by feature aggregation over time. Example

methods for feature extraction include deep convolutional neural networks (CNNs)

pre-trained on static images [He et al., 2016; Krizhevsky et al., 2012; Simonyan and

Zisserman, 2015; Szegedy et al., 2016]. Representations of motion and appearance

can be obtained from CNNs pre-trained for video frames and short video clips [Tran

et al., 2015; Feichtenhofer et al., 2016], as well as hand-crafted video features [Laptev

et al., 2008; Schüldt et al., 2004; Wang and Schmid, 2013]. Other more advanced

models employ hierarchical spatio-temporal convolutional architectures [Baccouche

et al., 2011; Carreira and Zisserman, 2017; Feichtenhofer et al., 2017; Ji et al., 2013;

Tran et al., 2015; Varol et al., 2017] to both extract and temporally aggregate video

features at the same time.

Common methods for temporal feature aggregation include simple averaging or

maximum pooling as well as more sophisticated pooling techniques such as VLAD [Je-

gou et al., 2010] or more recently recurrent models (LSTM [Hochreiter and Schmid-

huber, 1997] and GRU [Cho et al., 2014]). These techniques, however, may be subop-

timal. Indeed, simple techniques such as average or maximum pooling may become

inaccurate for long sequences. Recurrent models are frequently used for temporal

aggregation of variable-length sequences [Donahue et al., 2014; Abu-El-Haija et al.,

2016] and often outperform simpler aggregation methods, however, their training re-
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Figure 3-1: Two example videos from the Youtube-8M V2 dataset together with the
ground truth and top predicted labels. Predictions colored as green are labels from
the groundtruth annotation.

mains cumbersome. As we show in Section 3.5, training recurrent models requires

relatively large amount of data. Moreover, recurrent models can be sub-optimal

for processing of long video sequences during GPU training. It is also not clear if

current models for sequential aggregation are well-adapted for video representation.

Indeed, our experiments with training recurrent models using temporally-ordered and

randomly-ordered video frames show similar results.

Another research direction is to exploit traditional orderless aggregation tech-

niques based on clustering approaches such as Bag-of-visual-words [Csurka et al.,

2004; Sivic and Zisserman, 2003], Vector of Locally Aggregated Descriptors (VLAD) [Je-

gou et al., 2010] or Fisher Vectors [Perronnin and Dance, 2007]. It has been recently

shown that integrating VLAD as a differentiable module in a neural network can sig-

nificantly improve the aggregated representation for the task of place retrieval [Arand-

jelović et al., 2016]. This has motivated us to integrate and enhance such clustering-

based aggregation techniques for the task of video representation and classification.

Contributions. In this chapter, we make the following contributions: (i) we in-

troduce a new state-of-the-art architecture aggregating video and audio features for

video representation, (ii) we introduce the Context Gating layer, an efficient non-

linear unit for modeling interdependencies among network activations, and (iii) we

experimentally demonstrate benefits of our approach by ranking first at the Youtube

8M large-scale video classification challenge over 655 teams and achieving state-of-
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the-art results of the MPII Movie Description dataset on both Text-to-Video and

Video-to-Text retrieval tasks.

Results. We evaluate our method on the large-scale multi-modal Youtube-8M dataset

containing about 8M videos and 4716 unique tags. We use pre-extracted visual and

audio features provided with the dataset [Abu-El-Haija et al., 2016] and demonstrate

improvements obtained with the Context Gating as well as by the combination of

learnable poolings. Our method obtains top performance, out of more than 650

teams, in the Youtube-8M Large-Scale Video Understanding challenge1. Compared

to the common recurrent models, our models are faster to train and require less train-

ing data. Figure 3-1 illustrates some qualitative results of our method. Moreover,

We have experimented our approach on the tasks of Text-to-Video and Video-to-Text

retrieval on the MPII Movie Description dataset [Rohrbach et al., 2015] and reached

state-of-the-art results by leveraging our Context Gating module for representation.

3.2 Related work

This chapter is related to previous methods for video feature extraction, aggregation

and gating reviewed below.

3.2.1 Feature extraction

Successful hand-crafted representations [Laptev et al., 2008; Schüldt et al., 2004;

Wang and Schmid, 2013] are based on local histograms of image and motion gra-

dient orientations extracted along dense trajectories [de Souza et al., 2016; Wang

and Schmid, 2013]. More recent methods extract deep convolutional neural network

activations computed from individual frames or blocks of frames using spatial [Feicht-

enhofer et al., 2016; Karpathy et al., 2014b; Girdhar et al., 2017; Wang et al., 2015] or

spatio-temporal [Baccouche et al., 2011; Carreira and Zisserman, 2017; Feichtenhofer

et al., 2017; Ji et al., 2013; Tran et al., 2015; Varol et al., 2017] convolutions. Con-
1https://www.kaggle.com/c/youtube8m
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volutional neural networks can be also applied separately on the appearance channel

and the pre-computed motion field channel resulting in the, so called, two-stream

representations [Carreira and Zisserman, 2017; Feichtenhofer et al., 2016; Girdhar

et al., 2017; Simonyan and Zisserman, 2014; Varol et al., 2017]. As the chapter is mo-

tivated by the Youtube-8M large-scale video understanding challenge [Abu-El-Haija

et al., 2016], we will assume for the rest of the chapter that features are provided

(more details are provided in Section 3.5) and we will mainly focus on the temporal

aggregation of the provided features.

3.2.2 Feature aggregation

Video features are typically extracted from individual frames or short video clips. The

remaining question is: how to aggregate video features over the entire and potentially

long video? One way to achieve this is to employ recurrent neural networks, such

as long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] or gated

recurrent unit (GRU) [Cho et al., 2014]), on top of the extracted frame-level fea-

tures to capture the temporal structure of video into a single representation [Basura

et al., 2015; Donahue et al., 2014; Ibrahim et al., 2016; Lev et al., 2016; Yue-Hei Ng

et al., 2015]. Hierarchical spatio-temporal convolution architectures [Baccouche et al.,

2011; Carreira and Zisserman, 2017; Feichtenhofer et al., 2017; Ji et al., 2013; Tran

et al., 2015; Varol et al., 2017] can also be viewed as a way to both extract and

aggregate temporal features at the same time. Other methods capture only the dis-

tribution of features in the video, not explicitly modeling their temporal ordering.

The simplest form of this approach is the average or maximum pooling of video

features [Wang et al., 2016a] over time. Other commonly used methods include bag-

of-visual-words [Csurka et al., 2004; Sivic and Zisserman, 2003], Vector of Locally

aggregated Descriptors (VLAD) [Jegou et al., 2010] or Fisher Vector [Perronnin and

Dance, 2007] encoding. Application of these techniques to video include [Laptev

et al., 2008; Peng et al., 2014a; Schüldt et al., 2004; Wang and Schmid, 2013; Xu

et al., 2015b]. Typically, these methods [Lev et al., 2016; Perronnin and Larlus, 2015]

rely on an unsupervised learning of the codebook. However, the codebook can also

48



be learned in a discriminative manner [Peng et al., 2014a,b; Sydorov et al., 2014] or

the entire encoding module can be included within the convolutional neural network

architecture and trained in the end-to-end manner [Arandjelović et al., 2016]. This

type of end-to-end trainable orderless aggregation has been recently applied to video

frames in [Girdhar et al., 2017]. Here we extend this work by aggregating visual and

audio inputs, and also investigate multiple orderless aggregations.

3.2.3 Gating

Gating mechanisms allow multiplicative interaction between a given input feature

𝑋 and a gate vector with values in between 0 and 1. They are commonly used in

recurrent neural network models such as LSTM [Hochreiter and Schmidhuber, 1997]

and GRU [Cho et al., 2014] but have so far not been exploited in conjunction with

other non-temporal aggregation strategies such as Fisher Vectors (FV), Vector of

Locally Aggregated Descriptors (VLAD) or bag-of-visual-words (BoW). This chapter

aims to fill this gap and designs a video classification architecture combining non-

temporal aggregation with gating mechanisms. One of the motivations for this choice

is the recent Gated Linear Unit (GLU) [Dauphin et al., 2016], which has demonstrated

significant improvements in natural language processing tasks.

Our gating mechanism initially reported in [Miech et al., 2017b] is also related to

the parallel work on Squeeze-and-Excitation architectures [Hu et al., 2017], that has

suggested gated blocks for image classification tasks and have demonstrated excellent

performance on the ILSVRC 2017 image classification challenge.

3.3 Network architecture

Our architectures for video classification (Figure 3-2) and Text-Video joint embedding

(Figure 3-3) contain three main modules. First, the input features are extracted from

video and audio signals. Words embeddings are also extracted for the Text-Video joint

embedding model. Next, the pooling module aggregates the extracted features into

a single compact (e.g. 1024-dimensional) representation for the entire video (and for
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Figure 3-2: Overview of our network architecture for video classification. Below
each block is shown the input and output dimensions of each module separated by
a colon:. FC denotes a Fully-Connected layer. MoE denotes the Mixture-of-Experts
classifier [Abu-El-Haija et al., 2016]. N is the maximum number of features to aggre-
gate, C the number of classes to predict and D5 the dimension of the pooled video
representation.

the sentence in the Text-Video joint embedding architecture). The aggregated video

and sentence representation are then enhanced by a Context Gating layer (section

3.3.1). Finally, for the classification architecture, a Mixture-of-Experts [Jordan, 1994]

classifier as described in [Abu-El-Haija et al., 2016], followed by another Context

Gating layer outputs a set of labels for the given video. To train the classification

model, the loss used is a standard cross entropy loss. On the other hand, for the Video-

Text joint embedding architecture, the sentence representation is compared with the

video representation using a cosine similarity. To train the Text-Video model, the

loss used is a standard max margin ranking loss [Yu et al., 2017a].

3.3.1 Context Gating

The Context Gating (CG) module transforms the input feature representation 𝑋 into

a new representation 𝑌 as

𝑌 = 𝜎(𝑊𝑋 + 𝑏) ∘𝑋, (3.1)
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where 𝑋 ∈ R𝑛 is the input feature vector, 𝜎 is the element-wise sigmoid activation and

∘ is the element-wise multiplication. 𝑊 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 are trainable parameters.

The vector of weights 𝜎(𝑊𝑋 + 𝑏) ∈ [0, 1] represents a set of learned gates applied to

the individual dimensions of the input feature 𝑋.

The motivation behind this transformation is two-fold. First, we wish to introduce

non-linear interactions among activations of the input representation. Second, we

wish to recalibrate the strengths of different activations of the input representation

through a self-gating mechanism. The form of the Context Gating layer is inspired by

the Gated Linear Unit (GLU) introduced recently for language modeling [Dauphin

et al., 2016] that considers a more complex class of transformations given by 𝜎(𝑊1𝑋 +

𝑏1)∘ (𝑊2𝑋 + 𝑏2), with two sets of learnable parameters 𝑊1, 𝑏1 and 𝑊2, 𝑏2. Compared

to the the Gated Linear Unit [Dauphin et al., 2016], our Context Gating in (3.1)

(i) reduces the number of learned parameters as only one set of weights is learnt,

and (ii) re-weights directly the input vector 𝑋 (instead of its linear transformation)

and hence is suitable for situations where 𝑋 has a specific meaning, such the score

of a class label, that is preserved by the layer. As shown in Figure 3-2, we use

Context Gating in the feature pooling and classification modules. First, we use CG

to transform the feature vector before passing it to the classification module. Second,

we use CG after the classification layer to capture the prior structure of the output

label space. Details are provided below.

3.3.2 Relation to residual connections

Residual connections has been introduced in [He et al., 2016]. They demonstrate

faster training of deep convolutional neural networks as well as better performance

for a variety of tasks. Residual connections can be formulated as

𝑌 = 𝑓(𝑊𝑋 + 𝑏) + 𝑋, (3.2)

where 𝑋 are the input features, (𝑊, 𝑏) the learnable parameters of the linear mapping

(or it can be a convolution), 𝑓 is a non-linearity (typically Rectifier Linear Unit as
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expressed in [He et al., 2016]). One advantage of residual connections is the possibility

of gradient propagation directly into 𝑋 during training, avoiding the vanishing gra-

dient problem. To show this, the gradient of the residual connection can be written

as:

∇𝑌 = ∇(𝑓(𝑊𝑋 + 𝑏)) +∇𝑋. (3.3)

One can notice that the gradient ∇𝑌 is the sum of the gradient of the previous layer

∇𝑋 and the gradient ∇(𝑓(𝑊𝑋 + 𝑏)). The vanishing gradient problem is overcome

thanks to the term ∇𝑋, which allows the gradient to backpropagate directly from

𝑌 to 𝑋 without decreasing in the norm. A similar effect is observed with Context

Gating which has the following gradient equation:

∇𝑌 = ∇(𝜎(𝑊𝑋 + 𝑏)) ∘𝑋 + 𝜎(𝑊𝑋 + 𝑏) ∘ ∇𝑋. (3.4)

In this case, the term ∇𝑋 is weighted by activations 𝜎(𝑊𝑋 + 𝑏). Hence, for dimen-

sions where 𝜎(𝑊𝑋 +𝑏) are close to 1, gradients are directly propagated from 𝑌 to 𝑋.

In contrast, for values close to 0 the gradient propagation is vanished. This property

is valuable as it allows to stack several non-linear layers and avoid vanishing gradient

problems.

3.3.3 Relation to LSTM/GRU

It is also worth noticing that an operation similar to Context Gating is also applied to

GRU [Cho et al., 2014] and LSTM [Hochreiter and Schmidhuber, 1997] architectures

at each iteration. In fact, let us consider the case of a one layer GRU (which is a

simpler version than LSTM) network. In the same manner as in [Cho et al., 2014],

we denote 𝑥𝑡 as feature from iteration 𝑡, ℎ𝑡 as the output vector of GRU cell 𝑡, 𝑧𝑡 the

update gate vector, 𝑟𝑡 the reset gate vector and 𝑊, 𝑈, 𝑏 the GRU parameters to learn.
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Figure 3-3: Overview of our network architecture for Video-Text joint embedding
learning. Below each block is shown the input and output dimensions of each module
separated by a colon :. FC denotes a Fully-Connected layer. N is the maximum
number of video features to aggregate and M the number of word vectors from the
input sentence.

The equation of an iteration of a GRU cell is given by:

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧), (3.5)

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟), (3.6)

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + (1− 𝑧𝑡) ∘ 𝜏(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) + 𝑏ℎ), (3.7)

where 𝜎 is the sigmoid function and 𝜏 is the hyperbolic tangent function. The aggre-

gated video representation in the RNN case is the last hidden state ℎ𝑡 of the RNN.

From equation (7), ℎ𝑡 is decomposed into two terms. The first term is 𝑧𝑡 ∘ℎ𝑡−1, which

is equal to 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) ∘ ℎ𝑡−1. In other word, to compute ℎ𝑡, an operation

similar to Context Gating is applied to ℎ𝑡−1 where the gates are computed using both

the previous hidden state ℎ𝑡−1 and the current sample 𝑥𝑡. For these reasons, we argue

that adding Context Gating to aggregation models such as LSTM or GRU is actually
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Figure 3-4: Illustration of Context Gating that down-weights visual activations of
Tree for a skiing scene.

redundant.

3.3.4 Motivation for Context Gating

Our goal is to predict human-generated tags for a video. Such tags typically represent

only a subset of objects and events which are most relevant to the context of the

video. To mimic this behavior and to suppress irrelevant labels, we introduce the

Context Gating module to re-weight both the features and the output labels of our

architecture.

Capturing dependencies among features. Context Gating can help creating

dependencies between visual activations. Take an example of a skiing video showing

a skiing person, snow and trees. While network activations for the Tree features might

be high, trees might be less important in the context of skiing where people are more

likely to comment about the snow and skiing rather than the forest. Context Gating

can learn to down-weight visual activations for Tree when it co-occurs with visual

activations for Ski and Snow as illustrated in Figure 3-4.

Capturing prior structure of the output space. Context Gating can also create

dependencies among output class scores when applied to the classification layer of the

network. This makes it possible to learn a prior structure on the output probability

space, which can be useful in modeling biases in label annotations.
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3.4 Learnable pooling methods

Within our video architecture described above, we investigate several types of learn-

able pooling models, which we describe next. Previous successful approaches [Don-

ahue et al., 2014; Abu-El-Haija et al., 2016] employed recurrent neural networks such

as LSTM or GRU for the encoding of the sequential features. We chose to focus

on non-recurrent aggregation techniques. This is motivated by several factors: first,

recurrent models are computationally demanding for long temporal sequences as it

is not possible to parallelize the sequential computation. Moreover, it is not clear if

treating the aggregation problem as a sequence modeling problem is necessary. As

we show in our experiments, there is almost no change in performance if we shuffle

the frames in a random order as almost all of the relevant signal relies on the static

visual cues. All we actually need to do is to find a way to efficiently remember all of

the relevant visual cues. We will first review the NetVLAD [Arandjelović et al., 2016]

aggregation module and then explain how we can exploit the same idea to imitate

Fisher Vector and Bag-of-visual-Words aggregation scheme.

3.4.1 NetVLAD aggregation

The NetVLAD [Arandjelović et al., 2016] architecture has been proposed for place

recognition to reproduce the VLAD encoding [Jegou et al., 2010], but in a differ-

entiable manner, where the clusters are tuned via backpropagation instead of using

k-means clustering. It was then extended to action recognition in video [Girdhar

et al., 2017]. The main idea behind NetVLAD is to write the descriptor 𝑥𝑖 hard

assignment to the cluster 𝑘 as a soft assignment:

𝑎𝑘(𝑥𝑖) = 𝑒𝑤⊤
𝑘 𝑥𝑖+𝑏𝑘∑︀𝐾

𝑗=1 𝑒𝑤⊤
𝑗 𝑥𝑖+𝑏𝑗

(3.8)

where (𝑤𝑗)𝑗 and (𝑏𝑗)𝑗 are learnable parameters. In other words, the soft assignment

𝑎𝑘(𝑥𝑖) of descriptor 𝑥𝑖 to cluster 𝑘 measures on a scale from 0 to 1 how close the

descriptor 𝑥𝑖 is to cluster 𝑘. In the hard assignment way, 𝑎𝑘(𝑥𝑖) would be equal to 1
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if 𝑥𝑖 closest cluster is cluster 𝑘 and 0 otherwise. For the rest of the chapter, 𝑎𝑘(𝑥𝑖)

will define soft assignment of descriptor 𝑥𝑖 to cluster 𝑘. If we write 𝑐𝑗, 𝑗 ∈ [1, 𝐾] the

j-th learnable cluster, the NetVLAD descriptor can be written as

𝑉 𝐿𝐴𝐷(𝑗, 𝑘) =
𝑁∑︁

𝑖=1
𝑎𝑘(𝑥𝑖)(𝑥𝑖(𝑗)− 𝑐𝑘(𝑗)), (3.9)

which computes the weighted sum of residuals 𝑥𝑖− 𝑐𝑘 of descriptors 𝑥𝑖 from learnable

anchor point 𝑐𝑘 in cluster 𝑘.

3.4.2 Beyond NetVLAD aggregation

By exploiting the same cluster soft-assignment idea, we can also imitate similar opera-

tions as the traditional Bag-of-visual-words [Csurka et al., 2004; Sivic and Zisserman,

2003] and Fisher Vectors [Perronnin and Dance, 2007] in a differentiable manner.

For bag-of-visual-words (BOW) encoding, we use soft-assignment of descriptors

to visual word clusters [Arandjelović et al., 2016; Philbin et al., 2008] to obtain a

differentiable representation. The differentiable BOW representation can be written

as:

𝐵𝑂𝑊 (𝑘) =
𝑁∑︁

𝑖=1
𝑎𝑘(𝑥𝑖). (3.10)

Notice that the exact bag-of-visual-words formulation is reproduced if we replace the

soft assignment values by its hard assignment equivalent. This formulation is closely

related to the Neural BoF formulation [Passalis and Tefas, 2017], but differs in the

way of computing the soft assignment. In detail, [Passalis and Tefas, 2017] performs

a softmax operation over the computed L2 distances between the descriptors and the

cluster centers, whereas we use soft-assignment given by eq. (3.8) where parameters

𝑤 are learnable without explicit relation to computing L2 distance to cluster centers.

It also relates to [Richard and Gall, 2015] that uses a recurrent neural network to

perform the aggregation. The advantage of BOW aggregation over NetVLAD is that
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it aggregates a list of feature descriptors into a much more compact representation,

given a fixed number of clusters. The drawback is that significantly more clusters are

needed to obtain a rich representation of the aggregated descriptors.

Inspired by Fisher Vector [Perronnin and Dance, 2007] encoding, we also experi-

mented with modifying the NetVLAD architecture to allow learning of second order

feature statistics within the clusters. We will denote this representation as NetFV

(for Net Fisher Vectors) as it aims at imitating the standard Fisher Vector encod-

ing [Perronnin and Dance, 2007]. Reusing the previously established soft assignment

notation, we can write the NetFV representation as

𝐹𝑉 1(𝑗, 𝑘) =
𝑁∑︁

𝑖=1
𝑎𝑘(𝑥𝑖)

(︃
𝑥𝑖(𝑗)− 𝑐𝑘(𝑗)

𝜎𝑘(𝑗)

)︃
, (3.11)

𝐹𝑉 2(𝑗, 𝑘) =
𝑁∑︁

𝑖=1
𝑎𝑘(𝑥𝑖)

⎛⎝(︃𝑥𝑖(𝑗)− 𝑐𝑘(𝑗)
𝜎𝑘(𝑗)

)︃2

− 1
⎞⎠, (3.12)

where 𝐹𝑉 1 is capturing the first-order statistics, 𝐹𝑉 2 is capturing the second-order

statistics, 𝑐𝑘, 𝑘 ∈ [1, 𝐾] are the learnable clusters and 𝜎𝑘, 𝑘 ∈ [1, 𝐾] are the clusters’

diagonal covariances. To define 𝜎𝑘, 𝑘 ∈ [1, 𝐾] as positive, we first randomly initialize

their value with a Gaussian noise with unit mean and small variance and then take

the square of the values during training so that they stays positive. In the same

manner as NetVLAD, 𝑐𝑘 and 𝜎𝑘 are learnt independently from the parameters of the

soft-assignment 𝑎𝑘. This formulation differs from [Simonyan et al., 2013; Sydorov

et al., 2014] as we are not exactly reproducing the original Fisher Vectors. Indeed the

parameters 𝑎𝑘(𝑥𝑖), 𝑐𝑘 and 𝜎𝑘 are decoupled from each other. As opposed to [Simonyan

et al., 2013; Sydorov et al., 2014], these parameters are not related to a Gaussian

Mixture Model but instead are trained in a discriminative manner.

Finally, we have also investigated a simplification of the original NetVLAD ar-

chitecture that averages the actual descriptors instead of residuals, as first proposed

by [Douze et al., 2013]. We call this variant NetRVLAD (for Residual-less VLAD).

This simplification requires less parameters and computing operations (about half in
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both cases). The NetRVLAD descriptor can be written as

𝑅𝑉 𝐿𝐴𝐷(𝑗, 𝑘) =
𝑁∑︁

𝑖=1
𝑎𝑘(𝑥𝑖)𝑥𝑖(𝑗). (3.13)

More information about our Tensorflow [Abadi et al., 2015] implementation of these

different aggregation models can be found at: https://github.com/antoine77340/

LOUPE

3.5 Experiments

This section evaluates alternative architectures for video aggregation and presents

results for classification on the Youtube-8M [Abu-El-Haija et al., 2016] and text-video

retrieval on the MPII Movie Description [Rohrbach et al., 2015] dataset.

3.5.1 Youtube-8M Dataset

The Youtube-8M dataset [Abu-El-Haija et al., 2016] is composed of approximately 8

millions videos. Because the dataset is large scale, visual and audio features are pre-

extracted and provided with the dataset. Each video is labeled with one or multiple

tags referring to the main topic of the video. Figure 3-7 illustrates examples of videos

with their annotations. The original dataset is divided into training, validation and

test subsets with 70%, 20% and 10% of videos, respectively. In this chapter, we

keep around 20K videos for the validation, the remaining samples from the original

training and validation subsets are used for training. This choice was made to obtain

a larger training set and to decrease the validation time. We have noticed that the

performance on our validation set was comparable (0.2%-0.3% higher) to the test

performance evaluated on the Kaggle platform. As we have no access to the test

labels, most results in this section are reported for our validation set. We report

evaluation using the Global Average Precision (GAP) metric at top 20 as used in

the Youtube-8M Kaggle competition (more details about the metric can be found at:

https://www.kaggle.com/c/youtube8m#evaluation). Note that the performance
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Method GAP
Average pooling + Logistic Regression 71.4%
Average pooling + MoE + CG 74.1%
LSTM (2 Layers) 81.7%
GRU (2 Layers) 82.0%
BoW (4096 Clusters) 81.6%
NetFV (128 Clusters) 82.2%
NetRVLAD (256 Clusters) 82.3%
NetVLAD (256 Clusters) 82.4%
Gated BoW (4096 Clusters) 82.0%
Gated NetFV (128 Clusters) 83.0%
Gated NetRVLAD (256 Clusters) 83.1%
Gated NetVLAD (256 Clusters) 83.2%

Table 3.1: Performance comparison for individual aggregation schemes on Youtube
8M. Clustering-based methods are compared with and without Context Gating.

of a random guess is expected to be 0.03% GAP.

3.5.2 MPII Movie Description Dataset

This video dataset [Rohrbach et al., 2015] contains 118,081 short movie extracts from

202 movies. Each clip is annotated with a short text description that either comes

from the movie script or a transcribed audio description. The LSMDC challenge 2

(Large Scale Movie Description Challenge) have been organized in 2016 and 2017 to

evaluate models on Text-to-Video and Video-to-Text retrieval based on this movie

dataset. We use this dataset to evaluate the benefit of our video representation for

learning a joint text-video embedding on both of these public benchmarks. More

precisely, we have evaluated our model using the LSMDC evaluation protocol 3 for

both Text-to-Video and Video-to-Text retrieval tasks.
2https://sites.google.com/site/describingmovies/
3https://sites.google.com/site/describingmovies/lsmdc-2016/movieretrieval
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3.5.3 Implementation details

Video classification on Youtube-8M. In the Youtube 8M competition dataset [Abu-

El-Haija et al., 2016] video and audio features are provided for every second of the

input video. The visual features consist of ReLU activations of the last fully-connected

layer from a publicly available4 Inception network trained on Imagenet. The audio

features are extracted from a CNN architecture trained for audio classification [Her-

shey et al., 2017]. PCA and whitening are then applied to reduce the dimension to

1024 for the visual features and 128 for the audio features. More details on feature

extraction are available in [Abu-El-Haija et al., 2016].

All of our models are trained using the Adam algorithm [Kingma and Ba, 2015]

and mini-batches with data from around 100 videos. The learning rate is initially

set to 0.0002 and is then decreased exponentially with the factor of 0.8 every 4M

samples. We use gradient clipping and batch normalization [Ioffe and Szegedy, 2015]

before each non-linear layer.

For the clustering-based pooling models, i.e. BoW, NetVLAD, NetRVLAD and

NetFV, we randomly sample 𝑁 features with replacement from each video. We fix

𝑁 to 300 for all videos at training and testing, which is equivalent to 5 minutes of

video. As opposed to the original version of NetVLAD [Arandjelović et al., 2016], we

did not pre-train the codebook with a k-means initialization as we did not notice any

improvement by doing so. For training of recurrent models, i.e. LSTM and GRU, we

process features in the temporal order. We have also experimented with the random

sampling of frames for LSTM and GRU which performs surprisingly similarly. Finally,

to enable a fair comparison, all pooled representations have the same size of 1024

dimensions. We denote the pooled representation as the output of the first Context

Gating block from the green part of Figure 3-2, so we have D5 = 1024.

Our implementation uses the TensorFlow framework [Abadi et al., 2015]. Each

training is performed on a single NVIDIA TITAN X (12Gb) GPU.

Video-Text retrieval on MPII MD. As opposed to the Youtube 8M dataset,

we extract visual features from an Imagenet pretrain Resnet-152 layers network [He
4https://www.tensorflow.org/tutorials/image_recognition
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Evaluation task Text-to-Video Video-to-Text
Method R@1 R@5 R@10 MR Accuracy
Random baseline 0.1 0.5 1.0 500 20.0
C+LSTM+SA+FC7 [Torabi et al., 2016] 4.2 13.0 19.5 90 58.1
SNUVL [Yu et al., 2016b] 3.6 14.7 23.9 50 65.7
CT-SAN [Yu et al., 2017b] 5.1 16.3 25.2 46 67.0
CCA (FV HGLMM) [Klein et al., 2015] 7.5 21.7 31.0 33 72.8
JSFusion [Yu et al., 2017a] 9.1 21.2 34.1 36 73.5
Ours without Context Gating 8.3 21.9 32.3 32 73.0
Ours with Context Gating 9.8 24.6 34.3 28 74.7

Table 3.2: Text-to-video and Video-to-Text retrieval results from the LSMDC test
sets. MR stands for Median Rank (the lower the better).

et al., 2016] so we can compare with state-of-the-art approach [Yu et al., 2017a].

Moreover, as we have access to raw RGB videos, we can also extract motion de-

scriptors based on optical flow using an I3D Kinetics pretrained model [Carreira and

Zisserman, 2017]. Audio descriptors are extracted in the same manner as in Youtube

8M. Because the video clips are very short (few seconds) in this dataset, we use a sim-

ple max pooling to aggregate features temporally. For the text inputs, we extract for

each word, embeddings from a Google News 5 pretrained word2vec word embedding

model. Then to aggregate the word features for the sentence representation, we use

a NetVLAD module. Eventually our model is trained using the usual max margin

ranking loss [Yu et al., 2017a].

3.5.4 Model evaluation for Classification

We evaluate the performance of individual models in Table 3.1. The “Gated” ver-

sions for the clustering-based pooling methods include CG layers as described in

Section 3.3.1. Using CG layers together with GRU and LSTM has decreased the

performance in our experiments. We argue that CG is redundant to GRU and LSTM

architectures. In fact, as explained in Section 3.3.3 both LSTM [Hochreiter and

Schmidhuber, 1997] and GRU [Cho et al., 2014] implement similar gating mechanism
5GoogleNews-vectors-negative300
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in their architecture as opposed to NetVLAD, NetFV and Soft-DBoW.

From Table 3.1 we can observe a significant increase of performance provided by all

learnt aggregation schemes compared to the Average pooling baselines. Interestingly,

the NetVLAD and NetFV representations based on the temporally-shuffled feature

pooling outperforms the temporal models (GRU and LSTM). Finally, we can note a

consistent increase in performance provided by the Context Gating for all clustering-

based pooling methods.

3.5.5 Model evaluation for Text-Video retrieval

We evaluate our model on Text-to-Video and Video-to-Text retrieval in Table 3.2.

The goal of the Text-to-Video retrieval task is to retrieve a video from a pool of

1000 videos given an input caption query. The Text-to-Video retrieval performance

are measured in R@1, R@5 and R@10 (the higher the better) and in median rank

(the lower the better). On the other hand, the goal of the Video-to-Text retrieval

task is: given an input video and five different captions, find the only caption that

describe the video. The performance is measure in accuracy instead (the higher the

better). We compare our approach against the previous state-of-the-art [Yu et al.,

2017a] which is also the winner of the LSMDC 2017 challenge in both task. Their

approach combine both a bi-directional LSTM and convolutional layers to aggregate

the set of descriptors from the different modalities (video, audio and text). Note that

we have evaluated our full method with Context Gating (row Ours with CG) and

our method without any Context Gating layer (row Ours without CG). For learning

a Text-Video joint embedding, we demonstrate that the use of the Context Gating

layer is also beneficial as it has allowed us to outperform the previous state-of-the-art

approach on all metrics and tasks.

3.5.6 Context Gating ablation study

Table 3.3 reports an ablation study evaluating the effect of Context Gating on the

NetVLAD aggregation with 128 clusters. The addition of CG layers in the feature
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After pooling After MoE GAP
- - 82.2%

Gated Linear Unit - 82.4%
Context Gating - 82.7%

Gated Linear Unit Context Gating 82.7%
Context Gating Context Gating 83.0%

Table 3.3: Context Gating ablation study on Youtube 8M. There is no GLU layer
after MoE as GLU does not output probabilities.

Method Early Concat Late Concat
NetVLAD 81.9% 82.4%
NetFV 81.2% 82.2%
GRU 82.2% 82.1%
LSTM 81.7% 81.1%

Table 3.4: Evaluation of audio-video fusion methods (Early and Late Concat) on
Youtube 8M.

pooling and classification modules gives a significant increase in GAP. We have ob-

served a similar behavior for NetVLAD with 256 clusters. We also experimented

with replacing the Context Gating by the GLU [Dauphin et al., 2016] after pooling.

To make the comparison fair, we added a Context Gating layer just after the MoE.

Despite being less complex than GLU, we observe that CG also performs better. We

note that the improvement of 0.8% provided by CG is similar to the improvement of

the best non-gated model (NetVLAD) over LSTM in Table 3.1.

Fig 3-7 illustrates top 5 recognition outputs on some videos from our validation

set of a NetVLAD based model with and without Context Gating (CG). While some

of the top recognized labels from the model without CG effectively appear in the

videos such as Nature (video 2), Animal (video 3), Lawn (video 4), Coin (video 5) or

Finger (video 6), these predicted labels are however not what the video is essentially

about. On the other hand, we notice that the model with CG does not tend to do

these errors as it seems to better model the context of the videos.
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Figure 3-5: Training GAP performance within the very first training epoch of different
models on Youtube 8M.

3.5.7 Video-Audio fusion

In addition to the late fusion of audio and video streams (Late Concat) described in

Section 3.3, we have also experimented with a simple concatenation of original audio

and video features into a single vector, followed by the pooling and classification

modules in a “single stream manner” (Early Concat). Results in Table 3.4 illustrate

the effect of the two fusion schemes for different pooling methods. The two-stream

audio-visual architecture with the late fusion improves performance for the clustering-

based pooling methods (NetVLAD and NetFV). On the other hand, the early fusion

scheme seems to work better for GRU and LSTM aggregations.

3.5.8 Generalization

One valuable feature of the Youtube-8M dataset is the large-scale annotated data

(almost 10 millions videos). More common annotated video datasets usually have

sizes several orders of magnitude lower, ranging from 10k to 100k samples. With

the large-scale dataset at hand we evaluate the influence of the amount of training
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Figure 3-6: The validation GAP performance of the different main models when
varying the training dataset size on Youtube 8M.

data on the performance of different models. To this end, we experimented with

training different models: Gated NetVLAD, NetVLAD, LSTM and average pooling

based model on multiple randomly sampled subsets of the Youtube 8M dataset. We

have experimented with subsets of 70K, 150K, 380K and 1150K samples.

For each subset size, we have trained models using three non-overlapping training

subsets and measured the variance in performance. Figure 3-6 illustrates the GAP

performance of each model when varying the training size. The error bars represent

the variance observed when training the models on the three different training sub-

sets. We have observed low and consistent GAP variance for different models and

training sizes. Despite the LSTM model has less parameters (around 40M) compared

to NetVLAD (around 160M) and Gated NetVLAD (around 180M), NetVLAD and

Gated NetVLAD models demonstrate better generalization than LSTM when trained

from a lower number of samples. The Context Gating module still helps generalizing

better the basic NetVLAD based architecture when having sufficient number of sam-

ples (at least 100k samples). We did not show results with smaller dataset sizes as the
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Approach Ensemble size GAP
Ours (Full) 25 85.0
Ours (Light) 7 84.7
[Wang et al., 2017] 75 84.6
[Li et al., 2017] 57 84.5
[Chen et al., 2017b] 134 84.2
[Skalic et al., 2017] 75 84.2

Table 3.5: Ensemble model sizes of the top ranked teams (out of 655) from the
Youtube 8M kaggle competition.

results for all models were drastically dropping down. This is mainly due to the fact

that the task is a multi-label prediction problem with a large pool of roughly 5000

labels. As these labels have a long-tail distribution, decreasing the dataset size to less

than 30k samples would leave many labels with no single training example. Thus, it

would not be clear if the drop of performance is due to the aggregation technique or

a lack of training samples for rare classes.

3.5.9 Ensembling

We explore the complementarity of different models and consider their combination

through ensembling on the Youtube 8M dataset. Ensembling consists in averaging

label prediction scores of different models. We have observed the increased effect

of ensembling when combining diverse models. To select models from a set of 50

trained models with different hyper-parameters and aggregation functions, we follow

a greedy approach. We start with the best performing model and choose the next one

by maximizing the GAP of the ensemble on the validation set. Our final ensemble used

in the Youtube 8M challenge contains 25 models. Note that a seven models ensemble

is enough to reach the first place with a GAP on the private test set of 84.688.

Our code to reproduce this smaller ensemble is available at: https://github.com/

antoine77340/Youtube-8M-WILLOW. Table 3.5 shows the ensemble size of the other

top ranked approaches, out of 655 teams, from the Youtube-8M kaggle challenge.

Besides showing the best performance at the competition, we also designed a smaller
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set of models that ensemble more efficiently than others. Indeed, we need much less

models in our ensemble than the other top performing approaches. Full ranking can

be found at: https://www.kaggle.com/c/youtube8m/leaderboard.

Training cost. We wish to emphasize that our single model is much faster to train

than previous state-of-the-art RNN based approach. Figure 3-5 shows the evolution of

the training GAP within the first epoch (thus can also be considered as the validation

GAP) when training several models on a single GPU. We can observe that 1 hour of

Gated NetVLAD training performs better than LSTM and GRU trained after more

than 10 hours. This is due to two main factors: first, as explained in 3.5.8, to perform

similarly, our model is required much less training data than RNNs. Second, even

though our proposed architecture contains much more parameters than RNNs (See

Table 3.1), our method fully exploits GPU hardware as most of the computation can

be distributed as opposed to RNNs. As an example, we have empirically observed

that a forward-backward model computation is 3 to 5 times faster than with RNN

based approach. Our proposed method can be trained on a single GPU from 1 to 2

days as opposed to 5 to 7 days when using RNN based approach. This has enabled

us to significantly reduce the training cost when ensembling different models.

3.6 Conclusion

In this chapter, we have addressed the problem of aggregating temporal video de-

scriptors for video understanding by exploring trainable variants of classical pooling

methods such as BoW, VLAD and FV. We have applied our video representation on

the tasks of video classification / text-video retrieval and show benefits of our method

compared to state-of-the-art. In this context we have observed NetVLAD, NetFV and

BoW to outperform more common temporal models such as LSTM and GRU. We

have also introduced the Context Gating mechanism and have shown its benefit for

the trainable versions of BoW, VLAD and FV. The ensemble of our individual models

has been shown to improve the performance further, enabling our method to win the

Youtube 8M Large-Scale Video Understanding challenge.
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Figure 3-7: This figure illustrates recognition outputs on our validation set. For
each video, we show the groundtruth labels as well as the top 5 predictions from
a NetVLAD based model with and without Context Gating. Green outputs are
correctly identified ones.
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Chapter 4

Learning from Video and Text via

Large-Scale Discriminative

Clustering

In the previous chapter, we have introduced a novel approach for representing videos.

In particular, our proposed approach demonstrated state-of-the-art results on the

large-scale and weakly-labeled YouTube-8M dataset [Abu-El-Haija et al., 2016]. In

this chapter, we will instead study the problem of large-scale weakly-supervised learn-

ing from readily available movie scripts.

In particular, we will consider a discriminative clustering based approach, which

has been successfully applied to a number of weakly-supervised learning tasks. Such

applications include person and action recognition, text-to-video alignment, object

co-segmentation and co-localization in videos and images. One drawback of discrim-

inative clustering, however, is its limited scalability. In this chapter, we address this

issue and propose an online optimization algorithm based on the Block-Coordinate

Frank-Wolfe algorithm [Lacoste-Julien et al., 2013]. We apply the proposed method

to the problem of weakly-supervised learning of actions and actors from movies to-

gether with corresponding movie scripts. The scaling up of the learning problem to

66 feature-length movies enables us to significantly improve weakly-supervised action

recognition.
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4.1 Introduction

Action recognition has been significantly improved in recent years. Most existing

methods [Laptev et al., 2008; Simonyan and Zisserman, 2014; Wang and Schmid,

2013] rely on supervised learning and, therefore, require large-scale, diverse and repre-

sentative action datasets for training. Collecting such datasets, however, is a difficult

task given the high costs of manual search and annotation of the video. Notably, the

largest action datasets today are still orders of magnitude smaller (UCF101 Soomro

et al. [2012], ActivityNet [Caba Heilbron et al., 2015]) compared to large image

datasets, they often contain label noise and target specific domains such as sports

(Sports1M [Karpathy et al., 2014b]).

Weakly supervised learning aims to bypass the need of manually-annotated datasets

using readily-available, but possibly noisy and incomplete supervision. Examples

of such methods include learning of person names from image captions or video

scripts [Berg et al., 2004; Everingham et al., 2006; Sivic et al., 2009; Tapaswi et al.,

2012]. Learning actions from movies and movie scripts has been approached in [Bo-

janowski et al., 2013, 2014; Duchenne et al., 2009; Laptev et al., 2008]. Most of the

work on weakly supervised person and action learning, however, has been limited to

one or a few movies. Therefore the power of leveraging large-scale weakly annotated

video data has not been fully explored.

In this chapter, we aim to scale weakly supervised learning of actions. In partic-

ular, we follow the work of [Bojanowski et al., 2013] and learn actor names together

with their actions from movies and movie scripts. While actors are learned separately

for each movie, differently from [Bojanowski et al., 2013], our method simultaneously

learns actions from all movies and movie scripts available for training. Such an ap-

proach, however, requires solving a large-scale optimization problem. We address

this issue and propose to scale weakly supervised learning by adapting the Block-

Coordinate Frank-Wolfe approach [Lacoste-Julien et al., 2013]. Our optimization

procedure enables action learning from tens of movies and thousands of action sam-

ples, readily available from our subset of movies or other recent datasets with movie
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Figure 4-1: We automatically recognize actors and their actions in a of dataset of 66
movies with scripts as weak supervision.

descriptions [Rohrbach et al., 2015]. This, in turn, results in large improvements in

action recognition.

Besides the optimization, the chapter introduces a new model for background

class in the form of a constraint. It enables better and automatic modeling of the

background class (i.e. unknown actors and actions). We evaluate our method on 66

movies and demonstrate significant improvements for both actor and action recogni-

tion. Example results are illustrated in Figure 4-1.

4.1.1 Related Work

This section reviews related work on discriminative clustering, Frank-Wolfe optimiza-

tion and its applications to the weakly supervised learning of people and actions in

video.
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Discriminative clustering and Frank-Wolfe. The Frank-Wolfe algorithm [Frank

and Wolfe, 1956; Jaggi, 2013] allows to minimize large convex problems over convex

sets by solving a sequence of linear problems. In computer vision, it has been used in

combination with discriminative clustering [Bach and Harchaoui, 2007] for action lo-

calization [Bojanowski et al., 2014], text-to-video alignment [Alayrac et al., 2016; Bo-

janowski et al., 2015], object co-localization in videos and images [Joulin et al., 2014b]

or instance-level segmentation [Seguin et al., 2016]. A variant of Frank-Wolfe with

randomized block coordinate descent was proposed in [Lacoste-Julien et al., 2013].

This extension leads to lower complexity in terms of time and memory requirements

while preserving the convergence rate. In this chapter, we build on [Lacoste-Julien

et al., 2013] and adapt it for the problem of large-scale weakly supervised learning of

actions from movies.

Weakly supervised action recognition. Movie scripts are used as a source of

weak supervision for temporal action localization in [Duchenne et al., 2009]. An ex-

tension of this work [Bojanowski et al., 2014] exploits the temporal order of actions

as a learning constraint. Other [Lan et al., 2011] target spatio-temporal action local-

ization and recognition in video using a latent SVM. A weakly supervised extension

of this method [Shapovalova et al., 2012] localizes actions without location supervi-

sion at the training time. Another recent work [Weinzaepfel et al., 2016] proposes

a multi-fold Multiple-Instance Learning (MIL) SVM to localize actions given video-

level supervision at training time. Closer to us is the work of [Bojanowski et al., 2013]

that improves weakly supervised action recognition by joint action-actor constraints

derived from scripts. While the approach in [Bojanowski et al., 2013] is limited to a

few action classes and movies, we propose here a scalable solution and demonstrate

significant improvements in action recognition when applied to the large-scale weakly

supervised learning of actions from many movies.

Weakly supervised person recognition. Person recognition in TV series has

been studied in [Everingham et al., 2006; Sivic et al., 2009] where the authors pro-
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pose a solution to the problem of associating speaker names in scripts and faces in

videos. Speakers in videos are identified by detecting face tracks with lip motion.

The method in [Cour et al., 2009] presents an alternative solution by formulating

the association problem using a convex surrogate loss. Parkhi et al. [Parkhi et al.,

2015a] present a method for person recognition combining a MIL SVM with a model

for the background class. Most similar to our model is the one presented in [Bo-

janowski et al., 2013]. The authors propose a discriminative clustering cost under

linear constraints derived from scripts to recover the identities and actions of people

in movies. Apart from scaling-up the approach of [Bojanowski et al., 2013] to much

larger datasets, our model extends and improves [Bojanowski et al., 2013] with a new

background constraint.

Contributions. In this chapter, we make the following contributions: (i) We pro-

pose an optimization algorithm based on Block-Coordinate Frank-Wolfe that allows

scaling up discriminative clustering models [Bach and Harchaoui, 2007] to much larger

datasets. (ii) We extend the joint weakly-supervised Person-Action model of [Bo-

janowski et al., 2013], with a simple yet efficient model of the background class. (iii)

We apply the proposed optimization algorithm to scale-up discriminative clustering

to an order of magnitude larger dataset, resulting in significantly improved action

recognition performance.

4.2 Discriminative Clustering for Weak Supervi-

sion

We want to assign labels (e.g. names or action classes) to samples (e.g. person

tracks in the video). As opposed to the standard supervised learning setup, the exact

labels of samples are not known at training time. Instead, we are given only partial

information that some samples in a subset (or bag) may belong to some of the labels.

This ambiguous setup, also known as multiple instance learning, is common, for

example, when learning human actions from videos and associated text descriptions.
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To address this challenge of ambiguous and partial labels, we build on the discrimi-

native clustering criterion based on a linear classifier and a quadratic loss (DIFFRAC [Bach

and Harchaoui, 2007]). This framework has shown promising results in weakly su-

pervised and unsupervised computer vision tasks [Alayrac et al., 2016; Bojanowski

et al., 2013, 2014, 2015; Joulin et al., 2010, 2012; Ramanathan et al., 2014; Seguin

et al., 2016]. In particular, we use this approach to group samples into linearly sep-

arable clusters. Suppose we have 𝑁 samples to group into 𝐾 classes. We are given

𝑑-dimensional features 𝑋 ∈ R𝑁×𝑑, one for each of the 𝑁 samples, and our goal is to

find a binary matrix 𝑌 ∈ {0, 1}𝑁×𝐾 assigning each of the 𝑁 samples to one of the

labels, where 𝑌𝑛𝑘 = 1 if and only if the sample 𝑛 (e.g. a person track in a movie) is

assigned to the label 𝑘 (e.g. action class running).

First, suppose the assignment matrix 𝑌 is given. In this case finding a linear

classifier 𝑊 can be formulated as a ridge regression problem

min
𝑊 ∈R𝑑×𝐾

1
2𝑁
‖𝑌 −𝑋𝑊‖2

F + 𝜆

2 ‖𝑊‖
2
F, (4.1)

where 𝑋 is a matrix of input features, 𝑌 is the given labels assignment matrix, ‖.‖F

is the matrix norm (or Frobenius norm) induced by the matrix inner product ⟨., .⟩F
(or Frobenius inner product) and 𝜆 is a regularization hyper-parameter set to a fixed

constant. The key observation is that we can resolve the classifier 𝑊 * in closed form

as

𝑊 *(𝑌 ) = (𝑋⊤𝑋 + 𝑁𝜆𝐼)−1𝑋⊤𝑌. (4.2)

In our weakly supervised setting, however, 𝑌 is unknown. Therefore, we treat

𝑌 as a latent variable and optimize (4.1) w.r.t. 𝑊 and 𝑌 . In details, plugging the

optimal solution 𝑊 * (4.2) in the cost (4.1) removes the dependency on 𝑊 and the

cost can be written as a quadratic function of 𝑌 , i.e. 𝐶(𝑌 ) = ⟨𝑌, 𝐴(𝑋, 𝜆)𝑌 ⟩F, where

𝐴(𝑋, 𝜆) is a matrix that only depends on the data 𝑋 and a regularization parameter

𝜆. Finding the best assignment matrix 𝑌 can then be written as the minimization of
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the cost 𝐶(𝑌 ):

min
𝑌 ∈{0,1}𝑁×𝐾

⟨𝑌, 𝐴(𝑋, 𝜆)𝑌 ⟩F. (4.3)

Solving the above problem, however, can lead to degenerate solutions [Bach and

Harchaoui, 2007] unless additional constraints on 𝑌 are provided. In section 4.3,

we incorporate weak supervision in the form of constraints on the latent assignment

matrices 𝑌 . The constraints on 𝑌 used for weak supervision generally decompose

into small independent blocks. This block structure is the key for our optimization

approach that we will present next.

4.2.1 Large-Scale optimization

The Frank-Wolfe (FW) algorithm has been shown effective for optimizing convex

relaxation of (4.3) in a number of vision problems [Alayrac et al., 2016; Bojanowski

et al., 2013, 2014, 2015; Joulin et al., 2014a; Seguin et al., 2016]. It only requires

solving linear programs on a set of constraints. Therefore, it avoids costly projections

and allows the use of complicated constraints such as temporal ordering [Bojanowski

et al., 2014]. However, the standard FW algorithm is not well suited to solve (4.3)

for a large number of samples 𝑁 .

First, storing the 𝑁 × 𝑁 matrix 𝐴(𝑋, 𝜆) in memory becomes prohibitive (e.g.

the size of 𝐴 becomes ≥ 100GB for 𝑁 ≥ 200000). Second, each update of the FW

algorithm requires a full pass over the data resulting in a space and time complexity

of order 𝑁 for each FW step.

Weakly supervised learning is, however, largely motivated by the desire of using

large-scale data with “cheap” and readily-available but incomplete and noisy an-

notation. Scaling up weakly supervised learning to a large number of samples is,

therefore, essential for its success. We address this issue and develop an efficient ver-

sion of the FW algorithm. Our solution builds on the Block-Coordinate Frank-Wolfe

(BCFW) [Lacoste-Julien et al., 2013] algorithm and extends it with a smart block-

dependent update procedure as described next. The proposed update procedure is

75



one of the key contribution of this chapter.

Block-coordinate Frank-Wolfe (BCFW)

The Block-Coordinate version of the Frank-Wolfe algorithm [Lacoste-Julien et al.,

2013] is useful when the convex feasible set 𝒴 can be written as a Cartesian product

of 𝑛 smaller sets of constraints: 𝒴 = 𝒴(1)× . . .×𝒴(𝑛). Inspired by coordinate descent

techniques, BCFW consists of updating one variable block 𝒴(𝑖) at a time with a

reduced Frank-Wolfe step. This method has potentially 𝑛 times cheaper iterates

both in space and time. We will see that most of the weakly supervised problems

exhibit such a block structure on latent variables.

BCFW for discriminative clustering

To benefit from BCFW, we have to ensure that the time and space complexity of the

block update does not depend on the total number of samples 𝑁 (e.g. person tracks

in all movies) but only depends on the size 𝑁𝑖 of smaller blocks of samples 𝑖 (e.g.

person tracks within one movie). After a block is sampled, the update consists of

two steps. First, the gradient with respect to the block is computed. Then the linear

oracle is called to obtain the next iterate. As we show below, the difficult part in our

case is to efficiently compute the gradient with respect to the block.

Block gradient: a naive approach. Let’s denote 𝑁𝑖 the size of block 𝑖. The

objective function 𝑓 of problem (4.3) is 𝑓(𝑌 ) = ⟨𝑌, 𝐴(𝑋, 𝜆)𝑌 ⟩F, where (see [Bach

and Harchaoui, 2007])

𝐴(𝑋, 𝜆) = 1
2𝑁

(𝐼𝑁 −𝑋(𝑋⊤𝑋 + 𝑁𝜆𝐼𝑑)−1𝑋⊤). (4.4)

To avoid storing matrix 𝐴(𝑋, 𝜆) of size 𝑁 × 𝑁 , one can precompute the matrix

𝑃 = (𝑋⊤𝑋 + 𝑁𝜆𝐼𝑑)−1𝑋⊤ ∈ R𝑑×𝑁 . We can write the block gradient with respect to
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a subset of samples 𝑖 as follows:

∇(𝑖)𝑓(𝑌 ) = 1
𝑁

(𝑌 (𝑖) −𝑋(𝑖)𝑃𝑌 ), (4.5)

where 𝑌 (𝑖) ∈ R𝑁𝑖×𝐾 and 𝑋(𝑖) ∈ R𝑁𝑖×𝑑 are the label assignment variable and the

feature matrix for block 𝑖 (e.g. person tracks in movie 𝑖), respectively. Because of

the 𝑃𝑌 matrix multiplication, naively computing this formula has the complexity

𝒪(𝑁𝑑𝐾), where 𝑁 is the total number of samples, 𝑑 is the dimensionality of the

feature space and 𝐾 is the number of classes. As this depends linearly on 𝑁 , we aim

to find a more efficient way to compute block gradients, as described next.

Block gradient: a smart update. We now propose an update procedure that

avoids re-computation of block gradients and whose time and space complexity at each

iteration depends on 𝑁𝑖 instead of 𝑁 . The main intuition is that we need to find a way

to store information about all the blocks in a compact form. A natural way of doing so

is to maintain the weights of the linear regression parameters 𝑊 ∈ R𝑑×𝐾 . From (4.2)

we have 𝑊 = 𝑃𝑌 . If we are able to maintain the variable 𝑊 at each iteration with

the desired complexity 𝒪(𝑁𝑖𝑑𝐾), then the block gradient computation (4.5) can be

reduced from 𝒪(𝑁𝑑𝐾) to 𝒪(𝑁𝑖𝑑𝐾). We now explain how to effectively achieve that.

At each iteration 𝑡 of the algorithm, we only update a block 𝑖 of 𝑌 while keeping

all other blocks fixed. We denote the direction of the update by 𝐷𝑡 ∈ R𝑁×𝐾 and the

step size by 𝛾𝑡. With this notation the update becomes

𝑌𝑡+1 = 𝑌𝑡 + 𝛾𝑡𝐷𝑡. (4.6)

The update rule for the weight variable 𝑊𝑡 can now be written as follows:

𝑊𝑡+1 = 𝑃 (𝑌𝑡 + 𝛾𝑡𝐷𝑡)

𝑊𝑡+1 = 𝑊𝑡 + 𝛾𝑡𝑃𝐷𝑡,
(4.7)

Recall that at iteration 𝑡, BCFW only updates block 𝑖, therefore 𝐷𝑡 has non zero
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Algorithm 1 BCFW for Discriminative Clustering [Bach and Harchaoui, 2007]
Initiate 𝑌0, 𝑃 := (𝑋⊤𝑋 + 𝑁𝜆𝐼𝑑)−1𝑋⊤, 𝑊0 = 𝑃𝑌0, 𝑔𝑖 = +∞, ∀𝑖.
for 𝑡 = 1 . . . 𝑁𝑖𝑡𝑒𝑟 do

𝑖 ← sample from distribution proportional to g [Osokin et al., 2016]
∇(𝑖)𝑓(𝑌𝑡) ← 1

𝑁
(𝑌 (𝑖)

𝑡 −𝑋(𝑖)𝑊𝑡) # Block gradient
𝑌𝑚𝑖𝑛 ← argmin𝑥∈𝒴(𝑖)⟨∇(𝑖)𝑓(𝑌𝑡), 𝑥⟩F # Linear oracle
𝐷 ← 𝑌𝑚𝑖𝑛 − 𝑌 (𝑖)

𝑔𝑖 ← −⟨𝐷,∇(𝑖)𝑓(𝑌𝑡)⟩F # Block gap
𝛾 ← min(1, 𝑔𝑖

1
𝑁

⟨𝐷,𝐷−𝑋(𝑖)𝑃 (𝑖)𝐷⟩F
) # Line-search

𝑊𝑡+1 ← 𝑊𝑡 + 𝛾𝑃 (𝑖)𝐷 # W update
𝑌

(𝑖)
𝑡+1 ← 𝑌

(𝑖)
𝑡 + 𝛾𝐷 # Block update

end for

value only at block 𝑖. In block notation we can therefore write the matrix product

𝑃𝐷𝑡 as:

[︁
𝑃 (1), · · · , 𝑃 (𝑖), · · · , 𝑃 (𝑛)

]︁
×

⎡⎢⎢⎢⎢⎢⎣
0

𝐷
(𝑖)
𝑡

0

⎤⎥⎥⎥⎥⎥⎦
= 𝑃 (𝑖)𝐷

(𝑖)
𝑡 ,

(4.8)

where 𝑃 (𝑖) ∈ R𝑑×𝑁𝑖 and 𝐷
(𝑖)
𝑡 ∈ R𝑁𝑖×𝐾 are the i-th blocks of matrices 𝑃 and 𝐷𝑡,

respectively. The outcome is an update of the following form

𝑊𝑡+1 = 𝑊𝑡 + 𝛾𝑡𝑃
(𝑖)𝐷

(𝑖)
𝑡 , (4.9)

where the computational complexity for updating 𝑊 has been reduced to 𝒪(𝑁𝑖𝑑𝐾)

compared to 𝒪(𝑁𝑑𝐾) in the standard update.

We have designed a Block-Coordinate Frank-Wolfe update with time and space

complexity depending only on the size of the blocks and not the entire dataset. This

allows to scale discriminative clustering to problems with a very large number of

samples. The pseudo-code for the algorithm is summarized in Algorithm 1. Next,

we describe an application of this large-scale discriminative clustering algorithm to

weakly supervised person and action recognition in movies.
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Script 1:

Virginia is driving 
while Buster intently 
studies the terrain…

Script i:

Movie i:

: Person assignment matrix of movie i 
: # of known characters in movie i
: # of person tracks in movie i

: Subset of tracks with constraints
: Action assignment matrix

: # of action classes in the model
: # of person tracks in ALL movies

Figure 4-2: Overview of the Person-Action weakly supervised model, see text for
detailed explanations.

4.3 Weakly supervised Person-Action model

We now describe an application of our large-scale discriminative clustering algorithm

with weak-supervision. The goal is to assign to each person track a name and an

action. Both names and actions are mined from movie scripts. For a given movie 𝑖,

we assume to have 𝑁𝑖 automatically extracted person tracks as well as the parsing

of a movie script into person names and action classes. We also assume that scripts

and movies have been roughly aligned in time. In such a setup we can assign labels

(e.g. a name or an action) from a script section to a subset of tracks 𝒩 from the

corresponding time interval of a movie (see Figure 4-2 for example). In the following,

we explain how to convert such form of weak supervision into a set of constraints on

latent variables corresponding to the names and actions of people. We will also show

how these constraints easily decompose into blocks. We denote 𝑍 the latent variable

assignment matrix for person names and 𝑇 for actions.

4.3.1 Weak-supervision as constraints

We use linear constraints to incorporate weak supervision from movie scripts. In

detail, we define constraints on subsets of person tracks that we call “bags". In

the following we explain the procedure for construction of bags together with the

definition of the appropriate constraints.
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‘At least one’ constraint. Suppose a script reveals the presence of a person 𝑝 in

some time interval of the movie. We construct a set 𝒩 with all person tracks in this

interval. As first proposed by [Bojanowski et al., 2013], we model that at least one

track in 𝒩 is assigned to person 𝑝 by the following constraint

∑︁
𝑛∈𝒩

𝑍𝑛𝑝 ≥ 1. (4.10)

We can apply the same type of constraint when solving for action assignment 𝑇 .

Person-Action constraint. Scripts can also provide information that a person 𝑝

is performing an action 𝑎 in a scene. In such cases we can formulate stricter and

more informative constraints as follows. We construct a set 𝒩 containing all person

tracks appearing in this scene. Following [Bojanowski et al., 2013], we formulate a

joint constraint on presence of a person performing a specific action as

∑︁
𝑛∈𝒩

𝑍𝑛𝑝𝑇𝑛𝑎 ≥ 1. (4.11)

Mutual exclusion constraint. We also model that each person track can only

be assigned to exactly one label. This restriction can be formalized by the mutual

exclusion constraint

𝑍1𝑃 = 1𝑁 , (4.12)

for 𝑍 (i.e. rows sum up to 1). Same constraint holds for 𝑇 .

Background class constraint. One of our contributions is a novel way of coping

with the background class. As opposed to previous work [Bojanowski et al., 2013],

our approach allows us to have background model that does not require any external

data. Also it does not require a specific background class classifier as in [Parkhi et al.,

2015a].

Our background class constraint can be seen as a way to supervise people and
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actions that are not mentioned in scripts. We observe that tracks that are not subject

to constraints from Eq. (4.10) and tracks that belong to crowded shots are likely to

belong to the background class. Let us denote by ℬ the set of such tracks. We impose

that at least a certain fraction 𝛼 ∈ [0, 1] of tracks in ℬ must belong to the background

class. Assuming that person label 𝑝 = 1 corresponds to the background, we obtain

the following linear constraint (similar constraint can be defined for actions on 𝑇 ):

∑︁
𝑛∈ℬ

𝑍𝑛1 ≥ 𝛼 | ℬ | . (4.13)

4.3.2 Person-Action model formulation

Here we summarize the complete formulation of the person and action recognition

problems.

Solving for names. We formulate the person recognition problem as discriminative

clustering, where 𝑋1 are face descriptors:

min
𝑍∈{0,1}𝑁×𝑃

⟨𝑍, 𝐴(𝑋1, 𝜆)𝑍⟩F, (Discriminative cost) (4.14)

such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑︀
𝑛∈𝒩 𝑍𝑛𝑝 ≥ 1, (At least one)∑︀
𝑛∈ℬ 𝑍𝑛1 ≥ 𝛼 | ℬ |, (Background)

𝑍1𝑃 = 1𝑁 . (Mutual exclusion)

Solving for actions. After solving the previous problem for names separately for

each movie, we vertically concatenate all person name assignment matrices 𝑍. We

also define a single action assignment variable 𝑇 in {0, 1}𝑀×𝐴, where 𝑀 is the total

number of tracks across all movies and 𝑋2 are action descriptors (details given later).
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We formulate our action recognition problem as a large QP:

min
𝑇 ∈{0,1}𝑀×𝐴

⟨𝑇, 𝐴(𝑋2, 𝜇)𝑇 ⟩F, (Discriminative cost) (4.15)

such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀
𝑛∈𝒩 𝑇𝑛𝑎 ≥ 1, (At least one)∑︀
𝑛∈𝒩 𝑍𝑛𝑝𝑇𝑛𝑎 ≥ 1, (Person-Action)∑︀
𝑛∈ℬ 𝑇𝑛1 ≥ 𝛽 | ℬ |, (Background)

𝑇1𝐴 = 1𝑀 . (Mutual exclusion)

Block-Separable constraints. The set of linear constraints on the action assign-

ment matrix T is block separable since each movie has it own set of constraints, i.e.

there are no constraints spanning multiple movies. Therefore, we can fully demon-

strate here the power of our large-scale discriminative clustering optimization (Algo-

rithm 1).

4.3.3 Slack variables

To account for imprecise information in movie scripts, we add slack variables to our

constraints. We penalyze the values of slack variables with the 𝐿2 penalty. The

slack-augmented constraints are defined as:

∑︁
𝑛∈𝒩

𝑍𝑛𝑝 ≥ 1− 𝜉, (4.16)

∑︁
𝑛∈𝒩

𝑇𝑛𝑎 ≥ 1− 𝜉, (4.17)

∑︁
𝑛∈𝒩

𝑍𝑛𝑝 𝑇𝑛𝑎 ≥ 1− 𝜉, (4.18)

where 𝜉 is the slack variable.

4.3.4 Lower bound

In practice, we noticed that modifying the value of the lower bound in constraints (4.16),

(4.17), (4.18) from 1 to a higher value can significantly improve the performance of
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the algorithm. The constraints we use become:

∑︁
𝑛∈𝒩

𝑍𝑛𝑝 ≥ 𝛼1 − 𝜉, (4.19)

∑︁
𝑛∈𝒩

𝑇𝑛𝑎 ≥ 𝛼2 − 𝜉, (4.20)

∑︁
𝑛∈𝒩

𝑍𝑛𝑝 𝑇𝑛𝑎 ≥ 𝛼2 − 𝜉, (4.21)

where 𝛼1, 𝛼2 ∈ R+ are hyper-parameters.

4.4 Experimental Setup

4.4.1 Dataset

Our dataset is composed of 66 Hollywood feature-length movies1 that we obtained

from either BluRay or DVD. For all movies, we downloaded their scripts (on www.

dailyscript.com) that we temporally aligned with the videos and movie subtitles

using the method described in [Laptev et al., 2008]. The total number of frames in

all 66 movies is 11,320,252. The number of body tracks detected across all movies

(see 4.4.3 for more details) is 𝑀 = 201874.
1American Beauty, As Good As It Gets, Being John Malkovich, Big Fish, Bringing Out the Dead,

Bruce the Almighty, Casablanca, Charade, Chasing Amy, Clerks, Crash, Dead Poets Society, Double
Indemnity, Erin Brockovich, Fantastic Four, Fargo, Fear and Loathing in Las Vegas, Fight Club,
Five Easy Pieces, Forrest Gump, Gandhi, Gang Related, Get Shorty, Hudsucker Proxy, I Am Sam,
Independence Day, Indiana Jones and the Last Crusade, It Happened One Night, Jackie Brown, Jay
and Silent Bob Strike Back, LA Confidential, Legally Blonde, Light Sleeper, Little Miss Sunshine,
Living in Oblivion, Lone Star, Lost Highway, Men In Black, Midnight Run, Misery, Mission to
Mars, Moonstruck, Mumford, Ninotchka, O Brother, Pirates of the Caribbean Dead Mans Chest,
Psycho, Pulp Fiction, Quills, Raising Arizona, Rear Window, Reservoir Dogs, The Big Lebowski,
The Butterfly Effect, The Cider House Rules, The Crying Game, The Godfather, The Graduate,
The Grapes of Wrath, The Hustler, The Lord of the Rings The Fellowship of the Ring, The Lost
Weekend, The Night of the Hunter, The Pianist, The Princess Bride, Truman Capote
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ACTION # movies Other St.U. E. S.D. Si.U. H.S. F. G.C. K. H. A. R. O.D. D. Total

Ground truth 5 14532 146 24 112 19 28 90 26 47 74 28 277 131 59 15593
Constraints 66 ∅ 237 85 146 46 49 70 81 244 44 99 156 208 169 1634

Table 4.1: Action recognition ground truth and constraint statistics. (St.U: Stand
Up, E.: Eat, S.D: Sit Down, Si.U.: Sit Up, H.S: Hand Shake, F.: Fight, G.C.: Get
out of Car, K.: Kiss, H.: Hug, A.: Answer Phone, R.: Run, O.D.: Open Door, D.:
Drive)

4.4.2 Text pre-processing

To provide weak supervision for our method we process movie scripts to extract

occurrences of the 13 most frequent action classes: Stand Up, Eat, Sit Down, Sit

Up, Hand Shake, Fight, Get Out of Car, Kiss, Hug, Answer Phone, Run, Open Door

and Drive. To do so, we collect a corpus of movie scripts different from the set of our

66 movies and train simple text-based action classifiers using linear SVM and a TF-

IDF representation of words composed of uni-grams and bi-grams. After retrieving

actions in our target movie scripts, we also need to identify who is performing the

action. We used spaCy [Honnibal and Johnson, 2015] to parse every sentence classified

as describing one of the 13 actions and get every subject for each action verb.

Table 4.1 provides the number of action constraints we extracted from the 66

movie scripts. It also shows the number of ground truth intervals for each action we

obtained by an exhaustive manual annotation of human actions in five testing movies.

4.4.3 Person detection and Features

Face tracks. To obtain tracks of faces in the video, we run the multi-view face

detector [Mathias et al., 2014] based on the DPM model [Girshick et al.]. We then

extract face tracks using the same method as in [Everingham et al., 2006; Sivic et al.,

2009]. For each detected face, we compute facial landmarks [Sivic et al., 2009] followed

by the face alignment and resizing of face images to 224x224 pixel. We use pre-trained

vgg-face features [Parkhi et al., 2015b] to extract descriptors for each face. We kept

the features of dimension 4096 computed by the network at the last fully-connected

layer that we 𝐿2 normalized. For each face track, we choose the top K (in practice, we
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choose K=5) faces that have the best facial landmark confidence. Then we represent

each track by averaging the features of the top K faces.

Body tracks. To get the person body tracks, we run the Faster-RCNN network

with VGG-16 architecture fine-tuned on VOC 07 [Shaoqing et al., 2015]. Then we

track bounding boxes using the same tracker as used to obtain face tracks. To get

person identity for body tracks, we greedily link each body track to one face track

by maximizing a spatio-temporal bounding box overlap measure. However if a body

track does not have an associated face track as the actor’s face may look away from the

camera, we cannot obtain its identity. Such tracks can be originating from any actor

in the movie. To capture motion features of each body track, we compute bag-of-

visual-words representation of dense trajectory descriptors [Wang and Schmid, 2013]

inside the bounding boxes defined by the body track. We use 4000 cluster centers

for each of the HOF, MBHx and MBHy channels. In order to capture appearance

of each body track we extract ResNet-50 [He et al., 2016] pre-trained on ImageNet.

For each body bounding box, we compute the average RoI-pooled [Shaoqing et al.,

2015] feature map of the last convolutional layer within the bounding box, which

yields a feature vector of dimension 2048 for each box. We extract a feature vector

every 10th frame, average extracted feature vectors over the duration of the track

and 𝐿2 normalize. Finally, we concatenate the dense trajectory descriptor and the

appearance descriptor resulting in a 14028-dimensional descriptor for each body track.

4.4.4 Combining face and body tracks

We describe here, how we linked body tracks to face tracks. Let’s denote 𝑎1, 𝑎2, ..., 𝑎𝑛,

𝑛 faces tracks in the current shot and 𝑏1, 𝑏2, ..., 𝑏𝑚 the 𝑚 body tracks in this same

shot (we assume 𝑚 ≥ 𝑛). We want to model that each face track is associated to at

most one body track but a body track does not necessary have a face track, as the

face of a person may not always be visible. Let’s also define the following overlap

measure 𝑂 between a face track 𝑎 and a body track 𝑏. If 𝒜 is a set of all frames of

85



Method Acc. Multi-Class AP BG AP
[Cour et al., 2009] 48 63 -
[Sivic et al., 2009] 49 63 -
[Bojanowski et al., 2013] 57 75 51
[Parkhi et al., 2015a] 74 93 75
Our method 83 94 82

Table 4.2: Comparison on the Casablanca benchmark [Bojanowski et al., 2013]. BG
stands for Background.

Episode 1 2 3 4 5
[Sivic et al., 2009] 90 83 70 86 85
[Parkhi et al., 2015a] 99 90 94 96 97
Ours 98 98 98 97 97

Table 4.3: Comparison on the Buffy benchmark [Sivic et al., 2009] using AP.

the track 𝑎 and 𝑎(𝑡), 𝑏(𝑡) are bounding boxes of tracks 𝑎 and 𝑏 at frame 𝑡, we have:

𝑂(𝑎, 𝑏) =
∑︁
𝑡∈𝒜

𝐴𝑟𝑒𝑎(𝑎(𝑡) ∩ 𝑏(𝑡))
𝐴𝑟𝑒𝑎(𝑎(𝑡)) . (4.22)

We compute the overlap for all possible pairs 𝑂(𝑎𝑖, 𝑏𝑗), where 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑚].

Then we associate each face track 𝑎𝑖 with the body track 𝑏𝑗 that maximizes 𝑂(𝑎𝑖, 𝑏𝑗).

Finally, for each body track 𝑏𝑗 we either do not have any associated face track (then

the body track won’t have a match) or have multiple face tracks 𝑎𝑖 associated to it.

In the latter case, we match the body track 𝑏𝑗 with the face track 𝑎𝑖 that maximizes

𝑂(𝑎𝑖, 𝑏𝑗).

4.5 Evaluation

4.5.1 Evaluation of person recognition

We compare our person recognition method to several other methods on the Casablanca

benchmark from [Bojanowski et al., 2013] and the Buffy benchmark from [Sivic et al.,

2009]. All methods are evaluated on the same inputs: same face tracks, scripts and
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𝛼 0 0.1 0.2 0.3 0.4 0.5 0.75 1.0
Accuracy 58 58 70 82 84 83 76 55
AP 86 87 90 94 94 93 85 58

Table 4.4: Sensitivity to hyper-parameter 𝛼 (4.13) on Casablanca.

characters. Table 4.2 shows the Accuracy (Acc.) and Average Precision (AP) of

our approach compared to other methods on the Casablanca benchmark [Bojanowski

et al., 2013]. In particular we compare to Parkhi et al. [Parkhi et al., 2015a] which is a

strong baseline using the same CNN face descriptors as in our method. We also show

the AP of classifying the background character class (Background AP). We compare

in Table 4.3 our approach to other methods [Parkhi et al., 2015a; Sivic et al., 2009]

reporting results on season 5 of the TV series “Buffy the Vampire Slayer". Both of

these methods [Parkhi et al., 2015a; Sivic et al., 2009] use speaker detection to mine

additional strong (but possibly incorrect) labels from the script, which we also incor-

porate (as additional bags) to make the comparison fair. Our method demonstrates

significant improvement over the previous results. It also outperforms other methods

on the task of classifying background characters. Finally, Table 4.4 shows the sensi-

tivity to hyper-parameter 𝛼 from the background constraint (4.13) on the Casablanca

benchmark. Note that in contrast to other methods, our background model does not

require supervision for the background class. This clearly demonstrates the advantage

of our proposed background model. For all experiments the hyper-parameter 𝛼 of the

background constraint (4.13) was set to 30%. Figure 4-5 illustrates our qualitative

results for character recognition in different movies.

4.5.2 Evaluation of action recognition

First, we compare our method to Bojanowski et al. 2013 [Bojanowski et al., 2013].

Their evaluation uses different body tracks than ours, we design here an algorithm-

independent evaluation setup. We compare our model using the Casablanca movie

and the Sit Down action. For the purpose of evaluation, we have manually annotated

all person tracks in the movie and then manually labeled whether or not they contain

87



Method # movies J-M St.U. E. S.D. Si.U. H.S. F. G.C. K. H. A. R. O.D. D. mAP
(a) Random ∅ No 0.9 0.1 0.7 0.1 0.1 0.6 0.2 0.3 0.5 0.2 1.8 0.8 0.4 0.5
(b) Script only ∅ No 3.0 4.3 5.5 2.8 4.7 2.5 1.6 11.3 4.2 1.4 13.7 3.1 3.0 4.7
(c) Fully-supervised 4 No 21.2 0.2 22.2 0.9 0.6 7.3 1.4 1.9 4.5 2.0 33.2 18.5 6.3 9.3
(d) Few training movies 5 Yes 22.6 9.6 15.6 8.1 9.7 6.1 1.0 6.0 2.1 4.2 44.0 16.2 15.9 12.4
(e) No Joint Model 66 No 10.7 7.0 17.1 7.3 18.0 12.6 2.0 14.9 3.6 5.8 24.4 14.2 24.9 12.5
(f) Full setup 66 Yes 27.0 9.8 28.2 6.7 7.8 5.9 1.0 12.9 1.7 5.7 56.3 21.3 29.7 16.4

Table 4.5: Average Precision of actions evaluated on 5 movies. (St.U: Stand Up, E.:
Eat, S.D: Sit Down, Si.U.: Sit Up, H.S: Hand Shake, F.: Fight, G.C.: Get out of
Car, K.: Kiss, H.: Hug, A.: Answer Phone, R.: Run, O.D.: Open Door, D.: Drive).
J-M stands for Joint-Model.
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Figure 4-4: Action recognition mAP
with increasing number of training
movies.

the Sit Down action. Given this ground truth, we assess the two models in a similar

way as typically done in object detection. Figure 4-3 shows a precision-recall curve

evaluating recognition of the Sit Down action. We show our method trained on

Casablanca only (as done in [Bojanowski et al., 2013]) and then on all 66 movies.

Our method trained on Casablanca is already better than [Bojanowski et al., 2013].

The improvement becomes even more evident when training our method on all 66

movies.

To evaluate our method on all 13 action classes, we use five movies (American

Beauty, Casablanca, Double Indemnity, Forrest Gump and Fight Club). For each of

these movies we have manually annotated all person tracks produced by our tracker

according to 13 target action classes and the background action class. We assume

that each track corresponds to at most one target action. In rare cases where this

assumption is violated, we annotate the track by one of the correct action classes.

In Table 4.5 we compare results of our model to different baselines. The first
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𝛽 0 0.1 0.2 0.3 0.4 0.5 0.6 0.75 0.8
mAP 15.0 15.7 15.9 15.8 16.6 16.1 16.2 16.0 15.5

Table 4.6: Influence of the hyper-parameter 𝛽 (4.13) for action recognition.

baseline (a) corresponds to the random assignment of action classes. The second

baseline (b) Script only uses information extracted from the scripts: each time an

action appears in a bag, all person tracks in this bag are then simply annotated

with this action. Baseline (c) is using our action descriptors but trained in a fully

supervised set-up on a small subset of annotated movies. The fourth baseline (d) is

our method train only using the five evaluated movies. The fifth baseline (e) is our

model without the joint person-action constraint (4.11), but still trained on all 66

movies. Finally, the last result (f) is from our model using all the 66 training movies

and person-action constraints (4.11). Results demonstrate that optimizing our model

on more movies brings the most significant improvement to the final results. We

confirm the idea from [Bojanowski et al., 2013] that adding the information of who is

performing the action in general helps identifying actions. However we also notice it is

not always true for actions with interacting people such as: Fight, Hand Shake, Hug

or Kiss. Knowing who is doing the action does not seems to help for these actions.

Figure 4-4 shows improvements in action recognition when gradually increasing the

number of training movies. Figure 4-6 shows qualitative results of our model on

different movies. Table 4.6 shows the low sensitivity of the action recognition results

to the 𝛽 (4.15) hyper-parameter on the action recognition results.
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Figure 4-5: Qualitative results for face recognition. Green bounding boxes are face
tracks correctly classified as background characters.

Figure 4-6: Qualitative results for action recognition. P stands for for the name of the
character and A for the action performed by P. Last row (in red) shows mislabeled
tracks with high confidence (e.g. hugging labeled as kissing, sitting in a car labeled
as driving).
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4.6 Conclusion

In this chapter, we have proposed an efficient online optimization method based on

the Block-Coordinate Frank-Wolfe algorithm. We use this new algorithm to scale-up

discriminative clustering model in the context of weakly-supervised person and ac-

tion recognition in feature-length movies. Moreover, we have proposed a novel way

of handling the background class, which does not require collecting background class

data as required by the previous approaches, and leads to better performance for

person recognition. In summary, the proposed model significantly improves action

recognition results on 66 feature-length movies. The significance of the technical

contribution goes beyond the problem of person-action recognition as the proposed

optimization algorithm can scale-up other problems recently tackled by discrimina-

tive clustering. Examples include: unsupervised learning from narrated instruction

videos [Alayrac et al., 2016], text-to-video alignment [Bojanowski et al., 2015], co-

segmentation [Joulin et al., 2010], co-localization in videos and images [Joulin et al.,

2014b] or instance-level segmentation [Seguin et al., 2016], which can be now scaled-up

to an order of magnitude larger datasets.
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Chapter 5

HowTo100M: Learning a

Text-Video Embedding from

Uncurated Narrated Videos

In the previous chapters, we have introduced an approach for representing videos

(Chapter 3) as well as an approach for weakly-supervised learning from readily avail-

able supervision in the form of movie scripts (Chapter Chapter 4). In this chapter,

we propose to learn a joint text-video embedding from video with readily available

natural language annotations in the form of automatically transcribed narrations.

We will also reuse the Context Gating module previously introduced in Chapter 3.

The contributions of this chapter are three-fold. First, we introduce HowTo100M :

a large-scale dataset of 136 million video clips sourced from 1.22M narrated instruc-

tional web videos depicting humans performing and describing over 23k different

visual tasks. Our data collection procedure is fast, scalable and does not require any

additional manual annotation. Second, we demonstrate that a text-video embedding

trained on this data leads to state-of-the-art results for text-to-video retrieval and

action localization in instructional video datasets such as YouCook2 or CrossTask.

Finally, we show that this embedding transfers well to other domains: fine-tuning on

generic YouTube videos (MSR-VTT dataset) and movies (LSMDC dataset) outper-

forms models trained on these datasets alone.
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Figure 5-1: We learn a joint text-video embedding by watching millions of narrated
video clips of people performing diverse visual tasks. The learned embedding transfers
well to other instructional and non-instructional text-video datasets.

5.1 Introduction

Communicating about the visual world using language is a key ability of humans as

intelligent beings. A three year old child can manipulate objects, observe its own

actions and describe them to others using language; while adults can learn new skills

by reading books or watching videos. This interplay between video and language

extends naturally to artificial agents that need to understand the visual world and

communicate about it with people. Examples of tasks that still represent a significant

challenge for current artificial systems include text-to-video retrieval [Klein et al.,

2015; Miech et al., 2018; Wang et al., 2018a, 2016b; Yu et al., 2018], text-based action

or event localization [Hendricks et al., 2017], video captioning [Pan et al., 2016a; Yu

et al., 2016a], and video question answering [Tapaswi et al., 2016; Yu et al., 2018].
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Yet, progress on these problems is important for a host of applications from searching

video archives to human-robot communication.

A common approach to model visual concepts described with language is to learn

a mapping of text and video into a shared embedding space, where related text

fragments and video clips are close to each other [Hendricks et al., 2017; Miech et al.,

2018; Pan et al., 2016b; Plummer et al., 2017; Xu et al., 2015a]. Learning a good

representation often requires a large set of paired video clips and text captions. In

fact, given the huge variability of video scenes and their textual descriptions, learning

a generic embedding space may require millions of paired video clips and text captions.

However, existing datasets (e.g. MSR-VTT [Xu et al., 2016], DiDeMo [Hendricks

et al., 2017], EPIC-KITCHENS [Damen et al., 2018]), are on the scale of tens to

hundreds of thousands of such pairs that have been annotated manually. Manual

collection of such datasets is expensive and hard to scale. It is also subjective since

video annotation can often be an ill-defined task with low annotator consistency [Xu

et al., 2016].

In this chapter, we explore a different source of supervision to obtain paired video

clips and text captions for learning joint representations of video and language. We

observe that narrated instructional videos are available in large quantities (e.g. on

YouTube) and provide a large amount of visual and language data. In particular,

instructional videos [Alayrac et al., 2016; Malmaud et al., 2015; Zhukov et al., 2019]

often contain narration with an explicit intention of explaining the visual content

on screen. To leverage this rich source of data, we collect a new large-scale dataset

containing 136 million video clips sourced from 1.22 million narrated instructional

videos depicting humans performing more than 23,000 different tasks. Each clip is

paired with a text annotation in the form of an automatically transcribed narration.

Contributions. The contributions of this chapter are three-fold. First, we collect

a new dataset of close-captioned video clips, HowTo100M, that is orders of magnitude

larger than any other existing video-text datasets (Section 5.3). Second, we show that

such data can be used to learn powerful video-language representations. Our model
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(Section 5.4), trained on HowTo100M, sets a new state-of-the-art for text-based action

localization and text-to-video retrieval on existing datasets of instructional videos,

YouCook2 [Zhou et al., 2018b] and CrossTask [Zhukov et al., 2019]. Finally, we

explore the ability of models trained on our data to transfer to non-instructional

videos. In particular, we demonstrate that models pretrained on HowTo100M can be

successfully transferred by fine tuning on the MSR-VTT dataset (generic Youtube

videos) and the LSMDC dataset (movies).

5.2 Related work

A significant number of computer vision applications rely on a joint understanding

of visual and textual cues. These applications include automatic image and video

captioning [Johnson et al., 2016; Pan et al., 2016a; You et al., 2016; Yu et al., 2016a],

visual question answering [Fukui et al., 2016; Malinowski et al., 2015; Tapaswi et al.,

2016; Yu et al., 2018], visual content retrieval based on textual queries [Miech et al.,

2018; Wang et al., 2018c; Yu et al., 2018], temporal localization of events in videos

using natural language [Hendricks et al., 2017; Krishna et al., 2017] or video summa-

rization with natural language [Plummer et al., 2017].

Vision, language and speech. A common approach to model vision and language

is learning a joint embedding space where visual and textual cues are adjacent if

and only if they are semantically similar [Chowdhury et al., 2018; Dong et al., 2019;

Gong et al., 2014a,b; Klein et al., 2015; Miech et al., 2018; Mithun et al., 2018; Pan

et al., 2016b; Plummer et al., 2017; Xu et al., 2015a; Wang et al., 2018a, 2016b; Wu

et al., 2017]. Most of these works rely on medium scale well annotated datasets in

which descriptive captions are collected for each video clip. This process is costly as

it requires considerable human annotation effort making these datasets hard to scale

(see Table 5.1). In this chapter, we train a joint video and language model without a

single manually annotated video description by leveraging automatically transcribed

narrated videos. Using the spoken text from narrated videos to supervise vision

models has seen some recent interest [Alayrac et al., 2016; Chen et al., 2017a; Harwath
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Dataset Clips Captions Videos Duration Source Year
Charades [Sigurdsson et al., 2016b] 10k 16k 10,000 82h Home 2016
MSR-VTT [Xu et al., 2016] 10k 200k 7,180 40h Youtube 2016
YouCook2 [Zhou et al., 2018b] 14k 14k 2,000 176h Youtube 2018
EPIC-KITCHENS [Damen et al., 2018] 40k 40k 432 55h Home 2018
DiDeMo [Hendricks et al., 2017] 27k 41k 10,464 87h Flickr 2017
M-VAD [Torabi et al., 2015] 49k 56k 92 84h Movies 2015
MPII-MD [Rohrbach et al., 2015] 69k 68k 94 41h Movies 2015
ANet Captions [Krishna et al., 2017] 100k 100k 20,000 849h Youtube 2017
TGIF [Li et al., 2016] 102k 126k 102,068 103h Tumblr 2016
LSMDC [Rohrbach et al., 2017] 128k 128k 200 150h Movies 2017
How2 [Sanabria et al., 2018] 185k 185k 13,168 298h Youtube 2018
HowTo100M 136M 136M 1.221M 134,472h Youtube 2019

Table 5.1: Comparison of existing video description datasets. The size of our new
HowTo100M dataset bypasses the size of largest available datasets by three orders of
magnitude. M denotes million while k denotes thousand.

et al., 2018; Malmaud et al., 2015; Sanabria et al., 2018; Yu et al., 2014]. [Harwath

et al., 2018] utilize the raw speech waveform to supervise the visual model, however,

their method does not scale as annotators were paid to record audio descriptions

for thousands of images. [Chen et al., 2017a] use subtitles from documentaries to

automatically obtain object labels, but their focus is on learning object detectors

rather than text-video embeddings and their dataset contains only 9 documentary

movies, compared to about 15 years of video content considered in this work.

Learning from instructional videos. Instructional videos are rising in popular-

ity in the context of learning steps of complex tasks [Alayrac et al., 2016; Huang

et al., 2016; Richard et al., 2017, 2018; Sener and Yao, 2018; Zhukov et al., 2019],

visual-linguistic reference resolution [Huang et al., 2017, 2018], action segmentation

in long untrimmed videos [Zhou et al., 2018a] and joint learning of object states and

actions [Alayrac et al., 2017]. Related to this chapter, [Alayrac et al., 2016; Malmaud

et al., 2015; Yu et al., 2014] also consider automatically generated transcription of

narrated instructional videos as a source of supervision. However as opposed to this

chapter, these works typically extract from transcriptions only a small number of

predefined labels.

Numerous datasets of web instructional videos were proposed over the past years
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Figure 5-2: Examples of clip-caption pairs retrieved with the help of our joint em-
bedding. Pairs are selected based on the similarity between visual appearance and
corresponding narration, while they are arranged based on linguistic similarity across
pairs. Examples are taken from 4 distinct clusters, corresponding to Knitting, Wood-
work/Measuring, Cooking/Seasoning and Electric maintenance.

[Alayrac et al., 2016; Malmaud et al., 2015; Sanabria et al., 2018; Sener et al., 2015;

Tang et al., 2019; Zhou et al., 2018b; Zhukov et al., 2019]. Among the first to harvest

instructional videos, [Sener et al., 2015] use WikiHow, an encyclopedia of how to

articles, to collect 17 popular physical tasks, and obtain videos by querying these tasks

on YouTube. In a similar vein, COIN [Tang et al., 2019] and CrossTask [Zhukov et al.,

2019] datasets are collected by first searching for tasks on WikiHow and then videos

for each task on YouTube. We use the same approach for collecting HowTo100M.

The main distinction between our dataset and previous efforts is the unprecedented

scale both in terms of variety (more than 23,000 tasks from 12 different domains) and

size (136 million clips sourced from 1.2 million instructional videos).

Large-scale data for model pretraining. The use of large-scale and potentially

noisy data from the web is an exciting prospect to pretrain language and vision

models. In natural language processing, BERT [Devlin et al., 2018], GPT [Radford

et al., 2018], and GPT-2 [Radford et al., 2019] are examples of language models

trained on large-scale data that achieve state-of-the-art for many tasks. In fact,

training GPT-2 on WebText [Radford et al., 2019] a dataset of 40GB of text from

Reddit achieves state-of-the-art even in zero-shot settings. In vision, [Mahajan et al.,
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2018a; Sun et al., 2017] explore the use of image metadata such as Instagram hashtags

to pretrain image classifiers.

We are inspired by these works and focus our efforts on learning a strong em-

bedding for joint understanding of video and language. We demonstrate that our

video-language embedding learned from millions of YouTube videos not only outper-

forms previous work on tasks related to instructional videos without fine-tuning, but

also generalizes well to non-instructional videos with some fine-tuning. We release

our dataset, feature extraction pipeline, and model parameters as a resource that the

video and language community can build on.

5.3 The HowTo100M dataset

We collect a new dataset of narrated videos with an emphasis on instructional videos

where content creators teach complex tasks. This ensures that most narrations de-

scribe the observed visual content. HowTo100M features 1.22 million videos from

YouTube, with activities from domains such as cooking, hand crafting, personal care

or gardening. Each video is associated with a narration available as subtitles that

are either written manually or are the output of an Automatic Speech Recognition

(ASR) system.

5.3.1 Data collection

Visual tasks. With an aim to obtain instructional videos that describe how to

perform certain activities, we first start by acquiring a large list of activities using

WikiHow1 – an online resource that contains 120,000 articles on How to ... for a

variety of domains ranging from cooking to human relationships structured in a hi-

erarchy. We are primarily interested in “visual tasks” that involve some interaction

with the physical world (e.g. Making peanut butter, Pruning a tree) as compared to

others that are more abstract (e.g. Ending a toxic relationship, Choosing a gift). To

obtain predominantly visual tasks, we limit them to one of 12 categories (listed in
1https://www.wikihow.com
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Table 5.2). We exclude categories such as Relationships and Finance and Business,

that may be more abstract.

We further refine the set of tasks, by filtering them in a semi-automatic way. In

particular, we restrict the primary verb to physical actions, such as make, build and

change, and discard non-physical verbs, such as be, accept and feel. This procedure

yields 23,611 visual tasks in total.

Instructional videos. We search for YouTube videos related to the task by forming

a query with how to preceding the task name (e.g. how to paint furniture). We

choose videos that have English subtitles - either uploaded manually, generated au-

tomatically by YouTube ASR, or generated automatically after translation from a

different language by YouTube API.

We improve the quality and consistency of the dataset, by adopting the following

criteria. We restrict to the top 200 search results, as the latter ones may not be

related to the query task. Videos with less than 100 views are removed as they are

often of poor quality or are amateurish. We also ignore videos that have less than

100 words as that may be insufficient text to learn a good video-language embedding.

Finally, we remove videos longer than 2,000 seconds.

As some videos may appear in several tasks, we de-duplicate videos based on

YouTube IDs. However, note that the dataset may still contain duplicates if a video

was uploaded several times or edited and re-uploaded. Nevertheless, this is not a

concern at our scale.

5.3.2 Paired video clips and captions

Subtitles are often organized as a list of text chunks (lines), and need not form

complete sentences. Each line is associated with a time interval in the video, typically

the duration in which the line is uttered. We select each line of the subtitles as a

caption, and pair it with the video clip from the time interval corresponding to the

line. We show some examples from our clip-caption pairs in Figure 5-2.

Different from other datasets with clip-caption pairs (e.g. MSR-VTT), our cap-
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Category Tasks Videos Clips
Food and Entertaining 11504 497k 54.4M
Home and Garden 5068 270k 29.5M
Hobbies and Crafts 4273 251k 29.8M
Cars & Other Vehicles 810 68k 7.8M
Pets and Animals 552 31k 3.5M
Holidays and Traditions 411 27k 3.0M
Personal Care and Style 181 16k 1.6M
Sports and Fitness 205 16k 2.0M
Health 172 15k 1.7M
Education and Communications 239 15k 1.6M
Arts and Entertainment 138 10k 1.2M
Computers and Electronics 58 5k 0.6M
Total 23.6k 1.22M 136.6M

Table 5.2: Number of tasks, videos and clips within each category.

tions are not manually annotated, but automatically obtained through the narration.

Thus, they can be thought of as weakly paired. Typical examples of incoherence in-

clude the content producer asking viewers to subscribe to their channel, talking about

something unrelated to the video, or describing something before or after it happens.

Furthermore, our captions are often incomplete, lack punctuation, or are grammati-

cally incorrect sentences, as they come from continuous narration and often ASR. We

have manually inspected 400 randomly sampled clip-caption pairs and found that in

51 %, at least one object or action mention in the caption is visually seen in the video

clip.

Statistics. The initial set of visual tasks are obtained by focusing on 12 WikiHow

categories. Table 5.2 shows the number of collected WikiHow tasks and corresponding

videos and clips per category. In Figure 5-8, we show the first two levels of the

WikiHow hierarchy: the twelve categories and their subcategories along with the

number of chosen tasks and corresponding videos in our dataset. We compare the

sizes of existing clip-caption paired datasets in Table 5.1. HowTo100M is several

orders of magnitude larger than existing datasets and contains an unprecedented

duration (15 years) of video data. However, unlike previous datasets, HowTo100M
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does not have clean annotated captions. As the videos contain complex activities,

they are relatively long with an average duration of 6.5 minutes. On average, a video

produces 110 clip-caption pairs, with an average duration of 4 seconds per clip and

4 words (after excluding stop-words) per caption. Figure 5-9 shows frequencies of

nouns and verbs in transcribed video narrations. We used the MaxEnt Treebank

POS Tagger to obtain the nouns and verbs. Please refer to the Figure 5-9 caption

for additional analysis. Our data collection procedure assumes that searching with

How to queries on YouTube would result in mostly instructional videos. We verify

this by randomly selecting 100 videos and labeling their type. 71% of the videos

are found to be instructional, 12% are vlogs, and another 7% are product reviews or

advertisements. Note that vlogs, reviews and ads may also contain correspondences

between visual content and narration. In particular, we noticed that objects shown

on screen are often mentioned in narration. We do not discard such non-instructional

videos, as they may still be useful for the learning the joint embedding.

5.4 Text-video joint embedding model

We now present our model to learn a joint text-video embedding from the automat-

ically paired video clips and captions in our dataset. More formally, we are given a

set of 𝑛 video clips and associated captions {(𝑉𝑖, 𝐶𝑖)}𝑛
𝑖=1. We denote by v ∈ R𝑑𝑣 and

c ∈ R𝑑𝑐 the 𝑑𝑣 and 𝑑𝑐 dimensional feature representation of a video clip 𝑉 and caption

𝐶, respectively. Given this, our goal is to learn two mapping functions: 𝑓 : R𝑑𝑣 → R𝑑

and 𝑔 : R𝑑𝑐 → R𝑑 that respectively embed video and caption features into a common

𝑑-dimensional space, such that the cosine similarity

𝑠(𝑉, 𝐶) = ⟨𝑓(v), 𝑔(c)⟩
‖𝑓(v)‖2‖𝑔(c)‖2

(5.1)

is high when caption 𝐶 describes the video clip 𝑉 , and low otherwise.

In this chapter, we use the class of non-linear embedding functions used in [Miech
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et al., 2018], which are given by:

𝑓(v) = (𝑊 𝑣
1 v + 𝑏𝑣

1) ∘ 𝜎(𝑊 𝑣
2 (𝑊 𝑣

1 v + 𝑏𝑣
1) + 𝑏𝑣

2) (5.2)

and 𝑔(c) = (𝑊 𝑐
1 c + 𝑏𝑐

1) ∘ 𝜎(𝑊 𝑐
2 (𝑊 𝑐

1 c + 𝑏𝑐
1) + 𝑏𝑐

2), (5.3)

where 𝑊 𝑣
1 ∈ R𝑑×𝑑𝑣 , 𝑊 𝑐

1 ∈ R𝑑×𝑑𝑐 , 𝑊 𝑣
2 , 𝑊 𝑐

2 ∈ R𝑑×𝑑, 𝑏𝑣
1, 𝑏𝑐

1, 𝑏𝑣
2, 𝑏𝑐

2 ∈ R𝑑 are learnable

parameters, 𝜎 is an element-wise sigmoid activation and ∘ is the element-wise mul-

tiplication (Hadamard product). In practice, 𝑑𝑣 = 4, 096, 𝑑𝑐 = 4, 096 and 𝑑 = 4, 096

resulting in a model composed of 67M parameters. Note that the first term on the

right-hand side in Equations (5.2) and (5.3) is a linear fully-connected layer and the

second term corresponds to a context gating function [Miech et al., 2017b] with an

output ranging between 0 and 1, which role is to modulate the output of the linear

layer. As a result, this embedding function can model non-linear multiplicative inter-

actions between the dimensions of the input feature vector which has proven effective

in other text-video embedding applications [Miech et al., 2018].

Loss. We train our embedding model using the max-margin ranking loss [Karpathy

et al., 2014a; Miech et al., 2018; Wang et al., 2018a, 2016b; Yu et al., 2016b]. At

each iteration of our training algorithm, we sample a mini-batch ℬ = {𝑖1, ..., 𝑖𝑏} ⊂

{1, . . . , 𝑛} of caption-clip training pairs (𝑉𝑖, 𝐶𝑖)𝑖∈ℬ, and update the model parameters

with a gradient step of the following loss:

∑︁
𝑖∈ℬ

∑︁
𝑗∈𝒩 (𝑖)

max(0, 𝛿 + 𝑠𝑖,𝑗 − 𝑠𝑖,𝑖) + max(0, 𝛿 + 𝑠𝑗,𝑖 − 𝑠𝑖,𝑖), (5.4)

where 𝑠𝑖,𝑗 = 𝑠(𝑉𝑖, 𝐶𝑗) is the similarity score (5.1) between video clip 𝑉𝑖 and caption

𝐶𝑗, 𝒩 (𝑖) is a set of negative pairs for caption-clip 𝑖 and 𝛿 is the margin. The first term

in Equation (5.4) corresponds to the ranking loss when sampling a negative caption,

while the second term corresponds to sampling a negative video clip. We fix 𝛿 = 0.1

in practice. Our model parameters are updated using Adam [Kingma and Ba, 2015]

with a learning rate of 10−4.

Sampling strategy. Similar to [Hendricks et al., 2017], we apply an intra-video
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negative sampling strategy to define 𝒩 (𝑖). We show in Section 5.5.3 that this ap-

proach is critical for good performance. More precisely, half of our negative pairs

{(𝑉𝑖, 𝐶𝑗) : 𝑖 ̸= 𝑗}, are selected such that the video clip 𝑉𝑖 and the caption 𝐶𝑗 belong

to the same original YouTube video (as (𝑉𝑖, 𝐶𝑖)), while the other half are sampled

from other YouTube videos. We apply intra-negative sampling to ensure that the

learned embedding focuses on relevant aspects of the video clip (e.g. the hands of

the person showing how to knead dough) rather than irrelevant background features

(e.g. the kitchen). Later in section 5.5.7, we also provide an empirical analysis of the

positive pair sampling strategy. We show that even though the training data is noisy,

our attempts to automatically select correct positive pairs during training did not

yield improvements so far. We think this could be attributed to the fact our model

is shallow and is trained on a large amount of data.

Clip and caption representation. The clip feature v consists of temporally max-

pooled pre-extracted CNN features. The caption feature c is the output of a shallow

1D-CNN on top of pre-computed word embeddings. More details are given in Sec-

tion 5.5.1.

5.4.1 Loss implementation

We explain next how 𝒩 (𝑖) is constructed to improve computational efficiency.

At each training iteration, we first sample 𝑣 unique YouTube video ids. We then

sample with replacement a number 𝑘 of clip-caption pairs from each of these videos.

Therefore, we are left with a mini-batch containing 𝑏 = 𝑘𝑣 clip-caption pairs, with

𝑣 = 32 and 𝑘 = 64 in practice. In order to not waste computation efforts, we use

every sampled mini-batch pair as a negative anchor, i.e. 𝒩 (𝑖) = ℬ ∖ {𝑖},∀𝑖.

Doing so, the proportion of negative examples coming from the same video (intra-

video) is 𝑘−1
𝑘𝑣−1 while the proportion of negatives from different videos (inter-video)

is 𝑘(𝑣−1)
𝑘𝑣−1 . A problem with this is that the ratio between intra and inter video neg-

ative examples depends on the number of unique videos sampled and the amount

of clip-caption pairs collected per video (respectively 𝑣 and 𝑘). To address this, we

follow Hendricks et al. [2017] by re-weighting the inter-video and intra-video contri-
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butions inside the triplet loss. For example, in order to sample intra-video triplets

with probability 𝑝 ∈ [0, 1] (and inter-video triplets with probability 1 − 𝑝), one can

equivalently weight the intra-video triplet losses by: 𝛼 = 𝑝𝑘(𝑣−1)
(1−𝑝)(𝑘−1) (thus ensuring a

ratio between intra-video and inter-video negative examples of 𝑝
1−𝑝

). This allows us

to fix the intra-video to inter-video negative sampling ratio regardless of 𝑣 and 𝑘.

Formally, we define the following weighting function:

𝛼𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑝𝑘(𝑣−1)

(1−𝑝)(𝑘−1) if 𝑖 and 𝑗 are from same video,

1, otherwise.
(5.5)

We then use this weighing function to define the loss:

∑︁
𝑖∈ℬ,𝑗∈𝒩 (𝑖)

𝛼𝑖,𝑗

[︂
max(0, 𝛿 + 𝑠𝑖,𝑗 − 𝑠𝑖,𝑖) + max(0, 𝛿 + 𝑠𝑗,𝑖 − 𝑠𝑖,𝑖)

]︂
.

5.5 Experiments

In this section, we demonstrate that a strong joint representation for video and text

can be learned from our unlabeled HowTo100M dataset. We provide experimental

results for a variety of domains ranging from instructional videos in CrossTask [Zhukov

et al., 2019], cooking videos in YouCook2 [Zhou et al., 2018b], generic YouTube videos

in MSR-VTT [Xu et al., 2016] to movie video clips in LSMDC [Rohrbach et al., 2017].

Specifically, we evaluate our learned embedding on the tasks of localizing steps in

instructional videos of CrossTask [Zhukov et al., 2019] and text-based video retrieval

on YouCook2 [Zhou et al., 2018b], MSR-VTT [Xu et al., 2016] and LSMDC [Rohrbach

et al., 2017] datasets.

Our key findings are the following: (i) For instructional video datasets, such

as CrossTask [Zhukov et al., 2019] and YouCook2 [Zhou et al., 2018b], our off-the-

shelf embedding trained on HowTo100M significantly outperforms state-of-the-art

models trained on much smaller and manually-annotated datasets. (ii) On generic

YouTube videos (MSR-VTT [Xu et al., 2016]), our HowTo100M embedding provides

competitive retrieval performance compared to state-of-the-art methods trained on
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MSR-VTT. Moreover, we show that fine-tuning our pre-trained embedding model on

just a fifth of annotated videos from MSR-VTT outperforms state-of-the-art. (iii) We

show that fine-tuning our embedding on LSMDC enables generalization to movie

videos and scripts despite the large domain gap. (iv) Finally, we demonstrate the

importance of scale in HowTo100M to learn better joint video-text embeddings.

5.5.1 Implementation details

Video features. We extract frame-level and video-level features with pre-trained

2D and 3D CNNs. 2D features are extracted with the ImageNet pre-trained Resnet-

152 [He et al., 2016] at the rate of one frame per second. 3D features are extracted

with the Kinetics [Carreira and Zisserman, 2017] pre-trained ResNeXt-101 16-frames

model [Hara et al., 2018] to obtain 1.5 features per second. We aggregate features

from longer video clips by the temporal max-pooling and concatenate 2D and 3D

features to form a single 4096 dimensional vector for each video clip.

Text pre-processing. We preprocess transcribed video narrations by discarding

common English stop-words. For the word representations, we use the GoogleNews

pre-trained word2vec embedding model [Mikolov et al., 2013].

Training time. Once the video and text features are extracted, training our em-

bedding model on the full HowTo100M dataset is relatively fast and takes less than

three days on a single Tesla P100 GPU.

5.5.2 Datasets and evaluation setups

Action step localization. We evaluate localization of action steps in instructional

videos on the recent CrossTask dataset [Zhukov et al., 2019]. CrossTask includes

18 tasks and 2.7k instructional videos with manually annotated action segments.

Each video may contain multiple segments, corresponding to different actions. It also

provides an ordered list of action steps with short natural language descriptions for

each task. We apply our model trained only on HowTo100M to the problem of step

localization by computing similarity between every frame in the video and the action
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label names of CrossTask. In order to compare to [Zhukov et al., 2019], we follow a

similar inference procedure. We use the same recall metric as in [Zhukov et al., 2019],

which is defined by the number of step assignments that fall into the correct ground

truth interval, divided by the total number of steps in the video. Videos from the

test set of CrossTask are removed from the HowTo100M training set to ensure that

they are not observed at training time.

Text-based video retrieval. We also evaluate our learned embedding on the task

of video clip retrieval using natural language queries. Given a textual description,

the goal is to retrieve representative video clips from a large pool of videos. We

evaluate our learned embedding using the standard recall metrics R@1, R@5, R@10

and the median rank (Median R). We provide experimental results for the following

domain-specific video description datasets.

YouCook2 [Zhou et al., 2018b] is a cooking video dataset collected from YouTube.

It features 89 different recipes and 14k video clips all annotated with textual descrip-

tions collected from paid human workers. Since no descriptions are provided for the

test set clips, we evaluate YouCook2 clip retrieval task on the validation clips (3.5k in

total). Note that we have taken care to remove the few validation YouCook2 videos

that are also present in HowTo100M.

MSR-VTT [Xu et al., 2016] is a dataset of generic videos collected from 257

popular video queries depicting 20 categories (including music, sports or movie) from

YouTube. It contains 200k unique video clip-caption pairs, all annotated by paid

human workers. We evaluate our model on the MSR-VTT clip retrieval test set used

in [Yu et al., 2018] as performance of several other methods is reported on it.

LSMDC [Rohrbach et al., 2017] is a dataset of movie clips. It features 101k

unique video clip-caption pairs. All clips are associated with a description that either

comes from the movie script or the audio description. We evaluate our model on the

official LSMDC test set2 that contains 1000 video-caption pairs.
2https://sites.google.com/site/describingmovies/lsmdc-2016/movieretrieval
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Negative sampling M (R@10) L (R@10) Y (R@10) C (AVG Recall)
No intra-negative 30.1 12.3 18.1 25.7
With intra-negative 29.6 14.0 24.8 33.6

Table 5.3: Impact of intra-video negative pairs during training. M: MSR-VTT, L:
LSMDC, Y: YouCook2, C: CrossTask.

5.5.3 Study of negative pair sampling strategy

We first study the effect of alternative strategies for sampling negative caption-video

clip pairs when training our embedding. Table 5.3 shows that using negatives from

the same video (intra-negatives) is beneficial as compared to randomly sampling them

from other YouTube videos. The improvement is particularly significant on YouCook2

and CrossTask which are more fine-grained datasets than MSR-VTT and LSMDC.

For the rest of the chapter, we report numbers using our model trained with the

intra-negative sampling strategy.

5.5.4 Scale matters

A natural question is whether the large scale of our dataset is truly required to

achieve high performance. To answer this, we train our embedding model on smaller

subsets of our dataset. These smaller subsets of HowTo100M are created by gradually

decreasing the allowed Youtube search rank (see the paragraph on data collection in

Section 5.3.1 for more details) for training videos. We experiment with the following

rank thresholds: top 2 (15k videos), top 3 (28k videos), top 5 (52k videos), top 10

(104k videos), top 20 (197k videos), top 40 (364k videos), top 80 (648k videos) and top

200 (entire HowTo100M dataset). This process ensures that we subsample training

videos that are more likely to be relevant to the queried task as we reduce the size

of the training dataset. Figure 5-3 shows average recall on CrossTask and the R@10

clip retrieval results on LSMDC, MSR-VTT and YouCook2 when varying the size

of the training dataset. There is a clear improvement over all evaluated tasks with

the gradual increase in the amount of training data. Interestingly, we do not observe

any saturation, hence we can expect further improvements by collecting even more

107



# of HowTo100M training videos

Figure 5-3: Retrieval and step localization results when varying the training size of
our HowTo100M dataset.

readily-available and unlabeled video data.

5.5.5 Comparison with state-of-the-art

CrossTask. We compare our off-the-shelf embedding trained on HowTo100M against

methods proposed by [Alayrac et al., 2016] and [Zhukov et al., 2019] which is the cur-

rent state-of-the-art on CrossTask for weakly supervised methods. Note that [Zhukov

et al., 2019] have access to the ordered list of action labels at the task level and

narrations are the only form of supervision during training. We also report the fully-

supervised upper-bound from [Zhukov et al., 2019] obtained with a model that has

been trained on action segments with ground truth annotation. The results are shown

in Table 5.4. Our approach significantly outperforms the state-of-the-art, even though

it has not been specifically designed for the task of step localization in videos. The

improvement made by our method is consistent across all tasks (with the exception of

Make Meringue), showing that the trained model is not biased towards any specific

domain. The recall is above 30% for most tasks with the significant improvement

observed for the “Add Oil to a Car” task (6.4% to 30.7% boost in recall). Note that

our method also outperforms the fully-supervised upper bound [Zhukov et al., 2019]
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[Zhukov et al., 2019] (Supervised) 19.1 25.3 38.0 37.5 25.7 28.2 54.3 25.8 18.3 31.2 47.7 12.0 39.5 23.4 30.9 41.1 53.4 17.3 31.6
[Alayrac et al., 2016] 15.6 10.6 7.5 14.2 9.3 11.8 17.3 13.1 6.4 12.9 27.2 9.2 15.7 8.6 16.3 13.0 23.2 7.4 13.3
[Zhukov et al., 2019] 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4
Ours (HowTo100M only trained) 33.5 27.1 36.6 37.9 24.1 35.6 32.7 35.1 30.7 28.5 43.2 19.8 34.7 33.6 40.4 41.6 41.9 27.4 33.6

Table 5.4: Step localization results on CrossTask [Zhukov et al., 2019] instructional
video dataset.

Method Trainset R@1 R@5 R@10 Median R
Random None 0.03 0.15 0.3 1675
HGLMM FV CCA [Klein et al., 2015] YouCook2 4.6 14.3 21.6 75
Ours YouCook2 4.2 13.7 21.5 65
Ours HowTo100M 6.1 17.3 24.8 46
Ours PT: HowTo100M

FT: YouCook2 8.2 24.5 35.3 24

Table 5.5: YouCook2 clip retrieval results. PT denotes: pre-trained, while FT denotes:
fine-tuned.

on average. Thus, we conclude that training on a large amount of narrated videos

is better than training a step localization model on a small but carefully annotated

training set.

YouCook2 [Zhou et al., 2018b] does not provide an official benchmark nor any

reported number for clip retrieval. As a consequence, we have applied a state-of-

the-art text-video embedding model from [Klein et al., 2015] (HGLMM FV CCA)

on YouCook2 using our features. We also report results of our model trained on

YouCook2 instead of HowTo100M in Table 5.5. First, we notice that our off-the-shelf

model trained on HowTo100M significantly outperforms both the exact same model

directly trained on YouCook2 and [Klein et al., 2015]. Furthermore, fine-tuning our

model pre-trained on HowTo100M on YouCook2 results in a significant improvement

of 13.7 % in R@10 against [Klein et al., 2015]. In conclusion, we show that the off-

the-shelf HowTo100M trained model can outperform state-of-the-art on this domain

specific instructional video dataset. Moreover, we demonstrate that our model can

get further benefits from fine-tuning.
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Method Trainset R@1 R@5 R@10 Median R
Random None 0.1 0.5 1.0 500
C+LSTM+SA+FC7 [Torabi et al., 2016] MSR-VTT 4.2 12.9 19.9 55
VSE-LSTM [Kiros et al., 2014] MSR-VTT 3.8 12.7 17.1 66
SNUVL [Yu et al., 2016b] MSR-VTT 3.5 15.9 23.8 44
[Kauman et al., 2017] MSR-VTT 4.7 16.6 24.1 41
CT-SAN [Yu et al., 2017b] MSR-VTT 4.4 16.6 22.3 35
JSFusion [Yu et al., 2018] MSR-VTT 10.2 31.2 43.2 13
Ours HowTo100M 7.5 21.2 29.6 38
Ours MSR-VTT 12.1 35.0 48.0 12
Ours PT: HowTo100M

FT: MSR-VTT 14.9 40.2 52.8 9

Table 5.6: MSR-VTT clip retrieval results. PT denotes: pre-trained, while FT de-
notes: fine-tuned.

MSR-VTT. We compare our model trained on (i) HowTo100M only, (ii) MSR-VTT

only and (iii) pre-trained on HowTo100M and then fine-tuned on MSR-VTT against

prior work that directly uses MSR-VTT for training (reproduced in [Yu et al., 2018])

in Table 5.6. Our off-the-shelf HowTo100M model outperforms [Kauman et al., 2017;

Kiros et al., 2014; Torabi et al., 2016; Yu et al., 2016b, 2017b] that are directly trained

on MSR-VTT. Here again, after fine-tuning the HowTo100M pre-trained model on

MSR-VTT, we observe a significant improvement over the state-of-the-art JSFu-

sion [Yu et al., 2018] trained on MSR-VTT. However, as opposed to instructional

videos (CrossTask) and cooking videos (YouCook2), training our model directly on

MSR-VTT performs better than our off-the-shelf model trained on HowTo100M. We

believe this is due to MSR-VTT videos being generic Youtube videos that are dif-

ferent from the instructional or VLOG type of videos that dominate HowTo100M.

In Figure 5-4, we also investigate the impact on performance at various amounts of

supervision when fine-tuning our pre-trained model. It shows that state-of-the-art

performance [Yu et al., 2018] can be attained with only 20% of MSR-VTT samples.

This has great practical implications as comparable performance can be obtained

using significantly reduced annotation.

LSMDC. Finally, we compare to state-of-the-art on LSMDC in Table 5.7. This

dataset is even more challenging as movie clips are quite distinct from HowTo100M
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Method Trainset R@1 R@5 R@10 Median R
Random None 0.1 0.5 1.0 500
C+LSTM+SA+FC7 [Torabi et al., 2016] LSMDC 4.3 12.6 18.9 98
VSE-LSTM [Kiros et al., 2014] LSMDC 3.1 10.4 16.5 79
SNUVL [Yu et al., 2016b] LSMDC 3.6 14.7 23.9 50
[Kauman et al., 2017] LSMDC 4.7 15.9 23.4 64
CT-SAN [Yu et al., 2017b] LSMDC 4.5 14.1 20.9 67
JSFusion [Yu et al., 2018] LSMDC 9.1 21.2 34.1 36

Ours HowTo100M 4.0 9.8 14.0 137
Ours LSMDC 7.2 18.3 25.0 44
Ours PT: HowTo100M

FT: LSMDC 7.1 19.6 27.9 40

Table 5.7: LSMDC clip retrieval results. PT denotes: pre-trained, while FT denotes:
fine-tuned.

videos. We compare against several other prior works that have been reproduced

in [Yu et al., 2018] and are trained directly on LSMDC. Here again, we see that

pre-training our model on HowTo100M and fine-tuning it on LSMDC also provides

improvements upon a model directly trained on LSMDC. This finding is interesting

and shows that a HowTo100M pre-trained model can still be useful when fine-tuned

on videos from a different domain.

5.5.6 Cross-dataset fine-tuning evaluation

In this section, we evaluate the advantage of HowTo100M for pre-training compared

to pre-training on other smaller datasets. Figure 5-5 shows evaluation on YouCook2,

MSR-VTT and LSMDC clip retrieval (R@10) using no pre-training (No PT), using

pre-training on YouCook2, MSR-VTT, LSMDC and HowTo100M datasets while fine-

tuning to the target dataset. For all evaluated datasets, pre-training on HowTo100M

prior to fine-tuning on the target dataset consistently yields best results.

5.5.7 Sampling strategy for positive pairs

As discussed in this chapter, narrations need not necessarily describe what is seen in

the video. As a consequence, some captions from HowTo100M do not correlate with
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Figure 5-4: Evaluation of fine-tuning a HowTo100M pre-trained model with varying
amounts of MSR-VTT supervision for text-to-video clip retrieval.

R
@
1
0

LSMDC YouCook2 MSR-VTT

Figure 5-5: Results of clip retrieval by pre-training models on different datasets.
Evaluation on LSMDC, YouCook2 and MSR-VTT.

their corresponding video clips (see Figure 5-6). To deal with this noisy data, we tried

a sampling strategy for positive pairs that aims to discard non-relevant video-caption

pairs during training. Inspired by multiple instance learning, our idea is to select a

subset of top scoring clip-caption training pairs within each video.

In particular, given a video with 𝑁 video clip-caption pairs {(𝑉𝑖, 𝐶𝑖)}𝑖∈[1,𝑁 ], we

first compute the similarity scores of all the 𝑁 pairs: 𝑠(𝑉𝑖, 𝐶𝑖) using the current model

parameters. We then use a pre-defined max-pool rate 𝑟 ∈ [0, 1] of the highest scoring

positive training pairs {(𝑉𝑖, 𝐶𝑖)}𝑖∈[1,𝑁 ] within each video. For example, at 𝑟 = 0.5 we

retain the high scoring half of all 𝑁 pairs for training.

112



Max pool rate (r) M (R@10) L (R@10) Y (R@10)
0.2 21.9 13.9 19.7
0.5 25.2 12.6 23.5
0.9 27.3 12.6 23.9
1.0 (no max pool) 29.6 14.0 24.8

Table 5.8: Study of positive pair sampling. When max pool rate r is below 1.0 only
the proportion r of top scoring clip-caption pairs are used for learning. We report
R@10 retrieval results from M: MSR-VTT, L: LSMDC, Y: YouCook2.

MP rate RS rate M (R@10) L (R@10) Y (R@10)
1.0 0.5 28.8 14.3 24.2
0.5 1.0 25.2 12.6 23.5

Table 5.9: Study of Random Sampling (RS) vs. Max Pool (MP) sampling of positive
clip-caption pairs. We report R@10 retrieval results from M: MSR-VTT, L: LSMDC,
Y: YouCook2.

Table 5.8 shows results of our positive sampling strategy when varying the max

pool rate 𝑟 with evaluation on video clip retrieval. For example, 𝑟 = 1.0 means

that no sampling strategy is applied as we keep all 𝑁 pairs as potential candidates.

Interestingly, in our case, carefully selecting the positive pairs does not improve our

model as the best results are obtained with 𝑟 = 1.0. Note that decreasing the max

pool rate also decreases the number of triplet losses computed within a mini-batch

by the same rate. To show that the number of triplet losses computed for each mini-

batch does not impact the overall performance, we have performed a sanity check

experiment in Table 5.9 in which we also replaced the max pool sampling by random

sampling of pairs for 𝑟 = 0.5. The results with random sampling at 𝑟 = 0.5 are

very similar to the results obtained with no max pool sampling (r=1.0) as shown in

Table 5.8, which confirms our finding that our model is relatively robust to the noisy

positive pairs. We think this could be attributed to the fact our model is shallow and

is trained on a large amount of data.

5.5.8 Qualitative results

Figure 5-7 illustrates examples of retrieved video clips from HowTo100M using our

trained joint text-video embedding. For example, our learned representation can
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correctly distinguish between queries Cut paper and Cut wood. A demo of the retrieval

system is available online [icc, 2019].

5.6 Conclusion

We have introduced introduced in this chapter: HowTo100M, a video dataset with

more than 130M video clips, extracted from 1.2M narrated web videos of people per-

forming complex visual tasks. Our data collection method is fast, scalable and does

not require any manual annotation. We use this dataset to learn a joint text-video

embedding by leveraging more than 130M video clip-caption pairs. We have shown

through various experiments that our learned embedding can perform better com-

pared to models trained on existing carefully annotated but smaller video description

datasets.
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... we are going to outline and flood 
the cookie with 15 second ... 

... choice last but not least 
scissors ...

... we realize a circle of paper of 10 
centimers in diameters ...

... step 2: fold in half vertically and 
unfold ...

... light up-and-down movements let 
the roller and paint do the work ...

0.54

0.45

0.43

0.41

0.40

... on my old moto Guzzi or had before I 
sold it ...

... there is one additional egg in there I 
don't think it was just ...

... flour and milk and eggs salt leaves and 
then the cooking ...

... by our electronic devices and in the
same cases in your plants ...

... want to be that extra right when you 
finish a question ...

0.04

0.04

0.03

0.03

0.02

Top scoring pairs 
examples

Worse scoring pairs 
examples

Figure 5-6: We illustrate examples of high and low scoring clip-caption pairs. Ex-
amples from the left column show pairs where the caption visually describes what is
seen in the corresponding video clip. On the other hand, low scoring pairs from the
right column have captions that do not match visual content.

115



Figure 5-7: Example video-clip retrieval results on HowTo100M using our trained
joint embedding.
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HowTo100M
    23611 tasks 

       136.6M clips

Holidays and Traditions
411 3.0M

Education and Communication
239 1.6M

Arts and Entertainment
138 1.2M Home and Garden 5068 29.5M

Computers and Electronics
58 0.6M

Food and Entertaining
11504 54.4M

Personal Care and Style
181 1.6M

Sports and Fitness
205 2.0M

Pets and Animals
552 3.5M

Cars & Other Vehicles
810 7.8M

Hobbies and Crafts
4273 29.8M

Grooming 125 1205k
Fashion 46 284k
Personal Hygiene 9 88k
Tattoos and Piercing 1 10k

Halloween 159 1182k
Christmas 125 930k
Easter 47 371k
Gift Giving 39 259k
Valentines Day 12 91k
Thanksgiving 10 65k
Saint Patrick's Day 6 32k
Mother's Day 3 28k
Passover 2 15k
Birthdays 2 14k
Hanukkah Chanukah 3 8k
Diwali 2 2k
National Days (USA) 1 1k

Home Repairs 1391 8734k
Gardening 1249 7698k
Housekeeping 1635 7154k
Outdoor Building 257 1620k
Tools 141 1268k
Home Decorating 184 1119k
Disaster Preparedness 100 961k
Sustainable Living 45 385k
Moving House 28 298k
Swimming Pools and Hot Tubs 38 262k

Crafts 3135 20670k
Games 200 2058k
Woodworking 183 1446k
Toys 171 1254k
Tricks and Pranks 167 941k
Photography 102 929k
Model Making 57 491k
Painting 49 475k
Collecting 56 451k
Drawing 39 366k
Digital Technology Art 32 223k
Fireworks 34 131k
Sculpting 22 115k
Amateur Radio 7 68k
Boredom Busters 4 50k
Wargaming 2 45k
Optical Devices 3 28k
Kite Making and Flying 9 14k
Flags 1 8k

Subjects 89 616k
Writing 94 572k
Speaking 53 408k
Presentations 2 20k
Social Activism 1 3k

Dogs 137 762k
Fish 55 480k
Small and Furry 67 459k
Cats 91 424k
Birds 66 363k
Horses 52 362k
Reptiles 22 217k
Bugs 19 162k
Rabbits 21 133k
Crustaceans 6 43k
General Pet Accessories 4 27k
Wildlife 4 20k
Snails and Slugs 3 13k
Animal Welfare Activism 1 10k
Animal Rescue 2 9k
Amphibian 1 7k
General Pet Health 1 3k

Outdoor Recreation 122 1196k
Individual Sports 51 472k
Team Sports 28 259k
Personal Fitness 4 37k

Software 12 127k
Maintenance and Repair 12 119k
TV and Home Audio 9 68k
Phones and Gadgets 9 96k
Hardware 11 95k
Laptops 4 43k
Networking 1 12k

Music 97 857k
Books 13 145k
Costumes 16 130k
Performing Arts 4 26k
Movies 3 32k
Theme Parks 2 32k
Role Playing 2 10k
Exhibited Arts 1 10k

Health 172 1.7M

Emotional Health 63 853k
Conditions and Treatments 35 271k
Injury and Accidents 22 147k
Medication and Equipment 20 138k
Alternative Health 10 75k
Recreational Drug Use 9 69k
Diet & Lifestyle 3 44k
Health Hygiene 3 32k
Medical Information 3 31k
Women’s Health 2 25k
Reproductive Health 1 23k
Men's Health 1 11k

Barbecue 40 304k
Appreciation of Food 16 138k
Food Safety 12 94k
Recipe Books 6 59k
Picnics 4 24k
Dining Etiquette 5 14k
Dining Out 1 12k

Recipes 7972 37557k
Drinks 1597 6934k
Food Preparation 588 2885k
Breakfast 329 1592k
Parties 280 1399k
Holiday Cooking 168 980k
Cooking Equipment 147 812k
Herbs and Spices 156 794k
Nuts and Seeds 98 404k
Cooking for Children 85 391k

Trailers 12 127k
Off Road Vehicles 12 103k
Recreational Vehicles 7 91k
Scooters 9 83k
Security and Military Vehicles 1 5k

Cars 525 5165k
Bicycles 56 508k
Motorcycles 48 464k
Boats 40 328k
Aviation 27 283k
Driving Techniques 34 267k
Trucks 25 233k
Vehicle Sports 14 138k

Figure 5-8: The first two levels of hierarchy of tasks in the HowTo100M dataset. Our
dataset includes 12 categories from WikiHow containing 129 subcategories. For each
(sub)category we show the total number of collected tasks and clips. This hierarchy of
tasks in our dataset follows the WikiHow structure. Please recall that abstract tasks
such as Choosing a gift or Meeting new friends, were not considered and were removed
from the WikiHow hierarchy semi-automatically by verb analysis, as described in the
chapter. As a result, the category tree is imbalanced. For example, the Dining Out
subcategory includes only one physical task (Fix a Shaky Table at a Restaurant), while
Recipes subcategory from the same level of the hierarchy includes a large number of
tasks and clips.
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Top 120 verbs Top 120 nouns

Figure 5-9: Frequencies of the top 120 most commonly occurring nouns and verbs in
our dataset. Note that our dataset is biased towards physical actions, with verbs such
as get, go and make being the most frequent, while verbs, such as be, know and think
are less frequent than in common English. Top nouns show the dominant topics in
our instructional videos. In particular, many cooking-related words, such as water,
oil and sugar occur with high frequency.
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Chapter 6

End-to-End Learning of Visual

Representations from Uncurated

Instructional Videos

In the previous chapters, we have proposed different approaches for weakly supervised

learning of video models from readily available metadata in the form of natural lan-

guage. Most representations build on CNN image and video representations pretrain

on manually annotated visual datasets such as ImageNet or Kinetics. This is prob-

lematic as it means the developed approaches still rely on a large amount of manually

annotated images or videos. In this chapter, we push the limit of learning from readily

available data by training a model from scratch on the weakly annotated HowTo100M

dataset introduced in Chapter 5. In particular, we propose a new learning approach,

MIL-NCE, capable of addressing misalignment between the video and automatically

transcribed narration. With this approach we are able to learn strong video represen-

tations from scratch, without the need for any manual annotation. We evaluate our

representations on a wide range of four downstream tasks over eight datasets: action

recognition (HMDB-51, UCF-101, Kinetics-700), text-to-video retrieval (YouCook2,

MSR-VTT), action localization (YouTube-8M Segments, CrossTask) and action seg-

mentation (COIN). Our method outperforms all published self-supervised approaches

for these tasks as well as several fully supervised baselines.
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6.1 Introduction

Vision and language play an important role in the way humans learn to associate

visual entities to abstract concepts and vice versa. This has also become the de facto

way to successfully train computer vision models. Indeed, from classification where

images are categorized based on a fixed list of words to the recent captioning tasks

where images or videos are annotated with rich language descriptions, this interplay is

one of the driving forces behind recent progress in the field. However, one of the main

limitations of this approach is that it requires manually annotating large collections

of visual data.

Manual annotation is both cumbersome and expensive. Moreover, for videos,

which are the main focus of this chapter, annotation is also even more challenging

due to the ambiguities of choosing the right vocabulary of actions and annotating

action intervals in video. This significantly limits the scale at which fully supervised

video datasets can be obtained and hence slows down the quest to improve visual

representations. Recent work has proposed a promising alternative to this fully su-

pervised approach: leveraging narrated videos that are readily available at scale on

the web.

Of particular interest, the recent HowTo100M dataset [Miech et al., 2019b] con-

tains more than 100 million pairs of video clips and associated narrations. It was

automatically collected by querying YouTube for instructional videos. Such videos

usually depict someone explaining orally how to perform a complex human activity,

e.g. preparing a particular meal or repairing a car. Our objective in this chapter is

to learn strong video representations using only this narrated material.

End-to-end learning from instructional videos is a highly challenging task. Indeed,

these videos are made in general with the goal of maximizing the number of views, and

with no specific intention to provide a training signal for machine learning algorithms.

This means that the supervision present in the narration is only weak and noisy.

Among typical sources of noise, the prominent one by far is the weak alignment

between the video and the language: although for the most part the spoken words
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Timeyou have a little pressure you are cutting the wood readjusting the table saw I am using a roller sure you applied glue

Figure 6-1: We describe an efficient approach to learn visual representations from
highly misaligned and noisy narrations automatically extracted from instructional
videos. Our video representations are learnt from scratch without relying on any
manually annotated visual dataset yet outperform all self-supervised and many fully-
supervised methods on several video recognition benchmarks.

correlate with what is happening in these videos, this alignment is far from perfect.

People might talk about something before actually demonstrating it, but they might

also omit to talk about something that is happening because it is clear enough visually.

Conversely they could only mention an action without showing it in the case where

the step is not essential or trivial to convey with language alone. This is without

even considering the irrelevant information given throughout the video (e.g. jokes or

credits) as well as the general difficulty of working with spoken language obtained

from potentially erroneous speech recognition algorithm as opposed to written text.

In this chapter, we propose a bespoke training loss, dubbed MIL-NCE as it inher-

its from Multiple Instance Learning (MIL) and Noise Contrastive Estimation (NCE).

Our method is capable of addressing visually misaligned narrations from uncurated

instructional videos as illustrated in Figure 6-1. Equipped with this novel train-

ing scheme and a simple joint video and text embedding model, we show that we

can successfully train video representations from scratch directly from pixels on the

HowTo100M [Miech et al., 2019b] dataset. To demonstrate the quality of the learnt

representations, we employ an extensive set of evaluation benchmarks on a wide vari-

ety of video understanding tasks: action recognition (HMDB-51, UCF-101, Kinetics-

700), text-to-video retrieval (YouCook2, MSR-VTT), action localization (YouTube-

8M Segments, CrossTask) and action segmentation (COIN). Notably, our learnt video

representations outperform fully supervised baselines trained on Kinetics or ImageNet

for several of the tasks. We also show improvements over other self-supervised ap-

proaches on HMDB51 and UCF101 even without fine-tuning the learnt representa-
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sander as you're going over this entire

area otherwise the end all product won't

be as flat as you would like it so just

be aware now once you have them enjoy

Positive candidates

07:34

07:37

MIL-NCE

NCE

your sanding down your one on round

07:29

07:32

07:34

07:37

07:40

(a) Examples of positive candidates

Video

candidates
Positive narration

Sampled negative
narrations

MIL-NCE

Standard MIL
positive contribution

positive contribution

(b) Illustration of MIL-
NCE

Figure 6-2: Left. Our MIL-NCE makes it possible to consider a set of multiple pos-
itive candidate pairs {(𝑥, 𝑦), (𝑥, 𝑦1), . . . , (𝑥, 𝑦4)} while the standard NCE approach
would only consider the single (𝑥, 𝑦) training pair and miss the visually grounded ob-
ject description sander from pair (𝑥, 𝑦3) or the action description sanding down from
(𝑥, 𝑦4). Right. Given a video 𝑥 and an associated set of positive narration candidates
𝒫 (green triangles) that may or may not be correct, our MIL-NCE selects multiple
correct positives (large blue areas) while downweighting incorrect positives (smaller
blue areas) based on a discriminative ratio against negatives 𝒩 (red squares). In
contrast, traditional MIL considers only one positive (orange circle) while discarding
the rest.

tions. Finally, by leveraging the joint video and text representations, our off-the-shelf

trained model also reaches state-of-the-art results on YouCook2 and CrossTask, with-

out any training on the target datasets.

Contributions. The contributions of this chapter are threefold. (i) We propose a

method to learn a joint text video embedding in an end-to-end fashion from unla-

belled, uncurated narrated videos using the recently introduced HowTo100M [Miech

et al., 2019b] dataset. In particular, we introduce a specific loss, dubbed MIL-NCE for

Multiple Instance Learning Noise Contrastive Estimation, that enables the learning

to cope with the highly misaligned narration descriptions. (ii) We provide a thorough

ablation study to quantitatively assess the importance of the different design choices

of the approach. (iii) Finally, we demonstrate that the representations thus obtained

are competitive with their strongly supervised counterparts on four downstream tasks

over eight video datasets.

122



6.2 Related work

Learning visual representations from unlabeled videos. As labeling videos is

cumbersome, expensive and not scalable, a significant number of prior works have

studied the task of learning visual representations from unlabeled videos. Currently,

the most effective approach is to collect a large amount of data from social media

and use the available metadata as supervision [Abu-El-Haija et al., 2016; Ghadiyaram

et al., 2019]. However, this metadata is often in the form of keywords or tags, rather

than (spoken) natural language considered in this chapter. In addition, the meta data

is often platform dependent and rarely publicly available. Self-supervised approaches

do not suffer from these issues as the idea is to define a supervised proxy task using

labels directly generated from videos. Some of these tasks include: temporal ordering

of video clips or frames [Fernando et al., 2017; Lee et al., 2017; Misra et al., 2016; Xu

et al., 2019], predicting geometric transformations [Jing and Tian, 2018], maximiz-

ing the mutual information of multiple views [Tian et al., 2019], predicting motion

and appearance [Wang et al., 2019a], predicting the future, the past or a portion

of masked input in the feature space [Han et al., 2019; Sun et al., 2019a; Vondrick

et al., 2016], colorizing videos [Vondrick et al., 2018], predicting 3D geometry from

synthetic data [Gan et al., 2019], predicting the audio in a feature space [Arand-

jelović and Zisserman, 2018; Korbar et al., 2018] or tasks leveraging temporal cycle

consistency [Dwibedi et al., 2019; Wang and Gupta, 2015]. In this chapter, our proxy

task is supervised by the automatic speech recognition (ASR) applied to narrated

instructional videos. The nature of this supervision has the potential to also provide

semantic information [Miech et al., 2019b; Sanabria et al., 2018], which is often miss-

ing in works that only exploit pixel-wise cues. Moreover, most of the top performing

prior works only study their method on curated video datasets (e.g. Kinetics [Carreira

and Zisserman, 2017]) where labels have been removed. However, this is not truly

learning from unlabeled data as these videos have been carefully selected and verified

to belong to classes of interests. [Caron et al., 2019] further explain the performance

gap between training on such curated data versus uncurated ones, truly available
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at scale. Instead, our approach focuses on the learning of representations only from

uncurated videos.

Vision, speech and language. A common alternative to training visual models

using manually defined sets of labels is to exploit semantic supervision from natural

language or speech. Numerous prior works [Chowdhury et al., 2018; Dong et al., 2019;

Gong et al., 2014a,b; Klein et al., 2015; Miech et al., 2018; Mithun et al., 2018; Pan

et al., 2016b; Plummer et al., 2017; Xu et al., 2015a; Wang et al., 2018a, 2016b; Wray

et al., 2019; Wu et al., 2017] have used image / video description datasets [Lin et al.,

2014; Plummer et al., 2015; Rohrbach et al., 2017; Xu et al., 2016; Zhou et al., 2018b]

to learn an embedding space where visual and textual data are close only if they

are semantically similar. These methods either rely on manually annotated image /

video description datasets, or leverage representations already pre-trained on manu-

ally labelled datasets (e.g. ImageNet [Russakovsky et al., 2015] or Kinetics [Carreira

and Zisserman, 2017]). In contrast, in this chapter no manually annotated visual

data is involved at any stage of our approach. To avoid labeling visual data, sev-

eral approaches have leveraged audio transcripts obtained from narrated videos using

automatic speech recognition (ASR) as a way to supervise video models for object

detection [Amrani et al., 2019; Chen et al., 2017a; Moriya et al., 2019], caption-

ing [Hessel et al., 2019; Sun et al., 2019b], classification [Alayrac et al., 2016; Kuehne

et al., 2019; Malmaud et al., 2015; Yu et al., 2014], summarization [Palaskar et al.,

2019] or retrieval [Miech et al., 2019b] using large-scale narrated video datasets such

as How2 [Sanabria et al., 2018] or HowTo100M [Miech et al., 2019b]. Others [Boggust

et al., 2019; Harwath et al., 2018] have investigated learning from narrated videos by

directly using the raw speech waveform instead of generating transcriptions. Most

related to us is the work of [Miech et al., 2019b] who trained a joint video and text

embedding from uncurated instructional videos [Miech et al., 2019b]. However, as op-

posed to this chapter, they do not model any misalignment issue encountered when

training on such videos and rely on visual representations pretrained on Kinetics-400

and ImageNet. Building on this work, [Sun et al., 2019a] have used a contrastive

bidirectional transformer (CBT) to learn long term contextual video representations
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from instructional videos. All these works use a visual representation pre-trained on

either Kinetics or ImageNet when training on such narrated videos. In contrast, the

key innovation in this chapter is that we demonstrate learning a generic video repre-

sentation as well as a joint video-text embedding from scratch, without pre-training

on manually annotated video or image datasets.

Multiple instance learning for video understanding. Multiple instance learn-

ing methods have been employed in many weakly-supervised video understanding

problems including: person recognition in movies using scripts [Bojanowski et al.,

2013; Miech et al., 2017a; Parkhi et al., 2015a], anomaly detection [Sultani et al.,

2018], weakly supervised action classification [Leung et al., 2011; Shapovalova et al.,

2012] and localization [Chéron et al., 2018; Duchenne et al., 2009; Weinzaepfel et al.,

2016], co-reference resolution of characters in TV series [Ramanathan et al., 2014] or

object tracking [Babenko et al., 2009]. These methods often rely on some form of

max-pooling (i.e. MIL-SVM [Andrews et al., 2003]) or discriminative clustering (i.e.

DIFFRAC [Bach and Harchaoui, 2007]) to resolve the label ambiguities, and have

used mostly linear (or shallow) models. In this chapter, we present MIL-NCE, a new

approach marrying the noise contrastive estimation (NCE) framework [Gutmann and

Hyvärinen, 2010] with multiple instance learning [Dietterich et al., 1997]. We show

that MIL-NCE is well-suited to learn deep visual representations from scratch using

weak and noisy training signals available in uncurated instructional videos.

6.3 Leveraging Uncurated Instructional Videos

This section describes the proposed approach to train joint video and text embeddings

from unlabeled narrated videos in an end-to-end fashion. To start with, we are given

𝑛 pairs of video clips and associated narrations. In practice, a pair is composed of a

short 3.2 seconds video clip (32 frames at 10 FPS) together with a small number of

words (not exceeding 16) that correspond to what the person is saying in the video.

For example, someone might be sanding wood while mentioning the action “sanding

down” or the object “sander” as illustrated in Figure 6-2a. Given this input, our goal
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is to learn a joint embedding space where similarity between the narration and video

embedding is high when the text and visual content are semantically similar and low

otherwise, and we wish to learn this starting from raw pixels in the video and text

descriptions. As illustrated in Figure 6-1, this is a very challenging problem due to

the often severely misaligned visual descriptions.

In this chapter, we address this issue by introducing the MIL-NCE objective:

max
𝑓,𝑔

𝑛∑︁
𝑖=1

log

⎛⎜⎜⎝
∑︀

(𝑥,𝑦)∈𝒫𝑖

𝑒𝑓(𝑥)⊤𝑔(𝑦)

∑︀
(𝑥,𝑦)∈𝒫𝑖

𝑒𝑓(𝑥)⊤𝑔(𝑦) + ∑︀
(𝑥′,𝑦′)∼𝒩𝑖

𝑒𝑓(𝑥′)⊤𝑔(𝑦′)

⎞⎟⎟⎠ (6.1)

where 𝑥 represents a video clip and 𝑦 a narration. 𝑓 and 𝑔 are the two embedding

functions that respectively operate over video and text. Given a specific sample 𝑖-

th, we construct 𝒫𝑖 to be a valid set of positive video/narration candidate pairs (see

Figure 6-2) while 𝒩𝑖 conversely refers to an associated set of negative video/narration

pairs. This objective function implies maximizing the ratio of the sum of the positive

candidate scores from 𝒫𝑖 to the sum of the scores of all negatives sampled from 𝒩𝑖,

where the score is measured by the exponentiated dot product of the corresponding

video and language embeddings, 𝑓(𝑥) and 𝑔(𝑦).

In the following, we describe more precisely the motivation behind the MIL-NCE

objective (6.1). First, Section 6.3.1 introduces the chosen probabilistic model for

joint text and video embedding. Given that model, Section 6.3.2 details the choice

behind the training objective (6.1) explaining how it is specifically adapted to han-

dle the misalignment noise inherent in narrated videos in comparison with existing

approaches.

6.3.1 A simple joint probabilistic model

In the following, 𝑥 ∈ 𝒳 stands for a video clip and 𝑦 ∈ 𝒴 for a narration. Given a set

of 𝑛 pairs of video clips and associated narrations {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 ∈ (𝒳 × 𝒴)𝑛 sampled

from the joint data distribution 𝑃 (𝒳 × 𝒴), our goal is to learn a joint embedding

space where semantically related videos and texts are close and far away otherwise.
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Formally, we learn two parametrized mappings: 𝑓 : 𝒳 → R𝑑 maps a video clip

𝑥 into a 𝑑-dimensional vector 𝑓(𝑥) ∈ R𝑑, and 𝑔 : 𝒴 → R𝑑 maps a narration 𝑦 into

the same 𝑑-dimensional vector space, 𝑔(𝑦) ∈ R𝑑. We assume that we can estimate up

to a constant factor the joint probability of a pair of video and narration (𝑥, 𝑦) by

exponentiating the dot product of the two embeddings:

𝑝(𝑥, 𝑦; 𝑓, 𝑔) ∝ 𝑒𝑓(𝑥)⊤𝑔(𝑦). (6.2)

In this chapter, 𝑓 takes the form of a CNN that runs over a fixed-length clip. For

𝑔, we consider simple sentence based models that transform a set of words into a

single vector. Note, for simplicity and with a slight abuse of notation, we refer to

𝑓 (or 𝑔) as both a function and the parameters that define it. Also, we will refer

to (6.2) as simply 𝑝(𝑥, 𝑦), i.e. we keep the dependence in 𝑓 and 𝑔 implicit for the

clarity of simpler equations. More details about the exact architecture of the models

are provided in Section 6.4.

6.3.2 Learning from uncurated data: MIL-NCE

Recall that our goal is to learn a joint video and text representation only from un-

curated narrated videos. In this section, we start by detailing why this is a highly

challenging endeavor due to misalignments present in that data. Next, we explain

how the introduced MIL-NCE objective (6.1) enables to learn despite that noise.

Finally, we contrast our proposed approach to similar works in the self-supervised

domain.

Misalignment in narrated videos. In [Miech et al., 2019b], the authors estimate

that around 50% of clip-narration pairs from the HowTo100M dataset are not aligned.

In fact, people are likely to describe an event after or before performing it in the video

as illustrated in Figure 6-1. This visual misalignment makes it more challenging to

learn video representations than with manually annotated and aligned labels.

How to learn despite noisy supervision ? To address the aforementioned issues,

we propose to consider multiple options for matching a video and a narration instead
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of only comparing a single video 𝑥 with a single narration 𝑦 as done in [Miech et al.,

2019b]. Let’s consider the example illustrated in Figure 6-2a. Given a clip 𝑥, 𝐾

narrations {𝑦𝑘}𝐾
𝑘=1 that happen close in time within the same video can be considered

as positive candidates. By doing so, the chance that spoken words correlate with what

is happening in the video increases. In that case, we would like to match at least one

of the narrations {𝑦𝑘}𝐾
𝑘=1 with video 𝑥. Given the probabilistic model (6.2), a natural

way to express this is by computing the joint probability of 𝑥 happening with any of

the 𝑦𝑘. Because we can make the assumption that 𝑦𝑘’s are mutually exclusive (i.e.

(𝑥, 𝑦𝑖) ̸= (𝑥, 𝑦𝑗),∀𝑖 ̸= 𝑗), this can be expressed mathematically by (6.2) as follows:

𝑝(∪𝑘{(𝑥, 𝑦𝑘)}) =
∑︁

𝑘

𝑝(𝑥, 𝑦𝑘) ∝
∑︁

𝑘

𝑒𝑓(𝑥)⊤𝑔(𝑦𝑘). (6.3)

This is a MIL like extension which as opposed to MIL-SVM, do not explicitly select a

single positive sample per bag at training. More generally, and symmetrically, the case

where several video clips are candidates for a given narration can also be envisioned.

Hence, for generality, we assume that instead of having a single pair (𝑥, 𝑦), we have

a set of candidate positive pairs 𝒫 = (𝑥𝑘, 𝑦𝑘)𝐾

𝑘=1, and we can simply repurpose (6.3)

as 𝑝(𝒫) ∝ ∑︀
(𝑥,𝑦)∈𝒫 𝑒𝑓(𝑥)⊤𝑔(𝑦). We denote by {𝒫𝑖}𝑛

𝑖=1 the training set of candidate

positives deduced from the original training set {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1. With this extension, we

have the tools to address misalignments. Details about how to construct 𝒫𝑖 are given

in Section 6.4.1

How to train this model? MIL-NCE. We wish to learn a video representa-

tion based on the previously described probabilistic model 𝑝(𝒫). However, this is

challenging as one cannot directly apply standard generative techniques such as max-

imum likelihood due to the intractability of computing the normalization constant

over all possible pairs of videos and narrations. Instead, we rely on a discriminative

technique, namely the noise-contrastive estimation (NCE) approach [Gutmann and

Hyvärinen, 2010; Jozefowicz et al., 2016], that has recently been shown to be effective

in the context of feature learning [Hénaff et al., 2019; Oord et al., 2018]. The core

idea is to directly optimize the unnormalized probabilistic model (6.3) to discriminate
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between data obtained from the true joint distribution 𝑃 (𝒳 ×𝒴) and some artificially

generated noise data, a.k.a. “negatives”. In this chapter, we use the softmax version

of NCE [Jozefowicz et al., 2016]:

max
𝑓,𝑔

𝑛∑︁
𝑖=1

log

⎛⎜⎜⎝ 𝑒𝑓(𝑥𝑖)⊤𝑔(𝑦𝑖)

𝑒𝑓(𝑥𝑖)⊤𝑔(𝑦𝑖) + ∑︀
(𝑥′,𝑦′)∼𝒩𝑖

𝑒𝑓(𝑥′)⊤𝑔(𝑦′)

⎞⎟⎟⎠ (6.4)

and replacing the probability of a single positive match, 𝑒𝑓(𝑥𝑖)⊤𝑔(𝑦𝑖), with our MIL like

extension, ∑︀(𝑥,𝑦)∈𝒫𝑖
𝑒𝑓(𝑥)⊤𝑔(𝑦), gives our proposed MIL-NCE training objective (6.1).

Given this, we can simply estimate the parameters of our model by maximizing the

objective (6.1), where 𝒩𝑖 is a specific set of negatives for the 𝑖-th sample. Next, we

discuss how our approach differs from prior work.

NCE objectives for self-supervised learning. NCE has recently been success-

fully applied to self-supervision. In particular, CPC [Hénaff et al., 2019; Oord et al.,

2018] introduces the InfoNCE loss to enforce the model to maximize the conditional

probability of some targets (e.g. the bottom part of the image) conditioned on some

context (e.g. the top part of the image). Differently from CPC, which creates an

asymmetric set of negatives by fixing the context and only sampling negative tar-

gets, we instead use NCE to model the symmetric joint probability between text and

video (6.2). Thus, we construct 𝒩𝑖 so that it contains both negatives for video 𝑥𝑖

and narration 𝑦𝑖. In Section 6.4, we describe precisely how 𝒩𝑖 is obtained as well as

evaluate the benefit of this symmetric approach.

6.4 Experiments

We first describe implementation details of our method in Section 6.4.1. The datasets

used in our evaluation are outlined in Section 6.4.2. We present an ablation study

emphasizing key ingredients of our approach in Section 6.4.3. Finally, we compare our

learnt representations to previous self and fully-supervised methods in Section 6.4.4.
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Operation output size
Input video 32×200×200×3
I3D / S3D → Mixed_5c 4×6×6×1024
Global avg pool 1×1×1×1024
Linear 1×1×1×512

Operation output size
Embedding 16×300
Linear + ReLU 16×2048
Max pool 1×2048
Linear 1×512

Table 6.1: Video (left) and text (right) model architectures.

6.4.1 Implementation details

Model and Inputs. For the 3D CNN backbone, we use the standard I3D imple-

mentation from [Carreira and Zisserman, 2017] for all ablation studies and for the

comparison to state-of-the-art, we report result on both I3D and S3D [Xie et al.,

2018]. We use the Google News self-supervised pre-trained word2vec (d=300) em-

bedding from [Mikolov et al., 2013] for our word representation. Each video clip at

training contains 32 frames sampled at 10 fps (3.2 seconds) with a 200x200 resolution

(224x224 at test time). For each narration, we take a maximum of 16 words. More

details about the model architecture and input dimensions are provided in Table 6.1.

A detailed illustration of the architecture is also given in Figure 6-4.

Visual representations evaluation. We evaluate our visual representations at

two different semantic levels. First, we use the output of the I3D (or S3D) Global

avg pool (see Table 6.1), to evaluate our representation for action recognition, action

segmentation and action localization. Next, the output of the last I3D (or S3D)

Linear layer (see Table 6.1), which maps the video to the joint text-video semantic

space, is used in conjunction with the output of the language model for the text-video

retrieval tasks.

Training dataset. We train our model using the HowTo100M [Miech et al., 2019b]

narrated video dataset. It consists of more than 1.2M videos accompanied with

automatically generated speech transcription. We use the provided transcription

to create pairs of video / caption defined by each caption time stamp. Note that

while the original dataset [Miech et al., 2019b] consists of 136M pairs, we only used

120M pairs to comply with the YouTube wipe out policy. Each video shorter than 5

seconds is extended symmetrically in time so that the duration is at least 5 seconds.
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Then we randomly sample, a fixed length clip of 3.2 seconds within each video at

training. For each clip-narration training pair (𝑥, 𝑦) sampled, we construct the bag

of positive candidate pairs 𝒫 by considering the nearest captions in time to 𝑦 as

depicted in Figure 6-2a. For example, if we set the number of positive candidate

pairs to 3, we would have 𝒫 = {(𝑥, 𝑦), (𝑥, 𝑦1), (𝑥, 𝑦2)} where 𝑦1 and 𝑦2 are the 2

closest narrations in time to 𝑦. We work with batch containing 𝐵 positive video-

narration pairs {(𝑥𝑖, 𝑦𝑖)}𝑖∈[1,𝐵] . We construct the set 𝒩 by simply creating negative

pairs from this batch by combining {(𝑥𝑖, 𝑦𝑗)}𝑖 ̸=𝑗. Since all representations are already

computed, computing negative scores is cheap and efficient.

Optimization. We use the ADAM [Kingma and Ba, 2015] optimizer with an initial

learning rate of 10−3 with linear warm up of 5k steps. The learning rate is decayed

twice by a factor of 10. We train our model using Cloud TPUs v3 1, each Cloud

TPU having a batch size of 128 videos. Given the high computational load required

for training on HowTo100M, we run ablation studies on 4 Cloud TPUs and train our

model for 500k steps (∼ 3 days). For our final evaluation in Section 6.4.4, we pick

the best parameters based on our ablation study and then use 64 Cloud TPUs for

400k steps (also ∼ 3 days) as we observed that training on bigger batch size, and thus

more epochs, had a positive impact on performance.

6.4.2 Downstream tasks

To show the generality of our learnt representations, we perform evaluation on five

diverse downstream tasks using eight datasets described below.

Action Recognition: HMDB-51 [Kuehne et al., 2011], UCF-101 [Soomro et al.,

2012], Kinetics-700 [Carreira et al., 2019]. We evaluate our video-only representation

on the traditional HMDB-51 / UCF-101 as well as the recent Kinetics-700 action

recognition tasks.

Text-to-Video retrieval: YouCook2 [Zhou et al., 2018b], MSR-VTT [Xu et al.,

2016]. We use the YouCook2 and MSR-VTT text-to-video retrieval benchmarks to

evaluate our off-the-shelf learnt joint text-video representation. We follow the same
1https://cloud.google.com/tpu/
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evaluation protocol as described in [Miech et al., 2019b]. We report the retrieval

performance using the recall at K (R@K) metric (with K=1,5,10) which measures

the percentage of clips retrieved at the top K (the higher the better). We also report

the median rank (MedR) of videos to be retrieved (the lower the better). Note

from [Miech et al., 2019b] that there is no intersection between YouCook2 testing

and HowTo100M training videos.

Action Localization: YouTube-8M [Abu-El-Haija et al., 2016] Segments. We eval-

uate our video representation on YouTube-8M Segments2, a subset of the YouTube-

8M [Abu-El-Haija et al., 2016] with precise temporal annotation. We follow the

YouTube-8M Segments challenge evaluation protocol and report the mAP metric.3

Action Step Localization: CrossTask [Zhukov et al., 2019]. We use the recently

released CrossTask instructional video dataset to evaluate our off-the-shelf learnt joint

text-video representation on the task of action step localization. We perform the same

evaluation protocol as in [Zhukov et al., 2019] and report the average recall (CTR)

metric for the localization task.

Action Segmentation: COIN [Tang et al., 2019]. We evaluate our video-only rep-

resentation on the COIN action segmentation task and follow the evaluation protocol

of [Sun et al., 2019a] by reporting the frame-wise accuracy (FA).

6.4.3 Ablation studies

We perform the ablation studies on the following downstream tasks: MSR-VTT R@10

(MR10), YouCook2 R@10 (YR10), HMDB-51 and UCF-101 recognition accuracy on

split 1 and CrossTask average recall (CTR). This subset of downstream tasks has

been chosen for their simplicity of evaluation and because they cover a wide range of

tasks.

Which loss is better for learning the joint embedding ?

In this ablation study (Table 6.2a), we compare different losses for matching the text

and video embeddings in the standard single-instance learning setting where we pair
2https://research.google.com/youtube8m
3https://www.kaggle.com/c/youtube8m-2019/overview/evaluation
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(a) Training loss

Loss YR10 MR10 CTR HMDB UCF
Binary-Classif 18.5 23.1 32.6 44.2 68.5
Max margin 16.3 24.1 29.3 56.2 76.6
NCE 29.1 27.0 35.6 55.4 77.5

(b) Negatives per positive

‖𝒩‖ YR10 MR10 CTR HMDB UCF
64 26.0 25.5 33.1 56.1 76.0
128 27.1 26.4 33.3 57.2 76.2
256 28.7 28.7 36.5 56.5 77.5
512 28.8 29.0 35.6 55.4 77.4

(c) Number of positive pair
NCE MIL-NCE

‖𝒫‖ → 1 3 5 9 17 33
YR10 29.1 33.6 35.0 33.1 32.4 28.3
MR10 27.0 30.2 31.8 30.5 29.2 30.4
CTR 35.6 37.3 34.2 31.8 25.0 25.0
HMDB 55.4 57.8 56.7 55.7 54.8 51.4
UCF 77.5 79.7 80.4 79.5 78.5 77.9

(d) MIL strategy

Method YR10 MR10 CTR HMDB UCF
Cat+NCE 31.9 30.8 35.2 56.3 78.9
Max+NCE 32.3 31.3 32.2 55.3 79.2
Attn+NCE 32.4 30.2 33.4 55.2 78.4
MIL-NCE 35.0 31.8 34.2 56.7 80.4

(e) Symmetric vs asymmetric negatives
Negatives YR10 MR10 CTR HMDB UCF
(𝑥|𝑦) 34.4 29.0 33.9 55.1 78.1
(𝑦|𝑥) 19.3 19.4 28.2 57.1 79.2
(𝑥, 𝑦) 35.0 31.8 34.2 56.7 80.4

(f) Language models
Text model YR10 MR10 CTR HMDB UCF
LSTM 16.6 15.6 23.8 53.1 80.1
GRU 16.8 16.9 22.2 54.7 82.8
Transformer 26.7 26.5 32.7 53.4 78.4
NetVLAD 33.4 29.2 35.5 51.8 79.3
Ours 35.0 31.8 34.2 56.7 80.4

Table 6.2: Ablation studies

each video clip to its closest narration in time. We compare the NCE based approach

(ours) to the frequently used max margin ranking loss [Chowdhury et al., 2018; Dong

et al., 2019; Hendricks et al., 2017; Karpathy et al., 2014a; Miech et al., 2018; Mithun

et al., 2018; Wang et al., 2018a, 2016b; Wray et al., 2019; Wu et al., 2017] and a binary

classification loss (i.e. sigmoid cross entropy loss) that has shown to be effective in

video-audio matching [Arandjelović and Zisserman, 2017, 2018]. Overall, the NCE

loss outperforms other losses or works similarly on all five tested datasets.

The more negatives, the better. We keep the same single-instance learning

setting and assess the quality of our representations trained with different number

of sampled negative examples per positive pair in Table 6.2b. We can see that the

overall performance increases with the number of negatives. For the rest of the

ablation studies, we use 512 negative samples per positive.

How many positive candidates pairs to consider ? We evaluate the benefit of

going from the single-instance learning approach to the proposed multiple-instance
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Positive candidates

 it's quite a simple technique for .60

 beginners to learn and basically all I .53

do is squeeze out three little circles .63

then with the back of a teaspoon .49

simply press the teaspoon into the.47

main body of the laptop cover the .50

duct tape with aluminum cover all .63

remaining gaps edges with aluminum .61

tape use the leftover poster board to .56

create the keyboard keys I made my.50

Positive candidates

spinach what's the name.67

keep it simple you just want to add.57

fresh herbs maybe some oregano.58

you can add cilantro basil they give.59

it a couple more copies and when you.50

Positive candidates

Figure 6-3: Selected video and narration pairs from five positive candidates on
HowTo100M held-out samples using MIL-NCE..

based approach in Table 6.2c. In this experiment, we vary the number of positive

candidate training pairs ‖𝒫‖ for each video clip from 1 (i.e. single-instance learning

setting) up to 33 candidates. Adding candidates significantly improves the perfor-

mance upon the single-instance learning baseline. Moreover, we observe a trade-off

between having too many candidates and not having enough of them, as we reach

the best results by considering 3 to 5 positive candidates. We believe that adding

too many contextual narrations increases the chance for irrelevant ones as they are

sampled further in time from the considered video clip. For the rest of the chapter

we fix the number of positive candidate pairs to 5.

MIL-NCE vs other MIL based approaches. In Table 6.2d, we compare our

MIL-NCE approach with methods that can also handle multiple possible candidate

captions at training time. The max-pool based approach [Andrews et al., 2003; Arand-
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jelović and Zisserman, 2018; Oquab et al., 2015] (Max+NCE) only optimizes over the

clip-caption pair with the highest similarity score among the positive candidates. On

the other hand, the attention-based approach [Ilse et al., 2018] (Attn+NCE) com-

putes cross-modal attention weights between all the clip-caption pairs and perform

a weighted average of the similarity scores in order to consider the most relevant

positive candidate pairs. More details about these baselines are provided in sec-

tion 6.4.5. Finally, we also compare to the single-instance learning baseline where we

concatenate all of the candidate narrations as one longer narration (Cat+NCE). Our

proposed MIL-NCE method outperforms these two standard approaches on five out

of six tasks. The qualitative figure from Figure 6-3 illustrates examples of selected

pairs from a hold-out set of HowTo100M videos, using MIL-NCE.

Symmetric or asymmetric negative sampling ? Recall that given a pair of

video/narration (𝑥, 𝑦), we create 𝒩 in a symmetric manner by sampling negative

narrations for the video 𝑥 and negative videos for the narration 𝑦. Table 6.2e compares

that approach (𝑥, 𝑦) to asymmetric alternatives: (i) by fixing the video 𝑥 and only

sampling negative captions (𝑦|𝑥) and (ii) by fixing the narration 𝑦 and only sampling

negative videos (𝑥|𝑦). Overall, the best results are achieved when sampling jointly

the negatives (𝑥, 𝑦), i.e. when we equally sample both video and narration negatives.

Which language model ? Finally, we also experiment with different language

models (1 layer LSTM [Hochreiter and Schmidhuber, 1997] or GRU [Cho et al., 2014],

1 layer and 8 attention heads Transformer [Vaswani et al., 2017] and NetVLAD with

32 clusters [Arandjelović et al., 2016]) and compare them to our simple model (see

Table 6.1) in Table 6.2f. Even though our language model is similar to simple bag-

of-word approach, it performs better on average and is more consistent over the five

tasks than the other models. In particular, our model significantly outperforms the

other language models on the text-to-video retrieval tasks (YR10 and MR10), where

language plays the most important role. We believe that a sophisticated language

understanding is not key for our learning task. Instead, most of the time, detecting

and matching the main keywords in each narration is enough.

Moreover, we provide an ablation study where we replace the input text vectors
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Input word vectors YR10 MR10

BERT wo. stop words 25.1 24.2
BERT w. stop words 24.2 26.0
Word2Vec 35.0 31.8

Table 6.3: Results when using BERT vectors as inputs instead of Word2vec.

coming from Word2Vec with more advanced contextual word embedding vectors from

a BERT model [Devlin et al., 2018]. In details, we use the BERT base model 4 to

replace the Word2Vec module in our model (see Figure 6-4): we process the sequence

of 16 input words to obtain 16 output vectors of dimension 768. Apart from the

fact that the input dimension of word vectors is increased from 300 to 768, the rest

of the text model is kept the same. For a fair comparison in terms of number of

parameters, we do not finetune the BERT model. For this experiment, we use an

I3D model under the same training setting used in the ablation study 6.4.3. Also,

as BERT may be sensitive to the absence of stop words, we also run an experiment

where we do not remove the stop words during the text preprocessing phase. Results

are given in Table 6.3. We observe a strong degradation in performance when using

BERT pretrained vectors. We believe this is due to the domain gap between web text

corpus and ASR outputs.

6.4.4 Comparison to the state-of-the-art

Video only representation. In Table 6.4, we evaluate our learnt representations

on the HMDB-51 [Kuehne et al., 2011] and UCF-101 [Soomro et al., 2012] action

recognition benchmarks by extracting averaged pooled Mixed_5c features from the

HowTo100M pretrained backbone. More specifically, we compare to self-supervised

approaches, which similarly to this chapter, do not make use of any annotated video

nor image dataset when training the visual representation. We outperform state-of-

the-art on UCF-101 and perform on par with AVTS [Korbar et al., 2018] on HMDB-

51. Most importantly, our learnt representation significantly outperforms many prior
4https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
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Method Dataset MM Model Frozen HMDB UCF

OPN [Lee et al., 2017] UCF 7 VGG 7 23.8 59.6
Shuffle & Learn [Misra et al., 2016]* K600 7 S3D 7 35.8 68.7
[Wang et al., 2019a] K400 Flow C3D 7 33.4 61.2
CMC [Tian et al., 2019] UCF Flow CaffeNet 7 26.7 59.1
Geometry [Gan et al., 2019] FC Flow FlowNet 7 23.3 55.1
[Fernando et al., 2017] UCF 7 AlexNet 7 32.5 60.3
ClipOrder [Xu et al., 2019] UCF 7 R(2+1)D 7 30.9 72.4
3DRotNet [Jing and Tian, 2018]* K600 7 S3D 7 40.0 75.3
DPC [Han et al., 2019] K400 7 3D-R34 7 35.7 75.7
CBT [Sun et al., 2019a] K600 7 S3D 3 29.5 54.0
CBT [Sun et al., 2019a] K600 7 S3D 7 44.6 79.5
AVTS [Korbar et al., 2018] K600 Audio I3D 7 53.0 83.7
AVTS [Korbar et al., 2018] Audioset Audio MC3 7 61.6 89.0

Ours HTM Text
I3D 3 54.8 83.4

7 59.2 89.1

S3D 3 53.1 82.7
7 61.0 91.3

Fully-supervised SOTA [Xie et al., 2018] S3D 7 75.9 96.8

Table 6.4: Comparison to self-supervised methods on HMDB/UCF. Results
are reported by averaging the accuracy over the 3 splits for both datasets. *Shuffle
& Learn and 3DRotNet reported numbers are reimplemented in [Sun et al., 2019a]
by using a better backbone (S3D). The MM column indicates whether or not other
modalities than the video frames have been used for the learning of the visual features.
FC: FlyingChairs.

approaches even without fine-tuning. This result is significant as it demonstrates the

generalization of our representation to diverse sets of actions despite being trained on

uncurated instructional videos.

Next, we evaluate our visual representation on COIN [Tang et al., 2019] action

segmentation task in Table 6.5a. We split videos in subsequent clips of 1.5 second and

represent them by concatenating three features: the local representation from I3D (or

S3D), the global average pooled representation across the entire video and the relative

positional embedding of the video clip. We train a logistic regression to predict the

label for each clip. We compare our HowTo100M pretrained I3D network to an I3D

fully-supervised on Kinetics-400, Kinetics-700 as well as a ResNet-50 fully supervised
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Method Net Pretraining FADataset Labels

Ours
R50 ImNet 3 52.0
I3D K400 3 52.9
I3D K700 3 54.2

CBT [Sun et al., 2019a] S3D K600+HTM 3 53.9
Ours I3D HTM 7 59.4
Ours S3D HTM 7 61.0

(a) COIN

Net Pretraining mAPDataset Labels
I3D K400 3 73.7
I3D K700 3 74.0
R50 ImNet 3 75.0
I3D HTM 7 77.1

(b) YT8M-S

Method Labels used CTR
[Alayrac et al., 2016] ImNet+K400 13.3
CrossTask [Zhukov et al., 2019] ImNet+K400 22.4
CrossTask [Zhukov et al., 2019] ImNet+K400+CT 31.6
[Miech et al., 2019b] ImNet+K400 33.6
Ours (I3D) None 36.4
Ours (S3D) None 40.5

(c) CrossTask (CT)

Init Net Top1
val test

Scratch I3D 57.0 55.4
ImNet I3D 59.9 58.2
Ours I3D 61.1 59.6

(d) K700

Table 6.5: Evaluation on action segmentation (a), localization (b, c) and recognition
(d) benchmarks. K400: Kinetics-400, K600: Kinetics-600, K700: Kinetics-700, HTM:
HowTo100M, ImNet: ImageNet, YT8M-S: YouTube-8M Segments, R50: 2D ResNet-
50.

on ImageNet. We also compare to the state-of-the-art approach on COIN, CBT [Sun

et al., 2019a], which relies on a fully supervised S3D [Xie et al., 2018] trained on

Kinetics-600. Our learnt representation performs better than representations trained

on Kinetics-400, Kinetics-700 or ImageNet. Moreover, our method also significantly

outperforms the state-of-the-art CBT [Sun et al., 2019a] despite their use of fully-

supervised representation trained on Kinetics-600 and a Transformer model. We

believe this improved localization ability is due to the fact that our model was trained

on narrative descriptions with precise timestamps as opposed to coarse video-level

annotations.

We also report performance on the recently released YouTube-8M Segments dataset

in Table 6.5b. Since no results have been published for this benchmark yet, we only

compare the classification performance using different fully-supervised representations

(i.e. I3D trained on Kinetics-400 / Kinetics-700 or ResNet-50 trained on ImageNet).

Here again, our learnt representation outperforms all of the fully-supervised coun-

terparts despite the domain gap between YouTube-8M and uncurated instructional
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Method Labeled dataset used R@1↑ R@5↑ R@10↑ MedR↓

Random None 0.03 0.15 0.3 1675
HGLMM FV CCA [Klein et al., 2015] ImNet + K400 + YouCook2 4.6 14.3 21.6 75
[Miech et al., 2019b] ImNet + K400 6.1 17.3 24.8 46
[Miech et al., 2019b] ImNet + K400 + YouCook2 8.2 24.5 35.3 24

Ours (I3D) None 11.4 30.6 42.0 16
Ours (S3D) None 15.1 38.0 51.2 10

(a) YouCook2

Method Labeled dataset used R@1↑ R@5↑ R@10↑ MedR↓

Random None 0.01 0.05 0.1 500
[Miech et al., 2019b] ImNet + K400 7.5 21.2 29.6 38

Ours (I3D) None 9.4 22.2 30.0 35
Ours (S3D) None 9.9 24.0 32.4 29.5

(b) MSRVTT

Table 6.6: Zero-shot evaluation on text-to-video retrieval.

videos.

Finally, in Table 6.5d we investigate the benefit of initializing an I3D model with

our learned weights for a large-scale action recognition dataset (i.e. Kinetics-700).

We compare to a randomly initialized I3D and one inflated from an Inception net-

work pretrained on ImageNet [Carreira and Zisserman, 2017]. We obtain a 4% im-

provement over the randomly initialized I3D and 1.4% over the ImageNet pretrained

I3D [Carreira and Zisserman, 2017].

Joint text-video representation. We report text-to-video retrieval results on the

YouCook2 (Table 6.6a) and MSR-VTT (Table 6.6b) using our off-the-shelf model

trained on HowTo100M. Note that our model has not seen any YouCook2 nor MSR-

VTT annotated videos, hence for fair comparison on the MSR-VTT dataset we only

compare to prior work [Miech et al., 2019b] that did not finetune on MSR-VTT.

On YouCook2, our model significantly outperforms all prior work. More specifi-

cally, it performs better than [Miech et al., 2019b] which uses visual representa-

tion trained on Kinetics-400 + ImageNet and trains the joint text-video represen-

tation on both HowTo100M and YouCook2. On MSR-VTT, our method performs

also better than [Miech et al., 2019b], yet without using any manually annotated
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dataset. Finally, we also evaluate our off-the-shelf model trained on HowTo100M on

the CrossTask [Zhukov et al., 2019] action localization benchmark in Table 6.5c. We

perform localization via a video-to-text retrieval approach similarly to [Miech et al.,

2019b]. Our method outperforms state-of-the-art approaches on this benchmark, here

again, without using manual supervision.

6.4.5 Max+NCE and Attn+NCE baselines

We provide here, more details formulations of the Max+NCE and Attn+NCE base-

lines from the ablation study.

Max+NCE. This baseline aims at reproducing the standard max-pool based ap-

proach often used in multiple instance learning, but here combined with the NCE

loss. Formally, this can be written as maximizing the following objective:

max
𝑓,𝑔

𝑛∑︁
𝑖=1

log (MaxNCE𝑖) , (6.5)

where:

MaxNCE𝑖 =
max

(𝑥,𝑦)∈𝒫𝑖

𝑒𝑓(𝑥)⊤𝑔(𝑦)

max
(𝑥,𝑦)∈𝒫𝑖

𝑒𝑓(𝑥)⊤𝑔(𝑦) + ∑︀
(𝑥′,𝑦′)∼𝒩𝑖

𝑒𝑓(𝑥′)⊤𝑔(𝑦′) . (6.6)

Intuitively, this corresponds to choosing the best positive candidate pair among

all pairs 𝒫𝑖 according to the model.

Attn+NCE. This other baseline aims at selecting best candidate pairs via a cross-

modal soft-attention mechanism between the clips and narrations. The cross-modal

attention mechanism 𝑎 is defined as follows:

𝑎(𝑥, 𝑦,𝒫𝑖) = 𝑒𝑓𝑎(𝑥)⊤𝑔𝑎(𝑦)∑︀
(𝑥′,𝑦′)∈𝒫𝑖

𝑒𝑓𝑎(𝑥′)⊤𝑔𝑎(𝑦′) , (6.7)

where 𝑓𝑎 and 𝑔𝑎 are two parametrized functions. In practice 𝑓𝑎 and 𝑔𝑎 are sharing

parameters with 𝑓 (respectively 𝑔) except for the last ‘Linear’ layer (see Figure 6-4).
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Given that cross-modal attention mechansim, the Attn+NCE objective is:

max
𝑓,𝑔,𝑎

𝑛∑︁
𝑖=1

log (AttnNCE𝑖) , (6.8)

where:

AttnNCE𝑖 = 𝑒

∑︀
(𝑥,𝑦)∈𝒫𝑖

𝑎(𝑥,𝑦,𝒫𝑖) 𝑓(𝑥)⊤𝑔(𝑦)

𝑒

∑︀
(𝑥,𝑦)∈𝒫𝑖

𝑎(𝑥,𝑦,𝒫𝑖) 𝑓(𝑥)⊤𝑔(𝑦)
+ ∑︀

(𝑥′,𝑦′)∼𝒩𝑖

𝑒𝑓(𝑥′)⊤𝑔(𝑦′)

. (6.9)

The intuition behind this approach is to allow the model to have a separate selection

mechanism for the positive candidate pairs.

6.5 Conclusion

In this final contribution chapter, we have addressed the challenging task of learning

visual representations from scratch using uncurated instructional videos. Our ap-

proach did not rely on any manually annotated video nor image dataset. To deal with

highly misaligned narrations and videos, we have introduced MIL-NCE, a multiple

instance learning approach derived from the noise contrastive estimation framework.

We have applied MIL-NCE to the uncurated HowTo100M dataset and obtained strong

visual representations that outperformed self-supervised as well as fully-supervised

representations on many downstream tasks. More generally, we believe MIL-NCE

can be applicable in many multiple instance learning problems where representation

learning is key.
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Word2Vec

Text Processing
lower, tokenization, rm stop words, PAD to 16

[add, milk, bowl, PAD, ..., PAD]

[16, 300]

"Add milk to the bowl" 

[16, 2048]

Linear + ReLU
Linear is applied independetly on each vector

MaxPool

[1, 2048]

Linear

[1, 512]

Linear

[1, 512]

[32, 200, 200, 3]

[4, 6, 6, 1024]

GlobalAvgPool

[1, 1024]

I3D / S3D

Mixed5c

Video model Text model

Trained on GoogleNews, dim 300

Figure 6-4: Model architecture. In this figure, we provide a visualization of
the video embedding network 𝑓 (left) and the text embedding network 𝑔 (right).
Modules displayed in blue are trained from scratch on the challenging uncurated
HowTo100M dataset using the MIL-NCE loss. The word embeddings are learned in
an unsupervised fashion using Word2Vec trained on GoogleNews and are kept fixed
during training. Finally, the dimensions of the outputs of each layer are specified in
brackets, e.g. the output of the ‘Word2Vec’ layer is of size [16, 300] corresponding
to the 16 word embedding vectors of dimension 300 (one vector for each word, also
materialized by the 16 grey rectangles).
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Chapter 7

Discussion and perspectives

In this last chapter, we summarize the thesis contributions before concluding with

perspectives on future research directions.

7.1 Summary of contributions

Learnable Pooling with Context Gating for Video Understanding. In Chap-

ter 3, we tackled the problem of learning a video feature aggregation module that can

reliably aggregate information from videos that are several minutes long. We proposed

a neural network architecture that combines a differentiable clustering-based layer for

aggregating frame-level video features with a novel learnable non-linear unit, named

Context Gating, aiming to model interdependencies among network activations. We

have applied our approach on the large-scale and weakly-labeled YouTube-8M video

classification dataset [Abu-El-Haija et al., 2016], which contains millions of minut-

long videos annotated with weak labels generated from metadata. Our approach

especially reached the first place at the YouTube-8M challenge 1 among 655 partici-

pating teams, which demonstrated the efficiency of our approach on long videos and

weak labels.
1https://www.kaggle.com/c/youtube8m
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Learning from Video and Text via Large-Scale Discriminative Clustering.

In Chapter 4, we studied large-scale weakly-supervised learning from readily avail-

able supervision in the form of movie scripts for actor and action recognition. In

particular, we followed a multiple-instance learning approach based on discriminative

clustering, which has been previously successfully applied to a number of weakly-

supervised learning tasks in video understanding. One drawback of discriminative

clustering, however, is its limited scalability at training. We have addressed this issue

by proposing an online optimization algorithm based on the Block-Coordinate Frank-

Wolfe algorithm [Lacoste-Julien et al., 2013]. Another contribution of the chapter

was the introduction of a new constraint, namely the background constraint, aiming

to model the background class within the discriminative cluster formulation in an

unsupervised manner. We have applied our multiple instance learning method to the

problem of weakly-supervised learning of actions and actors from movies together

with their corresponding movie scripts. The scaling up of the learning problem to 66

feature-length movies enabled us to significantly improve weakly-supervised action

recognition performance compared to prior work [Bojanowski et al., 2013].

HowTo100M: Learning a Text-Video Embedding from Uncurated Nar-

rated Videos. In Chapter 5, we have introduced a method for learning a joint

video and text embedding without using manually annotated videos with descrip-

tions. In particular, we have proposed to learn a joint video and text embedding

from uncurated videos with readily available natural language annotations in the

form of automatically transcribed narrations. We have introduced HowTo100M : a

large-scale uncurated dataset of 136 million video clips sourced from 1.22 million

narrated instructional web videos depicting humans performing and describing over

23k different visual tasks. Our data collection procedure is fast, scalable and does

not require any additional manual annotation. We have demonstrated that a joint

video and text embedding trained on this data leads to state-of-the-art results for

text-to-video retrieval and action localization on instructional video datasets such as

YouCook2 or CrossTask. Finally, we have shown that this embedding transfers well
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to other domains: fine-tuning on generic YouTube videos (MSR-VTT dataset) and

movies (LSMDC dataset) outperforms models trained on these datasets alone.

End-to-End Learning of Visual Representations from Uncurated Instruc-

tional Videos. Finally in Chapter 6, we have proposed an approach for learning

a video representation from scratch by only using uncurated narrated videos from

the HowTo100M dataset introduced in the preceding Chapter 5. We have introduced

a novel training objective combining Multiple Instance Learning with Contrastive

Learning, namely MIL-NCE, for addressing weak correspondence between the video

and the transcribed narration. With this approach, we have been able to learn strong

video representations from scratch, without the need for any manual annotation.

We have evaluated our representations on a wide range of four downstream tasks

over eight datasets: action recognition (HMDB-51, UCF-101, Kinetics-700), text-to-

video retrieval (YouCook2, MSR-VTT), action localization (YouTube-8M Segments,

CrossTask) and action segmentation (COIN). Our method has outperformed all pub-

lished self-supervised approaches for these tasks as well as several fully supervised

baselines.

7.2 Perspectives

Next, we provide several future research directions that stem from this thesis.

7.2.1 Leveraging narrated videos

We have shown in this thesis that by leveraging readily available data in the form

of natural language, it is possible to outperform video models trained in a fully

supervised manner with videos manually annotated for various tasks (see Chapter 5

and Chapter 6). However, there are still many domains and tasks where weakly-

supervised video models perform far below fully-supervised ones. Examples include

tasks such as human action recognition on Kinetics or AVA for action detection.
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Figure 7-1: An example of wildlife documentary video together with the narration
transcript. YouTube video: https://www.youtube.com/watch?v=JkaxUblCGz0

One potential future research direction is to keep pursuing our initial research ef-

forts on leveraging narrated videos. Especially, we believe leveraging narrated videos

is one of the most promising directions in self-supervised learning given our initial

work from Chapter 5 and Chapter 6 using the HowTo100M dataset. However, one

drawback with the HowTo100M dataset is the bias towards instructional videos which

makes it inadequate for many other video domains. As an example, we have noticed

that models trained on the HowTo100M dataset are quite weak at recognizing different

types of wild animals such as lions or elephants, which are rarely seen in instructional

videos. In contrast, these animals are easily recognizable by CNNs trained on Im-

ageNet. We believe this issue could be limited if our training set is enhanced with

narrated wildlife documentary videos. In fact, many of them contain wildlife doc-

umentaries with accurate narrated descriptions of animals [Chen et al., 2017a] (See

Figure 7-1 for an illustration). This is only an example but in general, there are other

interesting video domains that have available and useful narration. This opens up

the general problem of learning from narrated videos in different domains. Can we

find an automatic approach for mining useful narrated videos from the Internet? For

instance, we can instead use machine learning to automatically select useful narrated

videos, i.e. where the narration describes the visual content depicted in the video.
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What is the person cutting ? « So now we are going to 
put the peppers on the 

pan and let it cook for at 
least four minutes »

Question

The person cuts a tomato

Answer

Narration

What is the 
person cutting ?

Question

At training At inference

Figure 7-2: One future direction to explore is the ability to also leverage narrated
videos for improving video question answering. Can we design a model able to answer
the question on the video of someone cutting a pepper (right) only by acquiring the
knowledge of pepper from narrated videos ?

Another issue is that end-to-end training on narrated videos requires a large com-

putational resources. For example, our best model from Chapter 6 was trained using

64 Cloud TPUs V3 (which is roughly equivalent to a cluster of 256 Tesla V100 32Gb

GPUs) for 3 days. This is problematic as it means it is challenging to reproduce such

results in an academic setup. The high computational load is partly due to the fact

that (as estimated in Chapter 5) more than 50M of video clips from HowTo100M are

not corresponding to their narration. Thus, another research direction would be to

design a learning approach that can be efficiently trained with fewer resources on a

large amount of narrated videos despite the noise in the training data.

Finally, in our current work on learning from narrated videos, we did not exploit

the spatio-temporal localization of objects/actions in video. It would be exciting to

study whether or not we can also leverage this weak form of supervision to train an

open-vocabulary object detection model for video.
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7.2.2 Tackling more complex video and language tasks

In this thesis, we have explored leveraging readily available natural language data

for simple tasks such as video classification or retrieval. However, we did not explore

using such readily available data for tasks requiring more complex language modeling

such as video question answering, long video summarization, vision and language

based navigation or building visual agents that can engage in a discussion about

a video or an image (visual dialog). Studying how we could use readily available

language data for these more challenging video and language tasks is thus a natural

future direction. More especially, given the recent breakthroughs in natural language

processing with self-supervised pretraining using Transformer [Vaswani et al., 2017]

based methods such as BERT [Devlin et al., 2018], we now have powerful tools for

tackling language-based tasks such as question answering or agents that can dialog

as humans.

For example, the video question answering field suffers from a lack of manually

annotated and large-scale video question answering datasets as underlined in Sec-

tion 2.2.5. One possible extension of our initial work from Chapter 5 and Chapter 6

could be to explore leveraging narrated videos for improving video question answering

models. In fact, this intuitively makes sense as humans are capable of acquiring new

knowledge from a narrated video and answering questions about it without requiring

supervision in the form of a video with a set of questions and answers, as illustrated

in Figure 7-2. The same idea in the field of visual dialog would also be as much as

interesting. It would be exciting to show it is possible to leverage millions of unla-

beled narrated videos to improve visual dialog systems trained on a few annotated

samples. This would be a step towards closing the gap between humans and machines

as we are capable of learning and accumulating a large wealth of knowledge only by

watching others perform different tasks and talking about it.
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RÉSUMÉ

Nous nous intéressons à l’apprentissage automatique d’algorithmes pour la compréhension automatique de vidéos. Une

majorité des approaches en compréhension de vidéos dépend de large base de données de vidéos manuellement an-

notées pour l’entraînement. Cependant, la collection et l’annotation de telles base de données est fastidieuse, coûte cher

et prend du temps. Pour palier à ce problème, cette thèse se concentre sur l’exploitation de large quantité d’annotations

publiquement disponible, cependant bruitées, sous forme de language naturel. En particulier, nous nous intéressons à un

corpus divers de métadonnées textuelles incluant des scripts de films, des titres et descriptions de vidéos internet ou en-

core des transcriptions de paroles. L’usage de ce type de données publiquement disponibles est difficile car l’annotation y

est faible. Pour cela, nous introduisons différentes approches d’apprentissage telles que de nouvelles fonctions de coûts

ou architectures de réseaux de neurones, adaptées à de faibles annotations.

MOTS CLÉS

Vision par ordinateur, Analyse de vidéo, Vidéo et language, Apprentissage faiblement supervisé, Apprentis-

sage profond, Apprentissage machine.

ABSTRACT

The goal of this thesis is to build and train machine learning models capable of understanding the content of videos.

Current video understanding approaches mainly rely on large-scale manually annotated video datasets for training. How-

ever, collecting and annotating such dataset is cumbersome, expensive and time-consuming. To address this issue, this

thesis focuses on leveraging large amounts of readily-available, but noisy annotations in the form of natural language.

In particular, we exploit a diverse corpus of textual metadata such as movie scripts, web video titles and descriptions or

automatically transcribed speech obtained from narrated videos. Training video models on such readily-available textual

data is challenging as such annotation is often imprecise or wrong. In this thesis, we introduce learning approaches to

deal with weak annotation and design specialized training objectives and neural network architectures.

KEYWORDS

Computer vision, Video analysis, Video and language, Weakly-supervised learning, Deep learning, Machine

learning.


