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Abstract

This papers presents extensions of Binary Decision Diagrams to represent some
infinitary relations (coded as infinite boolean functions). Four classes of infinitary
relations are presented, and their representations are discussed. The widest class
is closed under all boolean operations. The three others give rise to a canonical
representation, which, when restricted to finite relations, are the classical BDDs.
The paper also gives new insights in to the notion of variables and the possibility
of sharing variables that can be of interest in the case of finite relations.
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1 Introduction

Binary Decision Diagrams (BDDs) were first introduced by Randal E. Bryant
in [1]. They turned out to be very useful in many areas where manipulation
of boolean functions —or equivalently finite relations— was needed. They
allowed a real breakthrough of model checking [2], they have been used suc-
cessfully in artificial intelligence [3] and in program analysis [4–7].

One limitation of BDDs and its variants is that they can only represent fi-
nite relations. Indeed, it induces a well-known and quite annoying restriction
on model checking, and it restrains its use in program analysis. This paper
explores the possibility of extending BDDs so that they can also represent in-
finitary relations. This extension will allow the model checking of some infinite
state systems or unbounded parametric systems, or the static analysis of the

1 This work was supported by the RTD project IST-1999-20527 “DAEDALUS” of
the european FP5 program.
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behavior of infinite systems, where the expression of infinite properties such
as fairness is necessary.

During the exploration of such extensions, we will define new classes of infini-
tary relations (which imply languages of infinite words). For those classes, we
will propose two efficient extensions of BDDs: Open Binary Decision Graphs
(and dually Closed Binary Decision Graphs), and the more powerful Binary
Decision Graphs (BDGs). BDGs correspond to the class of ω-deterministic
relations.

The goal of these data structures is to represent infinitary relations with vari-
ables (BDDs represent finite relations with variables) in an efficient way. As
efficiency is a concept relative to the use of the data structure, we need to tell
more about it. What we need in static analysis (and model checking) is an ex-
pressive data structure (to give more precise results) and to perform inclusion
testing (so emptiness testing should be fast). Other operations are application
dependant, but most of the time, they can benefit from a good memoizing,
which means that we can use a good equality testing. The data structures we
propose are canonical, which means equality testing and emptiness testing in
constant time. There is a hidden complexity, though, due to the fact that we
need to compute the memory location for each new data (to recognize whether
it had been encountered before), but this is computed in an incremental way.

After a presentation of our notations, sections 3 and 4 present the main ideas
that allow this extension: the first idea is the possibility of sharing variables
for different entries, while preserving a sound elimination of redundant nodes.
The second idea is the possibility of looping in the representation (thus the
term of Binary Decision Graph instead of Binary Decision Diagram), while
preserving the uniqueness of the representation. Section 5 presents the first
class of functions and their representation. This first class is simple and closed
under union and intersection. The next section presents a way of representing
more complicated infinite functions by giving a new semantics to the graphs.
The widest class of functions is defined in section 7. This class is very expressive
and with good algebraic properties, but the representation as an extension of
BDDs does not seem efficient enough. For a better efficiency, a restriction
of this class is defined in section 8. These functions can be represented by
extensions of BDDs, in the sense that if the same representation is applied
to finite functions we obtain classical BDDs. This class is quite powerful but
not closed under all boolean operations. We propose the use of results on
approximation properties of this class that can easily be exploited in abstract
interpretation [8,9], a direction that is very promising for its usefulness in
program analysis.
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2 Definitions and Notations

2.1 Relations and Boolean Functions

Definition 1 A relation R over the family (Ei)i∈I of finite sets is a subset of
the cartesian product

⊗

i∈I Ei of the sets.

An element of
⊗

i∈I Ei is called a vector, thus a relation is a set of vectors of
the same length. If I is finite of cardinality n, the relation is said to be n-ary.
If I is infinite, the relation is called infinitary. In this article we will restrict
infinitary relations to countable infinitary relations, i.e. I will be countable.

Relations over families of finite sets can be encoded into relations over families
of boolean sets (sets of cardinality 2). We just have to replace each set Ei of
cardinality ni by dlog2(ni)e boolean sets. This binary encoding is used in [10]
to represent finite relations with BDDs. In order to simplify our problems, we
will just consider relations over families of boolean sets, keeping in mind that
we can always come back to the general case.

Let B
def

= {true, false} be the set of boolean values. Bn denotes the set of
boolean vectors of length n. A finite boolean function is a function of Bn→B.
The set of infinite boolean vectors will be written Bω. An infinite boolean
function is a function of Bω →B.

A boolean function F is entirely characterized by a set of vectors, which is
defined as {u | F(u) = true}. This set of vectors of same length n can be
seen as an n-ary relation between elements of B. If the vectors are infinite,
this set forms an infinitary relation. Thus, we will indifferently write u ∈ F
or F(u) = true, and consider relations as boolean functions and vice versa.
If for all vectors F is false, we will write F = ∅.

2.2 Entries

An important aspect of relations is the indexes in the cartesian product. The
corresponding concept in functions is the rank of the parameters used to com-
pute the value of the function. We use the term “entry” for this concept. In
the case of functions, this concept is often mixed up with the variables used
in the description of the functions (as in f(x, y, ..) = . . .). What we want here
is to distinguish between the variables of the functions and their position in
the function, which we call its entries. If F : Bn →B, then the entries of F
are the integers between 0 and n− 1. If F : Bω →B, then the entries of F are
N, the set of all natural numbers.
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Example 2 let F be the boolean function defined as F(x, y, z) = (y ∧ z) ∨
(¬x∧¬y∧¬z). The function F is in B3→B. Thus its entries are 0, 1 and 2,
and in the definition shown above, the variable x is associated with the entry
0 (is at position 0), y with 1 and z with 2.

We write u(i) for the ith component of u. Given a set I of entries, u(I) denotes
the subvector of u with I as its set of entries. The restriction of F according to
one of its entries i and to the boolean value b is denoted F|i←b and is defined

as the set of vectors:
{

u | ∃v ∈ F , v(i) = b and v({ j | j 6=i}) = u
}

. A special case

is when i = 0. In this case, we simply write F(b).

2.3 Vectors and Words

It is sometimes convenient to consider a boolean vector as a word over B∗ or
Bω. It allows the use of concatenation of vectors. If u is a finite vector and v a
vector, the vector u.v corresponds to the concatenation of the words equivalent
to the vectors u and v. The size of a vector u is written |u|. The empty word
is denoted ε. We define formally the notation F(u):

F(u)
def

= {v | u.v ∈ F} if F : Bω →B or F : Bn→B and |u| < n

Note that this definition is consistent with the notation F(b) above: if |u| = 1,
w = u.v means that w(0) = u and w({ i | i>0}) = v. Thus F(u) = F|0←u.

We extend the concatenation to sets of vectors: for example, if F is a set of
vectors and u a vector, u.F

def

= {u.v | v ∈ F}.

This point of view allows the comparison between classes of infinitary relations
and classes of ω-languages. Although those classes look very similar, they are
not exactly the same, because of the presence of entries in functions and
relations. It is important for such datas that we have a way of naming and
accessing them. If we enriched word languages with a structure to name entries,
it would be possible to represent infinitary relations using Büchi automata
[11]. A problem of this representation is the well known lack of efficiency [12].
Because this class has been well studied, we do not try to go beyond it but
we will define smaller classes with better representations for practical use.

2.4 Notations

We adopt the following conventions:

a, b, c represent boolean values,
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E ,F ,G represent boolean functions, or equivalently relations,
u, v, w represent vectors (finite or infinite). In a context where we have infinite

vectors as described below, represent finite vectors,
α, β, γ represent infinite vectors,
x, y, z represent variables (or entry names),
r, s, t represent binary trees,
i, j, k, n represent natural numbers.

In the description of vectors, to reduce the size of the description, we will write
0 for false, and 1 for true.

3 Entry Names

As mentioned earlier, it is important for relations and functions to be able
to access easily the different entries, so that we can have efficient restrictions
or computations of the result. A common way of doing so is by naming the
entries, using variables.

Definition 3 (Named Function) A named function F is a function asso-
ciated with a naming of its entries. This function, mapping entries to names,
will be denoted nameF .

Example 2 (continued). If F(x, y, z) = . . . is our named function, then
nameF(0) = x, nameF (1) = y and nameF(2) = z.

In classical BDDs, boolean functions are described by boolean expressions
using variables corresponding to the different entries of the functions. The
Binary Decision Diagrams are ordered, so that the ordering imposed on the
variables follows the order of the entries of the function. The variable of rank
i is called the name of the entry i. In many cases, the variables correspond to
some entities related by the boolean function. A consequence is that we can
have the same information while changing the ordering on the variables and the
boolean functions that bind them (so that a given entry always corresponds
to the same variable, and the ordering on the variables is the same as the
entries ordering). Different optimizations follow that depend on the choice of
this ordering [13,14].
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3.1 Equivalent Entries

In the case of infinite functions, we cannot assign a different variable to all the
entries of the boolean function, because we want a finite representation. The
idea is that the set of variables associated with a given function is finite and
to achieve that, some entries can share the same name. However, not every
entry can share the same name: to share the same name, two entries must be
in a sense equivalent.

This idea is necessary to have a representation of infinite functions with named
entries. But, as shown in example 12 (page 10 and next), the equivalence of
entries can even be used in the representation of finite functions with named
entries, such as BDDs. It might be easier to think of the entry names in BDDs
to follow this sections. In BDDs, entry names are the variables which are the
labels of the nodes. What we propose to do here is to rename some of those
labels, in a way compatible with the decision semantics of BDDs. Note that
this would not change the size of the BDD.

A permutation is a bijection of N→N. If I ⊂ N, a permutation of the entries
in I is a permutation σ such that ∀i 6∈ I, σ(i) = i. A permutation σ defines
a function from vectors to vectors, −→σ , defined by : −→σ (u)(i) = u(σ(i)) for all i

entry of u.

Definition 4 (Equivalent entries) Let F be a boolean function. The en-
tries contained in the set I ⊂ N are equivalent if and only if for any permuta-
tion σ of the entries in I, for any vector u ∈ dom(F), F(u) = F(−→σ (u))

There are two ideas underlying the definition of equivalent entries: the restric-
tion according to any equivalent entry is the same, so F|x←b, where x is an
entry name, is not ambiguous (see property 7); and whatever the order in
which we read the equivalent entries, the function is the same. The following
example shows that this property imposes that we allow infinite permutations.

Example 5 Consider the infinite function that is true on any infinite vector
containing two consecutive 0’s infinitely many times. This function contains
(001)ω but not (01)ω. If we only considered finite permutations, that is per-
mutations generated from finite exchange of entries, then all entries of this
function are equivalent. But there is an infinite permutation that transforms
(001)ω into (01)ω:

σ(3 × k) = 4 × k

σ(3 × k + 1) = 4 × k + 2

σ(3 × k + 2) = 2 × k + 1
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The meaning of this substitution is that, if a function with all entries equivalent
contains (001)ω then there is a way of giving the values of (01)ω such that it
is accepted by the function. Concerning our function, because F ((001)ω) 6=
F ((01)ω), we must forbid the equivalence of all entries.

As an immediate consequence, we have the following properties for functions
F where all entries are equivalent:

Proposition 6 Let F : Bω →B, such that the entries of F are all equivalent.
Let v be a word, b a boolean value in v, α be a word where the boolean value a

appears infinitely often. Then vω ∈ F if and only if (vb)ω ∈ F and α ∈ F if
and only if b.α ∈ F .

PROOF. In both cases, we have an infinite permutation of the entries that
transforms the first vector into the other one. In the second case, we just have
to shift the a’s of a.α to the right, each a going to the entry of the next one.
In the first case, we keep shifting by one more b for each v.b. �

The following property proves that the notation F|x←b is not ambiguous:

Proposition 7 Let I be a set of equivalent entries of the function F . What-
ever i, j ∈ I and b ∈ B, F|i←b = F|j←b.

PROOF. By definition of the restriction, F|i←b(u) = ∃v ∈ F , v(i) = b and
v({k | k 6=i}) = u. If F|i←b(u) = true, let v be the vector defined above. Let
σ be the permutation that exchanges i and j. By equivalence of i and j in
F , −→σ (v) ∈ F . Moreover, by the action of the permutation, −→σ (v)(j) = b and
−→σ (v)({k | k 6=j}) = u, so F|j←b(u) = true. The converse is true by symmetry of
the property, which proves the equality of F|i←b and F|j←b. �

3.2 Equivalent Vectors of Entries

In order to be able to represent a wider class of infinite functions (while keeping
the number of entry names finite), we extend the notion of equivalent entries
to equivalent vectors of entries. We just consider as one entry a whole set of
entries of the form { i ∈ N | k ≤ i < k + n}. It will allow the iteration over
whole vectors of entries. The set of equivalent entries is described by a set I

of indexes and a length n such that ∀k ∈ I, ∀i such that k < i < k + n, i 6∈ I.
A substitution σ over such a set is such that ∀k ∈ I, σ(k) ∈ I, and ∀i < n,
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σ(k + i) = σ(k) + i. For all other numbers j, σ(j) = j.

Definition 8 (Equivalent Vectors of Entries) Let F be a boolean func-
tion. The vectors of entries contained in the set I with length n are equiva-
lent if and only if for any permutation σ of the entries in I, for any vector
u ∈ dom(F), F(u) = F(−→σ (u))

Two entries can have the same name if and only if they are at the same position
in a set of equivalent vectors of entries. In the remainder, when considering
named functions, and to simplify the presentation and the proofs, we will only
consider simple equivalent entries, but the results extend easily to equivalent
vectors of entries.

3.3 Equivalent Entries and Redundant Choices

Redundant choices are used in BDDs to reduce the size of the representation.
The good news is that giving the same name to equivalent entries is compatible
with the elimination of redundant choices. There is a redundant choice at a
subvector u of F if and only if F(u.0) = F(u.1).

Theorem 9 Let F be a named boolean function, and u be a vector such that
F(u.0) = F(u.1). Then, whatever v such that nameF(|u.v|) = nameF(|u|),
F(u.v.0) = F(u.v.1).

PROOF. v = a.w. We have F(u.a.w.0) = F(u.0.w.a) because of the equiv-
alence of the entries. F(u.0.w.a) = F(u.1.w.a) by redundancy of the choice,
and F(u.1.w.a) = F(u.a.w.1) by equivalence of the entries. Thus F(u.v.0) =
F(u.v.1). �

3.4 Periodicity of the Entries

In order to be finitely representable, we impose some regularity to the entry
names. The entry names are said to be periodic if and only if there is a period
k on the entry names, that is, for all i, the name of i + k is the same as the
name i. The entry names are said to be ultimately periodic if, after some point,
they are periodic.

Definition 10 A named function F is said to have ultimately periodic entry
names iff there is a period k and an entry j such that for all entry i > j,
nameF(i) = nameF(i + k).

8



In the remainder, we will define new classes of infinitary relations which could
be represented by extensions of BDDs. A direct consequence of this discussion
over entries and entry names is that for each such class of relations, the entry
names will have to be ultimately periodic. It is a strict restriction, in particular
for ω-regular languages of Büchi.

Proposition 11 The class of ω-regular languages of Büchi such that there
exists a named function with ultimately periodic entries of domain the same
set of words is a strict subset of the class of ω-regular languages of Büchi.

PROOF. The set {0, 11}ω is an ω-regular language. Suppose there is a named
function with ultimately periodic entries which is true on exactly that set.
As the entries are ultimately periodic, there must be at least two equivalent
entries i < j. Then 0j110ω is in the function, so 0i10j−i10ω should be in the
function too, because of the equivalence of entries i and j. It means that i and
j are not equivalent. �

4 Decision Trees

4.1 Finite Decision Trees

BDDs are based on decision trees. A decision tree is a structured representation
based on Shannon’s expansion theorem: F = 0.F(0)∪1.F(1). This observation
is the basis of a decision procedure: to know whether a given vector is in a
relation, we look at its first value. If it is a 0, we iterate the process on the
rest of the vector and F(0), and if it is a 1, we iterate on the rest of the vector
and F(1). This procedure can be represented by a binary tree labeled by the
entry names, and with either true or false at the leaves.

The construction of a decision tree for a finite function is classical, but we
will rephrase it in our terminology. This will allow us to show how entries and
entry names are used, and then how the distinction between those two concepts
(which are usually mixed in the term “variable”) can give more freedom in
the construction of those decision trees.

We define a labeled binary tree t as a partial function of {0, 1}∗→ L where
L is the set of labels, and such that whatever u.v ∈ dom(t), u ∈ dom(t). The
subtree of t rooted at u is the tree denoted t[u] of domain {v | u.v ∈ dom(t)},

and defined as t[u](v)
def

= t(u.v). The decision tree defined by a named boolean
function F : Bn →B is the binary tree of domain

⋃

k≤n{0, 1}
k, such that if
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|v| = n, then t(v) = F(v), and if |v| < n, t(v) = nameF(|v|). Note that this
definition does not impose that all entry names be different.

Example 12 Let F = {000, 011, 111}. If we associate the variables x to entry
0, y to entry 1 and z to entry 2, then F can be described by the formula:
(y ∧ z) ∨ (¬x ∧ ¬y ∧ ¬z). The decision tree for F is:

x
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++VVVVVVVVVVVVVVVVVVV
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xxqqqqqqqqqq
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&&MMMMMMMMMM y
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7 z
0
����
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�

1
��

::
::

: z
0
����

��
�

1
��

77
77

7

true false false true false false false true

4.2 Semantics of the Decision Trees

The decision tree of a named boolean function is used as a guide for a decision
process that decides the value of the function on a given vector. If t is the
decision tree associated with the named function F , then to decide whether the
vector u is in F , we “read” the first value of u. Say u = b.v. If b is a 0, we iterate
on v, t[0], and if it is a 1, we iterate on v, t[1]. The entire decision process goes
through the tree, following the path defined by u, and the result of the decision
process is the value of the leaf, t(u). Binary Decision Diagrams are based on
two remarks: first we can represent any tree in a form where equivalent subtrees
are shared (a directed acyclic graph), and second if a choice is redundant, then
we can “jump it”. The second remark modifies slightly the decision process:
we must have separate information on the entries of a function. Without the
elimination of redundant nodes, the entry names labeling the tree would be of
no use. But if we allow the elimination of redundant nodes, then they allow
to keep track of the current entry that is read from u. If it is “before” the
entry named t(ε), we can skip the first value of u and iterate on v, t. It means
also that we need a way of representing nameF . In classical BDDs, where all
entry names are different, we can represent nameF by an ordering of the entry
names: nameF(i) is the ith entry name in the ordering. If we allow to have
the same entry names at different entries, then we can use a sequence of entry
names, and nameF(i) is the ith entry name in the sequence.
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Example 12 (continued). The two steps of sharing equivalent subtrees
and eliminating redundant nodes give the following diagrams:
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The decision process on the vector 101 can reach false after reading the first 1
and the first 0. The entry names of the BDD are represented by x < y < z, or
equivalently by xyz. If we realize that the entry 1 and the entry 2 are equivalent,
we can give the same name y to both entries. Then the BDD becomes:
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true false

with entry names described as xyy. Note that this cannot change the size of
the BDD. There can be an interest in it, though, even for finite functions. To
compute a restriction, one needs to go through the diagram up to the nodes
labeled by the corresponding name, so the farther the name in the diagram, the
more complex the restriction. It is easy to see that this description will lead to
a more efficient algorithm to compute F|2←0 which corresponds to F|z←0 with
the entry names xyz, and to F|y←0 with the entry names xyy. Concerning the
meaning of the diagram, note that we don’t test y twice, but we test the entries
1 and 2, and the fact that they have the same name means that we can test
them in any order and obtain the same result.

It is an established fact [1] 2 , that given a boolean function and a naming of
the entries with all names different, such a representation is unique, leading
to trivial equivalence testing. From Theorem 9, we can add that this repre-
sentation is still unique if the naming of the entries respects the equivalences
of the entries.

2 Although we rephrase it with entry names instead of variables.
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4.3 Infinite Trees

To extend this definition to infinite boolean functions, there are two problems:
for all α ∈ F , α 6∈ dom(t), because binary tree domains are limited to finite
words. This is the problem of the infinite behavior of the function. We can
represent t(v) for all v a prefix of a vector in F , but then the tree is infinite.
This is the second problem, treated in this section: how to represent an infinite
tree.

As we have seen, a BDD is a decision tree on which we have performed two
operations: first the sharing of equivalent subtrees, second the elimination of
redundant choices. In fact, following this process would be too inefficient, and
when manipulating BDDs, these operations are performed incrementally: each

time we build a tree
x
		�� ��

++

t t
, we return t, and each time we build another tree

x
���� ��

00

t0 t1
,

we first look if the tree has already been encountered, through a hash table
for example, and if it is the case, we return the tree already encountered, if
not we add it in the table.

The same operations, albeit a little more complex, can be performed to rep-
resent an infinite tree with maximal sharing of its subtrees [15]. First we only
represent regular trees, that is trees with a finite number of distinct subtrees.
The only difference with finite trees, which are represented by directed acyclic
graphs, is that infinite trees are represented by directed graphs that contain
cycles. The added complexity introduced by the cycles is not intractable, and
efficient incremental algorithms can be devised. The ideas are the following:
when we are not in a cycle, the algorithm is the same as in the finite case.
When we isolate a strongly connected subgraph (a “cycle”), we first see if this
cycle is not the unfolding of another cycle that is reachable from the subgraph.
If it is the case, we return this other cycle (we fold the subgraph on the cycle).
If not, we reduce the subgraph to an equivalent one with maximal sharing,
and then we compute unique keys for the subgraph, so that we can see if it
had already been encountered, or so that we can recognize it in the future.
We have one key for each node of the subgraph. The detailed algorithms and
their proofs can be found in [16].

Examples of infinite trees represented this way will be displayed in the next
sections. The trees will be progressively enriched so that the BDGs represent
wider classes of infinite functions.
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5 Simple Infinite Behaviors

Using the ideas of the last two sections, we can extend BDDs to represent
classes of infinitary relations with simple infinite behavior. This extension
consists in allowing the sharing of entry names (to have an infinite number of
entries represented by a finite number of entry names), and in allowing loops
in the diagrams. We need to define the classes of boolean functions which can
be represented by these extensions of BDDs. The first class we define is a
superset of those classes derived from the necessity that the decision tree be
representable, that is regular.

Definition 13 Let F be a named boolean function. F is said to be prefix
regular if and only if the number of distinct F(u) (as defined in section 2.3)
is finite and its entry names are ultimately periodic.

Because we will have only one possible representation for a given function,
and F(u) corresponds to t(u) if t represents F , it means that t is regular.

Note that prefix regularity of a funtion F does not necessarily means that
its domain is ω-regular: suppose we have a non ω-regular language L. Then
F = {0, 1}∗.L is non ω-regular either, but all F(u) = F .

5.1 Open Functions and Closed Functions

We mentioned earlier that the representation of the decision tree for infinite
functions presented two problems: the representation of each partial evaluation
of the function (solved by a regular tree), and the problem of the decision
process which must be infinite and cannot be represented in general by a mere
regular tree. The idea, to solve this infinite behavior problem simply, is to
give a uniform meaning to the possible infinite decision processes, that is the
infinite loops in the decision tree. And to keep as close as possible to classical
BDDs, if the decision process is finite, then the result should be the same as
with BDDs. In particular, if we arrive at a false node after reading the start
u of the vector, then there is no need to go further since no vector starting
by u will be in the relation (F(u) = ∅), and if we come to a true, then any
vector starting by u will be in this relation (F(u) = Bω).

We can define two classes of boolean functions, corresponding to two possi-
ble meanings for infinite loopings (we never reach true nor false), namely
exclusive (for open functions) and inclusive (for closed functions).

Definition 14 (Open Function) Let F : Bω →B. The function F is said
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to be open if and only if F is prefix regular and:

∀α ∈ F , ∃u, β such that α = u.β and F(u) = Bω

Recall that F(u) = Bω means that whatever γ, F(u.γ) = true. It means that
the only vectors in the relation will lead finitely to a true. The dual definition
is:

Definition 15 (Closed Function) Let F : Bω →B. The function F is said
to be closed if and only if F is prefix regular and:

∀α 6∈ F , ∃u, β such that α = u.β and F(u) = ∅

As those two definitions are dual, we will mainly describe the representation
and properties of one of them, say open functions. The results on open func-
tions can be translated for closed functions by exchanging the roles of true

and false. The choice between one class of relations or the other will depend
on the particular applications, but we cannot mix them.

5.2 Open BDGs

Because we chose that cycling in the decision process is rejecting, there is one
new source of non-uniqueness that is not taken care of by simply sharing every
subtree of the decision tree. We must also replace by false every cycle from
which no true is reachable. This is easily performed while treating cycles in
the representation of regular trees.

We define the notion of decision tree representing an open function:

Definition 16 A decision tree dt represents a named open function F if and
only if the labels of the inner nodes of dt are dt(u) = nameF (|u|) and ∀α ∈ F ,
∃u, β such that α = u.β and dt(u) =true, and ∀u such that dt(u) =true,
F(u) = Bω.

Now, we can prove that we have a unique representation for open functions:

Theorem 17 There is exactly one decision tree dt representing the named
open function F such that for all r subtree of dt, either r = false or at least
one leaf of r is true, and if r is finite, it is true, false or both leaves appear.

The last condition just corresponds to the elimination of redundant nodes
before true and false, because we could have any number of such nodes.

14



PROOF. It is obvious from definition 16 that there exists at least one deci-
sion tree dt representing F . Suppose there is another decision tree dt’ rep-
resenting also F with the same conditions, then there must be a u such that
one of the trees, say dt is labeled by true or false at u, and dt’ is labeled
by an entry name. Let r be the subtree of dt’ at u. If dt(u) =true, then
F(u) = Bω, so r cannot contain any loop (which would exclude a vector), and
the only possible leaves are true. This contradicts the second condition. If
dt(u) =false, then, in the same way, no leaf of r can be true, so, by the first
condition, r must be false. �

The open BDG for a function is defined as the the unique representation (see
[16] for a proof) of this decision tree, with the elimination of the redundant
nodes. Open BDGs are indeed extensions of BDDs, because they have the
same unique incremental representation principle, and if we apply the open
BDG representation to finite functions (which are both open and closed), we
obtain the classical BDDs.

Example 18 The function F defined in example 12 can be extended to the
function G : Bω →B, defined as: G(u.α) = true if u ∈ F . Then G is repre-
sented with the same diagram as F , with an additional entry name z ′, and the
entry names are xyy(z′)ω.

Example 19 Let F be true on α if and only if α contains at least one 1. All
entries of F are equivalent, so its entry names can be described as xω. Since
F is open, it can be represented by the following graph:

x0
$$

1
��

??
??

true

Note that this diagram would not be a correct representation for a closed func-
tion, because there is no path leading to false (the dual of true).

5.3 Boolean Operators

We will write F ∧ G to denote the intersection of two relations F and G, and
F ∨ G for their union.

Theorem 20 Let F and G be two open functions. Then the functions F ∧ G
and F ∨ G are open. Moreover, if (Fi)i∈N is a family of open functions, then
∨

i∈N Fi is an open function.

F ∧ G(α)
def

= F(α) ∧ G(α), and F ∨ G(α)
def

= F(α) ∨ G(α). So, if we consider F
and G as sets of vectors, F ∧ G is the intersection of F and G, and F ∨ G is
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the union of F and G.

PROOF. Let α ∈ F ∨ G. There is a u such that α = u.β, and either F(u) =
Bω or G(u) = Bω. In any case, F ∨ G(u) = Bω. If α ∈ F ∧ G, there is u and v

such that α = u.β, α = v.γ, and F(u) = Bω and G(v) = Bω. If |u| ≤ |v|, then
v = u.w. So F(v) = Bω. So, F∧G(v) = Bω. If α ∈

∨

i∈N Fi, then there is a least
u prefix of α such that there is a i, Fi(u) = Bω. We have

∨

i∈N Fi(u) = Bω. �

Dually, the finite union of closed functions is a closed function, and the infinite
intersection of closed functions is a closed function.

Corollary 21 Whatever the boolean function F , there is a greatest open func-
tion contained in F , and there is a least closed function containing F .

Algorithmically, it is easy to compute the and or the or of two open functions.
The algorithms are the same as in the finite case [17], with the possibility
of memoizing [18], except that we must take care of cycles. When a cycle is
encountered, that is when we recognize that we already have been through a
pair of subtrees (s, t), we build a loop in the resulting tree.

Open functions are not closed under negation: the negation of the function
that is true on all vectors containing at least one 1 is the function containing
only 0ω. Such a function is not open (but it is closed, of course), because the
only infinite behavior that is possible for an open function is trivial. In order
to be more expressive, we introduce more infinite behaviors.

6 More Infinite Behaviors

To allow more infinite behaviors, we need to have more than one kind of loop,
so that in some loop it is forbidden to stay forever, and in some others, we can.
We introduce a new kind of loop: loops over open functions. This new kind
of loop defines a new set of infinite behaviors, defining what we call iterative
functions. Iterative functions are functions that start over again and again
infinitely often. Thus entry names will have to be periodic.

6.1 Definition

Definition 22 (Iteration) Let F : Bω →B be a named function. The itera-
tion of F , noted Ω (F), is defined as the set of vectors α such that there is an
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infinite sequence of vectors (ui)i∈N and α = u0.u1 . . . ui . . . and each ui has the
minimal length such that:

(1) |ui| > 0
(2) F(ui) = Bω

(3) nameF(|ui|) = nameF(0)

Definition 23 (Iterative Function) Let F : Bω →B be a named function.
F is said to be iterative if and only if the entry names of F are periodic, and
there is an open function G such that F = Ω (G).

Hence an iterative function is represented by an open function. We will use
the decision tree of the open function to represent the iterative function. But
in the context of iterative functions, the decision tree will have a different
meaning, corresponding to a slightly different decision process. The decision
process is the following: we follow the decision tree in the path corresponding
to the vector, but when we reach a true, we start again at the root of the
tree. To be a success, the decision process must start again an infinite number
of times.

Example 24 (Safety)
x

0
����

�� 1
  

AA
AA

true false
represents the function that is true on 0ω only.

Example 25 (Liveness)

x
0
����

�� 1

nn

true

represents the function that is false only on those vec-
tors that end with 1ω. That is, the function is true on
any vector containing an infinite number of 0’s.

Example 26 (Fairness)

x
0
~~~~

~~ 1
  

@@
@@

x0
$$

1
��

??
?? x

0
����

��
1

zz

true

represents the function that is true on any vector con-
taining an infinite number of 0’s and 1’s.

These examples show that iterative functions can be used to represent a wide
variety of infinite behaviors. Note that ∅ and Bω are at the same time open
and iterative. Another remark: the equivalence of the entries restraining the
use of shared entry names is only applied to the iterative function, not the
open function that represents the iterative function.

Theorem 27 An iterative function is prefix regular.
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PROOF. If F = Ω (G), g is open, so prefix regular. Let u be a finite vector
such that there is a v, G(u) = G(v) and |u| > |v|. If G(u) 6= Bω then F(u) =
F(v). If G(u) = Bω then there is a u0 prefix of u and minimal such that
|u0| > 0, G(u0) = Bω and nameG(|u0|) = nameG(0). Let u = u0.u1. We have
F(u0) = F , so F(u) = F(u1), with |u| > |u1|. If we take a u of size greater
than the number of distinct G(u), then there exists a v as described above, and
so there is a w (either v or u1 above) such that F(u) = F(w) and |u| > |w|.
So the number of distinct F(u) is bounded. Thus, F is prefix regular. �

6.2 Uniqueness

Many possible open functions can represent the same iterative function:

Example 28 The function that is true on every vector with an infinite num-
ber of 0’s and 1’s could also be represented by the following open function:

x
0
~~~~

~~
1

zz

x0
$$

1
��

??
??

true

x0
$$

1
��

22
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zz

true

In fact, there is a “best” open function representing a given iterative function.
If we always choose this best open function, as the representation of open
function is unique, the representation of iterative function is unique too.

Theorem 29 Let F be an iterative function. The function G which is true on
the set {u.α|uω ∈ F and F(u) = F} is the greatest (for set inclusion) open
function such that F = Ω (G).

In order to simplify the proofs, we will suppose that all entries of F are
equivalent, so that there is only one entry name, and we can get rid of the
test nameF(|u|) = nameF(0). To reduce the problem to this case, we can use
a function over larger finite sets described by Bk, where k is a period of the
entry names of F .

Lemma 30 Let u be a vector such that g(u) = Bω, |u| > 0 and for all v prefix
of u, G(v) 6= Bω. Then uω ∈ F and F(u) = F .

PROOF. [Lemma 30] Whatever α, u.α ∈ G. Because of the minimality of
u with respect to the property G(u) = Bω, for each α, there is a v prefix of
α such that (u.v)ω ∈ F and F(u.v) = F . Let b be a boolean value in u. We
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choose α = bω. There is an l such that (u.bl)ω ∈ F . Because all entries of F
are equivalent, by Proposition 6, uω ∈ F .

Let α ∈ F . The vector α is infinite, so there is a boolean value b that is
repeated infinitely often in α. But there is an l such that F(u.bl) = F . So
u.bl.α ∈ F , and by the equivalence of all entries (Proposition 6), u.α ∈ F ,
which means that α ∈ F(u). Conversely, if α ∈ F(u), u.bl.α ∈ F , and so
α ∈ F . Thus F = F(u).

PROOF. [Theorem 29] G is an open function, because for any element α of
G, there is a u prefix of α such that ∀β, u.β ∈ G. F is iterative, so there is an
open function G ′ such that F = Ω (G ′). ∀α ∈ G ′, there is a u prefix of α such
that G ′(u) = Bω and |u| > 0. Let u0 be the least such u. Because F = Ω (G ′),
u0

ω is in F , and F(u0) = F . So α ∈ G, which means that G ′ ⊂ G. To prove the
theorem, we just have to prove that F = Ω (G). We will start by F ⊂ Ω (G),
then prove Ω (G) ⊂ F .

Let α ∈ F . We suppose α 6∈ Ω (G). If there is a u prefix of α such that
G(u) = Bω, let u0 be the least such u. α = u0.β. Then β 6∈ Ω (G), but
F(u0) = F , so β ∈ F . So we can iterate on β. This iteration is finite because
α 6∈ Ω (G), so we come to a point where there is no u prefix of α such that
G(u) = Bω. But α ∈ F , so there is a u0 prefix of α such that G ′(u0) = Bω, and
uω

0 ∈ F and F(u0) = F , and so G(u0) = Bω, which contradicts the hypothesis.
Thus F ⊂ Ω (G).

Let α ∈ Ω (G). Let (ui)i∈N be the sequence of words such that G(ui) = Bω,
α = u0.u1 . . . ui . . ., |ui| > 0 and ui minimum. Some letters appear infinitely
often in α, and some others appear only finitely often. But there is a finite
number of ui containing the latter ones. Hence there is a permutation of the
entries such that the result of the permutation on α is v.β, where v is the
concatenation of all ui that contain the letters that appear finitely in α (v can
be empty), and β is composed of those ui that contain just letters that appear
infinitely in α. By definition of Ω (G), β ∈ Ω (G), and because all entries of F
are equivalent, v.β is in F if and only if α is in F . But whatever ui, F(ui) = F
(see the lemma). So F(v) = F . And so α is in F if and only if β is in F . Either
β contains a finite number of distinct ui, or an infinite one.

If β contains a finite number of distinct ui, we call them (vi)i≤m. Then there is
a permutation of the indexes such that the result of the permutation on β is
(v0.v1 . . . vm)ω. We know that vm

ω ∈ F (see the lemma), and for all i, F(vi) =
F , so v0.v1 . . . vm−1.(vm)ω ∈ F . We call γ = v0.v1 . . . vm−1.(vm)ω. Because
γ ∈ F , there is a sequence (u′i)i∈N such that G ′(u′i) = Bω, γ = u′0.u

′
1 . . . u′i . . .

and u′i minimum. So there is a j such that u′0.u
′
1 . . . u′j = v0.v1 . . . vm−1.vm

n.w

with w prefix of vm. Whatever i, (u′0.u
′
1 . . . u′i)

ω ∈ F , because F = Ω (G ′). So,
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by Proposition 6, (v0.v1 . . . vm)ω ∈ F . This in turn means that β ∈ F .

If β contains infinitely many distinct ui, we call them (vi)i∈N. Necessarily, there
is infinitely many 0’s and 1’s in β. So we have two vi, w0 and w1 such that
w0 contains a 0 and w1 contains a 1. As β is composed of 0 and 1, there is a
permutation of the entries that transforms β in (w0.w1)

ω. So we are back to
the problem with β containing a finite number of ui.

Thus, β ∈ F whatever the case, which proves that α ∈ F . We started from
α ∈ Ω (G), so Ω (G) ⊂ F . Because we already proved F ⊂ Ω (G), we have
F = Ω (G). �

It is possible to compute effctively the best open function representing an
iterative function F , provided we already have a representation, that is an
open function. The idea is to detect the u such that uω ∈ F and F(u) = F .
How we can do this without looping is explained in [19].

7 A New Class: Regular Functions

Now that we have a wide variety of infinite behaviors, we will try to incorporate
them with the finite behavior to obtain closure by boolean operations, and thus
a very wide variety of infinite functions. The idea is to allow a finite set of
iterative functions to describe the infinite behavior at a given point in the
function.

Definition 31 Let F : Bω →B be a named function. The function F is said
to be regular if and only if F is prefix regular and there is a finite set of
non-empty iterative functions iter(F) such that ∀α ∈ F , ∃u, ∃G ∈ iter(F),
α ∈ u.G and G ⊂ F(u).

The informal meaning of this definition is that for any vector in the relation,
there is a finite point in the vector such that the tail of the vector is in one of
the infinite behaviors (iterative functions) of the relation.

Example 32 Let F be {0ω, 1ω}. This function is prefix regular (the different
F(u) are just F , F(0), F(1) and ∅). The functions F0 = {0ω} and F1 = {1ω}
are iterative functions. Any vector in F is either in F0 or F1. So F is regular.

Let G be the function true on any vector ending with 0ω or 1ω. Whatever the
vector α in G, there is a u such that α = u.0ω or α = u.1ω. In any case,
α ∈ u.Fi (i = 0, 1). Moreover, Fi ⊂ G(u). So G is also regular.
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7.1 Expressive Power

These functions are called regular because of the analogy with ω-regular sets of
words of Büchi [11]. The only restriction imposed by the fact that we consider
functions lies in the entry names, namely the entry names must be ultimately
periodic to be finitely representable.

Theorem 33 A named function F is regular if and only if its entry names
are ultimately periodic and the set of words in F is ω-regular in the sense of
Büchi.

The idea is that open functions define regular languages. If U is the regular
language defined by an open function, then the associated iterative function
is Uω. The idea of the proof of the theorem is that an ω-regular language can
be characterized as a finite union of U.V ω, with U and V regular languages.

PROOF. Let F be a regular function. Because it is prefix regular, its entry
names are ultimately periodic. Let iter(F) be (Fi)i∈C . Each iterative func-
tion defines an ω-regular language: the Büchi automaton that accepts the
language defined by an iterative function represented by the open function G
is (Q, E, {G}, {G}) with:

Q = {G(u) | u ∈ B∗}

E = {(G(u), b,Gub) | b ∈ B, u ∈ B∗}

where Gv = if (G(v) = Bω and nameG(|v|) = nameG(0)) then G

else G(v)

The state set Q and the transition set E are finite because of the prefix
regularity of G.

F =
⋃

u∈U

⋃

i∈{ j∈C | ∀α∈Fi , uα∈F} {uα | α ∈ Fi} by definition of the regularity of
F . Each set {uα | α ∈ Fi} is ω-regular because ω-regularity of words is closed
under concatenation, and the number of such sets is finite by prefix regularity
of F . Being a finite union of ω-regular languages, F represents an ω-regular
language.

Now let (Q, E, I, F ) be a Büchi automaton such that there is a boolean func-
tion F representing the same set of words and the entry names of F are
ultimately periodic. Let Fq be the set of words corresponding to the Büchi
automaton (Q, E, {q}, {q}). We define L∗(Q, E, {q}, {q}) to be the set of fi-
nite words represented by this automaton. Each Fq is an iterative function
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represented by the open function:

Gq = {α ∈ Bω | ∃u, α = uβ, u ∈ L∗ (Q, E, {q}, {q})}

These functions are prefix regular because the automaton is finite and the
entry names are ultimately periodic. They are obviously open because a finite
decision procedure is enough to find out that a given infinite vector is in the
relation. Whatever α in the set represented by the Büchi automaton, α is
the label of an infinite path such that there is a q in F and q is in the set of
infinitely repeated states of the path. Thus, there is an u such that α = uβ and
β is in Fq, and for all γ ∈ Fq, uγ is in the language of the Büchi automaton
(Q, E, I, F ). So F is a regular function and iter(F) = (Fq)q∈F . �

Corollary 34 If F and G are regular functions, then F ∧ G, F ∨ G and ¬F
are regular functions.

It is an immediate consequence of the theorem, the closure properties of ω-
regular languages, and the closure properties of the fact that the set of entry
names is ultimately periodic.

7.2 Attempting a Representation

Let us recall the definition of a regular function F : ∀α ∈ F , ∃u, ∃G ∈ iter(F),
α ∈ u.G and G ⊂ F(u). It provides a natural decision process (possibly infinite
if the vector is not in the relation): for each prefix u of α (in increasing order),
we test F(u). If is is empty, then α is not in the relation. Otherwise, for each
G ∈ iter(F) such that G ⊂ F(u), we test if the remaining of α is in G. If one
of these tests is positive, α is in the relation.

If we try to insert the necessary informations in the decision tree, we need
to store at each point in the decision process the set of possible iterative
functions. Representing an iterative function is easy and unique (see previous
section). The first problem is that we do not have such uniqueness results
for finite unions of iterative functions. The second problem is the non deter-
ministic nature of the decision process, which consists in quite inefficient tries
and backtrackings. Such a representation extending BDDs would be possible,
but we would loose (as far as the author tried) too many good properties of
the BDDs. So we will try in the next section to define a smaller class of infi-
nite functions (but bigger than mere open functions) that could have a good
representation.
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8 BDGs with iter nodes: ω-deterministic Functions

In order to obtain a tractable class of functions, we restrict the class of regu-
lar functions. We call these functions ω-deterministic because we restrict the
number of possible infinite behaviors at a given u to at most one iterative
function.

Definition 35 Let F : Bω →B be a named function. F is ω-deterministic if
and only if F is prefix regular and

∀u, Ω ({v.α | u.vω ∈ F and F(u.v) = F(u)}) ⊂ F(u)

The iterative function FΩ
[u]

def

= Ω ({v.α | u.vω ∈ F and F(u.v) = F(u)}) is the
only infinite behavior possible at u. Any other iterative function in the infinite
behavior at this point would be included into FΩ

[u].

Theorem 36 An ω-deterministic function F is regular, and whatever the
functions in iter(F) representing the infinite behavior at a given point u, there
is an iterative function representing the infinite behavior at u and containing
all of them.

PROOF. Let F be an ω-deterministic relation. We first prove that F is
regular. We define iter(F) =

{

FΩ
[u]

∣

∣

∣ FΩ
[u] 6= ∅

}

. This set is finite because F is
prefix regular. Let α ∈ F . If α is ultimately periodic, as F is prefix regular,
there is an u and a v such that F(u.v) = F(u) and α = u.vω. Then FΩ

[u] 6=

∅, and for all β ∈ FΩ
[u], u.β is in F because F is ω-deterministic. If α is

not ultimately periodic, as the entry names are ultimately periodic, there is
a permutation of the entries which transforms α in β which is ultimately
periodic. Moreover, it is possible to choose the permutation that it leaves u

unchanged (we start after the last letter that appears finitely many times and
after the looping of the relation) such that β = u.vω as above. As the FΩ

[u]

have the same equivalence of entries as F(u) (at least), we have the postfix of
α after u is in FΩ

[u].

Concerning the canonicity of the iterative function at a given point, we have
the fact that for all iterative function at u of F , the iterative function is
included in FΩ

[u]. �

8.1 The Decision Tree

If the set {v | u.vω ∈ F and F(u.v) = F(u)} is not empty, then it is possible,
in the decision process, that we enter an infinite behavior. It must be signaled
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in the decision tree. To this end, we introduce a new kind of node in the
decision tree, the iter node. The iter node signals that we must start a
new infinite behavior, because before this node, we were in fact in the finite
part of the function. The iter node has only one child. In the graphical

representation, we will sometimes write
x
_��
t

for

x
��

iter

��
t

. After a iter node, we

start the decision tree representing the iterative function. We know that when
this decision tree comes to a true, we must start again just after the previous
iter node. false nodes in the decision tree are replaced by the sequel of
the description of the ω-deterministic function. As iterative functions of the
ω-deterministic function are uniquely determined, and their representation is
unique, the decision tree of the ω-deterministic function is unique.

Note that open functions are ω-deterministic. Their representation as an ω-
deterministic function is the same as in the previous section, but with a iter

preceding every true. It means also that the restriction of this representation
to finite functions give the classical BDD, except for the iter preceding the
true.

8.2 The Semantics of the Decision Tree

The semantics of the decision tree is defined in terms of a pseudo-decision
process (it is not an actual decision process because it is infinite). The decision
process reads a vector and uses a stack S and a current iterative tree, r. At
the beginning, the stack is empty and r is the decision tree. When we come to

a true node, we stack it and start again at r. When we come to a
iter

��
t

node,

r becomes t and we empty the stack. If we come to a false node, we stop the
process. The process is a success if it doesn’t stop and the stack is infinite.

Example 37
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true false

when we read a 0, the current iterative tree becomes
x

���� ��
>>

true false
. If we read a 1 after that, we stop on a failure,

and if we read a 0, we stack a true and start again with
the same iterative tree. So, after a 0, we can only have

0ω. After a 1, the iterative tree becomes
x

���� ��
99

false true
, and this

time, we can only have 1ω. So this function is {0ω, 1ω}.

Example 38
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during the decision process, the iterative tree never
changes. When we read a 0, we stack a true and start
again. But each time we read a 1, we empty the stack. So
the only vectors that stack an infinite number of true are
the vectors ending by 0ω.

8.3 Boolean Operators

Proposition 39 Let F and Gg be two ω-deterministic functions. Then F ∧G
is ω-deterministic.

This property is derived from the fact that iterative functions are closed un-
der intersection, so the infinite behavior at each point is an iterative func-
tion. Moreover, intersection preserves prefix regularity, so the result is ω-
deterministic.

The algorithm building the decision tree representing F ∧ G identifies the
loops, that is we come from a (t, u), which are subtrees of the decision trees
representing F and G, and return to a (t, u). If in such a loop, we have not
encountered any new true in any decision tree, we build a loop, if one decision
process has progressed, we keep building the decision tree, and when both have
been through a true, we add a true in the intersection.

ω-deterministic functions are not closed under union. As they are closed under
intersection, it means that they are not closed under negation either.

Example 40 (Impossible Union) Let F1 be the set of all vectors with a
finite number of 1’s, and F2 the set of all vectors with a finite number of 0’s.
F1 and F2 are represented by:
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true

Let F = F1 ∨ F2. The set Ω ({u.α | uω ∈ F and F(u) = F}) is the set of all
vectors, but (01)ω 6∈ F , so F is not ω-deterministic.

8.4 Approximation

Proposition 41 Whatever F prefix regular function, there is a least (for set
inclusion) ω-deterministic function containing F .

25



The process of building the best ω-deterministic function approximating a
prefix regular function consists in adding the iterative functions defined by
{v.α|u.vω ∈ F and F(u.v) = F(u)} to F(u). We define F+ def

= F ∪
⋃

w w.FΩ
[w].

We just add the minimum number of vectors so that the infinite behaviors
at each point is an iterative function. This function is also prefix regular, by
prefix regularity of F , and as such it is ω-deterministic.

If we start from an ω-deterministic function and perform operations that pre-
serve prefix regularity, such as union, we can give best approximations of these
operations. It means that we can have a kind of abstract behavior, keeping as
close as possible to the desired operations, while keeping the good represen-
tation as BDGs.

9 Conclusion

To achieve the representation of infinite functions, we presented a new in-
sight on variables which allows the sharing of some variables. This sharing is
compatible with every operation on classical BDDs, at no additional cost. It
is even an improvement for classical BDDs, as it speeds up one of the basic
operations on BDDs, the restriction operation.

We presented three classes of infinite functions which can be represented by
extensions of BDDs. So far, the only extension that allowed the representa-
tion of infinite function was presented by Gupta and Fisher in [20] to allow
inductive reasoning in circuit representation. Their extension corresponds to
the first class (open functions), but without the uniqueness of the represen-
tation, because the loops have a name, which is arbitrary (and so there is no
guarantee that the same loop encountered twice will be shared).

Our representation for open functions and ω-deterministic function have been
tested in a prototype implementation in Java. Of course, this implementation
cannot compete with the most involved ones on BDDs. It is, however, one
of the advantages of using an extension of BDDs: many useful optimizations
developed for BDDs could be useful, such as complement edges [21] or differen-
tial BDDs [22]. This last extension could lead to wider classes of functions by
releasing some of the restrictions imposed by the equivalence of entries. This
is a direction for future work. Another direction for future work concerns the
investigation over regular functions. These functions are closed under boolean
operations, but we did not find a satisfactory unique representation with a
decision tree yet. We believe the first two classes will already be quite useful.
For example the first class (open function) is already an improvement over
[20], and the second class (ω-deterministic) can express many useful proper-
ties of temporal logic [23]. This work is a step towards model checking and
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static analysis of the behavior of infinite systems, where properties depending
on fairness can be expressed and manipulated efficiently using BDGs [24].

References

[1] R. E. Bryant, Graph based algorithms for boolean function manipulation, IEEE
Transactions on Computers C-35 (1986) 677–691.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, J. Hwang, Symbolic
modek checking: 1020 states and beyond, in: Fifth Annual Symposium on Logic
in Computer Science, 1990.

[3] J.-C. Madre, O. Coudert, A logically complete reasoning maintenance system
based on a logical constraint solver, in: 12th International Joint Conference on
Artificial Intelligence, 1991, pp. 294–299.

[4] M.-M. Corsini, K. Musumbi, A. Rauzy, The µ-calculus over finite domains as
an abstract semantics of Prolog, in: M. Billaud, P. Castran, M.-M. Corsini,
K. Musumbu, A. Rauzy (Eds.), Workshop on Static Analysis, no. 81–82 in
Bigre, 1992.

[5] B. Le Charlier, P. van Hentenryck, Groundness analysis for Prolog:
Implementation and evaluation of the domain prop, in: PEPM’93, 1993.

[6] R. Bagnara, A reactive implementation of pos using ROBDDs, in: H. Kuchen,
S. D. Swierstra (Eds.), 8th International Symposium on Programming
Languages, Implementation, Logic and Programs, Vol. 1140 of Lecture Notes
in Computer Science, Springer-Verlag, 1996, pp. 107–121.

[7] L. Mauborgne, Abstract interpretation using typed decision graphs, Science of
Computer Programming 31 (1) (1998) 91–112.

[8] P. Cousot, R. Cousot, Abstract interpretation; a unified lattice model for static
analysis of programs by construction of approximation of fixpoints, in: 4th ACM
Symposium on Principles of Programming Languages (POPL ’77), 1977, pp.
238–252.
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