Mathématiques 2

L1 Economie et gestion Université Panthéon-Assas, Melun Année Universitaire 2016–2017 MCF Christina Pawlowitsch TD 1

Suites et limites

Exercice 1

$$a) \quad x_n = (-1)^n \, \frac{1}{n}$$

b)
$$x_n = (-1)^n \frac{n+1}{n}$$

Pour chacune des suites de nombre réels $(x_n)_{n=1}^{\infty}$ données par les relations explicites ci-dessus :

- (1) Ecrivez ses 10 premiers éléments.
- (2) Formez une hypothèse par rapport à sa convergence. (Est-elle convergente ou divergente?)
- (3) Si vous avez retenu l'hypothèse que la suite est convergente, essayez de déterminer sa limite en vous servant des résultats vus en cours. (On avoue que $\lim_{n\to\infty} \frac{1}{n} = 0$. Tout le reste est à démontrer.)
- (4) Si la suite est convergente, fixez (a) $\varepsilon = 0, 4$, (b) $\varepsilon = 0, 2$, (c) $\varepsilon = 0, 1$ et considérez l'intervalle $I_{\varepsilon}(\bar{x}) = \{x \in \mathbb{R} : |x \bar{x}| < \varepsilon\}$, où \bar{x} est la limite de la suite. Quel est le plus petit entier naturel $\bar{n} \in \mathbb{N}$ tel que pour tout $n \geq \bar{n}$, $x_n \in I_{\varepsilon}(\bar{x})$?
- (5) Discutez les résultats que vous avez obtenus au point précédent par rapport à la définition de la limite d'une suite.
- (6) Est-ce que la suite a des points d'accumulation? Si oui, quels sont ses points d'accumulation?
- (7) Donnez les 6 premiers éléments de la sous-suite $(y_n) = (x_{2n})$. Est-ce que cette sous-suite est convergente? Si oui, démontrez sa limite.
- (8) Donnez les 6 premiers éléments de la sous-suite $(y_n) = (x_{2n-1})$. Est-ce que cette sous-suite est convergente? Si oui, démontrez sa limite.
- (9) Si vous avez retenu l'hypothèse que la suite est divergente, démontrez-le en vous servant des résultats vus en cours.

Exercice 2

Théorème 1 Si la limite d'une suite existe, alors elle est unique.

Problème : Démontrer ce résultat.

Exercice 3

a)
$$x_n = \frac{1}{n}$$
 c) $x_n = \frac{n+1}{n}$

$$b) \quad x_n = -\frac{1}{n} \quad d) \quad x_n = -\frac{n+1}{n}$$

Pour chacune des suites de nombre réels $(x_n)_{n=1}^{\infty}$ données par les relations explicites ci-dessus : Etudiez sa monotonie. (Est-elle croissante, décroissante, strictement croissante, strictement décroissante?)

Exercice 4

Soient les deux suites $(x_n)_{n=1}^{\infty}$ et $(y_n)_{n=1}^{\infty}$ donnée chacune par son terme général comme suite :

$$x_n = (-1)^n \frac{1}{n}$$
 et $y_n = \frac{n+1}{n}$.

- (1) Pour chacune de ces suites, déterminez, si elle existe, sa limite.
- (2) Soit la suite $z_n = x_n + y_n$.
 - (a) Ecrivez les 6 premiers termes de cette suite.
 - (b) Déterminez, si elle existe, la limite de cette suite.
- (2) Soit la suite $v_n = x_n \cdot y_n$.
 - (a) Ecrivez les 6 premiers termes de cette suite.
 - (b) Déterminez, si elle existe, la limite de cette suite.

Exercice 5

Déterminez la limite des suites données par les relations explicites ci-dessous en vous servant des résultats vus en cours :

(a)
$$x_n = \frac{1}{n} + 4$$
 (b) $x_n = \frac{3}{n}$ (c) $x_n = \frac{1}{2n}$

(b)
$$x_n = \frac{3}{n}$$

$$(c) \quad x_n = \frac{1}{2n}$$

$$(d) \quad x_n = \left(\frac{1}{2}\right)^r$$

$$(e) \quad x_n = 4\left(\frac{1}{2}\right)^n$$

(d)
$$x_n = \left(\frac{1}{2}\right)^n$$
 (e) $x_n = 4\left(\frac{1}{2}\right)^n$ (f) $x_n = \left(-\frac{1}{2}\right)^n + 3$

$$(g) \quad x_n = \frac{n+1}{n} - \frac{1}{n}$$

(g)
$$x_n = \frac{n+1}{n} - \frac{1}{2}$$
 (h) $x_n = \frac{2n}{n+1} - \frac{1}{2}$ (i) $x_n = \frac{n+1}{2n}$

$$(i) \quad x_n = \frac{n+1}{2n}$$

Exercice 6

Pour chacune des propositions suivantes, déterminez sa proposition contraposée:

- (a) $A \Rightarrow B$ (En d'autres termes : « Si A, alors B. »)
- (b) $\bar{A} \Rightarrow B$ (En d'autres termes : « Si non A, alors B. »)
- (c) Si une suite a une limite, alors elle est bornée.
- (d) Si \bar{x} est la limite d'une suite, alors \bar{x} est un point d'accumulation de cette suite.