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A Deslauriers-Dubuc interpolation function ¢ has the shortest support while including polyno-
mials of degree 2p — 1 in the spaces V;. The corresponding interpolation filter h;[n] defined by
(7.214) has 2p non-zero coefficients for —p < n < p, which are calculated in (7.201). If p = 2 then
hi[l] = h;[—2] = —1/16 and h;[0] = h;[—1] = 9/16. Suppose that ¢(¢) is a polynomial of degree
smaller or equal to 2p — 1. Since ¢ = Py, q, (7.213) implies a Lagrange interpolation formula

+oo

q(2j (n+1/2)) = 3 @R hiln K.

k=—oc

The Lagrange filter h; of size 2p is the shortest filter that recovers intermediate values of polynomials
of degree 2p — 1 from a uniform sampling.

To restrict the wavelet interpolation bases to a finite interval [0, 1] while reproducing polyno-
mials of degree 2p — 1, the filter h; is modified at the boundaries. Suppose that f(N~1n) is defined
for 0 < n < N. When computing the interpolation

+oo
Py, (Y (n+1/2)) = Y f@R) hiln— k],

k=—o00

if n is too close to 0 or to 277 — 1 then h; must be modified to ensure that the support of h;[n — k]
remains inside (0,277 —1]. The interpolation Py, f(27(n+1/2)) is then calculated from the closest
2p samples f(27k) for 27k € [0,1]. The new interpolation coefficients are computed in order to
recover exactly all polynomials of degree 2p — 1 [450]. For p = 2, the problem occurs only at n = 0
and the appropriate boundary coefficients are

5 15 =5

1

The symmetric boundary filter h;[—n] is used on the other side at n =277 — 1.

7.7 Separable Wavelet Bases

To any wavelet orthonormal basis {15 }(jnyezz of L2(R), one can associate a separable wavelet
orthonormal basis of L2(R?):

{651 (1) gz ma2) } . (7.215)

(J1,J2,n1,n2)EZA

The functions ¥, », (1) 1), n, (z2) mix information at two different scales 27* and 272 along z;
and xo, which we often want to avoid. Separable multiresolutions lead to another construction
of separable wavelet bases whose elements are products of functions dilated at the same scale.
These multiresolution approximations also have important applications in computer vision, where
they are used to process images at different levels of details. Lower resolution images are indeed
represented by fewer pixels and might still carry enough information to perform a recognition task.

Signal decompositions in separable wavelet bases are computed with a separable extension of
the filter bank algorithm described in Section 7.7.3. Section 7.7.4 constructs separable wavelet
bases in any dimension, and explains the corresponding fast wavelet transform algorithm. Non-
separable wavelet bases can also be constructed [83, 333] but they are used less often in image
processing. Section 7.8.3 gives examples of non-separable quincunx biorthogonal wavelet bases,
which have a single quasi-istropic wavelet at each scale.

7.7.1 Separable Multiresolutions

As in one dimension, the notion of resolution is formalized with orthogonal projections in spaces
of various sizes. The approximation of an image f(x1,z2) at the resolution 277 is defined as
the orthogonal projection of f on a space VJQ- that is included in L2(R?). The space ij- is the
set of all approximations at the resolution 277. When the resolution decreases, the size of VJZ»
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decreases as well. The formal definition of a multiresolution approximation {V?};ez of L?(R?) is
a straightforward extension of Definition 7.1 that specifies multiresolutions of LZ(R). The same
causality, completeness and scaling properties must be satisfied.

We consider the particular case of separable multiresolutions. Let {V;};cz be a multiresolution
of L2(R). A separable two-dimensional multiresolution is composed of the tensor product spaces

Vi=V,;0V;. (7.216)

The space VJZ is the set of finite energy functions f(z1,x2) that are linear expansions of separable

functions:
+oo

flen,m) = Y alm] fm(z1) gm(z2) With frmn € V; | gm €V, .

m=—0Q

Section A.5 reviews the properties of tensor products. If {V;};ez is a multiresolution approxima-
tion of L?(R) then {V?};cz is a multiresolution approximation of L?(R?).

Theorem 7.1 demonstrates the existence of a scaling function ¢ such that {¢; ,}mez is an
orthonormal basis of V;. Since VJQ» =V, ® V;, Theorem A.6 proves that for z = (x1,22) and
n = (niy,na)

1 x1—2in To —29n
{ ?’"(m):%’"’l(xl)(ﬁj’”z(“):§¢( 1 27 1>¢( i 2 2)}71622

is an orthonormal basis of V?. It is obtained by scaling by 27 the two-dimensional separable scaling
function ¢?(z) = ¢(z1) ¢(2) and translating it on a two-dimensional square grid with intervals 27.

Example 7.13. Piecewise constant approximation Let V; be the approzimation space of
functions that are constant on [29m, 27 (m + 1)] for any m € Z. The tensor product defines a
two-dimensional piecewise constant approximation. The space VJQ- is the set of functions that are
constant on any square [27n1,27 (ny+1)] x [29ny, 27 (ng+1)], for (n1,n2) € Z2. The two dimensional
scaling function is

1 if0<xr1 <land0 <oy <1
o) =oa oo ={ o SO s

Example 7.14. Shannon approximation Let V; be the space of functions whose Fourier
transforms have a support included in [-2777,27Ix]. The space V? is the set of functions
whose two-dimensional Fourier transforms have a support included in the low-frequency square
[-277,2797] x [-2797,27Ix]. The two-dimensional scaling function is a perfect two-dimensional
low-pass filter whose Fourier transform is

1 if lwi] <2797 and |we| <2797

$(wn) Plws) = { 0 otherwise

Example 7.15. Spline approximation Let V; be the space of polynomial spline functions of
degree p that are CP~, with nodes located at 2~7m for m € Z. The space VJQ- is composed of
two-dimensional polynomial spline functions that are p — 1 times continuously differentiable. The
restriction of f(z1,x2) € ng to any square [29ny,27 (n1 + 1)) x [29ny,27(ny + 1)) is a separable
product q1(z1)q2(x2) of two polynomials of degree at most p.

Multiresolution Vision An image of 512 by 512 pixels often includes too much information for real
time vision processing. Multiresolution algorithms process less image data by selecting the relevant
details that are necessary to perform a particular recognition task [57]. The human visual system
uses a similar strategy. The distribution of photoreceptors on the retina is not uniform. The visual
acuity is greatest at the center of the retina where the density of receptors is maximum. When
moving apart from the center, the resolution decreases proportionally to the distance from the
retina center [427].

The high resolution visual center is called the fovea. It is responsible for high acuity tasks such
as reading or recognition. A retina with a uniform resolution equal to the highest fovea resolution
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Figure 7.21: Multiresolution approximations a;[ni,n2] of an image at scales 27, for —5 > j > —8.

would require about 10,000 times more photoreceptors. Such a uniform resolution retina would
increase considerably the size of the optic nerve that transmits the retina information to the visual
cortex and the size of the visual cortex that processes this data.

Active vision strategies [81] compensate the non-uniformity of visual resolution with eye sac-
cades, which move successively the fovea over regions of a scene with a high information content.
These saccades are partly guided by the lower resolution information gathered at the periphery of
the retina. This multiresolution sensor has the advantage of providing high resolution information
at selected locations, and a large field of view, with relatively little data.

Multiresolution algorithms implement in software [124] the search for important high resolution
data. A uniform high resolution image is measured by a camera but only a small part of this
information is processed. Figure 7.21 displays a pyramid of progressively lower resolution images
calculated with a filter bank presented in Section 7.7.3. Coarse to fine algorithms analyze first
the lower resolution image and selectively increase the resolution in regions where more details are
needed. Such algorithms have been developed for object recognition, and stereo calculations [283].

7.7.2 Two-Dimensional Wavelet Bases

A separable wavelet orthonormal basis of LZ(IR?) is constructed with separable products of a scaling
function ¢ and a wavelet . The scaling function ¢ is associated to a one-dimensional multires-
olution approximation {V;}jez. Let {V3} ez be the separable two-dimensional multiresolution
defined by V]2» =V;®V;. Let VVJ2 be the detail space equal to the orthogonal complement of the
lower resolution approximation space V]2- in ij-_lz

Vi =VieWw;. (7.217)

To construct a wavelet orthonormal basis of LZ(IR?), the following theorem builds a wavelet basis
of each detail space WJ2

Theorem 7.25. Let ¢ be a scaling function and b be the corresponding wavelet generating a
wavelet orthonormal basis of L2(R). We define three wavelets:

V() = ¢(an) Y(z2) , P(2) =v(@1)laz) . ¥ (x) = v(a1)Y(wa), (7.218)

and denote for 1 <k <3

1 x1 — 290y xe — 20
k _ ok 1 1 2 2

The wavelet family
1 2 3
{wj,n ’ wj,n ’ j,n}n€Z2 (7.219)

is an orthonormal basis of W]2 and

1 2 3
{¢j,n ) ¢j,n ) wj,n}(j)n)ezs (7.220)
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is an orthonormal basis of L2(R?).
Proof. Equation (7.217) is rewritten
Vi@V, = (V;@ V) @ W, . (7.221)

The one-dimensional multiresolution space V;_1 can also be decomposed into V;_1 = V; ® W;. By
inserting this in (7.221), the distributivity of & with respect to ® proves that

W)= (V,oW,)®(W,;0V;)a(W,aW,). (7.222)
Since {@j,m tmez and {¥;,m }mez are orthonormal bases of V; and W, we derive that

{¢j,n1 ($1)wj,n2(x2) s Ying (xl)(bjﬂlz (1’2) s Vi (xl)wj,nz("r?)}(nl,nQ)eZ?

is an orthonormal basis of WJ2 As in the one-dimensional case, the overall space L*(R?) can be
decomposed as an orthogonal sum of the detail spaces at all resolutions:

L*(R?) = W2 (7.223)

]——oo

Hence
{@sm1 (@1) Yima (22) 5 Yiny (1) Gjne (@2) 5 Viny (21) Yins (22) }(j ny mayezs
is an orthonormal basis of L?(R?). | |

The three wavelets extract image details at different scales and in different directions. Over positive
frequencies, ¢ and 1) have an energy mainly concentrated respectively on [0,7] and [7,27]. The
separable wavelet expressions (7.218) imply that

P (wi,wa) = dwr) Plwa) , Y (w1, w2) = P(wr) Plws)

and 3 (wy,ws) = h(w1) h(ws). Hence [ (wy,ws)| is large at low horizontal frequencies wy and
high vertical frequencies wy, whereas |12)2 (w1, w9)| is large at high horizontal frequencies and low
vertical frequencies, and |1ﬁ3(w1, wo)| is large at at high horizontal and vertical frequencies. Figure
7.22 displays the Fourier transform of separable wavelets and scaling functions calculated from a
one-dimensional Daubechies 4 wavelet.

Suppose that 1 (t) has p vanishing moments and is thus orthogonal to one-dimensional polyno-
mials of degree p — 1. The wavelet 1" has p one-dimensional directional vanishing moments along
x2 in the sense that it is orthogonal to any function f(xz1,x2) that is a polynomial of degree p — 1
along xy for x7 fixed. It is a horizontal directional wavelet that yields large coefficients for hori-
zontal edges, as explained in Section 5.5.1. Similarly, ¥? has p — 1 directional vanishing moments
along z1 and is a vertical directional wavelet. This is illustrated by the decomposition of a square
in Figure 7.24. The wavelet 1/ has directional vanishing moments along both z; and x5 and is
therefore not a directional wavelet. It produces large coefficients at corners or junctions. The three
wavelets 1% for k = 1,2, 3 are orthogonal to two-dimensional polynomials of degree p — 1.

Example 7.16. For a Shannon multiresolution approzimation, the resulting two-dimensional
wavelet basis paves the two-dimensional Fourier plane (w1, ws) with dilated rectangles. The Fourier
transforms ¢ and 1) are the indicator functions respectively of [—7, 7| and [=27, —7| U [m, 2x]. The
separable space ij_ contains functions whose two-dimensional Fourier transforms have a support
included in the low-frequency square [—2 77, 2 I 7t]x[-277 7,27 7]. This corresponds to the support
of q@?n indicated in Figure 7.23. The detail space W? is the orthogonal complement of VJQ» m V?_l
and thus includes functions whose Fourier transforms have a support in the frequency annulus be-
tween the two squares [—2 777,277 x [-2797,2797] and [-279H x 270t n] x [-27 0+ g 270 H g],
As shown in Figure 7.23, this annulus is decomposed in three separable frequency regions, which
are the Fourier supports of z/;fn for 1 < k < 3. Dilating these supports at all scales 27 yields an
exact cover of the frequency plane (w1, ws).

For general separable wavelet bases, Figure 7.23 gives only an indication of the domains where
the energy of the different wavelets is concentrated. When the wavelets are constructed with a
one-dimensional wavelet of compact support, the resulting Fourier transforms have side lobes that
appear in Figure 7.22.



250 Chapter 7. Wavelet Bases

\\
\\“\\\\
‘\\ il

Figure 7.22: Fourier transforms of a separable scaling function and of 3 separable wavelets calcu-
lated from a one-dimensional Daubechies 4 wavelet.
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Figure 7.23: These dyadic rectangles indicate the regions where the energy of zﬁfn is mostly

concentrated, for 1 < k < 3. Image approximations at the scale 27 are restricted to the lower
frequency square.
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Figure 7.24: Separable wavelet transforms of Lena and of a white square in a black background,
decomposed respectively on 3 and 4 octaves. Black, grey and white pixels correspond respectively
to positive, zero and negative wavelet coefficients. The disposition of wavelet image coefficients
d¥[n,m] = (f,¢},,) is illustrated on the top left.

Example 7.17. Figure 7.24 gives two examples of wavelet transforms computed using separable
Daubechies wavelets with p = 4 vanishing moments. They are calculated with the filter bank al-
gorithm of Section 7.7.3. Coefficients of large amplitude in d]l, d? and d;-’ correspond respectively
to wvertical high frequencies (horizontal edges), horizontal high frequencies (vertical edges), and
high frequencies in both directions (corners). Regions where the image intensity varies smoothly
yield nearly zero coefficients, shown in grey. The large number of nearly zero coefficients makes it

particularly attractive for compact image coding.

Separable Biorthogonal Bases One-dimensional biorthogonal wavelet bases are extended to sep-
arable biorthogonal bases of L2(R?) with the same approach as in Theorem 7.25. Let ¢, ¢ and b,
1 be two dual pairs of scaling functions and wavelets that generate biorthogonal wavelet bases of
L2(R). The dual wavelets of ¢!, 12 and 1® defined by (7.218) are

B (x) = Blan) Plas) , PP(@) = Ber) Blan) L B@) = ) das) . (7.224)
One can verify that
{0 s ¥in s V3n) Gmens (7.225)
and
(3o B 00 (a0
are biorthogonal Riesz bases of LZ(R?).
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7.7.3 Fast Two-Dimensional Wavelet Transform

The fast wavelet transform algorithm presented in Section 7.3.1 is extended in two dimensions. At
all scales 27 and for any n = (n1, n2), we denote

aj[n) = (f,¢3,) and df[n] = (f,4},) for1<k<3.

For any pair of one-dimensional filters y[m] and z[m] we write the product filter yz[n] = y[n1] z[n2],
and y[m| = y[—m]. Let h[m] and g[m] be the conjugate mirror filters associated to the wavelet .

The wavelet coefficients at the scale 2771 are calculated from a; with two-dimensional sepa-
rable convolutions and subsamplings. The decomposition formula are obtained by applying the
one-dimensional convolution formula (7.103) and (7.102) of Theorem 7.10 to the separable two-
dimensional wavelets and scaling functions for n = (ny, ng):

a;y1(n) a; = hh[2n] (7.227)
dj1[n] = a;xhg2n], (7.228)
43 1[n] = a;xgh2n], (7.229)
dii[n] = a;xgg2n] . (7.230)

We showed in (3.70) that a separable two-dimensional convolution can be factored into one-
dimensional convolutions along the rows and columns of the image. With the factorization il-
lustrated in Figure 7.25(a), these four convolutions equations are computed with only six groups
of one-dimensional convolutions. The rows of a; are first convolved with h and § and subsampled
by 2. The columns of these two output images are then convolved respectively with A and § and
subsampled, which gives the four subsampled images a;11, dj, ;, d5,, and d3, .

We denote by ¢[n] = g[ni,ns] the image twice the size of y[n], obtained by inserting a row of
zeros and a column of zeros between pairs of consecutive rows and columns. The approximation
a; is recovered from the coarser scale approximation a;y1 and the wavelet coefficients d¥,, with
two-dimensional separable convolutions derived from the one-dimensional reconstruction formula
(7.104)

a;[n] = aj41 * hhin] + d}_,_l * hgln] + d?_,_l * ghln] + d?+1 *x gg[n] . (7.231)

These four separable convolutions can also be factored into six groups of one-dimensional convo-
lutions along rows and columns, illustrated in Figure 7.25(b).

Let b[n] be an input image whose pixels have a distance 2F. We associate to b[n] a function
f(x) € Vi approximated at the scale 27, Tts coefficients ay[n] = (f,¢7 ) are defined like in
(7.111) by

bin] =27 ap[n] ~ f(25n) . (7.232)

The wavelet image representation of ay, is computed by iterating (7.227-7.230) for L < j < J:
lay, {dj,dZ,d3}Lej<i] (7.233)

The image ay, is recovered from this wavelet representation by computing (7.231) for J > j > L.

Finite Image and Complexity When ay, is a finite image of N = N; Ny pixels, we face boundary
problems when computing the convolutions (7.227-7.231). Since the decomposition algorithm is
separable along rows and columns, we use one of the three one-dimensional boundary techniques
described in Section 7.5. The resulting values are decomposition coeflicients in a wavelet basis of
L2[0,1]2. Depending on the boundary treatment, this wavelet basis is a periodic basis, a folded
basis or a boundary adapted basis.

For square images with N; = N, the resulting images a; and d¥ have 27% samples. The
images of the wavelet representation (7.233) thus include a total of N samples. If h and g have
size K, the reader can verify that 2/K2~20~1Y multiplications and additions are needed to compute
the four convolutions (7.227-7.230) with the factorization of Figure 7.25(a). The wavelet represen-
tation (7.233) is thus calculated with fewer than 8/3 KN operations. The reconstruction of ay, by
factoring the reconstruction equation (7.231) requires the same number of operations.
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Figure 7.25: (a): Decomposition of a; with 6 groups of one-dimensional convolutions and subsam-
plings along the image rows and columns. (b): Reconstruction of a; by inserting zeros between
the rows and columns of a4, and dé‘-’ 1, and filtering the output.

Fast Biorthogonal Wavelet Transform  The decomposition of an image in a biorthogonal wavelet
basis is performed with the same fast wavelet transform algorithm. Let (h,g) be the perfect
reconstruction filters associated to (h, g). The inverse wavelet transform is computed by replacing
the filters (h, g) that appear in (7.231) by (h, §).

7.7.4 Wavelet Bases in Higher Dimensions

Separable wavelet orthonormal bases of LZ(IRP) are constructed for any p > 2, with a procedure
similar to the two-dimensional extension. Let ¢ be a scaling function and v a wavelet that yields
an orthogonal basis of L2(R). We denote 0° = ¢ and 6 = ). To any integer 0 < & < 2P written in
binary form e = ¢; ...,¢e, we associate the p-dimensional functions defined in z = (21, ... ,zp) by

P () = 0% (21) ... 07" (p)

For € = 0, we obtain a p-dimensional scaling function

PO(z) = ¢(x1) ... d(zp)-

Non-zero indexes € correspond to 27 — 1 wavelets. At any scale 2/ and for n = (ng, ... ,n,) we
denote
; —2in xp —2/n
e _ o—pj/2 e[ T1 1 P p

Theorem 7.26. The family obtained by dilating and translating the 2P — 1 wavelets for e # 0

< 7.234
{ J’"}1<a<2v L (j.m)ezZP+? ( )

is an orthonormal basis of L2(RP).
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The proof is done by induction on p. It follows the same steps as the proof of Theorem 7.25
which associates to a wavelet basis of L2(R) a separable wavelet basis of LZ(R?). For p = 2, we
verify that the basis (7.234) includes 3 elementary wavelets. For p = 3, there are 7 different wavelets.

Fast Wavelet Transform  Let b[n] be an input p-dimensional discrete signal sampled at intervals 2.
We associate to b[n] an approximation f at the scale 2& whose scaling coefficients az [n] = (f, w%n>
satisfy

bin] = 2752/ 2 qp[n] ~ f(2%n) .

The wavelet coefficients of f at scales 2/ > 2% are computed with separable convolutions and
subsamplings along the p signal dimensions. We denote

ajln] = (f,4,) and d5[n] = (f,¢5,) for0<e<2P.

The fast wavelet transform is computed with filters that are separable products of the one-
dimensional filters h and g. The separable p-dimensional low-pass filter is

h°[n] = hlni] ... hn,) .

Let us denote u’[m] = h[m] and u'[m] = g[m]. To any integer ¢ = &1 ..., written in a binary
form, we associate a separable p-dimensional band-pass filter

g°[n] = utnq] ... urny).
Let g°[n] = g°[—n]. One can verify that

ajy1[n] = a;xh'2n], (7.235)
Sriln] = ajxg°[2n]. (7.236)

We denote by g[n] the signal obtained by adding a zero between any two samples of y[n] that
are adjacent in the p-dimensional lattice n = (nq, ... ,n,). It doubles the size of y[n] along each
direction. If y[n] has MP samples, then g[n] has (2M )P samples. The reconstruction is performed
with

2P —1
aj[n] = ajp1 xBOn) + Y d5yy x g°[n] - (7.237)
e=1

The 27 separable convolutions needed to compute a; and {dj}1<c<2» as well as the reconstruc-
tion (7.237) can be factored in 2P — 2 groups of one-dimensional convolutions along the rows of
p-dimensional signals. This is a generalization of the two-dimensional case, illustrated in Figures
7.25. The wavelet representation of ay, is

{d5}icecor  Laj<a > ag] - (7.238)

It is computed by iterating (7.235) and (7.236) for L < j < J. The reconstruction of a, is
performed with the partial reconstruction (7.237) for J > j > L.

If ar, is a finite signal of size IN; --- N, the one-dimensional convolutions are modified with
one of the three boundary techniques described in Section 7.5. The resulting algorithm computes
decomposition coefficients in a separable wavelet basis of L2[0,1]P. If Ny = - - = Np, the signals a;
and d< have 277/ samples. Like az,, the wavelet representation (7.238) is composed of N samples. If
the filter h has K non-zero samples then the separable factorization of (7.235) and (7.236) requires
pK 277U~ multiplications and additions. The wavelet representation (7.238) is thus computed
with fewer than p(1 — 277)~! KN multiplications and additions. The reconstruction is performed
with the same number of operations.



