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Challenges

e Large diversity of labels
e Incomplete and noisy annotation
e What is a good representation for video ?
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Soft Bag-of-Words [2] formulated in terms of differentiable operations. 84.0/
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Contributions

e L earnable pooling for video representations

e Context Gating: A non-linear learnable module NetRVLAD: Residual-less NetVLAD.
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