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Preface to the Sparse Edition

I can not help but find striking resemblances between scientific communities and schools of fish. We
interact in conferences and through articles, we move together while a global trajectory emerges
from individual contributions. Some of us like to be at the center of the school, others prefer
to wander around, and few swim in multiple directions in front. To avoid dying by starvation
in a progressively narrower and specialized domain, a scientific community needs to move on.
Computational harmonic analysis is still well alive because it went beyond wavelets. Writing such
a book is about decoding the trajectory of the school, and gathering the pearls that have been
uncovered on the way. Wavelets are not any more the central topic, despite the original title. It is
just an important tool, as the Fourier transform is. Sparse representation and processing are now
at the core.

In the 80’s, many researchers were focused on building time-frequency decompositions, trying
to avoid the uncertainty barrier, and hoping to discover the ultimate representation. Along the
way came the construction of wavelet orthogonal bases, which opened new perspectives through
collaborations with physicists and mathematicians. Designing orthogonal bases with Xlets became
a popular sport, with compression and noise reduction applications. Connections with approxi-
mations and sparsity also became more apparent. The search for sparsity has taken over, leading
to new grounds, where orthonormal bases are replaced by redundant dictionaries of waveforms.
Geometry is now also becoming more apparent through sparse approximation supports in dictio-
naries.

During these last 7 years, I also encountered the industrial world. With a lot of naiveness, some
bandlets and more mathematics, we created a start-up with Christophe Bernard, Jérome Kalifa and
Erwan Le Pennec. It took us some time to learn that in 3 months good engineering should produce
robust algorithms that operate in real time, as opposed to the 3 years we were used to have for
writing new ideas with promissing perspectives. Yet, we survived because mathematics is a major
source of industrial innovations for signal processing. Semi-conductor technology offers amazing
computational power and flexibility. However, ad-hoc algorithms often do not scale easily and
mathematics accelerates the trial and error development process. Sparsity decreases computations,
memory and data communications. Although it brings beauty, mathematical understanding is not
a luxury. It is required by increasingly sophisticated information processing devices.

New Additions Putting sparsity at the center of the book implied rewriting many parts and adding
sections. Chapter 12 and Chapter 13 are new. They introduce sparse representations in redundant
dictionaries, and inverse problems, super-resolution and compressive sensing. Here is a small cat-
alogue of new elements in this third edition.
• Radon transform and tomography.
• Lifting for wavelets on surfaces, bounded domains and fast computations.
• JPEG-2000 image compression.
• Block thresholding for denoising.
• Geometric representations with adaptive triangulations, curvelets and bandlets.
• Sparse approximations in redundant dictionaries with pursuits algorithms.
• Noise reduction with model selection, in redundant dictionaries.
• Exact recovery of sparse approximation supports in dictionaries.
• Multichannel signal representations and processing.
• Dictionary learning.
• Inverse problems and super-resolution.
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• Compressive sensing.
• Source separation.

Teaching This book is intended as a graduate textbook. Its evolution is also the result of teaching
courses in electrical engineering and applied mathematics. A new web site provides softwares for
reproducible experimentations, exercise solutions, together with teaching material such as slides
with figures, and Matlab softwares for numerical classes: http://wavelet-tour.com.

More exercises have been added at the end of each chapter, ordered by level of difficulty. Level1

exercises are direct applications of the course. Level2 requires more thinking. Level3 includes some
technical derivations. Level4 are projects at the interface of research, that are possible topics for a
final course project or an independent study. More exercises and projects can be found in the web
site.

Sparse Course Programs The Fourier transform and analog to digital conversion through linear
sampling approximations provide a common ground for all courses (Chapters 2 and 3). It in-
troduces basic signal representations, and reviews important mathematical and algorithmic tools
needed afterwards. Many trajectories are then possible to explore and teach sparse signal process-
ing. The following list gives several topics that can orient the course structure, with elements that
can be covered along the way.

Sparse representations with bases and applications
• Principles of linear and non-linear approximations in bases (Chapter 9).
• Lipschitz regularity and wavelet coefficients decay (Chapter 6).
• Wavelet bases (Chapter 7).
• Properties of linear and non-linear wavelet basis approximations (Chapter 9).
• Image wavelet compression (Chapter 10).
• Linear and non-linear diagonal denoising (Chapter 11).

Sparse time-frequency representations
• Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter 4).
• Local cosine bases (Chapter 8).
• Linear and non-linear approximations in bases (Chapter 9).
• Audio compression (Chapter 10).
• Audio denoising and block thresholding (Chapter 11).
• Compression and denoising in redundant time-frequency dictionaries, with best bases or pursuit
algorithms (Chapter 12).

Sparse signal estimation
• Bayes versus minimax, and linear versus non-linear estimations (Chapter 11).
• Wavelet bases (Chapter 7).
• Linear and non-linear approximations in bases (Chapter 9).
• Thresholding estimation (Chapter 11).
• Minimax optimality (Chapter 11).
• Model selection for denoising in redundant dictionaries (Chapter 12).
• Compressive sensing (Chapter 13).

Sparse compression and information theory
• Wavelet orthonormal bases (Chapter 7).
• Linear and non-linear approximations in bases (Chapter 9).
• Compression and sparse transform codes in bases (Chapter 10).
• Compression in redundant dictionaries (Chapter 12).
• Compressive sensing (Chapter 13).
• Source separation (Chapter 13).
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Dictionary representations and inverse problems
• Frames and Riesz bases (Chapter 5).
• Linear and non-linear approximations in bases (Chapter 9).
• Ideal redundant dictionary approximations (Chapter 12).
• Pursuit algorithms and dictionary incoherence (Chapter 12).
• Linear and thresholding inverse estimators (Chapter 13).
• Super-resolution and source separation (Chapter 13).
• Compressive sensing (Chapter 13).

Geometric sparse processing
• Time-frequency spectral lines and ridges (Chapter 4).
• Frames and Riesz bases (Chapter 5).
• Multiscale edge representations with wavelet maxima (Chapter 6).
• Sparse approximation supports in bases (Chapter 9).
• Approximations with geometric regularity, curvelets and bandlets (Chapters 9 and 12).
• Sparse signal compression and geometric bit budget (Chapters 10 and 12).
• Exact recovery of sparse approximation supports (Chapter 12).
• Super-resolution (Chapter 13).
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Notations

〈f, g〉 Inner product (A.6).
‖f‖ Euclidean or Hilbert space norm.
‖f‖1 L1 or l1 norm.
‖f‖∞ L∞ norm.
f [n] = O(g[n]) Order of: there exists K such that f [n] ! Kg[n].

f [n] = o(g[n]) Small order of: limn→+∞
f [n]
g[n] = 0.

f [n] ∼ g[n] Equivalent to: f [n] = O(g[n]) and g[n] = O(f [n]).
A < +∞ A is finite.
A& B A is much bigger than B.
z∗ Complex conjugate of z ∈ C.
(x) Largest integer n ! x.
*x+ Smallest integer n " x.
(x)+ max(x, 0).
nmod N Remainder of the integer division of n modulo N .

Sets
N Positive integers including 0.
Z Integers.
R Real numbers.
R+ Positive real numbers.
C Complex numbers.
|Λ| Number of elements in a set Λ.

Signals
f(t) Continuous time signal.
f [n] Discrete signal.
δ(t) Dirac distribution (A.27).
δ[n] Discrete Dirac (3.32).
1[a,b] Indicator function which is 1 in [a, b] and 0 outside.

Spaces
C0 Uniformly continuous functions (7.207).
Cp p times continuously differentiable functions.
C∞ Infinitely differentiable functions.
Ws(R) Sobolev s times differentiable functions (9.8).
L2(R) Finite energy functions

∫
|f(t)|2 dt < +∞.

Lp(R) Functions such that
∫
|f(t)|p dt < +∞.

!
2(Z) Finite energy discrete signals

∑+∞
n=−∞ |f [n]|2 < +∞.

!
p(Z) Discrete signals such that

∑+∞
n=−∞ |f [n]|p < +∞.

CN Complex signals of size N .
U⊕V Direct sum of two vector spaces.
U⊗V Tensor product of two vector spaces (A.16).
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NullU Null space of an operator U .
ImU Image space of an operator U .

Operators
Id Identity.

f ′(t) Derivative df(t)
dt .

f (p)(t) Derivative dpf(t)
dtp of order p .

"∇f(x, y) Gradient vector (6.51).
f # g(t) Continuous time convolution (2.2).
f # g[n] Discrete convolution (3.33).
f /# g[n] Circular convolution (3.73)

Transforms
f̂(ω) Fourier transform (2.6), (3.39).
f̂ [k] Discrete Fourier transform (3.49).
Sf(u, s) Short-time windowed Fourier transform (4.11).
PSf(u, ξ) Spectrogram (4.12).
Wf(u, s) Wavelet transform (4.31).
PW f(u, ξ) Scalogram (4.55).
PV f(u, ξ) Wigner-Ville distribution (4.120).

Probability
X Random variable.
E{X} Expected value.
H(X) Entropy (10.4).
Hd(X) Differential entropy (10.20).
Cov(X1, X2) Covariance (A.19).
F [n] Random vector.
RF [k] Autocovariance of a stationary process (A.23).



I

Sparse Representations

Signals carry overwhelming amounts of data in which relevant information is often harder to find
than a needle in a haystack. Processing is faster and simpler in a sparse representation where few
coefficients reveal the information we are looking for. Such representations can be constructed by
decomposing signals over elementary waveforms chosen in a family called a dictionary. But the
search for the Holy Grail of an ideal sparse transform adapted to all signals is a hopeless quest.
The discovery of wavelet orthogonal bases and local time-frequency dictionaries has opened the
door to a huge jungle of new transforms. Adapting sparse representations to signal properties, and
deriving efficient processing operators, is therefore a necessary survival strategy.

An orthogonal basis is a dictionary of minimum size, that can yield a sparse representation if
designed to concentrate the signal energy over a set of few vectors. This set gives a geometric signal
description. Efficient signal compression and noise reduction algorithms are then implemented with
diagonal operators, computed with fast algorithms. But this is not always optimal.

In natural languages, a richer dictionary helps to build shorter and more precise sentences.
Similarly, dictionaries of vectors that are larger than bases are needed to build sparse representa-
tions of complex signals. But choosing is difficult, and requires more complex algorithms. Sparse
representations in redundant dictionaries can improve pattern recognition, compression and noise
reduction, but also the resolution of new inverse problems. This includes super-resolution, source
separation and compressive sensing.

This first chapter is a sparse book representation, providing the story line and main ideas. It
gives a sense of orientation, to choose a path for traveling in the book.

1.1 Computational Harmonic Analysis

Fourier and wavelet bases are the starting point of our journey. They decompose signals over
oscillatory waveforms that reveal many signal properties, and provide a path to sparse represen-
tations. Discretized signals often have a very large size N " 106, and thus can only be processed
by fast algorithms, typically implemented with O(N log N) operations and memories. Fourier and
wavelet transforms illustrate the deep connection between well structured mathematical tools and
fast algorithms.

1.1.1 Fourier Kingdom

The Fourier transform is everywhere in physics and mathematics, because it diagonalizes time-
invariant convolution operators. It rules over linear time-invariant signal processing, whose building
blocks are frequency filtering operators.

Fourier analysis represents any finite energy function f(t) as a sum of sinusoidal waves eiωt:

f(t) =
1

2π

∫ +∞

−∞
f̂(ω) eiωt dω. (1.1)

1
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The amplitude f̂(ω) of each sinusoidal wave eiωt is equal to its correlation with f , also called
Fourier transform:

f̂(ω) =

∫ +∞

−∞
f(t) e−iωt dt. (1.2)

The more regular f(t) the faster the decay of the sinusoidal wave amplitude |f̂(ω)| when the
frequency ω increases.

When f(t) is defined only on an interval, say [0, 1], then the Fourier transform becomes a
decomposition in a Fourier orthonormal basis {ei2πmt}m∈Z of L2[0, 1]. If f(t) is uniformly regular
then its Fourier transform coefficients also have a fast decay when the frequency 2πm increases,
so it can be well approximated with few low-frequency Fourier coefficients. The Fourier transform
therefore defines a sparse representation of uniformly regular functions.

Over discrete signals, the Fourier transform is a decomposition in a discrete orthogonal Fourier
basis {ei2πkn/N}0!k<N of CN , which has properties similar to a Fourier transform on functions. Its
embedded structure leads to a Fast Fourier Transform algorithms, which computes discrete Fourier
coefficients with O(N log N) instead of N2. This FFT algorithm is a corner stone of discrete signal
processing.

As long as we are satisfied with linear time-invariant operators or uniformly regular signals, the
Fourier transform provides simple answers to most questions. Its richness makes it suitable for a
wide range of applications such as signal transmissions or stationary signal processing. However,
to represent a transient phenomena—a word pronounced at a particular time, an apple located in
the left corner of an image—the Fourier transform becomes a cumbersome tool that requires many
coefficients to represent a localized event. Indeed, the support of eiωt covers the whole real line,
so f̂(ω) depends on the values f(t) for all times t ∈ R. This global “mix” of information makes it
difficult to analyze or represent any local property of f(t) from f̂(ω).

1.1.2 Wavelet Bases

Wavelet bases, like Fourier bases, reveal the signal regularity through the amplitude of coefficients,
and their structure leads to a fast computational algorithm. However, wavelets are well localized
and few coefficients are needed to represent local transient structures. As opposed to a Fourier
basis, a wavelet basis defines a sparse representation of piecewise regular signals, which may include
transients and singularities. In images, large wavelet coefficients are located in the neighborhood
of edges and irregular textures.

The story begins in 1910, when Haar [290] constructed a piecewise constant function

ψ(t) =






1 if 0 ! t < 1/2
−1 if 1/2 ! t < 1

0 otherwise

whose dilations and translations generate an orthonormal basis
{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}

(j,n)∈Z2

of the space L2(R) of signals having a finite energy

‖f‖2 =

∫ +∞

−∞
|f(t)|2 dt < +∞.

Let us write 〈f, g〉 =
∫ +∞
−∞ f(t) g∗(t) dt the inner product in L2(R). Any finite energy signal f can

thus represented by its wavelet inner-product coefficients

〈f,ψj,n〉 =

∫ +∞

−∞
f(t)ψj,n(t) dt

and recovered by summing them in this wavelet orthonormal basis:

f =
+∞∑

j=−∞

+∞∑

n=−∞
〈f,ψj,n〉ψj,n. (1.3)
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Each Haar wavelet ψj,n(t) has a zero average over its support [2jn, 2j(n+1)]. If f is locally regular
and 2j is small then it is nearly constant over this interval and the wavelet coefficient 〈f,ψj,n〉 is
thus nearly zero. This means that large wavelet coefficients are located at sharp signal transitions
only.

With a jump in time, the story continues in 1980, when Strömberg [448] found a piecewise linear
function ψ that also generates an orthonormal basis and gives better approximations of smooth
functions. Meyer was not aware of this result, and motivated by the work of Morlet and Grossmann
over continuous wavelet transform, he tried to prove that there exists no regular wavelet ψ that
generates an orthonormal basis. This attempt was a failure since he ended up constructing a whole
family of orthonormal wavelet bases, with functions ψ that are infinitely continuously differentiable
[374]. This was the fundamental impulse that lead to a widespread search for new orthonormal
wavelet bases, which culminated in the celebrated Daubechies wavelets of compact support [193].

The systematic theory for constructing orthonormal wavelet bases was established by Meyer and
Mallat through the elaboration of multiresolution signal approximations [361] presented in Chapter
7. It was inspired by original ideas developed in computer vision by Burt and Adelson [125] to
analyze images at several resolutions. Digging more into the properties of orthogonal wavelets and
multiresolution approximations brought to light a surprising relation with filter banks constructed
with conjugate mirror filters, and a fast wavelet transform algorithm decomposing signals of size
N with O(N) operations [360].

Filter Banks Motivated by speech compression, in 1976 Croisier, Esteban and Galand [188] intro-
duced an invertible filter bank, which decomposes a discrete signal f [n] in two signals of half its
size, using a filtering and subsampling procedure. They showed that f [n] can be recovered from
these subsampled signals by canceling the aliasing terms with a particular class of filters called
conjugate mirror filters. This breakthrough led to a 10-year research effort to build a complete
filter bank theory. Necessary and sufficient conditions for decomposing a signal in subsampled
components with a filtering scheme, and recovering the same signal with an inverse transform,
were established by Smith and Barnwell [443], Vaidyanathan [469] and Vetterli [471].

The multiresolution theory of Mallat [361] and Meyer [43] proves that any conjugate mirror filter
characterizes a wavelet ψ that generates an orthonormal basis of L2(R), and that a fast discrete
wavelet transform is implemented by cascading these conjugate mirror filters [360]. The equivalence
between this continuous time wavelet theory and discrete filter banks led to a new fruitful interface
between digital signal processing and harmonic analysis, first creating an interesting culture shock
that is now well resolved.

Continuous Versus Discrete and Finite Originally, many signal processing engineers were wondering
what is the point of considering wavelets and signals as functions, since all computations are
performed over discrete signals, with conjugate mirror filters. Why bother with the convergence
of infinite convolution cascades if in practice we only compute a finite number of convolutions?
Answering these important questions is necessary in order to understand why this book alternates
between theorems on continuous time functions and discrete algorithms applied to finite sequences.

A short answer would be “simplicity”. In L2(R), a wavelet basis is constructed by dilating
and translating a single function ψ. Several important theorems relate the amplitude of wavelet
coefficients to the local regularity of the signal f . Dilations are not defined over discrete sequences,
and discrete wavelet bases are therefore more complex to describe. The regularity of a discrete
sequence is not well defined either, which makes it more difficult to interpret the amplitude of
wavelet coefficients. A theory of continuous time functions gives asymptotic results for discrete
sequences with sampling intervals decreasing to zero. This theory is useful because these asymptotic
results are precise enough to understand the behavior of discrete algorithms.

But continuous time or space models are not sufficient for elaborating discrete signal processing
algorithms. The transition between continuous and discrete signals must be done with great care,
to maintain important properties such as orthogonality. Restricting the constructions to finite
discrete signals adds another layer of complexity because of border problems. How these border
issues affect numerical implementations is carefully addressed once the properties of the bases are
well understood.
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Wavelets for Images Wavelet orthonormal bases of images can be constructed from wavelet or-
thonormal bases of one-dimensional signals. Three mother wavelets ψ1(x), ψ2(x) and ψ3(x), with
x = (x1, x2) ∈ R2, are dilated by 2j and translated by 2jn with n = (n1, n2) ∈ Z2. It yields an
orthonormal basis of the space L2(R2) of finite energy functions f(x) = f(x1, x2):

{
ψk

j,n(x) =
1

2j
ψk

(
x− 2jn

2j

)}

j∈Z,n∈Z2,1!k!3

.

The support of a wavelet ψk
j,n is a square of width proportional to the scale 2j . Two dimensional

wavelet bases are discretized to define orthonormal bases of images including N pixels. Wavelet
coefficients are calculated with a fast O(N) algorithm described in Chapter 7.

Like in one dimension, a wavelet coefficient 〈f,ψk
j,n〉 has a small amplitude if f(x) is regular

over the support of ψk
j,n. It is large near sharp transitions such as edges. Figure 1.1(b) is the array

of N wavelet coefficients. Each direction k and scale 2j corresponds to a sub-image, which shows
in black the position of the largest coefficients above a threshold: |〈f,ψk

j,n〉| " T .

(a) (b)

(c) (d)

Figure 1.1: (a): Discrete image f [n] of N = 2562 pixels. (b): Array of N orthogonal wavelet
coefficients 〈f,ψk

j,n〉 for k = 1, 2, 3 and 4 scales 2j . Black points correspond to |〈f,ψk
j,n〉| > T . (c):

Linear approximation from the N/16 wavelet coefficients at the 3 largest scales. (d): Non-linear
approximation from the M = N/16 wavelet coefficients of largest amplitude shown in (b).
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1.2 Approximation and Processing in Bases

Analog to digital signal conversion is the first step of digital signal processing. Chapter 3 explains
that it amounts to projecting the signal over a basis of an approximation space. Most often,
the resulting digital representation remains much too large and needs to be further reduced. A
digital image includes typically more than 106 samples and a CD music recording has 40 103

samples per second. Sparse representations that reduce the number of parameters can be obtained
by thresholding coefficients in an appropriate orthogonal basis. Efficient compression and noise
reduction algorithms are then implemented with simple operators in this basis.

Stochastic versus Deterministic Signal Models A representation is optimized relatively to a
signal class, corresponding to all potential signals encountered in an application. This requires
building signal models that carries available prior information.

A signal f can be modeled as a realization of a random process F , whose probability distribution
is known a priori. A Bayesian approach then tries to minimize the expected approximation error.
Linear approximations are simpler because they only depend upon the covariance. Chapter 9 shows
that optimal linear approximations are obtained in a basis of principal components that are the
eigenvectors of the covariance matrix. However, the expected error of non-linear approximations
depends upon the full probability distribution of F . This distribution is most often not know for
complex signals such as images or sounds, because their transient structures are not well modeled
as realizations of known processes such as Gaussian processes.

To optimize non-linear representations, weaker but sufficiently powerful deterministic models
can be elaborated. A deterministic model specifies a set Θ where the signal belongs. This set
is defined by any prior information, for example on the time-frequency localization of transients
in musical recordings or on the geometric regularity of edges in images. Simple models can also
define Θ as a ball in a functional space, with a specific regularity norm such as a total variation
norm. A stochastic model is richer because it provides the probability distribution in Θ. When
this distribution is not available, the average error can not be calculated and is replaced by the
maximum error over Θ. Optimizing the representation then amounts to minimize this maximum
error, which is called a minimax optimization.

1.2.1 Sampling with Linear Approximations

Analog to digital signal conversion is most often implemented with a linear approximation operator
that filters and samples the input analog signal. From these samples, a linear digital to analog
converter recovers a projection of the original analog signal over an approximation space whose
dimension depends upon the sampling density. Linear approximations project signals in spaces of
lowest possible dimensions to reduce computations and storage cost, while controlling the resulting
error.

Sampling Theorems Let us consider finite energy signals ‖f̄‖2 =
∫
|f̄(x)|2 dx of finite support,

which is normalized to [0, 1] or [0, 1]2 for images. A sampling process implements a filtering of f̄(x)
with a low-pass impulse response φ̄s(x), and a uniform sampling to output a discrete signal:

f [n] = f̄ # φ̄s(ns) for 0 ! n < N.

In two dimensions, n = (n1, n2) and x = (x1, x2). These filtered samples can also be written as
inner products:

f̄ # φ̄s(ns) =

∫
f(u) φ̄s(ns− u) du = 〈f(x),φs(x− ns)〉

with φs(x) = φ̄s(−x). Chapter 3 explains that φs are chosen, like in the classical Shannon-
Whittaker sampling theorem, so that family of functions {φs(x − ns)}1!n!N is a basis of an
appropriate approximation space UN . The best linear approximation of f̄ in UN recovered from
these samples is the orthogonal projection f̄N of f in UN , and if the basis is orthonormal then

f̄N (x) =
N−1∑

n=0

f [n]φs(x− ns). (1.4)



6 Chapter 1. Sparse Representations

A sampling theorem states that if f̄ ∈ UN then f̄ = f̄N so (1.4) recovers f̄(x) from the measured
samples. Most often, f̄ does not belong to this approximation space. It is called aliasing in the
context of the Shannon-Whittaker sampling, where UN is the space of functions having a frequency
support restricted to the N lower frequencies. The approximation error ‖f̄ − f̄N‖2 must then be
controled.

Linear Approximation Error The approximation error is computed by finding an orthogonal
basis B = {ḡm(x)}0!m<+∞ of the whole analog signal space L2[0, 1]2, whose first N vectors
{ḡm(x)}0!m<N is an orthogonal basis of UN . The orthogonal projection on UN can thus be
rewritten:

f̄N (x) =
N−1∑

m=0

〈f̄ , ḡm〉 ḡm(x) .

Since f̄ =
∑+∞

m=0 〈f̄ , ḡm〉 ḡm, the approximation error is the energy of the removed inner products:

εl(N, f) = ‖f̄ − f̄N‖2 =
+∞∑

m=N

|〈f̄ , ḡm〉|2.

This error decreases quickly when N increases if the coefficient amplitudes |〈f̄ , ḡm〉| have a fast
decay when the index m increases. The dimension N is adjusted to the desired approximation
error. Figure 1.1(a) shows a discrete image f [n] approximated with N = 2562 pixels. Figure 1.1(c)
displays a lower resolution image fN/16 projected on a space UN/16 of dimension N/16, generated
by N/16 large scale wavelets. It is calculated by setting to zero all the wavelet coefficients at the
first two smaller scales. The approximation error is ‖f − fN/16‖2/‖f‖2 = 14 10−3. Reducing the
resolution introduces more blur and errors. A linear approximation space UN corresponds to a
uniform grid that approximates precisely uniformly regular signals. Since images f̄ are often not
uniformly regular, it is necessary to measure it at a high resolution N . This is why digital camera
have a resolution that increases as technology improves.

1.2.2 Sparse Non-linear Approximations

Linear approximations reduce the space dimensionality but can introduce important errors when
reducing the resolution, if the signal is not uniformly regular, as shown by Figure 1.1(c). To
improve such approximations, more coefficients should be kept where it is needed, not in regular
regions but near sharp transitions and edges. This requires defining an irregular sampling adapted
to the local signal regularity. This optimized irregular sampling has a simple equivalent solution
through non-linear approximations in wavelet bases.

Non-linear approximations operate in two stages. First a linear approximation approximates
the analog signal f̄ with N samples that are written f [n] = f̄ # φ̄s(ns). Then a non-linear approx-
imation of f [n] is computed to reduce the N coefficients f [n] to M 2 N coefficients in a sparse
representation.

The discrete signal f can be considered as a vector of CN . Inner products and norms in CN

are written

〈f, g〉 =
N−1∑

n=0

f [n] g∗[n] and ‖f‖2 =
N−1∑

n=0

|f [n]|2 .

To obtain a sparse representation with a non-linear approximation, we choose a new orthonormal
basis B = {gm[n]}m∈Γ of CN , which concentrates as much as possible the signal energy over few
coefficients. Signal coefficients {〈f, gm〉}m∈Γ are computed from the N input sample values f [n]
with an orthogonal change of basis that takes N2 operations in non-structured bases. In a wavelet
or Fourier bases, fast algorithms require respectively O(N) and O(N log2 N) operations.

Approximation by Thresholding For M < N , an approximation fM is computed by selecting
the “best” M < N vectors within B. The orthogonal projection of f on the space VΛ generated
by M vectors {gm}m∈Λ in B is

fΛ =
∑

m∈Λ

〈f, gm〉 gm . (1.5)
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Since f =
∑

m∈Γ 〈f, gm〉 gm, the resulting error is

‖f − fΛ‖2 =
∑

m/∈Λ

|〈f, gm〉|2 . (1.6)

We write |Λ| the size of the set Λ. The best M = |Λ| term approximation which minimizes ‖f−fΛ‖2
is thus obtained by selecting the M coefficients of largest amplitude. These coefficients are above
a threshold T that depends on M :

fM = fΛT =
∑

m∈ΛT

〈f, gm〉 gm with ΛT = {m ∈ Γ : |〈f, gm〉| " T} . (1.7)

This approximation is non-linear because the approximation set ΛT changes with f . The resulting
approximation error is:

εn(M,f) = ‖f − fM‖2 =
∑

m/∈ΛT

|〈f, gm〉|2 . (1.8)

Figure 1.1(b) shows that the approximation support ΛT of an image in a wavelet orthonormal
basis, which depends upon the geometry of edges and textures. Keeping large wavelet coefficients
is equivalent to constructing an adaptive approximation grid specified by the scale-space support
ΛT . It increases the approximation resolution where the signal is irregular. The geometry of ΛT

gives the spatial distribution on sharp image transitions and edges, and shows how they propagate
across scales. Chapter 6 proves that it gives important information on their sharpness and local
Lipschitz regularity. This example illustrates how an approximation support provides “geometric”
information on f , relatively to a dictionary, which is a wavelet basis in this example.

Figure 1.1(d) gives the non-linear wavelet approximation fM recovered from the M = N/16
largest amplitude wavelet coefficients, with an error ‖f −fM‖2/‖f‖2 = 510−3. This error is nearly
3 times smaller than the the linear approximation error obtained with the same number of wavelet
coefficients, and the image quality is much better.

An analog signal can be recovered from the discrete non-linear approximation fM :

f̄M (x) =
N−1∑

n=0

fM [n]φs(x− ns).

Since all projections are orthogonal, the overall approximation error on the original analog signal
f̄(x) is the sum of the analog sampling error and the discrete non-linear error:

‖f̄ − f̄M‖2 = ‖f̄ − f̄N‖2 + ‖f − fM‖2 = εl(N, f) + εn(M,f).

In practice, N is imposed by the resolution of the signal acquisition hardware, and M is typically
adjusted so that εn(M,f) " εl(N, f).

Sparsity with Regularity Sparse representations are obtained in a basis that takes advantage of
some form of regularity of the input signals, which creates many small amplitude coefficients. Since
wavelets have a localized support, functions with isolated singularities produce few large amplitude
wavelet coefficients in the neighborhood of these singularities. Non-linear wavelet approximation
produce a small error over spaces of functions that do not have “too many” sharp transitions and
singularities. Chapter 9 shows that functions having a bounded total variation norm are useful
models for images with non-fractal (finite length) edges.

Edges often define regular geometric curves. Wavelets detect the location of edges but their
square support can not take advantage of their potential geometric regularity. More sparse rep-
resentations are defined in dictionaries of curvelets or bandlets, that have elongated support in
multiple directions that can be adapted to this geometrical regularity. In such dictionaries, the
approximation support ΛT is smaller but provides explicit information about the local geometrical
properties of edges, such as their orientation. In this context, geometry does not just apply to
multidimensional signals. Audio signals such as musical recordings also have a complex geometric
regularity in time-frequency dictionaries.
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1.2.3 Compression

Storage limitations and fast transmission through narrow band-width channels requires to compress
signals while minimizing the degradation. Transform codes compress signals by coding a sparse
representation. Chapter 10 introduces the information theory needed to understand these codes
and optimize their performance.

In a compression framework, the analog signal has already been discretized into a signal f [n]
of size N . This discrete signal is decomposed in an orthonormal basis B = {gm}m∈Γ of CN :

f =
∑

m∈Γ

〈f, gm〉 gm .

Coefficients 〈f, gm〉 are approximated by quantized values Q(〈f, gm〉). If Q is a uniform quantizer
of step ∆ then |x − Q(x)| ! ∆/2, and if |x| < ∆/2 then Q(x) = 0. The signal f̃ restored from
quantized coefficients is

f̃ =
∑

m∈Γ

Q(〈f, gm〉) gm .

An entropy code records these coefficients with R bits. The goal is to minimize the signal distortion-
rate d(R, f) = ‖f̃ − f‖2.

The coefficients not quantized to zero correspond to the set ΛT = {m ∈ Γ : |〈f, gm〉| " T}
with T = ∆/2. For sparse signals, Chapter 10 shows that the bit budget R is dominated by the
number of bits to code ΛT in Γ, which is nearly proportional to its size |ΛT |. This means that the
“information” of a sparse representation is mostly geometric. Moreover, the distortion is dominated
by the non-linear approximation error ‖f − fΛT ‖2, for fΛT =

∑
m∈ΛT

〈f, gm〉gm. Compression is
thus a sparse approximation problem. For a given distortion d(R, f), minimizing R requires to
reduce |ΛT | and optimize the sparsity.

The number of bits to code ΛT can take advantage of any prior information on the geometry.
Figure 1.1(b) shows that large wavelet coefficients are not randomly distributed. They have a
tendency to be aggregated towards larger scales, and at fine scales they are regrouped along edge
curves or in texture regions. Using such prior geometric model is an source of gain in coders such
as JPEG-2000.

Chapter 10 describes the implementation of audio transform codes. Image transform codes
in block cosine bases and wavelet bases are introduced, together with the JPEG and JPEG-2000
compression standards.

1.2.4 Denoising

Signal acquisition devices add noises, that can be reduced by estimators using prior information
on signal properties. Signal processing has long remained mostly Bayesian and linear. Non-
linear smoothing algorithms existed in statistics, but these procedures were often ad-hoc and
complex. Two statisticians, Donoho and Johnstone [220], changed the game by proving that
simple thresholding in sparse representations can yield nearly optimal non-linear estimators. This
was the beginning of a considerable refinement of non-linear estimation algorithms that is still
on-going.

Let us consider digital measurements that add a random noise W [n] to the original signal f [n]

X[n] = f [n] + W [n] for 0 ! n < N.

The signal f is estimated by transforming the noisy data X with an operator D:

F̃ = D X .

The risk of the estimator F̃ of f is the average error, calculated with respect to the probability
distribution of the noise W :

r(D, f) = E{‖f −DX‖2} .
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(a) (b)

(c) (d)

Figure 1.2: (a): Noisy image X. (b): Noisy wavelet coefficients above threshold, |〈X, ψj,n〉| "

T . (c): Linear estimation X # h. (d): Non-linear estimator recovered from thresholded wavelet
coefficients, over several translated bases.
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Bayes Versus Minimax To optimize the estimation operator D, one must take advantage of prior
information available about the signal f . In a Bayes framework, f is considered as a realization
of a random vector F and the Bayes risk is the expected risk calculated with respect to the prior
probability distribution π of the random signal model F :

r(D,π) = Eπ{r(D,F )} .

Optimizing D among all possible operators yields the minimum Bayes risk:

rn(π) = inf
all D

r(D,π) .

In the 1940’s, Wald brought a new perspective on statistics, through a decision theory partly
imported from the theory of games. This point of view uses deterministic models, where signals
are elements of a set Θ, without specifying their probability distribution in this set. To control the
risk for any f ∈ Θ, we compute the maximum risk

r(D,Θ) = sup
f∈Θ

r(D, f) .

The minimax risk is the lower bound computed over all operators D:

rn(Θ) = inf
all D

r(D,Θ).

In practice, the goal is to find an operator D that is simple to implement and which yields a risk
close the minimax lower bound.

Thresholding estimators It is tempting to restrict calculations to linear operators D, because of
their simplicity. Optimal linear Wiener estimators are introduced in Chapter 11. Figure 1.2(a)
is an image contaminated by a Gaussian white noise. Figure 1.2(b) shows an optimized linear
filtering estimation F̃ = X #h[n], which is therefore diagonal in a Fourier basis B. This convolution
operator averages the noise but also blurs the image and keeps low-frequency noise by keeping the
image low-frequencies.

If f has a sparse representation in a dictionary, then projecting X on the vectors of this sparse
support can considerably improve linear estimators. The difficulty is to identify the sparse support
of f from the noisy data X. Donoho and Johnstone [220] proved that in an orthonormal basis, a
simple thresholding of noisy coefficients does the trick. Noisy signal coefficients in an orthonormal
basis B = {gm}m∈Γ are

〈X, gm〉 = 〈f, gm〉+ 〈W, gm〉 for m ∈ Γ .

Thresholding these noisy coefficients yields an orthogonal projection estimator

F̃ = XΛ̃T
=
∑

m∈Λ̃T

〈X, gm〉 gm with Λ̃T = {m ∈ Γ : |〈X, gm〉| " T} . (1.9)

The set Λ̃T is an estimate of an approximation support of f . It is hopefully close to the optimal
approximation support ΛT = {m ∈ Γ : |〈f, gm〉| " T}. Figure 1.2(b) shows the estimated
approximation set Λ̃T of noisy wavelet coefficients |〈X,ψj,n| " T , that can be compared to the
optimal approximation support ΛT shown in Figure 1.1(b). The estimation in Figure 1.2(d) from
wavelet coefficients in Λ̃T has considerably reduced the noise in regular regions while keeping the
sharpness of edges by preserving large wavelet coefficients. This estimation is improved with a
translation invariant procedure that averages this estimator over several translated wavelet bases.
Thresholding wavelet coefficients implements an adaptive smoothing, which averages the data X
with a kernel that depends on the estimated regularity of the original signal f .

Donoho and Johnstone proved that for a Gaussian white noise of variance σ2, choosing T =
σ
√

2 loge N yields a risk E{‖f − F̃‖2} of the order of ‖f − fΛT ‖2, up to a loge N factor. This

spectacular result shows that the estimated support Λ̃T does nearly as well as the optimal unknown
support ΛT . The resulting risk is small if the representation is sparse and precise.
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The set Λ̃T in Figure 1.2(b) “looks” different from the ΛT in Figure 1.1(b) because it has more
isolated points. This indicates that some prior information on the geometry of ΛT could be used
to improve the estimation. For audio noise reduction, thresholding estimators are applied in sparse
representations provided by time-frequency bases. Similar isolated time-frequency coefficients pro-
duce a highly annoying “musical noise”. Musical noise is removed with a block thresholding that
regularizes the geometry of the estimated support Λ̃T , and avoids leaving isolated points. Block
thresholding also improves wavelet estimators.

If W is a Gaussian noise and signals in Θ have a sparse representation in B, then Chapter
11 proves that thresholding estimators can produce a nearly minimax risk. In particular, wavelet
thresholding estimators have a nearly minimax risk for large classes of piecewise smooth signals,
including bounded variation images.

1.3 Time-Frequency Dictionaries

Motivated by quantum mechanics, in 1946 the physicist Gabor [266] proposed to decompose sig-
nals over dictionaries of elementary waveforms, that he called time-frequency atoms, which have
a minimal spread in a time-frequency plane. By showing that such decompositions are closely re-
lated to our perception of sounds, and that they exhibit important structures in speech and music
recordings, Gabor demonstrated the importance of localized time-frequency signal processing. Be-
yond sounds, large classes of signals have sparse decompositions as sums of time-frequency atoms
selected from appropriate dictionaries. The key issue is to understand how to construct dictionaries
with time-frequency atoms adapted to signal properties.

tγ|φ  (  )|

|φ       |

u

ξ

0 t
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Figure 1.3: Heisenberg box representing an atom φγ .

1.3.1 Heisenberg Uncertainty

A time-frequency dictionary D = {φγ}γ∈Γ is composed of waveforms of unit norm ‖φγ‖ = 1, which
are well localized in time and in frequency. The time localization u of φγ and its spread around u
are defined by

u =

∫
t |φγ(t)|2 dt and σ2

t,γ =

∫
|t− u|2 |φγ(t)|2 dt .

Similarly, the frequency localization and spread of φ̂γ are defined by

ξ = (2π)−1

∫
ω |φ̂γ(ω)|2 dω and σ2

ω,γ = (2π)−1

∫
|ω − ξ|2 |φ̂γ(ω)|2 dω .

The Fourier Parseval formula

〈f,φγ〉 =

∫ +∞

−∞
f(t)φ∗

γ(t) dt =
1

2π

∫ +∞

−∞
f̂(ω) φ̂∗

γ(ω) dω . (1.10)

shows that 〈f,φγ〉 depends mostly on the values f(t) and f̂(ω) where φγ(t) and φ̂γ(ω) are non-
negligible, and hence for (t,ω) in a rectangle centered at (u, ξ), of size σt,γ × σω,γ . This rectangle
is illustrated by Figure 1.3 in this time-frequency plane (t,ω). It can be interpreted as a “quantum
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of information” over an elementary resolution cell. The uncertainty principle theorem proves
in Chapter 2 that this rectangle has a minimum surface which limits the joint time-frequency
resolution:

σt,γ σω,γ "
1

2
. (1.11)

Constructing a dictionary of time-frequency atoms can thus be thought as covering the time-
frequency plan with resolution cells whose time width σt,γ and frequency width σω,γ may vary,
but with a surface larger than 1/2. Windowed Fourier and wavelet transforms are two important
examples.

1.3.2 Windowed Fourier Transform

A windowed Fourier dictionary is constructed by translating in time and frequency a time window
g(t), of unit norm ‖g‖ = 1, centered at t = 0:

D =
{

gu,ξ(t) = g(t− u) eiξt
}

(u,ξ)∈R2
.

The atom gu,ξ is translated by u in time and by ξ in frequency. The time and frequency spread
of gu,ξ is independent of u and ξ. This means that each atom gu,ξ corresponds to a Heisenberg
rectangle whose size σt × σω is independent from its position (u, ξ), as shown by Figure 1.4.
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Figure 1.4: Time-frequency boxes (“Heisenberg rectangles”) representing the energy spread of two
windowed Fourier atoms.

The windowed Fourier transform projects f on each dictionary atom gu,ξ:

Sf(u, ξ) = 〈f, gu,ξ〉 =

∫ +∞

−∞
f(t) g(t− u) e−iξt dt. (1.12)

It can be interpreted as a Fourier transform of f at the frequency ξ, localized by the window g(t−u)
in the neighborhood of u. This windowed Fourier transform is highly redundant and represents
one-dimensional signals by a time-frequency image in (u, ξ). It is thus necessary to understand
how to select much fewer time-frequency coefficients that represent the signal efficiently.

When listening to music, we perceive sounds that have a frequency that varies in time. Chapter
4 shows that a spectral line of f creates high amplitude windowed Fourier coefficients Sf(u, ξ)
at frequencies ξ(u) that depend on the time u. These spectral components are detected and
characterized by ridge points, which are local maxima in this time-frequency plane. Ridge points
define a time-frequency approximation support Λ of f , whose geometry depends on the time-
frequency evolution of the signal spectral components. Modifying the sound duration or audio
transpositions are implemented by modifying the geometry of the ridge support in time-frequency.

A windowed Fourier transform decomposes signals over waveforms that have the same time and
frequency resolution. It is thus effective as long as the signal does not include structures having
different time-frequency resolution, some being very localized in time and others very localized in
frequency. Wavelets address this issue by changing the time and frequency resolution.



1.3. Time-Frequency Dictionaries 13

1.3.3 Continuous Wavelet Transform

In reflection seismology, Morlet knew that the waveforms sent underground have a duration that
is too long at high frequencies to separate the returns of fine, closely-spaced geophysical layers.
These waveforms are called wavelets in geophysics. Instead of emitting pulses of equal duration, he
thus thought of sending shorter waveforms at high frequencies. Such waveforms could simply be
obtained by scaling the mother wavelet, hence the name of this transform. Although Grossmann
was working in theoretical physics, he recognized in Morlet’s approach some ideas that were close to
his own work on coherent quantum states. Nearly forty years after Gabor, Morlet and Grossmann
reactivated a fundamental collaboration between theoretical physics and signal processing, which
led to the formalization of the continuous wavelet transform [287]. Yet, these ideas were not totally
new to mathematicians working in harmonic analysis, or to computer vision researchers studying
multiscale image processing. It was thus only the beginning of a rapid catalysis that brought
together scientists with very different backgrounds.

A wavelet dictionary is constructed from a mother wavelet ψ of zero average

∫ +∞

−∞
ψ(t) dt = 0,

which is dilated with a scale parameter s, and translated by u:

D =
{
ψu,s(t) =

1√
s
ψ

(
t− u

s

)}

u∈R,s>0
. (1.13)

The continuous wavelet transform of f at any scale s and position u is the projection of f on the
corresponding wavelet atom:

Wf(u, s) = 〈f,ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (1.14)

It represents one-dimensional signals by highly redundant time-scale images in (u, s).
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Figure 1.5: Heisenberg time-frequency boxes of two wavelets ψu,s and ψu0,s0 . When the scale s
decreases, the time support is reduced but the frequency spread increases and covers an interval
that is shifted towards high frequencies.

Varying Time-Frequency Resolution As opposed to windowed Fourier atoms, wavelets have a time-
frequency resolution that change. The wavelet ψu,s has a time support centered at u whose size

is proportional to s. Let us choose a wavelet ψ whose Fourier transform ψ̂(ω) is non-zero in a
positive frequency interval centered at η. The Fourier transform ψ̂u,s(ω) is dilated by 1/s and is
hence localized in a positive frequency interval centered at ξ = η/s, whose size is scaled by 1/s.
In the time-frequency plane, the Heisenberg box of a wavelet atom ψu,s is therefore a rectangle
centered at (u, η/s), with time and frequency widths respectively proportional to s and 1/s. When
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s varies, the time and frequency width of this time-frequency resolution cell changes but its area
remains constant, as illustrated by Figure 1.5.

Large amplitude wavelet coefficients can detect and measure short high frequency variations
because they are well localized in time at high frequencies. At low frequencies their time resolution
is lower but they have a better frequency resolution. This modification of time and frequency
resolution is well adapted to represent sounds with sharp attacks, or radar signals whose frequency
may vary quickly at high frequencies.

Multiscale Zooming A wavelet dictionary is also well adapted to analyze the scaling evolution of
transients with zooming procedures across scales. Suppose now that ψ is real. Since it has a zero
average, a wavelet coefficient Wf(u, s) measures the variation of f in a neighborhood of u whose
size is proportional to s. Sharp signal transitions create large amplitude wavelet coefficients.

Signal singularities have specific scaling invariance characterized by Lipschitz exponents. Chap-
ter 6 relates the pointwise regularity of f to the asymptotic decay of the wavelet transform ampli-
tude |Wf(u, s)|, when s goes to zero. Singularities are detected by following across scales the local
maxima of the wavelet transform.

In images, wavelet local maxima indicate the position of edges, which are sharp variations of
the image intensity. It defines a scale-space approximation support of f from which precise image
approximations are reconstructed. At different scales, the geometry of this local maxima support
provides contours of image structures of varying sizes. This multiscale edge detection is particularly
effective for pattern recognition in computer vision [145].

The zooming capability of the wavelet transform not only locates isolated singular events, but
can also characterize more complex multifractal signals having non-isolated singularities. Mandel-
brot [40] was the first to recognize the existence of multifractals in most corners of nature. Scaling
one part of a multifractal produces a signal that is statistically similar to the whole. This self-
similarity appears in the continuous wavelet transform, which modifies the analyzing scale. From
global measurements of the wavelet transform decay, Chapter 6 measures the singularity distri-
bution of multifractals. This is particularly important in analyzing their properties and testing
multifractal models in physics or in financial time series.

1.3.4 Time-Frequency Orthonormal Bases

Orthonormal bases of time-frequency atoms remove all redundancy and define stable represen-
tations. A wavelet orthonormal basis is an example of time-frequency basis obtained by scaling
a wavelet ψ with dyadic scales s = 2j and translating it by 2jn, which is written ψj,n. In the
time-frequency plane, the Heisenberg resolution box of ψj,n is a dilation by 2j and translation by
2jn of the Heisenberg box of ψ. A wavelet orthonormal is thus a subdictionary of the continuous
wavelet transform dictionary, which yields a perfect tiling of the time-frequency plane illustrated
in Figure 1.6.

(t)

ω

t

t

ψ ψ (t)j+1,pj,n

Figure 1.6: The time-frequency boxes of a wavelet basis define a tiling of the time-frequency plane.
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One can construct many other orthonormal bases of time-frequency atoms, corresponding to
different tilings of the time-frequency plane. Wavelet packet and local cosine bases are two im-
portant examples constructed in Chapter 8, with time-frequency atoms that split respectively the
frequency and the time axis in intervals of varying sizes.

ω

0 t

Figure 1.7: A wavelet packet basis divides the frequency axis in separate intervals of varying sizes.
A tiling is obtained by translating in time the wavelet packets covering each frequency interval.

Wavelet Packet Bases Wavelet bases divide the frequency axis into intervals of 1 octave band-
width. Coifman, Meyer and Wickerhauser [181] have generalized this construction with bases that
split the frequency axis in intervals whose bandwidths may be adjusted. Each frequency interval
is covered by the Heisenberg time-frequency boxes of wavelet packet functions translated in time,
in order to cover the whole plane, as shown by Figure 1.7.

Like for wavelets, wavelet packet coefficients are obtained with a filter bank of conjugate mirror
filters, that splits the frequency axis in several frequency intervals. Different frequency segmen-
tations correspond to different wavelet packet bases. For images, a filter bank divides the image
frequency support in squares of dyadic sizes, that can be adjusted.

Local Cosine Bases Local cosine orthonormal bases are constructed by dividing the time axis
instead of the frequency axis. The time axis is segmented in successive intervals [ap, ap+1]. The
local cosine bases of Malvar [367] are obtained by designing smooth windows gp(t) that cover each
interval [ap, ap+1], and multiplying them by cosine functions cos(ξt+φ) of different frequencies. This
is yet another idea that was independently studied in physics, signal processing and mathematics.
Malvar’s original construction was for discrete signals. At the same time, the physicist Wilson
[486] was designing a local cosine basis with smooth windows of infinite support, to analyze the
properties of quantum coherent states. Malvar bases were also rediscovered and generalized by the
harmonic analysts Coifman and Meyer [180]. These different views of the same bases brought to
light mathematical and algorithmic properties that opened new applications.

A multiplication by cos(ξt + φ) translates the Fourier transform ĝp(ω) of gp(t) by ±ξ. Over
positive frequencies, the time-frequency box of the modulated window gp(t) cos(ξt+φ) is therefore
equal to the time-frequency box of gp translated by ξ along frequencies. Figure 1.8 shows the
time-frequency tiling corresponding to such a local cosine basis. For images, a two-dimensional
cosine basis is constructed by dividing the image support in squares of varying sizes.

1.4 Sparsity in Redundant Dictionaries

In natural languages, large dictionaries are needed to refine ideas with short sentences, and they
evolve with their usage. Eskimos have 8 different words to describe snow quality where as a single
word is used in a Parisian dictionary. Similarly, large signal dictionaries of vectors are needed to
construct sparse representations of complex signals. However, computing and optimizing a signal
approximation by choosing the best M dictionary vectors is much more difficult.
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apap-1 ap+1
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0

Figure 1.8: A local cosine basis divides the time axis with smooth windows gp(t), and translates
these windows in frequency.

1.4.1 Frame Analysis and Synthesis

Suppose that a sparse family of vectors {φp}p∈Λ has been selected to approximate a signal f . An
approximation can be recovered as an orthogonal projection in the space VΛ generated by these
vectors. We are then facing one of the following two problems.

In a dual synthesis problem, the orthogonal projection fΛ of f in VΛ must be computed from
dictionary coefficients {〈f,φp〉}p∈Λ, provided by an analysis operator. This is the case when a
signal transform {〈f,φp〉}p∈Γ is calculated in some large dictionary, and a subset of inner products
are selected. Such inner products may correspond to coefficients above a threshold or local maxima
values.

In a dual analysis problem, the decomposition coefficients of fΛ must be computed on a family
of selected vectors {φp}p∈Λ. This problem appears when sparse representation algorithms select
vectors as opposed to inner products. This is the case for pursuit algorithms, which compute
approximation supports in highly redundant dictionaries.

The frame theory gives energy equivalence conditions to solve both problems with stable op-
erators. A family {φp}p∈Λ is a frame of the space V it generates if there exists B " A > 0 such
that

∀h ∈ V , A‖h‖2 !
∑

m∈Λ

|〈h,φp〉|2 ! B‖h‖2 .

The representation is stable since any perturbation of frame coefficients implies a modification of
similar magnitude on h. Chapter 5 derives the existence of a dual frame {φ̃p}p∈Λ that solves both
the dual synthesis and analysis problems:

fΛ =
∑

p∈Λ

〈f,φp〉 φ̃p =
∑

p∈Λ

〈f, φ̃p〉φp . (1.15)

Algorithms are provided to calculate these decompositions. The dual frame is also stable:

∀f ∈ V , B−1‖f‖2 !
∑

m∈Γ

|〈f, φ̃p〉|2 ! B−1‖f‖2 .

The frame bounds A and B are redundancy factors. If the vectors {φp}p∈Γ are normalized and
linearly independent then A ! 1 ! B. Such a dictionary is called a Riesz basis of V and the dual
frame is biorthogonal:

∀(p, p′) ∈ Λ2 , 〈φp, φ̃p′〉 = δ[p− p′] .

Whent the basis is orthonormal then both bases are equal. Analysis and synthesis problems are
then identical.
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The frame theory is also be used to construct redundant dictionaries that define complete, stable
and redundant signal representations, where V is then the whole signal space. The frame bounds
measure the redundancy of such dictionaries. Chapter 5 studies the construction of windowed
Fourier and wavelet frame dictionaries, by sampling their time, frequency and scaling parameters,
while controlling frame bounds. In two dimensions, directional wavelet frames include wavelets
sensitive to directional structures such as textures or edges in images.

To improve the sparsity of images having edges along regular geometric curves, Candès and
Donoho [133] have introduced curvelet frames, with elongated waveforms having different direc-
tions, positions and scales. Images with piecewise regular edges have representations that are
asymptotically more sparse by thresholding curvelet coefficients than wavelet coefficiens.

1.4.2 Ideal Dictionary Approximations

In a redundant dictionary D = {φp}p∈Γ we would like to find the best approximation support Λ
with M = |Λ| vectors, which minimize the error ‖f − fΛ‖2. Chapter 12 proves that it is equivalent
find ΛT which minimizes the corresponding approximation Lagrangian

L0(T, f,Λ) = ‖f − fΛ‖2 + T 2 |Λ| , (1.16)

for some multiplier T .
Compression and denoising are two applications of redundant dictionary approximations. When

compressing signals by quantizing dictionary coefficients, the distortion-rate varies like the La-
grangian (1.16), with a multiplier T that depends on the quantization step. Optimizing the coder
is thus equivalent to minimizing this approximation Lagrangian. For sparse representations, most
of the bits are devoted to coding the geometry of the sparse approximation set ΛT in Γ.

Estimators reducing noise from observations X = f + W are also optimized by finding a best
orthogonal projector over a set of dictionary vectors. The model selection theory of Barron, Birgé
and Massart [95] proves that finding Λ̃T which minimizes this same Lagrangian L0(T,X,Λ) defines
an estimator whose risk is of the same order as the minimum approximation error ‖f − fΛT ‖2, up
to a logarithmic factor. This is similar to the optimality result obtained for thresholding estimators
in an orthonormal basis.

The bad news is that minimizing the approximation Lagrangian L0 is an NP-hard problem, and
is therefore computationally intractable. It is thus necessary to find algorithms that are sufficiently
fast, and which computes sub-optimal but “good enough” solutions.

Dictionaries of Orthonormal Bases To reduce the complexity of optimal approximations, the search
can be reduced to sub-families of orthogonal dictionary vectors. In a dictionary of orthonormal
bases, any family of orthogonal dictionary vectors can be complemented to form an orthogonal
basis B included in D. As a result the best approximation of f from orthogonal vectors in B is
obtained by thresholding the coefficients of f in a “best basis” in D.

For tree-dictionaries of orthonormal bases obtained by a recursive split of orthogonal vector
spaces, the fast dynamic programming algorithm of Coifman and Wickerhauser [181] finds such a
best basis with O(P ) operations, where P is the dictionary size.

Wavelet packet and local cosine bases are examples of tree-dictionaries of time-frequency or-
thonormal bases of size P = N log2 N . A best basis is a time-frequency tiling that best match the
signal time-frequency structures.

To approximate edges that are geometrically regular, wavelet are not as efficient as curvelets,
but wavelets provide more sparse representations of singularities that are not distributed along
geometrically regular curves. Bandlet dictionaries, introduced by Le Pennec, Mallat and Peyré
[341, 364], are dictionaries of orthonormal bases, that can adapt to the variability of the image
geometric regularity. Minimax optimal asymptotic rates are derived for compression and denoising.

1.4.3 Pursuit in Dictionaries

Approximating signals only from orthogonal vectors brings rigidity which limits the ability to
optimize the representation. Pursuit algorithms remove this constraint with flexible procedures that
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search for sparse though not necessarily optimal dictionary approximations. These approximations
are computed by optimizing the choice of dictionary vectors {φp}p∈Λ.

Matching Pursuit Matching pursuit algorithms introduced by Mallat and Zhang [365] are greedy
algorithms that optimize approximations by selecting one by one the dictionary vectors. The vector
in φp0 ∈ D that best approximates a signal f is

φp0 = argmax
p∈Γ

|〈f,φp〉|

and the residual approximation error is

Rf = f − 〈f,φp0〉φp0 .

A matching pursuit further approximates the residue Rf by selecting another best vector φp1 from
the dictionary, and continues this process over the next order residues Rmf , which produces a
signal decomposition:

f =
M−1∑

m=0

〈Rmf,φpm〉φpm + RMf .

The approximation from the M selected vectors {φpm}0!m<M can be refined with an orthogonal
back projection on the space generated by these vectors. An orthogonal matching pursuit further
improves this decomposition by orthogonalizing progressively the projection directions φpm , during
the decompositon. The resulting decompositions are applied to compression, denoising and pattern
recognition of various types of signals, images and videos.

Basis Pursuit Approximating f with a minimum number of non-zero coefficients a[p] in a dictio-
nary D is equivalent to minimize the l0 norm ‖a‖0, which gives the number of non-zero coefficients.
This l0 norm is highly non convex which explains why the resulting minimization is NP-hard.
Donoho and Chen [157] thus proposed to replace the l0 norm by the l1 norm ‖a‖1 =

∑
p∈Γ |a[p]|

which is convex. The resulting basis pursuit algorithm computes a synthesis operator

f =
∑

p∈Γ

a[p]φp which minimizes ‖a‖1 =
∑

p∈Γ

|a[p]| . (1.17)

This optimal solution is calculated with a linear programming algorithm. A basis pursuit is com-
putationally more intensive than a matching pursuit, but is a more global optimization that yields
representations that can be more sparse.

In approximation, compression or denoising applications, f is recovered with an error which
bounded by a precision parameter ε. The optimization (1.18) is thus relaxed by finding a synthesis
such that

‖f −
∑

p∈Γ

a[p]φp‖ ! ε which minimizes ‖a‖1 =
∑

p∈Γ

|a[p]| . (1.18)

This is a convex minimization problem whose solution can be found by minimizing the corre-
sponding l1 Lagrangian

L1(T, f, a) = ‖f −
∑

p∈Γ

a[p]φp‖2 + T ‖a‖1 ,

where T is a Lagrange multiplier that depends on ε. This is called an l1 Lagrangian pursuit in this
book. A solution ã[p] is computed with iterative algorithms that are guaranteed to converge. The
number of non-zero coordinates of ã typically decreases as T increases.

Incoherence for Support Recovery Matching pursuit and l1 Lagrangian pursuits are optimal if
they recover the approximation support ΛT which minimizes the approximation Lagrangian

L0(T, f,Λ) = ‖f − fΛ‖2 + T 2 |Λ| ,
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where fΛ is the orthogonal projection of f in the space VΛ generated by {φp}p∈Λ. This is not
always true and depends on ΛT . An Exact Recovery Criteria proved by Tropp [464] guarantees
that pursuit algorithms do recover the optimal support ΛT if

ERC(ΛT ) = max
q/∈ΛT

∑

p∈ΛT

|〈φ̃p,φq〉| < 1 , (1.19)

where {φ̃p}p∈ΛT is the biorthogonal basis of {φp}p∈ΛT in VΛT . This criteria implies that dictionary
vectors φq outside ΛT should have a small inner-product with vectors in ΛT .

This recovery is stable relatively to noise perturbations if {φp}p∈Λ has Riesz bounds that are
not too far from 1. These vectors should be nearly orthogonal and hence have small inner-products.
These small inner-product conditions are interpreted as a form of incoherence. A stable recovery
of ΛT is possible if vectors in ΛT are incoherent with respect to other dictionary vectors and are
incoherent between themselves. This opens the possibility of performing super-resolution with
sparse representations, but it depends upon the geometric configuration of ΛT in Γ.

1.5 Inverse Problems

Most digital measurement devices, such as cameras, microphones or medical imaging systems, can
be modeled as a linear transformation of an incoming analog signal, plus a noise due to intrinsic
measurement fluctuations or to electronic noises. This linear transformation can be decomposed
into a stable analog to digital linear conversion followed by a discrete operator U that carries the
specific transfer function of the measurement device. The resulting measured data can be written

Y [q] = Uf [q] + W [q]

where f ∈ CN is the high resolution signal we want to recover, and W [q] is the measurement noise.
For a camera whose optics is out of focus, the operator U is a low-pass convolution producing a
blur. For a magnetic resonance imaging system, U is a Radon transform integrating the signal
along rays and the number Q of measurements is smaller than N . In such problems, U is not
invertible and recovering an estimate of f is an ill-posed inverse problem.

Inverse problems are among the most difficult signal processing problems, with considerable
applications. When data acquisition is difficult, costly or dangerous or when the signal is de-
graded, super-resolution is important to recover the highest possible resolution information. This
applies to satellite observations, seismic exploration, medical imaging, radars, camera phones or de-
graded Internet videos displayed on high resolution screens. Separating mixed information sources
from fewer measurements is yet another super-resolution problem in telecommunication or audio
recognition.

Incoherence, sparsity and geometry play a crucial role in the solution of these ill-defined inverse
problems. With a sensing matrix U with random coefficients, Candès and Tao [138] and Donoho
[216] proved that super-resolution becomes stable for signals having a sufficiently sparse represen-
tation in a dictionary. This remarkable result opens the door to new compressive sensing devices
and algorithms, that recover high resolution signals from few randomized linear measurements.

1.5.1 Diagonal Inverse Estimation

In an ill-posed inverse problem
Y = Uf + W

the image space ImU = {Uh : h ∈ CN} of U is of dimension Q smaller than the high resolution
space N where f belongs. Inverse problems include two difficulties. In the image space ImU
where U is invertible, its inverse may amplify the noise W which then needs to be reduced by an
efficient denoising procedure. In the null space NullU, all signals h are set to zero Uh = 0 and
thus disappear in the measured data Y . Recovering the projection of f in NullU thus requires
using some strong prior information. A super-resolution estimator recovers an estimation of f in
a space of dimension larger than Q and hopefully equal to N , but this is not always possible.
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Singular Value Decompositions Let f =
∑

m∈Γ a[m] gm be the representation of f in an orthonor-
mal basis B = {gm}m∈Γ. An approximation must be recovered from

Y =
∑

m∈Γ

a[m]Ugm + W .

If B is chosen to diagonalize U∗U then U transforms a subset of Q vectors {gm}m∈ΓQ of B into
an orthogonal basis {Ugm}m∈ΓQ of ImU, and sets to zero all other vectors. A singular value
decomposition estimates the coefficients a[m] of f by projecting Y on this orthogonal basis and by
renormalizing the resulting coefficients

∀m ∈ Γ , ã[m] =
〈Y,Ugm〉

‖Ugm‖2 + h2
m

,

where h2
m are regularization parameters. Such estimators recover non-zero coefficients in a space

of dimension Q and thus brings no super-resolution. If U is a convolution operator then B is the
Fourier basis and a singular value estimation implements a regularized inverse convolution.

Diagonal Thresholding Estimation The basis which diagonalizes U∗U rarely provides a sparse signal
representation. For example, a Fourier basis which diagonalizes convolution operators does not
approximate well signals including singularities.

Donoho [213] introduced more flexibility by looking for a basis B providing a sparse signal
representation, and where a subset of Q vectors {gm}m∈ΓQ are transformed by U in a Riesz basis
{Ugm}m∈ΓQ of ImU, while the others are set to zero. With an appropriate renormalization,

{λ̃−1
m Ugm}m∈ΓQ has a biorthogonal basis {φ̃m}m∈ΓQ which is normalized ‖φ̃m‖ = 1. The sparse

coefficients of f in B can then be estimated with a thresholding

∀m ∈ ΓQ , ã[m] = ρTm(λ̃−1
m 〈Y, φ̃m〉) with ρT (x) = x1|x|>T ,

for thresholds Tm appropriately defined. For classes of signals that are sparse in B, such threshold-
ing estimators may yield a nearly minimax risk, but provides no super-resolution since this non-
linear projector remains in a space of dimension Q. This result applies to classes of convolution
operators U in wavelet or wavelet packet bases. Diagonal inverse estimators are computationally
efficient and potentially optimal in cases where super-resolution is not possible.

1.5.2 Super-Resolution and Compressive Sensing

Suppose that f has a sparse representation in some dictionary D = {gp}p∈Γ of P normalized
vectors. The P vectors of the transformed dictionary DU = UD = {Ugp}p∈Γ belong to the space
ImU of dimension Q < P and thus define a redundant dictionary. Vectors in the approximation
support Λ of f are not restricted a priori to a particular subspace of CN . Super-resolution is
possible if the approximation support Λ of f in D can be estimated by decomposing the noisy data
Y over DU . It depends upon the properties of the approximation support Λ of f in Γ.

Geometric conditions for super-resolution Let wΛ = f−fΛ be the approximation error of a sparse
representation fΛ =

∑
p∈Λ a[p] gp of f . The observed signal can be written

Y = Uf + W =
∑

p∈Λ

a[p]Ugp + UwΛ + W .

If the support Λ can be identified by finding a sparse approximation of Y in DU

YΛ =
∑

p∈Λ

ã[p]Ugp

then we can recover a super-resolution estimation of f

F̃ =
∑

p∈Λ

ã[p] gp .
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This shows that super-resolution is possible if the approximation support Λ can be identified by
decomposing Y in the redundant transformed dictionary DU . If the exact recovery criteria is
satisfies ERC(Λ) < 1 and if {Ugp}p∈Λ is a Riesz basis then Λ can be recovered using pursuit
algorithms, with controlled error bounds.

For most operator U not all sparse approximation sets can be recovered. It is necessary to
impose some further geometric conditions on Λ in Γ, which makes super-resolution difficult and
often unstable. Numerical applications to sparse spike deconvolution, tomography, super-resolution
zooming and inpainting illustrate these results.

Compressive Sensing with Randomness Candès, Tao [138] and Donoho [216] proved that stable
super-resolution is possible for any sufficiently sparse signal f , if U is an operator with random
coefficients. Compressive sensing then becomes possible, by recovering a close approximation of
f ∈ CN from Q2 N linear measurements [132].

A recovery is stable for a sparse approximation set |Λ| ! M only if the corresponding dictionary
family {Ugm}m∈Λ is a Riesz basis of the space it generates. The M-restricted isometry conditions
of Candès, Tao and Donoho [216] imposes uniform Riesz bounds for all sets Λ ⊂ Γ with |Λ| ! M :

∀c ∈ C|Λ| , (1− δM ) ‖c‖2 ! ‖
∑

m∈Λ

c[p]Ugp‖2 ! (1 + δM ) ‖c‖2 . (1.20)

This is a strong incoherence condition on the P vectors of {Ugm}m∈Γ, which imposes that any
subset of less than M vectors is nearly uniformly distributed on the unit sphere of ImU. For an
orthogonal basis D = {gm}m∈Γ, this is possible for M ! C Q (log N)−1, if U is a matrix with inde-
pendent Gaussian random coefficients. A pursuit algorithm then provides a stable approximation
of any f ∈ CN having a sparse approximation from vectors in D.

These results open a new compressive sensing approach to signal acquistion and representa-
tion. Instead of first discretizing linearly the signal at a high resolution N and then computing
a non-linear representation over M coefficients in some dictionary, compressive sensing measures
directly M randomized linear coefficients. A reconstructed signal is then recovered by a non-linear
algorithm, producing an error that can be of the same order of magnitude as as the error obtained
by the more classic two step approximation process, with a more economic acquisiton process.
These results remain valid for several types of random matrices U . Examples of applications to
single pixel camera, video super-resolution, new analog to digital converters and MRI imaging are
described.

Blind Source Separation Sparsity in redundant dictionaries also provide efficient strategies to
separate a family of signals {fs}0!s<S which are linearly mixed in K ! S observed signals with
noise:

Yk[n] =
S−1∑

s=0

uk,s fs[n] + Wk[n] for 0 ! n < N and 0 ! k < K .

Most often the mixing matrix U = {uk,s}0!k<K,0!s<S is unknown. Source separation is a super-
resolution problem since S N data values must be recovered from Q = K N ! S N measurements.
Not knowing the operator U makes it even more complicated.

If each source fs has a sparse approximation support Λs in a dictionary D, with
∑S−1

s=0 |Λs|2 N ,
then it is likely that the sets {Λs}0!s<s are nearly disjoint. In this case, the operator U , the supports
Λs and the sources fs are approximated by computing sparse approximations of the observed data
Yk in D. The distribution of these coefficients identifies the coefficients of the mixing matrix U , and
the nearly disjoint source supports. Time-frequency separation of sounds illustrate these results.

1.6 Travel Guide

Reproducible Computational Science This book covers the whole spectrum from theorems on
functions of continuous variables to fast discrete algorithms and their applications. Section 1.1.2
argues that models based on continuous time functions give useful asymptotic results for under-
standing the behavior of discrete algorithms. Yet, a mathematical analysis alone is often unable
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to predict fully the behavior and suitability of algorithms for specific signals. Experiments are
necessary and such experiments should be reproducible, just like experiments in other fields of
sciences [123].

The reproducibility of experiments requires having the complete software and full source code
for inspection, modification and application under varied parameter settings. Following this per-
spective, computational algorithms presented in this book are available as Matlab subroutines or
in other software packages. Figures can be reproduced and the source code is available. Softwares,
demonstrations and exercise solutions are available on the Web site http://wavelet-tour.com.

Book Road Map Some redundancy is introduced between sections to avoid imposing a linear
progression through the book. The preface describes several possible programs for a sparse signal
processing course.

All theorems are explained in the text and reading the proofs is not necessary to understand the
results. Most theorems of the book are proved in detail, and important techniques are included.
Exercises at the end of each chapter give examples of mathematical, algorithmic and numerical
applications, ordered by level of difficulty from 1 to 4, and solutions can be found in http://wavelet-
tour.com.

The book begins with Chapters 2 and 3, which review the Fourier transform and linear discrete
signal processing. They provide the necessary background for readers with no signal processing
background. Important properties of linear operators, projectors and vector spaces can be found
in Appendix A. Local time-frequency transforms and dictionaries are presented in Chapter 4.
The wavelet and windowed Fourier transforms are introduced and compared. The measurement
of instantaneous frequencies illustrates the limitations of time-frequency resolution. Dictionary
stability and redundancy is introduced in Chapter 5 through the frame theory, with examples of
windowed Fourier, wavelet and curvelet frames. Chapter 6 explains the relations between wavelet
coefficient amplitude and local signal regularity. It is applied to the detection of singularities, edges
and to the analysis of multifractals.

Wavelet bases and fast filter bank algorithms are important tools presented in Chapter 7. An
overdose of orthonormal bases can strike the reader while studying the construction and properties
of wavelet packets and local cosine bases in Chapter 8. It is thus important to read Chapter 9,
which describes sparse approximations in bases. Signal compression and denoising applications
of Chapters 10 and 11 give life to most theoretical and algorithmic results of the book. These
chapters offer a practical perspective on the relevance of these linear and non-linear signal process-
ing algorithms. Chapter 12 introduce sparse decompositions in redundant dictionaries and their
applications. The resolution of inverse problems is studied in Chapter 13, with super-resolution,
compressive sensing and source separation.



II

Fourier Kingdom

The story begins in 1807 when Fourier presents a memoir to the Institut de France, where he
claims that any periodic function can be represented as a series of harmonically related sinusoids.
This idea had a profound impact in mathematical analysis, physics and engineering, but it took
one and a half centuries to understand the convergence of Fourier series and complete the theory
of Fourier integrals.

Fourier was motivated by the study of heat diffusion, which is governed by a linear differential
equation. However, the Fourier transform diagonalizes all linear time-invariant operators, which
are the building blocks of signal processing. It is therefore not only the starting point of our
exploration but the basis of all further developments.

2.1 Linear Time-Invariant Filtering

Classical signal processing operations such as signal transmission, stationary noise removal or
predictive coding are implemented with linear time-invariant operators. The time invariance of an
operator L means that if the input f(t) is delayed by τ , fτ (t) = f(t − τ), then the output is also
delayed by τ :

g(t) = Lf(t) ⇒ g(t− τ) = Lfτ (t). (2.1)

For numerical stability, the operator L must have a weak form of continuity, which means that
Lf is modified by a small amount if f is slightly modified. This weak continuity is formalized by
the theory of distributions [60, 63], which guarantees that we are on a safe ground without further
worrying about it.

2.1.1 Impulse Response

Linear time-invariant systems are characterized by their response to a Dirac impulse, defined in
Appendix A.7. If f is continuous, its value at t is obtained by an “integration” against a Dirac
located at t. Let δu(t) = δ(t− u):

f(t) =

∫ +∞

−∞
f(u) δu(t) du.

The continuity and linearity of L imply that

Lf(t) =

∫ +∞

−∞
f(u)Lδu(t) du.

Let h be the impulse response of L:
h(t) = Lδ(t).

23



24 Chapter 2. Fourier Kingdom

The time-invariance proves that Lδu(t) = h(t− u) and hence

Lf(t) =

∫ +∞

−∞
f(u)h(t− u) du =

∫ +∞

−∞
h(u)f(t− u) du = h #f (t). (2.2)

A time-invariant linear filter is thus equivalent to a convolution with the impulse response h.
The continuity of f is not necessary. This formula remains valid for any signal f for which the
convolution integral converges.

Let us recall a few useful properties of convolution products:

• Commutativity
f # h(t) = h # f(t). (2.3)

• Differentiation
d

dt
(f # h)(t) =

df

dt
# h(t) = f #

dh

dt
(t). (2.4)

• Dirac convolution
f # δτ (t) = f(t− τ). (2.5)

Stability and Causality A filter is said to be causal if Lf(t) does not depend on the values f(u)
for u > t. Since

Lf(t) =

∫ +∞

−∞
h(u) f(t− u) du,

this means that h(u) = 0 for u < 0. Such impulse responses are said to be causal.
The stability property guarantees that Lf(t) is bounded if f(t) is bounded. Since

|Lf(t)| !

∫ +∞

−∞
|h(u)| |f(t− u)| du ! sup

u∈R

|f(u)|
∫ +∞

−∞
|h(u)| du,

it is sufficient that
∫ +∞
−∞ |h(u)| du < +∞. One can verify that this condition is also necessary if h

is a function. We thus say that h is stable if it is integrable.

Example 2.1. An amplification and delay system is defined by

Lf(t) = λ f(t− τ).

The impulse response of this filter is h(t) = λ δ(t− τ).
Example 2.2. A uniform averaging of f over intervals of size T is calculated by

Lf(t) =
1

T

∫ t+T/2

t−T/2
f(u) du.

This integral can be rewritten as a convolution of f with the impulse response h = 1/T 1[−T/2,T/2].

2.1.2 Transfer Functions

Complex exponentials eiωt are eigenvectors of convolution operators. Indeed

Leiωt =

∫ +∞

−∞
h(u) eiω(t−u) du,

which yields

Leiωt = eitω

∫ +∞

−∞
h(u) e−iωu du = ĥ(ω) eiωt.

The eigenvalue

ĥ(ω) =

∫ +∞

−∞
h(u) e−iωu du

is the Fourier transform of h at the frequency ω. Since complex sinusoidal waves eiωt are the
eigenvectors of time-invariant linear systems, it is tempting to try to decompose any function f as
a sum of these eigenvectors. We are then able to express Lf directly from the eigenvalues ĥ(ω).
The Fourier analysis proves that under weak conditions on f , it is indeed possible to write it as a
Fourier integral.
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2.2 Fourier Integrals

To avoid convergence issues, the Fourier integral is first defined over the space L1(R) of integrable
functions [53]. It is then extended to the space L2(R) of finite energy functions [22].

2.2.1 Fourier Transform in L1(R)

The Fourier integral

f̂(ω) =

∫ +∞

−∞
f(t) e−iωt dt (2.6)

measures “how much” oscillations at the frequency ω there is in f . If f ∈ L1(R) this integral does
converge and

|f̂(ω)| !

∫ +∞

−∞
|f(t)| dt < +∞. (2.7)

The Fourier transform is thus bounded, and one can verify that it is a continuous function of ω
(Exercise 2.1). If f̂ is also integrable, the following theorem gives the inverse Fourier transform.

Theorem 2.1 (Inverse Fourier Transform). If f ∈ L1(R) and f̂ ∈ L1(R) then

f(t) =
1

2π

∫ +∞

−∞
f̂(ω) eiωt dω. (2.8)

Proof. Replacing f̂(ω) by its integral expression yields

1
2π

Z +∞

−∞
f̂(ω) exp(iωt) dω =

1
2π

Z +∞

−∞

„Z +∞

−∞
f(u) exp[iω(t − u)] du

«
dω.

We cannot apply the Fubini Theorem A.2 directly because f(u) exp[iω(t − u)] is not integrable in R2.
To avoid this technical problem, we multiply by exp(−ε2ω2/4) which converges to 1 when ε goes to 0.
Let us define

Iε(t) =
1
2π

Z +∞

−∞

„Z +∞

−∞
f(u) exp

„
−ε2ω2

4

«
exp[iω(t − u)] du

«
dω. (2.9)

We compute Iε in two different ways using the Fubini theorem. The integration with respect to u gives

Iε(t) =
1
2π

Z +∞

−∞
f̂(ω) exp

„
−ε2ω2

4

«
exp(iωt) dω.

Since ˛̨
˛̨f̂(ω) exp

„
−ε2ω2

4

«
exp[iω(t − u)]

˛̨
˛̨ ! |f̂(ω)|

and since f̂ is integrable, we can apply the dominated convergence Theorem A.1, which proves that

lim
ε→0

Iε(t) =
1
2π

Z +∞

−∞
f̂(ω) exp(iωt) dω. (2.10)

Let us now compute the integral (2.9) differently by applying the Fubini theorem and integrating with
respect to ω:

Iε(t) =

Z +∞

−∞
gε(t − u) f(u) du, (2.11)

with

gε(x) =
1
2π

Z +∞

−∞
exp(ixω) exp

„
−ε2ω2

4

«
dω.

A change of variable ω′ = εω shows that gε(x) = ε−1g1(ε
−1x), and it is proved in (2.32) that g1(x) =

π−1/2 e−x2
. The Gaussian g1 has an integral equal to 1 and a fast decay. The squeezed Gaussians gε

have an integral that remains equal to 1, and thus they converge to a Dirac δ when ε goes to 0. By
inserting (2.11) one can thus verify that

lim
ε→0

Z +∞

−∞
|Iε(t) − f(t)| dt = lim

ε→0

Z Z
gε(t − u) |f(u) − f(t)| du dt = 0.

Inserting (2.10) proves (2.8).
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The inversion formula (2.8) decomposes f as a sum of sinusoidal waves eiωt of amplitude f̂(ω). By
using this formula, we can show (Exercise 2.1) that the hypothesis f̂ ∈ L1(R) implies that f must
be continuous. The reconstruction (2.8) is therefore not proved for discontinuous functions. The
extension of the Fourier transform to the space L2(R) will address this issue.

The most important property of the Fourier transform for signal processing applications is the
convolution theorem. It is another way to express the fact that sinusoidal waves eitω are eigenvalues
of convolution operators.

Theorem 2.2 (Convolution). Let f ∈ L1(R) and h ∈ L1(R). The function g = h # f is in L1(R)
and

ĝ(ω) = ĥ(ω) f̂(ω). (2.12)

Proof.

ĝ(ω) =

Z +∞

−∞
exp(−itω)

„Z +∞

−∞
f(t − u) h(u) du

«
dt.

Since |f(t − u)||h(u)| is integrable in R2, we can apply the Fubini Theorem A.2, and the change of
variable (t, u) → (v = t − u, u) yields

ĝ(ω) =

Z +∞

−∞

Z +∞

−∞
exp[−i(u + v)ω] f(v) h(u) du dv

=

„Z +∞

−∞
exp(−ivω) f(v) dv

«„Z +∞

−∞
exp(−iuω) h(u) du

«
,

which verifies (2.12).

The response Lf = g = f # h of a linear time-invariant system can be calculated from its Fourier
transform ĝ(ω) = f̂(ω) ĥ(ω) with the inverse Fourier formula

g(t) =
1

2π

∫ +∞

−∞
ĝ(ω) eiωt dω, (2.13)

which yields

Lf(t) =
1

2π

∫ +∞

−∞
ĥ(ω) f̂(ω) eiωt dω. (2.14)

Each frequency component eitω of amplitude f̂(ω) is amplified or attenuated by ĥ(ω). Such a
convolution is thus called a frequency filtering, and ĥ is the transfer function of the filter.

The following table summarizes important properties of the Fourier transform, often used in
calculations. Most of these formulas are proved with a change of variable in the Fourier integral.

Property Function Fourier Transform

f(t) f̂(ω)

Inverse f̂(t) 2π f(−ω) (2.15)

Convolution f1 # f2(t) f̂1(ω) f̂2(ω) (2.16)

Multiplication f1(t) f2(t)
1

2π
f̂1 # f̂2(ω) (2.17)

Translation f(t− u) e−iuω f̂(ω) (2.18)

Modulation eiξt f(t) f̂(ω − ξ) (2.19)

Scaling f(t/s) |s| f̂(sω) (2.20)

Time derivatives f (p)(t) (iω)p f̂(ω) (2.21)

Frequency derivatives (−it)p f(t) f̂ (p)(ω) (2.22)

Complex conjugate f∗(t) f̂∗(−ω) (2.23)

Hermitian symmetry f(t) ∈ R f̂(−ω) = f̂∗(ω) (2.24)
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2.2.2 Fourier Transform in L2(R)

The Fourier transform of the indicator function f = 1[−1,1] is

f̂(ω) =

∫ 1

−1
e−iωt dt =

2 sinω

ω
.

This function is not integrable because f is not continuous, but its square is integrable. The inverse
Fourier transform Theorem 2.1 thus does not apply. This motivates the extension of the Fourier
transform to the space L2(R) of functions f with a finite energy

∫ +∞
−∞ |f(t)|2 dt < +∞. By working

in the Hilbert space L2(R), we also have access to all the facilities provided by the existence of an
inner product. The inner product of f ∈ L2(R) and g ∈ L2(R) is

〈f, g〉 =

∫ +∞

−∞
f(t) g∗(t) dt,

and the resulting norm in L2(R) is

‖f‖2 = 〈f, f〉 =

∫ +∞

−∞
|f(t)|2 dt.

The following theorem proves that inner products and norms in L2(R) are conserved by the Fourier
transform up to a factor of 2π. Equations (2.25) and (2.26) are called respectively the Parseval
and Plancherel formulas.

Theorem 2.3. If f and h are in L1(R) ∩ L2(R) then
∫ +∞

−∞
f(t)h∗(t) dt =

1

2π

∫ +∞

−∞
f̂(ω) ĥ∗(ω) dω. (2.25)

For h = f it follows that ∫ +∞

−∞
|f(t)|2 dt =

1

2π

∫ +∞

−∞
|f̂(ω)|2 dω. (2.26)

Proof. Let g = f % h̄ with h̄(t) = h∗(−t). The convolution Theorem 2.2 and property (2.23) show that
ĝ(ω) = f̂(ω) ĥ∗(ω). The reconstruction formula (2.8) applied to g(0) yields

Z +∞

−∞
f(t) h∗(t) dt = g(0) =

1
2π

Z +∞

−∞
ĝ(ω) dω =

1
2π

Z +∞

−∞
f̂(ω) ĥ∗(ω) dω.

Density Extension in L
2(R) If f ∈ L2(R) but f ∈/ L1(R), its Fourier transform cannot be calculated

with the Fourier integral (2.6) because f(t) eiωt is not integrable. It is defined as a limit using the
Fourier transforms of functions in L1(R) ∩ L2(R).

Since L1(R) ∩ L2(R) is dense in L2(R), one can find a family {fn}n∈Z of functions in L1(R) ∩
L2(R) that converges to f :

lim
n→+∞

‖f − fn‖ = 0.

Since {fn}n∈Z converges, it is a Cauchy sequence, which means that ‖fn − fp‖ is arbitrarily small

if n and p are large enough. Moreover, fn ∈ L1(R), so its Fourier transform f̂n is well defined.
The Plancherel formula (2.26) proves that {f̂n}n∈Z is also a Cauchy sequence because

‖f̂n − f̂p‖ =
√

2π ‖fn − fp‖

is arbitrarily small for n and p large enough. A Hilbert space (Appendix A.2) is complete, which
means that all Cauchy sequences converge to an element of the space. Hence, there exists f̂ ∈ L2(R)
such that

lim
n→+∞

‖f̂ − f̂n‖ = 0.

By definition, f̂ is the Fourier transform of f . This extension of the Fourier transform to L2(R)
satisfies the convolution theorem, the Parseval and Plancherel formulas, as well as all properties
(2.15-2.24).
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Diracs Diracs are often used in calculations; their properties are summarized in Appendix A.7.
A Dirac δ associates to a function its value at t = 0. Since eiωt = 1 at t = 0 it seems reasonable to
define its Fourier transform by

δ̂(ω) =

∫ +∞

−∞
δ(t) e−iωt dt = 1. (2.27)

This formula is justified mathematically by the extension of the Fourier transform to tempered
distributions [60, 63].

2.2.3 Examples

The following examples often appear in Fourier calculations. They also illustrate important Fourier
transform properties.

• The indicator function f = 1[−T,T ] is discontinuous at t = ±T . Its Fourier transform is
therefore not integrable:

f̂(ω) =

∫ T

−T
e−iωt dt =

2 sin(Tω)

ω
. (2.28)

• An ideal low-pass filter has a transfer function φ̂ = 1[−ξ,ξ] that selects low frequencies over
[−ξ, ξ]. The impulse response is calculated with the inverse Fourier integral (2.8):

φ(t) =
1

2π

∫ ξ

−ξ
eiωt dω =

sin(ξt)

πt
. (2.29)

• A passive electronic circuit implements analog filters with resistances, capacities and induc-
tors. The input voltage f(t) is related to the output voltage g(t) by a differential equation
with constant coefficients:

K∑

k=0

ak f (k)(t) =
M∑

k=0

bk g(k)(t). (2.30)

Suppose that the circuit is not charged for t < 0, which means that f(t) = g(t) = 0. The
output g is a linear time-invariant function of f and can thus be written g = f #φ. Computing
the Fourier transform of (2.30) and applying (2.22) proves that

φ̂(ω) =
ĝ(ω)

f̂(ω)
=

∑K
k=0 ak (iω)k

∑M
k=0 bk (iω)k

. (2.31)

It is therefore a rational function of iω. An ideal low-pass transfer function 1[−ξ,ξ] thus
cannot be implemented by an analog circuit. It must be approximated by a rational function.
Chebyshev or Butterworth filters are often used for this purpose [13].

• A Gaussian f(t) = exp(−t2) is a C∞ function with a fast asymptotic decay. Its Fourier
transform is also a Gaussian:

f̂(ω) =
√
π exp(−ω2/4). (2.32)

This Fourier transform is computed by showing with an integration by parts that f̂(ω) =∫ +∞
−∞ exp(−t2) e−iωtdt is differentiable and satisfies the differential equation

2 f̂ ′(ω) + ω f̂(ω) = 0. (2.33)

The solution of this equation is a Gaussian f̂(ω) = K exp(−ω2/4), and since f̂(0) =∫ +∞
−∞ exp(−t2) dt =

√
π, we obtain (2.32).

• A Gaussian chirp f(t) = exp[−(a − ib)t2] has a Fourier transform calculated with a similar
differential equation:

f̂(ω) =

√
π

a− ib
exp

(
−(a + ib)ω2

4(a2 + b2)

)
. (2.34)
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• A translated Dirac δτ (t) = δ(t − τ) has a Fourier transform calculated by evaluating e−iωt

at t = τ :

δ̂τ (ω) =

∫ +∞

−∞
δ(t− τ) e−iωt dt = e−iωτ . (2.35)

• The Dirac comb is a sum of translated Diracs

c(t) =
+∞∑

n=−∞
δ(t− nT )

that is used to uniformly sample analog signals. Its Fourier transform is derived from (2.35):

ĉ(ω) =
+∞∑

n=−∞
e−inTω. (2.36)

The Poisson formula proves that it is also equal to a Dirac comb with a spacing equal to
2π/T .

Theorem 2.4 (Poisson Formula). In the sense of distribution equalities (A.29),

+∞∑

n=−∞
e−inTω =

2π

T

+∞∑

k=−∞

δ

(
ω −

2πk

T

)
. (2.37)

Proof. The Fourier transform ĉ in (2.36) is periodic with period 2π/T . To verify the Poisson formula, it
is therefore sufficient to prove that the restriction of ĉ to [−π/T,π/T ] is equal to 2π/T δ. The formula
(2.37) is proved in the sense of a distribution equality (A.29) by showing that for any test function
θ̂(ω) with a support included in [−π/T,π/T ],

〈ĉ, θ̂〉 = lim
N→+∞

Z +∞

−∞

NX

n=−N

exp(−inTω) θ̂(ω) dω =
2π
T

θ̂(0).

The sum of the geometric series is

NX

n=−N

exp(−inTω) =
sin[(N + 1/2)Tω]

sin[Tω/2]
. (2.38)

Hence

〈ĉ, θ̂〉 = lim
N→+∞

2π
T

Z π/T

−π/T

sin[(N + 1/2)Tω]
πω

Tω/2
sin[Tω/2]

θ̂(ω) dω. (2.39)

Let

ψ̂(ω) =

(
θ̂(ω) Tω/2

sin[Tω/2] if |ω| ! π/T

0 if |ω| > π/T

and ψ(t) be the inverse Fourier transform of ψ̂(ω). Since 2ω−1 sin(aω) is the Fourier transform of
1[−a,a](t), the Parseval formula (2.25) implies

〈ĉ, θ̂〉 = lim
N→+∞

2π
T

Z +∞

−∞

sin[(N + 1/2)Tω]
πω

ψ̂(ω) dω

= lim
N→+∞

2π
T

Z (N+1/2)T

−(N+1/2)T

ψ(t) dt. (2.40)

When N goes to +∞ the integral converges to ψ̂(0) = θ̂(0).

2.3 Properties

2.3.1 Regularity and Decay

The global regularity of a signal f depends on the decay of |f̂(ω)| when the frequency ω increases.
The differentiability of f is studied. If f̂ ∈ L1(R), then the Fourier inversion formula (2.8) implies
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that f is continuous and bounded:

|f(t)| !
1

2π

∫ +∞

−∞
|eiωtf̂(ω)| dω =

1

2π

∫ +∞

−∞
|f̂(ω)| dω < +∞ . (2.41)

The next theorem applies this property to obtain a sufficient condition that guarantees the differ-
entiability of f at any order p.

Theorem 2.5. A function f is bounded and p times continuously differentiable with bounded
derivatives if ∫ +∞

−∞
|f̂(ω)| (1 + |ω|p) dω < +∞ . (2.42)

Proof. The Fourier transform of the kth order derivative f (k)(t) is (iω)kf̂(ω). Applying (2.41) to this
derivative proves that

|f (k)(t)| !

Z +∞

−∞
|f̂(ω)| |ω|k dω.

Condition (2.42) implies that
R +∞
−∞ |f̂(ω)||ω|k dω < +∞ for any k ! p, so f (k)(t) is continuous and

bounded.

This result proves that if there exist a constant K and ε > 0 such that

|f̂(ω)| !
K

1 + |ω|p+1+ε
, then f ∈ Cp.

If f̂ has a compact support then (2.42) implies that f ∈ C∞.
The decay of |f̂(ω)| depends on the worst singular behavior of f . For example, f = 1[−T,T ] is

discontinuous at t = ±T , so |f̂(ω)| decays like |ω|−1. In this case, it could also be important to
know that f(t) is regular for t 8= ±T . This information cannot be derived from the decay of |f̂(ω)|.
To characterize local regularity of a signal f it is necessary to decompose it over waveforms that
are well localized in time, as opposed to sinusoidal waves eiωt. Section 6.1.3 explains that wavelets
are particularly well adapted to this purpose.

2.3.2 Uncertainty Principle

Can we construct a function f whose energy is well localized in time and whose Fourier transform
f̂ has an energy concentrated in a small frequency neighborhood? The Dirac δ(t − u) has a
support restricted to t = u but its Fourier transform e−iuω has an energy uniformly spread over all
frequencies. We know that |f̂(ω)| decays quickly at high frequencies only if f has regular variations
in time. The energy of f must therefore be spread over a relatively large domain.

To reduce the time spread of f , we can scale it by s < 1 while maintaining constant its total
energy. If

fs(t) =
1√
s

f

(
t

s

)
then ‖fs‖2 = ‖f‖2.

The Fourier transform f̂s(ω) =
√

s f̂(sω) is dilated by 1/s so we lose in frequency localization what
we gained in time. Underlying is a trade-off between time and frequency localization.

Time and frequency energy concentrations are restricted by the Heisenberg uncertainty prin-
ciple. This principle has a particularly important interpretation in quantum mechanics as an
uncertainty as to the position and momentum of a free particle. The state of a one-dimensional
particle is described by a wave function f ∈ L2(R). The probability density that this particle is lo-
cated at t is 1

‖f‖2 |f(t)|2. The probability density that its momentum is equal to ω is 1
2π‖f‖2 |f̂(ω)|2.

The average location of this particle is

u =
1

‖f‖2

∫ +∞

−∞
t |f(t)|2 dt, (2.43)
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and the average momentum is

ξ =
1

2π‖f‖2

∫ +∞

−∞
ω |f̂(ω)|2 dω. (2.44)

The variances around these average values are respectively

σ2
t =

1

‖f‖2

∫ +∞

−∞
(t− u)2 |f(t)|2 dt (2.45)

and

σ2
ω =

1

2π‖f‖2

∫ +∞

−∞
(ω − ξ)2 |f̂(ω)|2 dω. (2.46)

The larger σt, the more uncertainty there is concerning the position of the free particle; the larger
σω, the more uncertainty there is concerning its momentum.

Theorem 2.6 (Heisenberg Uncertainty). The temporal variance and the frequency variance of
f ∈ L2(R) satisfy

σ2
t σ

2
ω "

1

4
. (2.47)

This inequality is an equality if and only if there exist (u, ξ, a, b) ∈ R2 × C2 such that

f(t) = a exp[iξt− b(t− u)2]. (2.48)

Proof. The following proof due to Weyl [68] supposes that lim|t|→+∞
√

tf(t) = 0, but the theorem is
valid for any f ∈ L

2(R). If the average time and frequency localization of f is u and ξ, then the average
time and frequency location of exp(−iξt) f(t + u) is zero. It is thus sufficient to prove the theorem for
u = ξ = 0. Observe that

σ2
t σ

2
ω =

1
2π‖f‖4

Z +∞

−∞
|t f(t)|2 dt

Z +∞

−∞
|ω f̂(ω)|2 dω. (2.49)

Since iωf̂(ω) is the Fourier transform of f ′(t), the Plancherel identity (2.26) applied to iωf̂(ω) yields

σ2
t σ

2
ω =

1
‖f‖4

Z +∞

−∞
|t f(t)|2 dt

Z +∞

−∞
|f ′(t)|2 dt. (2.50)

Schwarz’s inequality implies

σ2
t σ

2
ω "

1
‖f‖4

»Z +∞

−∞
|t f ′(t) f∗(t)| dt

–2

"
1

‖f‖4

»Z +∞

−∞

t
2

[f ′(t) f∗(t) + f ′∗(t) f(t)] dt

–2

"
1

4‖f‖4

»Z +∞

−∞
t (|f(t)|2)′ dt

–2
.

Since lim|t|→+∞
√

t f(t) = 0, an integration by parts gives

σ2
t σ

2
ω "

1
4‖f‖4

»Z +∞

−∞
|f(t)|2 dt

–2
=

1
4
. (2.51)

To obtain an equality, Schwarz’s inequality applied to (2.50) must be an equality. This implies that
there exists b ∈ C such that

f ′(t) = −2 b t f(t). (2.52)

Hence, there exists a ∈ C such that f(t) = a exp(−bt2). The other steps of the proof are then equalities
so that the lower bound is indeed reached. When u )= 0 and ξ )= 0 the corresponding time and frequency
translations yield (2.48).

In quantum mechanics, this theorem shows that we cannot reduce arbitrarily the uncertainty as to
the position and the momentum of a free particle. In signal processing, the modulated Gaussians
(2.48) that have a minimum joint time-frequency localization are called Gabor chirps. As expected,
they are smooth functions with a fast time asymptotic decay.
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Compact Support Despite the Heisenberg uncertainty bound, we might still be able to construct
a function of compact support whose Fourier transform has a compact support. Such a function
would be very useful in constructing a finite impulse response filter with a band-limited transfer
function. Unfortunately, the following theorem proves that it does not exist.

Theorem 2.7. If f 8= 0 has a compact support then f̂(ω) cannot be zero on a whole interval.
Similarly, if f̂ 8= 0 has a compact support then f(t) cannot be zero on a whole interval.

Proof. We prove only the first statement, since the second is derived from the first by applying the
Fourier transform. If f̂ has a compact support included in [−b, b] then

f(t) =
1
2π

Z b

−b

f̂(ω) exp(iωt) dω. (2.53)

If f(t) = 0 for t ∈ [c, d], by differentiating n times under the integral at t0 = (c + d)/2, we obtain

f (n)(t0) =
1
2π

Z b

−b

f̂(ω) (iω)n exp(iωt0) dω = 0. (2.54)

Since

f(t) =
1
2π

Z b

−b

f̂(ω) exp[iω(t − t0)] exp(iωt0) dω, (2.55)

developing exp[iω(t − t0)] as an infinite series yields for all t ∈ R

f(t) =
1
2π

+∞X

n=0

[i(t − t0)]
n

n!

Z b

−b

f̂(ω)ωn exp(iωt0) dω = 0. (2.56)

This contradicts our assumption that f )= 0.

2.3.3 Total Variation

The total variation measures the total amplitude of signal oscillations. It plays an important role
in image processing, where its value depends on the length of the image level sets. We show that
a low-pass filter can considerably amplify the total variation by creating Gibbs oscillations.

Variations and Oscillations If f is differentiable, its total variation is defined by

‖f‖V =

∫ +∞

−∞
|f ′(t)| dt . (2.57)

If {xp}p are the abscissa of the local extrema of f where f ′(xp) = 0, then

‖f‖V =
∑

p

|f(xp+1)− f(xp)| .

It thus measures the total amplitude of the oscillations of f . For example, if f(t) = exp(−t2), then
‖f‖V = 2. If f(t) = sin(πt)/(πt), then f has a local extrema at xp ∈ [p, p + 1] for any p ∈ Z. Since
|f(xp+1)− f(xp)| ∼ |p|−1, we derive that ‖f‖V = +∞.

The total variation of non-differentiable functions can be calculated by considering the derivative
in the general sense of distributions [60, 73]. This is equivalent to approximating the derivative by
a finite difference on an interval h that goes to zero:

‖f‖V = lim
h→0

∫ +∞

−∞

|f(t)− f(t− h)|
|h|

dt . (2.58)

The total variation of discontinuous functions is thus well defined. For example, if f = 1[a,b] then
(2.58) gives ‖f‖V = 2. We say that f has a bounded variation if ‖f‖V < +∞.

Whether f ′ is the standard derivative of f or its generalized derivative in the sense of distribu-
tions, its Fourier transform is f̂ ′(ω) = iωf̂(ω). Hence

|ω| |f̂(ω)| !

∫ +∞

−∞
|f ′(t)|dt = ‖f‖V ,



2.3. Properties 33

which implies that

|f̂(ω)| !
‖f‖V
|ω|

. (2.59)

However, |f̂(ω)| = O(|ω|−1) is not a sufficient condition to guarantee that f has bounded variation.
For example, if f(t) = sin(πt)/(πt), then f̂ = 1[−π,π] satisfies |f̂(ω)| ! π|ω|−1 although ‖f‖V =

+∞. In general, the total variation of f cannot be evaluated from |f̂(ω)|.

Discrete Signals Let fN [n] = f # φN (n/N) be a discrete signal obtained with an averaging filter
φN (t) = 1[0,N−1](t), and a uniform sampling at intervals N−1. The discrete total variation is
calculated by approximating the signal derivative by a finite difference over the sampling distance
h = N−1, and replacing the integral (2.58) by a Riemann sum, which gives:

‖fN‖V =
∑

n

|fN [n]− fN [n− 1]| . (2.60)

If np are the abscissa of the local extrema of fN , then

‖fN‖V =
∑

p

|fN [np+1]− fN [np]| .

The total variation thus measures the total amplitude of the oscillations of f . In accordance with
(2.58), we say that the discrete signal has a bounded variation if ‖fN‖V is bounded by a constant
independent of the resolution N .

Gibbs Oscillations Filtering a signal with a low-pass filter can create oscillations that have an
infinite total variation. Let fξ = f # φξ be the filtered signal obtained with an ideal low-pass filter

whose transfer function is φ̂ξ = 1[−ξ,ξ]. If f ∈ L2(R), then fξ converges to f in L2(R) norm:

limξ→+∞ ‖f − fξ‖ = 0. Indeed, f̂ξ = f̂ 1[−ξ,ξ] and the Plancherel formula (2.26) implies that

‖f − fξ‖2 =
1

2π

∫ +∞

−∞
|f̂(ω)− f̂ξ(ω)|2 dω =

1

2π

∫

|ω|>ξ
|f̂(ω)|2 dω,

which goes to zero as ξ increases. However, if f is discontinuous in t0, then we show that fξ has
Gibbs oscillations in the neighborhood of t0, which prevents supt∈R |f(t)− fξ(t)| from converging
to zero as ξ increases.

Let f be a bounded variation function ‖f‖V < +∞ that has an isolated discontinuity at t0,
with a left limit f(t−0 ) and right limit f(t+0 ). It is decomposed as a sum of fc, which is continuous
in the neighborhood of t0, plus a Heaviside step of amplitude f(t+0 )− f(t−0 ):

f(t) = fc(t) + [f(t+0 )− f(t−0 )]u(t− t0),

with

u(t) =

{
1 if t " 0
0 otherwise

. (2.61)

Hence
fξ(t) = fc # φξ(t) + [f(t+0 )− f(t−0 )]u #φ ξ(t− t0). (2.62)

Since fc has bounded variation and is uniformly continuous in the neighborhood of t0, one can
prove (Exercise 2.15) that fc # φξ(t) converges uniformly to fc(t) in a neighborhood of t0. The
following theorem shows that this is not true for u # φξ, which creates Gibbs oscillations.

Theorem 2.8 (Gibbs). For any ξ > 0,

u # φξ(t) =

∫ ξt

−∞

sin x

πx
dx. (2.63)
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Proof. The impulse response of an ideal low-pass filter, calculated in (2.29), is φξ(t) = sin(ξt)/(πt).
Hence

u % φξ(t) =

Z +∞

−∞
u(τ)

sin ξ(t − τ)
π(t − τ)

dτ =

Z +∞

0

sin ξ(t − τ)
π(t − τ)

dτ.

The change of variable x = ξ(t − τ) gives (2.63).

f(t) f # φ4ξ(t) f # φ2ξ(t) f # φξ(t)

0 0.5 1−0.2

0

0.2

0.4

0 0.5 1−0.2

0

0.2

0.4

0 0.5 1−0.2

0

0.2

0.4

0 0.5 1−0.2

0

0.2

0.4

Figure 2.1: Gibbs oscillations created by low-pass filters with cut-off frequencies that decrease from
left to right.

The function

s(ξt) =

∫ ξt

−∞

sinx

πx
dx

is a sigmoid that increases from 0 at t = −∞ to 1 at t = +∞, with s(0) = 1/2. It has oscillations
of period π/ξ, which are attenuated when the distance to 0 increases, but their total variation is
infinite: ‖s‖V = +∞. The maximum amplitude of the Gibbs oscillations occurs at t = ±π/ξ, with
an amplitude independent of ξ:

A = s(π)− 1 =

∫ π

−∞

sin x

πx
dx− 1 ≈ 0.045 .

Inserting (2.63) in (2.62) shows that

f(t)− fξ(t) = [f(t+0 )− f(t−0 )] s(ξ(t− t0)) + ε(ξ, t) , (2.64)

where limξ→+∞ sup|t−t0|<α |ε(ξ, t)| = 0 in some neighborhood of size α > 0 around t0. The sigmoid
s(ξ(t − t0)) centered at t0 creates a maximum error of fixed amplitude for all ξ. This is seen in
Figure 2.1, where the Gibbs oscillations have an amplitude proportional to the jump f(t+0 )−f(t−0 )
at all frequencies ξ.

Image Total Variation The total variation of an image f(x1, x2) depends on the amplitude of its
variations as well as the length of the contours along which they occur. Suppose that f(x1, x2) is
differentiable. The total variation is defined by

‖f‖V =

∫ ∫
|"∇f(x1, x2)| dx1 dx2 , (2.65)

where the modulus of the gradient vector is

|"∇f(x1, x2)| =

(∣∣∣∣
∂f(x1, x2)

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂f(x1, x2)

∂x2

∣∣∣∣
2
)1/2

.

As in one dimension, the total variation is extended to discontinuous functions by taking the
derivatives in the general sense of distributions. An equivalent norm is obtained by approximating
the partial derivatives by finite differences:

|∆hf(x1, x2)| =

(∣∣∣∣
f(x1, x2)− f(x1 − h, x2)

h

∣∣∣∣
2

+

∣∣∣∣
f(x1, x2)− f(x1, x2 − h)

h

∣∣∣∣
2
)1/2

.
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One can verify that

‖f‖V ! lim
h→0

∫ ∫
|∆hf(x1, x2)| dx1 dx2 !

√
2 ‖f‖V . (2.66)

The finite difference integral gives a larger value when f(x1, x2) is discontinuous along a diagonal
line in the (x1, x2) plane.

The total variation of f is related to the length of it level sets. Let us define

Ωy = {(x1, x2) ∈ R2 : f(x1, x2) > y} .

If f is continuous then the boundary ∂Ωy of Ωy is the level set of all (x1, x2) such that f(x1, x2) = y.
Let H1(∂Ωy) be the length of ∂Ωy. Formally, this length is calculated in the sense of the mono-
dimensional Hausdorff measure. The following theorem relates the total variation of f to the length
of its level sets.

Theorem 2.9 (Co-area Formula). If ‖f‖V < +∞ then

‖f‖V =

∫ +∞

−∞
H1(∂Ωy) dy. (2.67)

Proof. The proof is a highly technical result that is given in [73]. We give an intuitive explanation
when f is continuously differentiable. In this case ∂Ωy is a differentiable curve x(y, s) ∈ R2, which
is parameterized by the arc-length s. Let -τ(x) be the vector tangent to this curve in the plane. The
gradient -∇f(x) is orthogonal to -τ(x). The Frenet coordinate system along ∂Ωy is composed of -τ(x)
and of the unit vector -n(x) parallel to -∇f(x). Let ds and dn be the Lebesgue measures in the direction
of -τ and -n. We have

|-∇f(x)| = -∇f(x) .-n =
dy
dn

, (2.68)

where dy is the differential of amplitudes across level sets. The idea of the proof is to decompose the
total variation integral over the plane as an integral along the level sets and across level sets, which we
write:

‖f‖V =

Z Z
|-∇f(x1, x2)| dx1 dx2 =

Z Z

∂Ωy

|-∇f(x(y, s))| ds dn. (2.69)

By using (2.68) we can get

‖f‖V =

Z Z

∂Ωy

ds dy .

But
R
∂Ωy

ds = H1(∂Ωy) is the length of the level set, which justifies (2.67).

The co-area formula gives an important geometrical interpretation of the total image variation.
Images are uniformly bounded so the integral (2.67) is calculated over a finite interval and is
proportional to the average length of level sets. It is finite as long as the level sets are not fractal
curves. Let f = α1Ω be proportional to the indicator function of a set Ω ⊂ R2 which has a
boundary ∂Ω of length L. The co-area formula (2.9) implies that ‖f‖V = αL. In general, bounded
variation images must have step edges of finite length.

Discrete Images A camera measures light intensity with photoreceptors that perform an averaging
and a uniform sampling over a grid that is supposed to be uniform. For a resolution N , the sampling
interval is N−1. The resulting image can be written fN [n1, n2] = f # φN (n1/N, n2/N), where
φN = 1[0,N−1]2 and f is the averaged analog image. Its total variation is defined by approximating
derivatives by finite differences and the integral (2.66) by a Riemann sum:

‖fN‖V =
1

N

∑

n1

∑

n2

( ∣∣∣fN [n1, n2]− fN [n1 − 1, n2]
∣∣∣
2

+ (2.70)

∣∣∣fN [n1, n2]− fN [n1, n2 − 1]
∣∣∣
2)1/2

.

In accordance with (2.66) we say that the image has bounded variation if ‖fN‖V is bounded by
a constant independent of the resolution N . The co-area formula proves that it depends on the
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(a) (b)

Figure 2.2: (a): The total variation of this image remains nearly constant when the resolution N
increases. (b): Level sets ∂Ωy obtained by sampling uniformly the amplitude variable y.

length of the level sets as the image resolution increases. The
√

2 upper bound factor in (2.66)
comes from the fact that the length of a diagonal line can be increased by

√
2 if it is approximated

by a zig-zag line that remains on the horizontal and vertical segments of the image sampling grid.
Figure 2.2(a) shows a bounded variation image and Figure 2.2(b) displays the level sets obtained
by discretizing uniformly the amplitude variable y. The total variation of this image remains nearly
constant as the resolution varies.

2.4 Two-Dimensional Fourier Transform

The Fourier transform in Rn is a straightforward extension of the one-dimensional Fourier trans-
form. The two-dimensional case is briefly reviewed for image processing applications. The Fourier
transform of a two-dimensional integrable function f ∈ L1(R2) is

f̂(ω1,ω2) =

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2) exp[−i(ω1x1 + ω2x2)] dx1 dx2. (2.71)

In polar coordinates exp[i(ω1x + ω2y)] can be rewritten

exp[i(ω1x1 + ω2x2)] = exp[iξ(x1 cos θ + x2 sin θ)]

with ξ =
√
ω2

1 + ω2
2 . It is a plane wave that propagates in the direction of θ and oscillates at the

frequency ξ. The properties of a two-dimensional Fourier transform are essentially the same as
in one dimension. We summarize a few important results. We write ω = (ω1,ω2), x = (x1, x2),
ω · x = ω1x1 + ω2x2 and

∫∫
f(x1, x2)dx1 dx2 =

∫∫
f(x) dx.

• If f ∈ L1(R2) and f̂ ∈ L1(R2) then

f(x) =
1

4π2

∫ ∫
f̂(ω) exp[i(ω · x)] dω. (2.72)

• If f ∈ L1(R2) and h ∈ L1(R2) then the convolution

g(x) = f # h(x) =

∫ ∫
f(u)h(x− u) du

has a Fourier transform
ĝ(ω) = f̂(ω) ĥ(ω). (2.73)

• The Parseval formula proves that
∫ ∫

f(x) g∗(x) dx =
1

4π2

∫ ∫
f̂(ω) ĝ∗(ω) dω . (2.74)



2.4. Two-Dimensional Fourier Transform 37

If f = g, we obtain the Plancherel equality
∫ ∫

|f(x)|2 dx =
1

4π2

∫ ∫
|f̂(ω)|2 dω . (2.75)

The Fourier transform of a finite energy function thus has finite energy. With the same
density based argument as in one dimension, energy equivalence makes it possible to extend
the Fourier transform to any function f ∈ L2(R2).

• If f ∈ L2(R2) is separable, which means that

f(x) = f(x1, x2) = g(x1)h(x2),

then its Fourier transform is

f̂(ω) = f̂(ω1,ω2) = ĝ(ω1) ĥ(ω2),

where ĥ and ĝ are the one-dimensional Fourier transforms of g and h. For example, the
indicator function

f(x1, x2) =

{
1 if |x1| ! T , |x2| ! T
0 otherwise

= 1[−T,T ](x1)× 1[−T,T ](x2)

is a separable function whose Fourier transform is derived from (2.28):

f̂(ω1,ω2) =
4 sin(Tω1) sin(Tω2)

ω1 ω2
.

• If f(x1, x2) is rotated by θ:

fθ(x1, x2) = f(x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ),

then its Fourier transform is rotated by θ:

f̂θ(ω1,ω2) = f̂(ω1 cos θ − ω2 sin θ,ω1 sin θ + ω2 cos θ). (2.76)

Radon Transform A Radon transform computes integrals of f ∈ L2(R2) along rays. It is provides
a good model for some tomographic systems such as X-ray measurements in medical imaging.
Inverting the Radon transform is then needed to reconstruct the 2D or 3D body from these integrals.

Let us write τθ = (cos θ, sin θ). A ray ∆t,θ is a line defined by its equation

x · τθ = x1 cos θ + x2 sin θ = t .

The projection pθ of f along a parallel line of orientation θ is defined by

∀ θ ∈ [0,π),∀ t ∈ R, pθ(t) =

∫

∆t,θ

f(x) ds =

∫ ∫
f(x) δ(x · τθ − t) dx, (2.77)

where δ is the Dirac distribution. The Radon transform maps f(x) to pθ(t) for θ ∈ [0,π). In
medical imaging applications, a scanner is rotated around an object to compute the projection
pθ for many angles θ ∈ [0,π), as illustrated in Figure 2.3. The Fourier slice theorem relates the
Fourier transform of pθ to slices of the Fourier transform of f .

Theorem 2.10 (Fourier slice). The Fourier transform of projections satisfies

∀ θ ∈ [0,π) , ∀ ξ ∈ R p̂θ(ξ) = f̂(ξ cos θ, ξ sin θ).

Proof. The Fourier transform of the projection is

p̂θ(ξ) =

Z +∞

−∞

„Z Z
f(x) δ(x · τθ − t) dx

«
e−itξdt

=

Z Z
f(x) exp (−i(x · τθ)ξ) dx = f̂(ξτθ).



38 Chapter 2. Fourier Kingdom

An image f can be recovered from its projections pθ thanks to the projection slice theorem. Indeed,
the Fourier transform f̂ is known along each ray of direction θ and f is thus obtained with the 2D
inverse Fourier transform (2.71). The following back projection theorem gives an inversion formula.

Theorem 2.11 (Back projection). The image f is recovered using a one-dimensional filter h(t):

f(x) =
1

2π

∫ π

0
pθ ∗ h(x · τθ) dθ with ĥ(ξ) = |ξ| .

Proof. The inverse Fourier transform (2.72) in polar coordinates (ω1,ω2) = (ξ cos θ, ξ sin θ), with
dω1 dω2 = ξ dθ dξ, can be written

f(x) =
1

4π2

Z +∞

0

Z 2π

0

f̂(ξ cos θ, ξ sin θ) exp (i(x · τθ)ξ) ξ dθ dξ .

Using the Fourier slice Theorem 2.10 with pθ+π(t) = pθ(−t), this is rewritten as

f(x) =
1
2π

Z π

0

„
1
2π

Z +∞

−∞
|ξ| p̂θ(ξ) exp (i(x · τθ)ξ) dξ

«
dθ .

The inner integral is the inverse Fourier transform of p̂θ(ξ) |ξ| evaluated at x · τθ ∈ R. The convolution
formula (2.73) shows that it is equal to pθ ∗ h(x · τθ).

t

t

Figure 2.3: The Radon transform and its reconstruction with an increasing number of back pro-
jections.

In medical imaging applications, only a limited number of projections is available, and the
Fourier transform f̂ is thus partially known. In this case, an approximation of f can still be re-
covered by summing the corresponding filtered back projections pθ ∗ h(x · τθ). Figure 2.3 describes
this process, and shows the reconstruction of an image with a geometric object, using an increasing
number of evenly spaced projections. Section 13.3 describes a non-linear super-resolution recon-
struction algorithm, that recovers a more precise image by using a sparse representation.
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2.5 Exercises

2.1. 1 Prove that if f ∈ L
1(R) then f̂(ω) is a continuous function of ω, and if f̂ ∈ L

1(R) then f(t) is
continuous.

2.2. 1 Prove that a filter whose impulse response is a function h(t) can be stable only if
R
|h(t)| dt < ∞.

2.3. 1 Prove the translation (2.18), scaling (2.20) and time derivative (2.21) properties of the Fourier
transform.

2.4. 1 Let fr(t) = Re[f(t)] and fi(t) = Ima[f(t)] be the real and imaginary parts of f(t). Prove that
f̂r(ω) = [f̂(ω) + f̂∗(−ω)]/2 and f̂i(ω) = [f̂(ω) − f̂∗(−ω)]/(2i).

2.5. 1 Prove that if f̂(ω) is differentiable and f̂(0) = f̂ ′(0) = 0 then

Z +∞

−∞
f(t) dt =

Z +∞

−∞
t f(t) dt = 0.

2.6. 1 By using the Fourier transform, verify that

Z +∞

−∞

sin(πt)
(πt)

dt = 1 and

Z +∞

−∞

sin2 t
t3

dt =
3π
4

.

2.7. 2 Show that the Fourier transform of f(t) = exp(−(a − ib)t2) is

f̂(ω) =

r
π

a − ib
exp

„
− a + ib

4(a2 + b2)
ω2

«
.

Hint: write a differential equation similar to (2.33).

2.8. 3 Riemann-Lebesgue Prove that if f ∈ L
1(R) then lim

ω→∞
f̂(ω) = 0.

Hint: Prove it first for C
1 functions with a compact support and use a density argument.

2.9. 2 Stability of passive circuits

(a) Let p be a complex number with Re[p] < 0. Compute the Fourier transforms of f(t) =
exp(pt)1[0,+∞)(t) and of f(t) = tn exp(pt)1[0,+∞)(t).

(b) A passive circuit relates the input voltage f to the output voltage g by a differential equation
with constant coefficients:

KX

k=0

ak f (k)(t) =
MX

k=0

bk g(k)(t).

Prove that this system is stable and causal if and only if the roots of the equation
PM

k=0 bk zk =
0 have a strictly negative real part.

(c) A Butterworth filter satisfies

|ĥ(ω)|2 =
1

1 + (ω/ω0)
2N .

For N = 3, compute ĥ(ω) and h(t) so that this filter can be implemented by a stable electronic
circuit.

2.10. 1 For any A > 0, construct f such that the time and frequency spread measured respectively by
σt and σω in (2.46) and (2.45) satisfy σt > A and σω > A.

2.11. 3 Suppose that f(t) " 0 and that its support is in [−T, T ]. Verify that |f̂(ω)| ! f̂(0). Let ωc be
the half-power point defined by |f̂(ωc)|2 = |f(0)|2/2 and |f(ω)|2 < |f(0)|2/2 for ω < ωc. Prove
that ωc T " π/2.

2.12. 2 Rectification A rectifier computes g(t) = |f(t)|, for recovering the envelope of modulated signals
[53].

(a) Show that if f(t) = a(t) sinω0t with a(t) " 0 then g(t) = |f(t)| satisfies

ĝ(ω) = − 2
π

+∞X

n=−∞

â(ω − 2nω0)
4n2 − 1

.

(b) Suppose that â(ω) = 0 for |ω| > ω0. Find h such that a(t) = h % g(t).
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2.13. 2 Amplitude modulation For 0 ! n < N , we suppose that fn(t) is real and that f̂n(ω) = 0 for
|ω| > ω0. An amplitude modulated multiplexed signal is defined by

g(t) =
NX

n=0

fn(t) cos(2 nω0 t).

Compute ĝ(ω) and verify that the width of its support is 4Nω0. Find a demodulation algorithm
that recovers each fn from g.

2.14. 1 Show that ‖φ‖V = +∞ if φ(t) = sin(πt)/(πt). Show that ‖φ‖V = 2λ if φ(t) = λ1[a,b](t).

2.15. 3 Let fξ = f % hξ with ĥξ = 1[−ξ,ξ]. Suppose that f has a bounded variation ‖f‖V < +∞ and
that it is continuous in a neighborhood of t0. Prove that in a neighborhood of t0, fξ(t) converges
uniformly to f(t) when ξ goes to +∞.

2.16. 1 Compute the two-dimensional Fourier transforms of f(x) = 1[0,1]2(x1, x2) and of f(x) =

e−(x2
1+x2

2).

2.17. 1 Compute Radon transform of the indicator function of the unit circle: f(x1, x2) = 1x1+x2!1.

2.18. 2 Let f(x1, x2) be an image which has a discontinuity of amplitude A along a straight line having
an angle θ in the plane (x1, x2). Compute the amplitude of the Gibbs oscillations of f %hξ(x1, x2)
as a function of ξ, θ and A, for ĥξ(ω1,ω2) = 1[−ξ,ξ](ω1)1[−ξ,ξ](ω2).



III

Discrete Revolution
Digital signal processing has taken over. First used in the 1950’s at the service of analog signal pro-
cessing to simulate analog transforms, digital algorithms have invaded most traditional fortresses,
including phones, music recording, cameras, televisions, and all information processing. Analog
computations performed with electronic circuits are faster than digital algorithms implemented
with microprocessors, but are less precise and less flexible. Thus analog circuits are often replaced
by digital chips once the computational performance of microprocessors is sufficient to operate in
real time for a given application.

Whether sound recordings or images, most discrete signals are obtained by sampling an analog
signal. An analog to digital conversion is a linear approximation which introduces an error which
depends upon the sampling rate. Once more, the Fourier transform is unavoidable because the
eigenvectors of discrete time-invariant operators are sinusoidal waves. The Fourier transform is
discretized for signals of finite size and implemented with a Fast Fourier Transform algorithm.

3.1 Sampling Analog Signals

The simplest way to discretize an analog signal f is to record its sample values {f(ns)}n∈Z at
intervals s. An approximation of f(t) at any t ∈ R may be recovered by interpolating these
samples. The Shannon-Whittaker sampling theorem gives a sufficient condition on the support
of the Fourier transform f̂ to recover f(t) exactly. Aliasing and approximation errors are studied
when this condition is not satisfied.

Digital acquisition devices often do not satisfy the restrictive hypothesis of the Shannon-
Whittaker sampling theorem. General linear analog to discrete conversion is introduced in Section
3.1.3, showing that a stable uniform discretization is a linear approximation. A digital conversion
also approximates discrete coefficients with a given precision, to store them with a limited number
of bits. This quantization aspect is studied in Chapter 10.

3.1.1 Shannon-Whittaker Sampling Theorem

Sampling is first studied from the more classical Shannon-Whittaker point of view, which tries to
recover f(t) from its samples {f(ns)}n∈Z. A discrete signal may be represented as a sum of Diracs.
We associate to any sample f(ns) a Dirac f(ns)δ(t − ns) located at t = ns. A uniform sampling
of f thus corresponds to the weighted Dirac sum

fd(t) =
+∞∑

n=−∞
f(ns) δ(t− ns). (3.1)

The Fourier transform of δ(t− ns) is e−insω so the Fourier transform of fd is a Fourier series:

f̂d(ω) =
+∞∑

n=−∞
f(ns) e−insω. (3.2)

41
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To understand how to compute f(t) from the sample values f(ns) and hence f from fd, we relate
their Fourier transforms f̂ and f̂d.

Theorem 3.1. The Fourier transform of the discrete signal obtained by sampling f at intervals s
is

f̂d(ω) =
1

s

+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
. (3.3)

Proof. Since δ(t − ns) is zero outside t = ns,

f(ns) δ(t − ns) = f(t) δ(t − ns),

so we can rewrite (3.1) as multiplication with a Dirac comb:

fd(t) = f(t)
+∞X

n=−∞

δ(t − ns) = f(t) c(t). (3.4)

Computing the Fourier transform yields

f̂d(ω) =
1
2π

f̂ % ĉ(ω). (3.5)

The Poisson formula (2.4) proves that

ĉ(ω) =
2π
s

+∞X

k=−∞

δ

„
ω − 2πk

s

«
. (3.6)

Since f̂ % δ(ω − ξ) = f̂(ω − ξ), inserting (3.6) in (3.5) proves (3.3).

Theorem 3.1 proves that sampling f at intervals s is equivalent to making its Fourier transform
2π/s periodic by summing all its translations f̂(ω − 2kπ/s). The resulting sampling theorem was
first proved by Whittaker [482] in 1935 in a book on interpolation theory. Shannon rediscovered it
in 1949 for applications to communication theory [428].

Theorem 3.2 (Shannon, Whittaker). If the support of f̂ is included in [−π/s,π/s] then

f(t) =
+∞∑

n=−∞
f(ns)φs(t− ns), (3.7)

with

φs(t) =
sin(πt/s)

πt/s
. (3.8)

Proof. If n )= 0, the support of f̂(ω − nπ/s) does not intersect the support of f̂(ω) because f̂(ω) = 0
for |ω| > π/s. So (3.3) implies

f̂d(ω) =
f̂(ω)

s
if |ω| !

π
s

. (3.9)

The Fourier transform of φs is φ̂s = s1[−π/s,π/s]. Since the support of f̂ is in [−π/s,π/s] it results

from (3.9) that f̂(ω) = φ̂s(ω) f̂d(ω). The inverse Fourier transform of this equality gives

f(t) = φs % fd(t) = φs %
+∞X

n=−∞

f(ns) δ(t − ns)

=
+∞X

n=−∞

f(ns)φs(t − ns).

The sampling theorem imposes that the support of f̂ is included in [−π/s,π/s], which guarantees
that f has no brutal variations between consecutive samples, and can thus be recovered with
a smooth interpolation. Section 3.1.3 shows that one can impose other smoothness conditions to
recover f from its samples. Figure 3.1 illustrates the different steps of a sampling and reconstruction
from samples, in both the time and Fourier domains.
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3.1.2 Aliasing

The sampling interval s is often imposed by computation or storage constraints and the support
of f̂ is generally not included in [−π/s,π/s]. In this case the interpolation formula (3.7) does not
recover f . We analyze the resulting error and a filtering procedure to reduce it.

(a)

(c)

(d)

(b)

1

0

Figure 3.1: (a): Signal f and its Fourier transform f̂ . (b): A uniform sampling of f makes its
Fourier transform periodic. (c): Ideal low-pass filter. (d): The filtering of (b) with (c) recovers f .

Theorem 3.1 proves that

f̂d(ω) =
1

s

+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
. (3.10)

Suppose that the support of f̂ goes beyond [−π/s,π/s]. In general the support of f̂(ω − 2kπ/s)
intersects [−π/s,π/s] for several k 8= 0, as shown in Figure 3.2. This folding of high frequency com-
ponents over a low frequency interval is called aliasing. In the presence of aliasing, the interpolated
signal

φs # fd(t) =
+∞∑

n=−∞
f(ns)φs(t− ns)

has a Fourier transform

f̂d(ω) φ̂s(ω) = s f̂d(ω)1[−π/s,π/s](ω) = 1[−π/s,π/s](ω)
+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
(3.11)

which may be completely different from f̂(ω) over [−π/s,π/s]. The signal φs # fd may not even be
a good approximation of f , as shown by Figure 3.2.

Example 3.1. Let us consider a high frequency oscillation

f(t) = cos(ω0t) =
eiω0t + e−iω0t

2
.

Its Fourier transform is

f̂(ω) = π
(
δ(ω − ω0) + δ(ω + ω0)

)
.

If 2π/s > ω0 > π/s then (3.11) yields

f̂d(ω) φ̂s(ω)

= π 1[−π/s,π/s](ω)
+∞∑

k=−∞

(
δ
(
ω − ω0 −

2kπ

s

)
+ δ
(
ω + ω0 −

2kπ

s

))

= π
(
δ(ω −

2π

s
+ ω0) + δ(ω +

2π

s
− ω0)

)
,
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(b)

(c)

(d)

(a)

0

1

Figure 3.2: (a): Signal f and its Fourier transform f̂ . (b): Aliasing produced by an overlapping of
f̂(ω − 2kπ/s) for different k, shown in dashed lines. (c): Ideal low-pass filter. (d): The filtering of
(b) with (c) creates a low-frequency signal that is different from f .

so

fd # φs(t) = cos

[(2π

s
− ω0

)
t

]
.

The aliasing reduces the high frequency ω0 to a lower frequency 2π/s−ω0 ∈ [−π/s,π/s]. The same
frequency folding is observed in a film that samples a fast moving object without enough images per
second. A wheel turning rapidly appears as turning much more slowly in the film.

Removal of Aliasing To apply the sampling theorem, f is approximated by the closest signal f̃
whose Fourier transform has a support in [−π/s,π/s]. The Plancherel formula (2.26) proves that

‖f − f̃‖2 =
1

2π

∫ +∞

−∞
|f̂(ω)− ̂̃f(ω)|2 dω

=
1

2π

∫

|ω|>π/s
|f̂(ω)|2 dω +

1

2π

∫

|ω|!π/s
|f̂(ω)− ̂̃f(ω)|2 dω.

This distance is minimum when the second integral is zero and hence

̂̃f(ω) = f̂(ω)1[−π/s,π/s](ω) =
1

s
φ̂s(ω) f̂(ω). (3.12)

It corresponds to f̃ = 1
s f # φs. The filtering of f by φs avoids the aliasing by removing any

frequency larger than π/s. Since ̂̃f has a support in [−π/s,π/s], the sampling theorem proves
that f̃(t) can be recovered from the samples f̃(ns). An analog to digital converter is therefore
composed of a filter that limits the frequency band to [−π/s,π/s], followed by a uniform sampling
at intervals s.

3.1.3 General Sampling and Linear Analog Conversions

The Shannon-Whittaker theorem is a particular example of linear discrete to analog conversion,
which does not apply to all digital acquisition devices. This section describes general analog to
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discrete conversion and reverse discrete to analog conversion, with a general linear filtering and
uniform sampling. Analog signals are approximated by linear projections on approximation spaces.

Sampling Theorems We want to recover a stable approximation of f ∈ L2(R) from a filtering and
uniform sampling that outputs {f # φ̄s(ns)}n∈Z, for some real filter φ̄s(t). These samples can be
written as inner products in L2(R):

f # φs(ns) =

∫ +∞

−∞
f(t) φ̄s(ns− t) dt = 〈f(t),φs(t− ns)〉 (3.13)

with φs(t) = φ̄s(−t). Let Us be the approximation space generated by linear combinations of the
{φs(t−ns)}n∈Z. The approximation f̃ ∈ Us which minimizes the maximum possible error ‖f − f̃‖
is the orthognal projection of f on Us (Exercice 3.5). The calculation of this orthogonal projection
is stable if {φs(t− ns)}n∈Z is a Riesz basis of Us, as defined in Section 5.1.1. Following Definition
5.1, a Riesz basis is a family of linearly independent functions that yields inner product satisfying
an energy equivalence. There exists B " A > 0 such that for any f ∈ Us

A ‖f‖2 !

+∞∑

n=−∞
|〈f(t),φs(t− ns)〉|2 ! B ‖f‖2. (3.14)

The basis is orthogonal if and only if A = B. The following generalized sampling theorem computes
the orthogonal projection on the approximation space Us [468].

Theorem 3.3 (Linear sampling). Let {φs(t−ns)}n∈Z be a Riesz basis of Us and φ̄s(t) = φs(−t).
There exists a biorthogonal basis {φ̃s(t− ns)}n∈Z of Us such that

∀f ∈ L2(R) , PUsf(t) =
+∞∑

n=−∞
f # φ̄s(ns) φ̃s(t− ns) . (3.15)

Proof. For any Riesz basis, Section 5.1.2 proves that there exists a biorthogonal basis {φ̃s,n(t)}n∈Z that
satisfies the biorthogonality relations

∀(n, m) ∈ Z
2 , 〈φs(t − ns) , φ̃s,m(t − ms)〉 = δ[n − m] . (3.16)

Since 〈φs(t − (n − m)s) , φ̃s,0(t)〉 = 〈φs(t − ns) , φ̃s,0(t − ms)〉 = 0 and since the dual basis is unique,
necessarily φ̃s,m(t) = φ̃s,0(t − ms). Section 5.1.2 proves in (5.20) that the orthogonal projection in Us

can be written

PUsf(t) =
+∞X

n=−∞

〈f(t),φs(t − ns)〉 φ̃s(t − ns)

which proves (3.15).

The orthogonal projection (3.15) can be rewritten as an analog filtering of the discrete signal
fd(t) =

∑+∞
n=−∞ f # φ̄s(ns) δ(t− ns):

PUsf(t) = fd # φ̃s(t) . (3.17)

If f ∈ Us then PUsf = f so it is exactly reconstructed by filtering the uniformly sampled discrete
signal {f # φ̄s(ns)}n∈Z with the analog filter φ̃(t). If f /∈ Us then (3.17) recovers the best linear
approximation approximation of f in Us. Section 9.1 shows that the linear approximation error
‖f−PUsf‖ depends essentially on the uniform regularity of f . Given some prior information on f ,
optimizing the analog discretization filter φs amounts to optimize the approximation space Us in
order to minimize this error. The following theorem characterizes filters φs that generate a Riesz
basis and computes the dual filter.
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Theorem 3.4. A filter φs generates a Riesz basis {φs(t − ns)}n∈Z of a space Us if and only if
there exists B " A > 0 such that

∀ω ∈ [0, 2π/s] , A !
1

s

+∞∑

k=−∞

|φ̂s(ω −
2kπ

s
)|2 ! B . (3.18)

The biorthogonal basis {φ̃s(t− ns)}n∈Z is defined by the dual filter φ̃s which satisfies:

̂̃φs(ω) =
s φ̂∗

s(ω)
∑+∞

k=−∞ |φ̂s(ω − 2kπ/s)|2
. (3.19)

Proof. Theorem 5.1 proves that {φs(t − ns)}n∈Z is a Riesz basis of Us with Riesz bounds B " A > 0
if and only if

∀a ∈ !
2(Z) , A‖a‖2

! ‖
X

n∈Z

a[ns]φs(t − ns)‖2
! B‖a‖2 , (3.20)

with ‖a‖2 =
P

n∈Z
|a[ns]|2.

Let us first write these conditions in the Fourier domain. The Fourier transform of f(t) =P+∞
n=−∞ a[ns]φs(t − ns) is

f̂(ω) =
+∞X

n=−∞

a[ns] e−insω φ̂s(ω) = â(ω) φ̂s(ω) (3.21)

where â(ω) is the Fourier series â(ω) =
P+∞

n=−∞ a[ns] e−insω. Let us relate the norm of f and â. Since
â(ω) is 2π/s periodic, inserting (3.21) in the Plancherel formula (2.26) gives

‖f‖2 =
1
2π

Z +∞

−∞
|f̂(ω)|2 dω =

1
2π

Z 2π/s

0

+∞X

k=−∞

|â(ω + 2kπ/s)|2 |φ̂s(ω + 2kπ/s)|2 dω

=
1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω . (3.22)

Section 3.2.2 on Fourier series proves that

‖a‖2 =
+∞X

n=−∞

|a[ns]|2 =
s
2π

Z 2π/s

0

|â(ω)|2 dω . (3.23)

As a consequence of (3.22) and (3.23), the Riesz bound inequalities (3.20) are equivalent to

∀â ∈ L
2[0, 2π/s] ,

1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω !
B s
2π

Z 2π/s

0

|â(ω)|2 dω (3.24)

and

∀â ∈ L
2[0, 2π/s] ,

1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω "
A s
2π

Z 2π/s

0

|â(ω)|2 dω . (3.25)

If φ̂s satisfies (3.18) then clearly (3.24) and (3.25) are valid, which proves (3.22).

Conversely, if {φs(ns − t)}n∈Z is a Riesz basis. Suppose that either the upper or the lower bound
of (3.18) is not satisfied for ω in a set of non-zero measure. Let â be the indicator function of this set.
Then either (3.24) or (3.25) are not valid for this â. This implies that the Riesz bounds (3.20) are not
valid for a and hence that it is not a Riesz basis, which contradicts our hypothesis. So (3.18) is indeed
valid for almost all ω ∈ [0, 2π/s].

To compute the biorthogonal basis, we are looking for φ̃s ∈ Us such that {φ̃s(t − ns)}n∈Z satisfies
the biorthogonal relations (3.16). Since φ̃s ∈ Us we saw in (3.21) that its Fourier transform can be

written c̃φs(ω) = â(ω)φ̂s(ω) where â(ω) is 2π/s periodic. Let us define g(t) = φ̄s % φ̃s(t). Its Fourier
transform is

ĝ(ω) = φ̂∗
s(ω) ˆ̃φs(ω) = â(ω)|φ̂s(ω)|2 .
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The biorthogonal relations (3.16) are satisfied if and only if g(ns) = 0 if n )= 0 and g(0) = 1. It results
that gd(t) =

P+∞
n=−∞ g(ns) δ(t − ns) = δ(t). Theorem 3.1 derives in (3.3) that

ĝd(ω) =
1
s

+∞X

k=−∞

ĝ (ω − 2kπ/s) =
â(ω)

s

+∞X

k=−∞

|φ̂s(ω − 2kπ/s)|2 = 1.

It results that

â(ω) = s

 
+∞X

k=−∞

|φ̂s(ω − 2kπ/s)|2
!−1

which proves (3.19).

This theorem gives a necessary and sufficient condition on the low-pass filter φ̄s(t) = φs(−t) to
recover a stable signal approximation from a uniform sampling at intervals s. For various sampling
intervals s, the low-pass filter can be obtained by dilating a single filter φs(t) = s−1/2φ(t/s) and
hence φ̂s(ω) = s1/2φ̂(sω). The necessary and sufficient Riesz basis condition (3.18) is then satisfied
if and only if

∀ω ∈ [−π,π] , A !

+∞∑

k=−∞

|φ̂(ω − 2kπ)|2 ! B. (3.26)

It results from (3.19) that the dual filter satisfies ̂̃φs(ω) = s1/2̂̃φ(sω) and hence φ̃s(t) = s−1/2φ̃(t/s).
When A = B = 1 the Riesz basis is an orthonormal basis, which proves the following corollary.

Corollary 3.1. The family {φs(t− ns)}n∈Z is an orthonormal basis of the space Us it generates,
with φs(t) = s−1/2φ(t/s), if and only if

∀ω ∈ [0, 2π] ,
+∞∑

k=−∞

|φ̂(ω − 2kπ)|2 = 1 , (3.27)

and the dual filter is φ̃s = φs.

Shannon-Whittaker revisited The Shannon-Whittaker theorem 3.2 is defined with a sine-cardinal
perfect low-pass filter φs, which we renormalize here to have a unit norm. The following theorem
proves that it samples functions in an orthonormal basis.

Theorem 3.5. If φs(t) = s1/2 sin(πs−1t)/(πt) then {φs(t−ns)}n∈Z is an orthonormal basis of the
space Us of functions whose Fourier transforms have a support included in [−π/s,π/s]. If f ∈ Us

then
f(nT ) = s−1/2 f # φs(ns) . (3.28)

Proof. The filter satisfies φs(t) = s−1/2φ(t/s) with φ(t) = sin(πt)/(πt). The Fourier transform φ̂(ω) =
1[−π,π](ω) satisfies the condition (3.27) of Corollary 3.1, which proves that {φs(t − ns)}n∈Z is an
orthonormal basis of a space Us.

Any f(t) =
P+∞

n=−∞ a[ns]φs(t − ns) ∈ Us has a Fourier transform which can be written

f̂(ω) =
+∞X

n=−∞

a[ns] e−insω φ̂s(ω) = â(ω) s1/2
1[−π/s,π/s] , (3.29)

which implies that f ∈ Us if and only if f has a Fourier transform supported in [−π/s,π/s].

If f ∈ Us then decomposing it the orthonormal basis {φs(t − ns)}n∈Z gives

f(t) = PUsf(t) =
X

n∈Z

〈f(u),φs(u − ns)〉φs(t − ns) .

Since φs(ps) = s−1/2δ[ps] and φs(−t) = φs(t), it results that

f(ns) = s−1/2〈f(u),φs(u − ns)〉 = s−1/2 f % φs(ns) .
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This theorem proves that in the particular case of the Shannon-Whittaker sampling theorem,
if f ∈ Us then the sampled low-pass filtered values f # φs(ns) are proportional to the signal
samples f(ns). This comes from the fact that the sine-cardinal φ(t) = sin(πt/s)/(πt/s) satisfies
the interpolation property φ(ns) = δ[ns]. A generalization of such multiscale interpolations is
studied in Section 7.6.

The Shannon-Whittaker sampling approximates signals by restricting their Fourier transform
to a low frequency interval. It is particularly effective for smooth signals whose Fourier transform
have an energy concentrated at low frequencies. It is also well adapted to sound recordings, which
are well approximated by lower frequency harmonics.

For discontinuous signals such as images, a low-frequency restriction produces Gibbs oscillations
studied in Section 2.3.3. The image visual quality is degraded by these oscillations, which have
a total variation (2.65) that is infinite. A piecewise constant approximation has the advantage of
creating no such spurious oscillations.

Block Sampler A block sampler approximates signals with piecewise constant functions. The
approximation space Us is the set of all functions that are constant on intervals [ns, (n + 1)s],
for any n ∈ Z. Let φs(t) = s−1/2 1[0,s](t). The family {φs(t − ns]}n∈Z is an orthonormal basis
of Us (Exercise 3.1). If f /∈ Us then its orthogonal projection on Us is calculated with a partial
decomposition in the block orthonormal basis of Us

PUsf(t) =
+∞∑

n=−∞
〈f(u),φs(u− ns)〉φs(t− ns), (3.30)

and each coefficient is proportional to the signal average on [ns, (n + 1)s]

〈f(u),φs(u− ns)〉 = f # φs(ns) = s−1/2

∫ (n+1)s

ns
f(u) du .

This block analog to digital conversion is particularly simple to implement in analog electronic,
where the integration is performed by a capacity.

In domains where f is a regular function, a piecewise constant approximation PUsf is not
very precise and can be significantly improved. More precise approximations are obtained with
approximation spaces Us of higher order polynomial splines. The resulting approximations can
introduce small Gibbs oscillations, but these oscillations have a finite total variation.

Spline Sampling Block samplers are generalized by a spline sampling with a space Us of splines
functions that are m− 1 times continuously differentiable and equal to a polynomial of degree m
on any interval [ns, (n + 1)s), for n ∈ Z. When m = 1, functions in Us are piecewise linear and
continuous.

A Riesz basis of polynomial splines is constructed with box splines. A box spline φ of degree m
is computed by convolving the box window 1[0,1] with itself m + 1 times and centering it at 0 or
1/2. Its Fourier transform is

φ̂(ω) =

(
sin(ω/2)

ω/2

)m+1

exp

(
−iεω

2

)
. (3.31)

If m is even then ε = 1 and φ has a support centered at t = 1/2. If m is odd then ε = 0 and φ(t)
is symmetric about t = 0. One can verify that φ̂(ω) satisfies the sampling condition (3.26) using
a closed form expression (7.19) of the resulting series. It results that for any s > 0, a box splines
family {φs(t− ns)}n∈Z defines a Riesz basis of Us, and thus a stable sampling.

3.2 Discrete Time-Invariant Filters

3.2.1 Impulse Response and Transfer Function

Classical discrete signal processing algorithms are mostly based on time-invariant linear operators
[50, 54]. The time-invariance is limited to translations on the sampling grid. To simplify notation,



3.2. Discrete Time-invariant Filters 49

the sampling interval is normalized s = 1, and we denote f [n] the sample values. A linear discrete
operator L is time-invariant if an input f [n] delayed by p ∈ Z, fp[n] = f [n−p], produces an output
also delayed by p:

Lfp[n] = Lf [n− p].

Impulse Response We denote by δ[n] the discrete Dirac

δ[n] =

{
1 if n = 0
0 if n 8= 0

. (3.32)

Any signal f [n] can be decomposed as a sum of shifted Diracs

f [n] =
+∞∑

p=−∞
f [p] δ[n− p].

Let Lδ[n] = h[n] be the discrete impulse response. The linearity and time-invariance implies that

Lf [n] =
+∞∑

p=−∞
f [p]h[n− p] = f # h[n]. (3.33)

A discrete linear time-invariant operator is thus computed with a discrete convolution. If h[n] has
a finite support the sum (3.33) is calculated with a finite number of operations. These are called
Finite Impulse Response (FIR) filters. Convolutions with infinite impulse response filters may also
be calculated with a finite number of operations if they can be rewritten with a recursive equation
(3.45).

Causality and Stability A discrete filter L is causal if Lf [p] depends only on the values of f [n] for
n ! p. The convolution formula (3.33) implies that h[n] = 0 if n < 0.

The filter is stable if any bounded input signal f [n] produces a bounded output signal Lf [n].
Since

|Lf [n]| ! sup
n∈Z

|f [n]|
+∞∑

k=−∞

|h[k]|,

it is sufficient that
∑+∞

n=−∞ |h[n]| < +∞, which means that h ∈ !
1(Z). One can verify that this

sufficient condition is also necessary. The filter is thus stable if and only if h ∈ !
1(Z) (Exercise 3.6)

Transfer Function The Fourier transform plays a fundamental role in analyzing discrete time-
invariant operators, because discrete sinusoidal waves eω[n] = eiωn are eigenvectors:

Leω[n] =
+∞∑

p=−∞
eiω(n−p) h[p] = eiωn

+∞∑

p=−∞
h[p] e−iωp. (3.34)

The eigenvalue is a Fourier series

ĥ(ω) =
+∞∑

p=−∞
h[p] e−iωp. (3.35)

It is the filter transfer function.

Example 3.2. The uniform discrete average

Lf [n] =
1

2N + 1

n+N∑

p=n−N

f [p]

is a time-invariant discrete filter whose impulse response is h = (2N + 1)−11[−N,N ]. Its transfer
function is

ĥ(ω) =
1

2N + 1

+N∑

n=−N

e−inω =
1

2N + 1

sin(N + 1/2)ω

sinω/2
. (3.36)
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3.2.2 Fourier Series

The properties of Fourier series are essentially the same as the properties of the Fourier trans-
form since Fourier series are particular instances of Fourier transforms for Dirac sums. If
f(t) =

∑+∞
n=−∞ f [n] δ(t− n) then f̂(ω) =

∑+∞
n=−∞ f [n] e−iωn.

For any n ∈ Z, e−iωn has period 2π, so Fourier series have period 2π. An important issue is to
understand whether all functions with period 2π can be written as Fourier series. Such functions
are characterized by their restriction to [−π,π]. We therefore consider functions â ∈ L2[−π,π] that
are square integrable over [−π,π]. The space L2[−π,π] is a Hilbert space with the inner product

〈â, b̂〉 =
1

2π

∫ π

−π
â(ω) b̂∗(ω) dω (3.37)

and the resulting norm

‖â‖2 =
1

2π

∫ π

−π
|â(ω)|2 dω.

The following theorem proves that any function in L2[−π,π] can be written as a Fourier series.

Theorem 3.6. The family of functions {e−ikω}k∈Z is an orthonormal basis of L2[−π,π].

Proof. The orthogonality with respect to the inner product (3.37) is established with a direct integra-
tion. To prove that {exp(−ikω)}k∈Z is a basis, we must show that linear expansions of these vectors
are dense in L

2[−π,π].

We first prove that any continuously differentiable function φ̂ with a support included in [−π,π]
satisfies

φ̂(ω) =
+∞X

k=−∞

〈φ̂(ξ), exp(−ikξ)〉 exp(−ikω) , (3.38)

with a pointwise convergence for any ω ∈ [−π,π]. Let us compute the partial sum

SN (ω) =
NX

k=−N

〈φ̂(ξ), exp(−ikξ)〉 exp(−ikω)

=
NX

k=−N

1
2π

Z π

−π
φ̂(ξ) exp(ikξ) dξ exp(−ikω)

=
1
2π

Z π

−π
φ̂(ξ)

NX

k=−N

exp[ik(ξ − ω)] dξ.

The Poisson formula (2.37) proves the distribution equality

lim
N→+∞

NX

k=−N

exp[ik(ξ − ω)] = 2π
+∞X

k=−∞

δ(ξ − ω − 2πk),

and since the support of φ̂ is in [−π,π] we get

lim
N→+∞

SN (ω) = φ̂(ω).

Since φ̂ is continuously differentiable, following the steps (2.38-2.40) in the proof of the Poisson formula
shows that SN (ω) converges uniformly to φ̂(ω) on [−π,π].

To prove that linear expansions of sinusoidal waves {exp(−ikω)}k∈Z are dense in L
2[−π,π], let us

verify that the distance between â ∈ L
2[−π,π] and such a linear expansion is less than ε, for any ε > 0.

Continuously differentiable functions with a support included in [−π,π] are dense in L
2[−π,π], hence

there exists φ̂ such that ‖â− φ̂‖ ! ε/2. The uniform pointwise convergence proves that there exists N
for which

sup
ω∈[−π,π]

|SN (ω) − φ̂(ω)| !
ε
2
,

which implies that

‖SN − φ̂‖2 =
1
2π

Z π

−π
|SN (ω) − φ̂(ω)|2 dω !

ε2

4
.
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It follows that â is approximated by the Fourier series SN with an error

‖â − SN‖ ! ‖â − φ̂‖ + ‖φ̂− SN‖ ! ε .

Theorem 3.6 proves that if f ∈ !
2(Z), the Fourier series

f̂(ω) =
+∞∑

n=−∞
f [n] e−iωn (3.39)

can be interpreted as the decomposition of f̂ in an orthonormal basis of L2[−π,π]. The Fourier
series coefficients can thus be written as inner products in L2[−π,π]:

f [n] = 〈f̂(ω), e−iωn〉 =
1

2π

∫ π

−π
f̂(ω) eiωn dω. (3.40)

The energy conservation of orthonormal bases (A.10) yields a Plancherel identity:

+∞∑

n=−∞
|f [n]|2 = ‖f̂‖2 =

1

2π

∫ π

−π
|f̂(ω)|2 dω. (3.41)

Pointwise Convergence The equality (3.39) is meant in the sense of mean-square convergence

lim
N→+∞

∥∥∥∥∥
f̂(ω)−

N∑

k=−N

f [k] e−iωk

∥∥∥∥∥
= 0.

It does not imply a pointwise convergence at all ω ∈ R. In 1873, Dubois-Reymond constructed
a periodic function f̂(ω) that is continuous and whose Fourier series diverges at some points. On
the other hand, if f̂(ω) is continuously differentiable, then the proof of Theorem 3.6 shows that its
Fourier series converges uniformly to f̂(ω) on [−π,π]. It was only in 1966 that Carleson [148] was
able to prove that if f̂ ∈ L2[−π,π] then its Fourier series converges almost everywhere. The proof
is very technical.

Convolutions Since {e−iωk}k∈Z are eigenvectors of discrete convolution operators, we also have a
discrete convolution theorem.

Theorem 3.7. If f ∈ !
1(Z) and h ∈ !

1(Z) then g = f # h ∈ !
1(Z) and

ĝ(ω) = f̂(ω) ĥ(ω). (3.42)

The proof is identical to the proof of the convolution Theorem 2.2, if we replace integrals by
discrete sums. The reconstruction formula (3.40) shows that a filtered signal can be written

f # h[n] =
1

2π

∫ π

−π
ĥ(ω)f̂(ω) eiωn dω. (3.43)

The transfer function ĥ(ω) amplifies or attenuates the frequency components f̂(ω) of f [n].

Example 3.3. An ideal discrete low-pass filter has a 2π periodic transfer function defined by
ĥ(ω) = 1[−ξ,ξ](ω), for ω ∈ [−π,π] and 0 < ξ < π. Its impulse response is computed with (3.40):

h[n] =
1

2π

∫ ξ

−ξ
eiωn dω =

sin ξn

πn
. (3.44)

It is a uniform sampling of the ideal analog low-pass filter (2.29).
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Example 3.4. A recursive filter computes g = Lf which is solution of a recursive equation

K∑

k=0

ak f [n− k] =
M∑

k=0

bk g[n− k], (3.45)

with b0 8= 0. If g[n] = 0 and f [n] = 0 for n < 0 then g has a linear and time-invariant dependency
upon f , and can thus be written g = f # h. The transfer function is obtained by computing the
Fourier transform of (3.45). The Fourier transform of fk[n] = f [n− k] is f̂k(ω) = f̂(ω) e−ikω so

ĥ(ω) =
ĝ(ω)

f̂(ω)
=

∑K
k=0 ak e−ikω

∑M
k=0 bk e−ikω

.

It is a rational function of e−iω. If bk 8= 0 for some k > 0 then one can verify that the impulse
response h has an infinite support. The stability of such filters is studied in Exercise 3.18. A direct
calculation of the convolution sum g[n] = f # h[n] would require an infinite number of operations
whereas (3.45) computes g[n] with K + M additions and multiplications from its past values.

Window Multiplication An infinite impulse response filter h such as the ideal low-pass filter (3.44)
may be approximated by a finite response filter h̃ by multiplying h with a window g of finite
support:

h̃[n] = g[n]h[n].

One can verify (Exercise 3.7) that a multiplication in time is equivalent to a convolution in the
frequency domain:

̂̃h(ω) =
1

2π

∫ π

−π
ĥ(ξ) ĝ(ω − ξ) dξ =

1

2π
ĥ # ĝ(ω). (3.46)

Clearly ̂̃h = ĥ only if ĝ = 2πδ, which would imply that g has an infinite support and g[n] = 1.

The approximation ̂̃h is close to ĥ only if ĝ approximates a Dirac, which means that all its energy
is concentrated at low frequencies. In time, g should therefore have smooth variations.

The rectangular window g = 1[−N,N ] has a Fourier transform ĝ computed in (3.36). It has

important side lobes far away from ω = 0. The resulting ̂̃h is a poor approximation of ĥ. The
Hanning window

g[n] = cos2
( πn

2N

)
1[−N,N ][n]

is smoother and thus has a Fourier transform better concentrated at low frequencies. The spectral
properties of other windows are studied in Section 4.2.2.

3.3 Finite Signals

Up to now, we have considered discrete signals f [n] defined for all n ∈ Z. In practice, f [n] is known
over a finite domain, say 0 ! n < N . Convolutions must therefore be modified to take into account
the border effects at n = 0 and n = N − 1. The Fourier transform must also be redefined over
finite sequences for numerical computations. The fast Fourier transform algorithm is explained as
well as its application to fast convolutions.

3.3.1 Circular Convolutions

Let f̃ and h̃ be signals of N samples. To compute the convolution product

f̃ # h̃[n] =
+∞∑

p=−∞
f̃ [p] h̃[n− p] for 0 ! n < N,

we must know f̃ [n] and h̃[n] beyond 0 ! n < N . One approach is to extend f̃ and h̃ with a
periodization over N samples, and define

f [n] = f̃ [nmod N ] , h[n] = h̃[nmod N ].
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The circular convolution of two such signals, both with period N , is defined as a sum over their
period:

f /# h[n] =
N−1∑

p=0

f [p]h[n− p] =
N−1∑

p=0

f [n− p]h[p].

It is also a signal of period N .
The eigenvectors of a circular convolution operator

Lf [n] = f /# h[n]

are the discrete complex exponentials ek[n] = exp (i2πkn/N). Indeed

Lek[n] = exp

(
i2πkn

N

)N−1∑

p=0

h[p] exp

(
−i2πkp

N

)
,

and the eigenvalue is the discrete Fourier transform of h:

ĥ[k] =
N−1∑

p=0

h[p] exp

(
−i2πkp

N

)
.

3.3.2 Discrete Fourier Transform

The space of signals of period N is an Euclidean space of dimension N and the inner product of
two such signals f and g is

〈f, g〉 =
N−1∑

n=0

f [n] g∗[n]. (3.47)

The following theorem proves that any signal with period N can be decomposed as a sum of discrete
sinusoidal waves.

Theorem 3.8. The family {
ek[n] = exp

(
i2πkn

N

)}

0!k<N

is an orthogonal basis of the space of signals of period N .

Since the space is of dimension N , any orthogonal family of N vectors is an orthogonal basis.
To prove this theorem it is therefore sufficient to verify that {ek}0!k<N is orthogonal with respect
to the inner product (3.47) (Exercise 3.8). Any signal f of period N can be decomposed in this
basis:

f =
N−1∑

k=0

〈f, ek〉
‖ek‖2

ek. (3.48)

By definition, the discrete Fourier transform (DFT) of f is

f̂ [k] = 〈f, ek〉 =
N−1∑

n=0

f [n] exp

(
−i2πkn

N

)
. (3.49)

Since ‖ek‖2 = N , (3.48) gives an inverse discrete Fourier formula:

f [n] =
1

N

N−1∑

k=0

f̂ [k] exp

(
i2πkn

N

)
. (3.50)

The orthogonality of the basis also implies a Plancherel formula

‖f‖2 =
N−1∑

n=0

|f [n]|2 =
1

N

N−1∑

k=0

|f̂ [k]|2. (3.51)
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The discrete Fourier transform of a signal f of period N is computed from its values for
0 ! n < N . Then why is it important to consider it a periodic signal with period N rather than
a finite signal of N samples? The answer lies in the interpretation of the Fourier coefficients. The
discrete Fourier sum (3.50) defines a signal of period N for which the samples f [0] and f [N − 1]
are side by side. If f [0] and f [N − 1] are very different, this produces a brutal transition in the
periodic signal, creating relatively high amplitude Fourier coefficients at high frequencies. For
example, Figure 3.3 shows that the “smooth” ramp f [n] = n for 0 ! n < N has sharp transitions
at n = 0 and n = N once made periodic.

Circular Convolutions Since {exp (i2πkn/N)}0!k<N are eigenvectors of circular convolutions, we
derive a convolution theorem.

N-1-1 0 1 N

Figure 3.3: Signal f [n] = n for 0 ! n < N made periodic over N samples.

Theorem 3.9. If f and h have period N then the discrete Fourier transform of g = f /# h is

ĝ[k] = f̂ [k] ĥ[k]. (3.52)

The proof is similar to the proof of the two previous convolution Theorems 2.2 and 3.7. This
theorem shows that a circular convolution can be interpreted as a discrete frequency filtering. It
also opens the door to fast computations of convolutions using the fast Fourier transform.

3.3.3 Fast Fourier Transform

For a signal f of N points, a direct calculation of the N discrete Fourier sums

f̂ [k] =
N−1∑

n=0

f [n] exp

(
−i2πkn

N

)
, for 0 ! k < N , (3.53)

requires N2 complex multiplications and additions. The fast Fourier transform (FFT) algorithm
reduces the numerical complexity to O(N log2 N) by reorganizing the calculations.

When the frequency index is even, we group the terms n and n + N/2:

f̂ [2k] =

N/2−1∑

n=0

(
f [n] + f [n + N/2]

)
exp

(
−i2πkn

N/2

)
. (3.54)

When the frequency index is odd, the same grouping becomes

f̂ [2k + 1] =

N/2−1∑

n=0

exp

(
−i2πn

N

)(
f [n]− f [n + N/2]

)
exp

(
−i2πkn

N/2

)
.

(3.55)

Equation (3.54) proves that even frequencies are obtained by calculating the discrete Fourier trans-
form of the N/2 periodic signal

fe[n] = f [n] + f [n + N/2].

Odd frequencies are derived from (3.55) by computing the Fourier transform of the N/2 periodic
signal

fo[n] = exp

(
−i2πn

N

)(
f [n]− f [n + N/2]

)
.
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A discrete Fourier transform of size N may thus be calculated with two discrete Fourier transforms
of size N/2 plus O(N) operations.

The inverse fast Fourier transform of f̂ is derived from the forward fast Fourier transform of
its complex conjugate f̂∗ by observing that

f∗[n] =
1

N

N−1∑

k=0

f̂∗[k] exp

(
−i2πkn

N

)
. (3.56)

Complexity Let C(N) be the number of elementary operations needed to compute a discrete
Fourier transform with the FFT. Since f is complex, the calculation of fe and fo requires N
complex additions and N/2 complex multiplications. Let KN be the corresponding number of
elementary operations. We have

C(N) = 2C(N/2) + K N. (3.57)

Since the Fourier transform of a single point is equal to itself, C(1) = 0. With the change of

variable l = log2 N and the change of function T (l) = C(N)
N , we derive from (3.57) that

T (l) = T (l − 1) + K.

Since T (0) = 0 we get T (l) = K l and hence

C(N) = K N log2(N).

There exist several variations of this fast algorithm [236, 48]. The goal is to minimize the
constant K. The most efficient fast discrete Fourier transform to this date is the split-radix FFT
algorithm, which is slightly more complicated than the procedure just described, but which requires
only N log2 N real multiplications and 3N log2 N additions. When the input signal f is real, there
are half as many parameters to compute, since f̂ [−k] = f̂∗[k]. The number of multiplications and
additions is thus reduced by 2.

3.3.4 Fast Convolutions

The low computational complexity of a fast Fourier transform makes it efficient to compute finite
discrete convolutions by using the circular convolution Theorem 3.9. Let f and h be two signals
whose samples are non-zero only for 0 ! n < M . The causal signal

g[n] = f # h[n] =
+∞∑

k=−∞

f [k]h[n− k] (3.58)

is non-zero only for 0 ! n < 2M . If h and f have M non-zero samples, calculating this convolution
product with the sum (3.58) requires M(M +1) multiplications and additions. When M " 32, the
number of computations is reduced by using the fast Fourier transform [10, 48].

To use the fast Fourier transform with the circular convolution Theorem 3.9, the non-circular
convolution (3.58) is written as a circular convolution. We define two signals of period 2M :

a[n] =

{
f [n] if 0 ! n < M
0 if M ! n < 2M

(3.59)

b[n] =

{
h[n] if 0 ! n < M
0 if M ! n < 2M

. (3.60)

Let c = a/# b, one can verify that c[n] = g[n] for 0 ! n < 2M . The 2M non-zero coefficients of
g are thus obtained by computing â and b̂ from a and b and then calculating the inverse discrete
Fourier transform of ĉ = â b̂. With the fast Fourier transform algorithm, this requires a total of
O(M log2 M) additions and multiplications instead of M(M +1). A single FFT or inverse FFT of a
real signal of size N is calculated with 2−1N log2 N multiplications, using a split-radix algorithm.
The FFT convolution is thus performed with a total of 3M log2 M +11M real multiplications. For
M " 32 the FFT algorithm is faster than the direct convolution approach. For M ! 16, it is faster
to use a direct convolution sum.
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Fast Overlap-Add Convolutions The convolution of a signal f of L non-zero samples with a smaller
causal signal h of M samples is calculated with an overlap-add procedure that is faster than the
previous algorithm. The signal f is decomposed with a sum of L/M blocks fr having M non-zero
samples:

f [n] =

L/M−1∑

r=0

fr[n− rM ] with fr[n] = f [n + rM ]1[0,M−1][n]. (3.61)

For each 0 ! r < L/M , the 2M non-zero samples of gr = fr #h are computed with the FFT based
convolution algorithm, which requires O(M log2 M) operations. These L/M convolutions are thus
obtained with O(L log2 M) operations. The block decomposition (3.61) implies that

f # h[n] =

L/M−1∑

r=0

gr[n− rM ]. (3.62)

The addition of these L/M translated signals of size 2M is done with 2L additions. The overall
convolution is thus performed with O(L log2 M) operations.

3.4 Discrete Image Processing

Two-dimensional signal processing poses many specific geometrical and topological problems that
do not exist in one dimension [20, 32]. For example, a simple concept such as causality is not
well defined in two dimensions. We can avoid the complexity introduced by the second dimension
by extending one-dimensional algorithms with a separable approach. This not only simplifies the
mathematics but also leads to fast numerical algorithms along the rows and columns of images.
Appendix A.5 reviews the properties of tensor products for separable calculations.

3.4.1 Two-Dimensional Sampling Theorems

The light intensity measured by a camera is generally sampled over a rectangular array of picture
elements, called pixels. One-dimensional sampling theorems are extended to this two-dimensional
sampling array. Other two-dimensional sampling grids such as hexagonal grids are also possible,
but non-rectangular sampling arrays are not often used.

Let s1 and s2 be the sampling intervals along the x1 and x2 axes of an infinite rectangular
sampling grid. In the following we renormalize the axes so that s1 = s2 = s. A discrete image
obtained by sampling f(x) with x = (x1, x2) can be represented as a sum of Diracs located at the
grid points:

fd(x) =
∑

n∈Z2

f(sn) δ(x− ns) .

The two-dimensional Fourier transform of δ(x − sn) is e−isn·ω with ω = (ω1,ω2) and n · ω =
n1ω1 + n2ω2. The Fourier transform of fd is thus a two-dimensional Fourier series

f̂d(ω) =
∑

n∈Z2

f(sn) e−isn·ω . (3.63)

It is 2π/s periodic along ω1 and along ω2. An extension of Theorem 3.1 relates f̂d to the two-
dimensional Fourier transform f̂ of f .

Theorem 3.10. The Fourier transform of the discrete image fd(x) is

f̂d(ω) =
1

s2

∑

k∈Z2

f̂(ω − 2kπ/s) with k = (k1, k2) . (3.64)

We derive the following two-dimensional sampling theorem, which is analogous to Theorem 3.2.
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Theorem 3.11. If f̂ has a support included in [−π/s,π/s]2 then

f(x) = s
∑

n∈Z2

f(ns)φs(x− ns) , (3.65)

where

φs(x1, x2) =
1

s

sin(πx1/s)

πx1/s

sin(πx2/s)

πx2/s
. (3.66)

If the support of f̂ is not included in the low-frequency rectangle [−π/s,π/s]2, the interpolation
formula (3.65) introduces aliasing errors. This aliasing is eliminated by prefiltering f with the ideal
low-pass separable filter φs(x) whose Fourier transform is the indicator function of [−π/s,π/s]2.

General Sampling Theorems As explained in Section 3.1.3, the Shannon-Whittaker sampling the-
orem is a particular case of more general linear sampling theorems with low-pass filters. The
following theorem is a two-dimensional extension of Theorems 3.3 and 3.4, which characterizes
these filters to obtain a stable reconstruction.

Theorem 3.12. If there exists B " A > 0 such that the Fourier transform of φs ∈ L2(R2) satisfies

∀ω ∈ [0, 2π/s]2 A ! ĥ(ω) =
∑

k∈Z2

|φ̂s(ω − 2kπ/s)|2 ! B ,

then {φs(x− ns)}n∈Z2 is a Riesz basis of a space Us. The Fourier transform of the dual filter φ̃s

is ̂̃φs(ω) = φ̂∗
s(ω)/h(ω), and the orthogonal projection of f ∈ L2(R2) in Us is

PUsf(x) =
∑

n∈Z2

f # φ̄s(ns) φ̃s(x− ns) with φ̄s(x) = φs(−x) . (3.67)

This theorem gives a necessary and sufficient condition to obtain a stable linear reconstruction
from samples computed with a linear filter. The proof is a direct extension of the proofs of Theorems
3.3 and 3.4. It recovers a signal approximation as an orthogonal projection, by filtering the discrete
signal fd(x) =

∑
n∈Z2 f # φ̄s(ns) δ(x− ns)

PUsf(x) = fd # φ̃s(x) .

Like in one-dimension, the filter φs can be obtained by scaling a single filter φs(x) =
s−1φ(s−1x). The two-dimensional Shannon-Whittaker theorem is a particular example, where
φ̂s = s1[−π/s,π/s]2 , which defines an orthonormal basis of the space Us of functions having a
Fourier transform supported in [−π/s,π/s]2.

3.4.2 Discrete Image Filtering

The properties of two-dimensional space-invariant operators are essentially the same as in one
dimension. The sampling interval s is normalized to 1. A pixel value located at n = (n1, n2) is
written f [n]. A linear operator L is space-invariant if Lfp[n] = Lf [n− p] for any fp[n] = f [n− p],
with p = (p1, p2) ∈ Z2. A discrete Dirac is defined by δ[n] = 1 if n = (0, 0) and δ[n] = 0 if
n 8= (0, 0).

Impulse Response Since f [n] =
∑

p∈Z2 f [p] δ[n− p], the linearity and time invariance implies

Lf [n] =
∑

p∈Z2

f [p]h[n− p] = f # h[n], (3.68)

where h[n] is the response of the impulse h[n] = Lδ[n]. If the impulse response is separable:

h[n1, n2] = h1[n1]h2[n2], (3.69)
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then the two-dimensional convolution (3.68) is computed as one-dimensional convolutions along
the columns of the image followed by one-dimensional convolutions along the rows (or vice-versa):

f # h[n1, n2] =
+∞∑

p1=−∞
h1[n1 − p1]

+∞∑

p2=−∞
h2[n2 − p2] f [p1, p2]. (3.70)

This factorization reduces the number of operations. If h1 and h2 are finite impulse response filters
respectively of size M1 and M2 then the separable calculation (3.70) requires M1 + M2 additions
and multiplications per point (n1, n2) as opposed to M1 M2 in a non-separable computation (3.68).

Transfer Function The Fourier transform of a discrete image f is defined by the Fourier series

f̂(ω) =
∑

n∈Z2

f [n] e−iω·n with ω · n = n1ω1 + n2ω2 . (3.71)

The two-dimensional extension of the convolution Theorem 3.7 proves that if g[n] = Lf [n] = f#h[n]
then its Fourier transform is ĝ(ω) = f̂(ω) ĥ(ω), and ĥ(ω) is the transfer function of the filter. When
a filter is separable h[n1, n2] = h1[n1]h2[n2], its transfer function is also separable:

ĥ(ω1,ω2) = ĥ1(ω1) ĥ2(ω2). (3.72)

3.4.3 Circular Convolutions and Fourier Basis

The discrete convolution of a finite image f̃ raises border problems. As in one dimension, these
border issues are solved by extending the image, making it periodic along its rows and columns:

f [n1, n2] = f̃ [n1 mod N1 , n2 modN2] ,

where N = N1 N2 is the image size. The resulting periodic image f [n1, n2] is defined for all
(n1, n2) ∈ Z2, and each of its rows and columns are periodic one-dimensional signals.

A discrete convolution is replaced by a circular convolution over the image period. If f and h
have a periodicity N1 and N2 along (n1, n2) then

f /# h[n1, n2] =
N1−1∑

p1=0

N2−1∑

p2=0

f [p1, p2]h[n1 − p1, n2 − p2] . (3.73)

Discrete Fourier Transform The eigenvectors of circular convolutions are two-dimensional discrete
sinusoidal waves:

ek[n] = eωk·n with ωk = (2πk1/N1, 2πk2/N2) for 0 ! k1 < N1 , 0 ! k2 < N2 .

This family of N = N1 N2 discrete vectors is the separable product of two one-dimensional discrete
Fourier bases {ei2πk1n/N1}0!k1<N1 and {ei2πk1n/N2}0!k2<N2 . Theorem A.6 thus proves that the
family {ek[n]}0!k1<N1,0!k2<N2 is an orthogonal basis of CN = CN1 ⊗ CN2 (Exercise 3.23). Any
image f ∈ CN can be decomposed in this orthogonal basis:

f [n] =
1

N

N1−1∑

k1=0

N2−1∑

k2=0

f̂ [k] eiωk·n , (3.74)

where f̂ is the two-dimensional discrete Fourier transform of f

f̂ [k] = 〈f, ek〉 =
N1−1∑

n1=0

N2−1∑

n2=0

f [n] e−iωk·n . (3.75)
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Fast Convolutions Since eiωk·n are eigenvectors of two-dimensional circular convolutions, the dis-
crete Fourier transform of g = f /# h is

ĝ[k] = f̂ [k] ĥ[k]. (3.76)

A direct computation of f /# h with the summation (3.73) requires O(N2) multiplications. With
the two-dimensional FFT described next, f̂ [k] and ĥ[k] as well as the inverse DFT of their product
(3.76) are calculated with O(N log N) operations. Non-circular convolutions are computed with
a fast algorithm by reducing them to circular convolutions, with the same approach as in Section
3.3.4.

Separable Basis Decomposition Let B1 = {e1
k1
}0!k1<N1 and B2 = {e2

k2
}0!k2<N2 be two orthogo-

nal bases of CN1 and CN2 . Suppose the calculation of decomposition coefficients of f1 ∈ CN1 in the
basis B1 requires C1(N1) operations and of f2 ∈ CN1 in the basis B2 requires C2(N2) operations.
One can verify (Exercise 3.23) that the family B = {ek[n] = e1

k1
[n1] e2

k2
[n2]}0!k1<N1,0!k2<N2 is

an orthogonal basis of the space CN = CN1 ⊗ CN2 of images f [n1, n2] of N = N1 N2 pixels. We
describe a fast separable algorithm that computes the decomposition coefficients of an image f
in B with N2 C1(N1) + N1 C2(N2) operations as opposed to N2. A fast two-dimensional FFT is
derived.

Two-dimensional inner products are calculated with

〈f, e1
k1

e2
k2
〉 =

N1−1∑

n1=0

N2−1∑

n2=0

f [n1, n2] e
1∗
k1

[n1] e
2∗
k2

[n2]

=
N1−1∑

n1=0

e1∗
k1

[n1]
N2−1∑

n2=0

f [n1, n2] e
2∗
k2

[n2]. (3.77)

For 0 ! n1 < N1, we must compute

Uf [n1, k2] =
N2−1∑

n2=0

f [n1, n2] e
2∗
k2

[n2],

which are the decomposition coefficients of the N1 image rows of size N2 in the basis B2. The coef-
ficients {〈f, e1

k1
e2
k2
〉}0!k1<N1,0!k2<N2 are calculated in (3.77) as the inner products of the columns

of the transformed image Uf [n1, k2] in the basis B1. The overall algorithm thus requires to perform
N1 one-dimensional transforms in the basis B2 plus N2 one-dimensional transforms in the basis B1

and hence requires N2 C1(N1) + N1 C2(N2) operations.
The fast Fourier transform algorithm of Section 3.3.3 decomposes signals of size N1 and

N2 in the discrete Fourier bases B1 = {e1
k1

[n1] = ei2πk1n1/N1}0!k1<N1 and B2 = {e2
k2

[n2] =

ei2πk2n2/N2}0!k2<N2 , with C1(N1) = KN1 log2 N1 and C2(N2) = KN2 log2 N2 operations. A sepa-
rable implementation of a two-dimensional FFT thus requires N2 C1(N1)+N1 C2(N2) = KN log2 N
operations, with N = N1 N2. A split-radix FFT corresponds to K = 3.

3.5 Exercises

3.1. 1 Show that if φs(t) = s−1/2
1[0,s)(t) then {φs(t − ns)}n∈Z is an orthonormal basis of the space

of piecewise constant function on intervals [ns, (n + 1)s), for any n ∈ Z.

3.2. 2 Prove that if f has a Fourier transform included in [−π/s,π/s], then

∀u ∈ R , f(u) =
1
s
〈f(t),φs(t − u)〉 with φs(t) =

sin(πt/s)
πt/s

.

3.3. 2 An interpolation function f(t) satisfies f(n) = δ[n] for any n ∈ Z.

(a) Prove that
P+∞

k=−∞ f̂(ω + 2kπ) = 1 if and only if f is an interpolation function.

(b) Suppose that f(t) =
P+∞

n=−∞ h[n] θ(t− n) with θ ∈ L
2(R). Find ĥ(ω) as a function of θ̂(ω)

so that f(t) is an interpolation function. Relate f̂(ω) to θ̂(ω), and give a sufficient condition
on θ̂ to guarantee that f ∈ L

2(R).
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3.4. 2 Prove that if f ∈ L
2(R) and

P+∞
n=−∞ f(t − n) ∈ L

2[0, 1] then

+∞X

n=−∞

f(t − n) =
+∞X

k=−∞

f̂(2kπ) ei2πkt .

3.5. 1 We want to approximate f by a signal f̃ in an approximation space Us. Prove that the
approximation f̃ which minimizes ‖f̃ − f‖, is the orthogonal projection of f in Us.

3.6. 2 Prove that the discrete filter Lf [n] = f % h[n] is stable if and only if h ∈ !
1(Z).

3.7. 2 If ĥ(ω) and ĝ(ω) are the Fourier transforms of h[n] and g[n], we write

ĥ % ĝ(ω) =

Z +π

−π
ĥ(ξ) ĝ(ω − ξ) dξ.

Prove that if f [n] = g[n] h[n] then f̂(ω) = (2π)−1 ĥ % ĝ(ω).

3.8. 1 Prove that {ei2πkn/N}0!k<N is an orthogonal family and hence an orthogonal basis of CN .
What renormalization factor is needed to obtain an orthonormal basis ?

3.9. 2 Suppose that f̂ has a support in [−(n + 1)π/s,−nπ/s] ∪ [nπ/s, (n + 1)π/s] and that f(t) is
real. Find an interpolation formula that recovers f(t) from {f(ns)}n∈Z.

3.10. 3 Suppose that f̂ has a support in [−π/s,π/s].

(a) Give the filter φs(t) such that for any f

∀n ∈ Z , f̃(ns) =

Z (n+1/2)s

(n−1/2)s

f(t) dt = f % φs(ns).

(b) Show that f̃(t) = f %φs(t) can be recovered from {f̃(ns)}n∈Z with an interpolation formula.
(c) Reconstruct f from f̃ by inverting φs.
(d) Prove that the reconstruction of f(t) from {f̃(ns)}n∈Z is stable.

3.11. 2 The linear box spline φ(t) is defined in (3.31) for m = 1.

(a) Give an analytical formula for φ(t) and specify its support.
(b) Prove with (7.19) that {φ(t− n)}n∈Z is a Riesz basis of the space of finite energy functions

that are continuous and linear on intervals [ns, (n + 1)] for n ∈ Z.
(c) Does the dual filter φ̃(t) have a compact support ? Compute its graph numerically.

3.12. 1 If f [n] is defined for 0 ! n < N prove that |f̂ [k]| !
PN−1

n=0 |f [n]| for any 0 !< N .

3.13. 2 The discrete and periodic total variation is

‖f‖V =
N−1X

n=0

|f [n] − f [n − 1]| + |f [N − 1] − f [0]|.

(a) Prove that ‖f‖V =
PN−1

n=0 |f .% h[n]| where h[n] is a filter and specify ĥ[k].

(b) Derive an upper bound of |f̂ [k]| as a function of k−1.

3.14. 1 Let g[n] = (−1)n h[n]. Relate ĝ(ω) to ĥ(ω). If h is a low-pass filter, what kind of filter is g ?

3.15. 2 Prove the convolution Theorem 3.7.

3.16. 2 Let h−1 be the inverse of h defined by h % h−1[n] = δ[n].

(a) Compute ĥ−1(ω) as a function of ĥ(ω).
(b) Prove that if h has a finite support then h−1 has a finite support if and only if h[n] = δ[n−p]

for some p ∈ Z.

3.17. 1 All pass filters

(a) Verify that

ĥ(ω) =
KY

k=1

a∗
k − e−iω

1 + ak eiω

is an all-pass filter, i.e. |ĥ(ω)| = 1.
(b) Prove that {h[n − m]}m∈Z is an orthonormal basis of !

2(Z).

3.18. 2 Recursive filters

(a) Compute the Fourier transform of h[n] = an
1[0,+∞)[n] for |a| < 1. Compute the inverse

Fourier transform of ĥ(ω) = (1 − a e−iω)−p.
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(b) Suppose that g = f % h is calculated by a recursive equation with real coefficients

KX

k=0

ak f [n − k] =
MX

k=0

bk g[n − k],

write ĥ(ω) as a function of the parameters ak and bk.
(c) Show that h is a stable filter if and only if the equation

PM
k=0 bk z−k = 0 has roots with a

modulus strictly smaller than 1.

3.19. 1 Discrete interpolation Let f̂ [k] be the DFT of a signal f [n] of size N . We define a signal f̃ [n]

of size 2N by b̃f [N/2] = b̃f [3N/2] = bf [N/2] and

b̃f [k] =

8
><

>:

2f̂ [k] if 0 ! k < N/2

0 if N/2 < k < 3N/2

2f̂ [k − N ] if 3N/2 < k < 2N

.

Prove that f̃ is an interpolation of f which satisfies f̃ [2n] = f [n].

3.20. 2 Decimation Let x[n] = y[Mn] with M > 1.

(a) Show that x̂(ω) = M−1PM−1
k=0 ŷ(M−1(ω − 2kπ)).

(b) Give a sufficient condition on ŷ(ω) to recover y from x and give the interpolation formula
which recovers y[n] from x.

3.21. 3 We want to compute numerically the Fourier transform of f(t). Let fd[n] = f(ns), and
fp[n] =

P+∞
p=−∞ fd[n − pN ].

(a) Prove that the DFT of fp[n] is related to the Fourier series of fd[n] and to the Fourier
transform of f(t) by

f̂p[k] = f̂d

„
2πk
N

«
=

1
s

+∞X

l=−∞

f̂

„
2kπ
Ns

− 2lπ
s

«
.

(b) Suppose that |f(t)| and |f̂(ω)| are negligible when t∈/ [−t0, t0] and ω ∈/ [−ω0,ω0]. Relate N
and s to t0 and ω0 so that one can compute an approximate value of f̂(ω) for all ω ∈ R

by interpolating the samples f̂p[k]. Is it possible to compute exactly f̂(ω) with such an
interpolation formula?

(c) Let f(t) =
“
sin(πt)/(πt)

”4
. What is the support of f̂? Sample f appropriately and compute

f̂ numerically with an FFT algorithm.

3.22. 2 The analytic part fa[n] of a real discrete signal f [n] of size N is defined by

f̂a[k] =

8
<

:

f̂ [k] if k = 0, N/2
2 f̂ [k] if 0 < k < N/2
0 if N/2 < k < N

.

(a) Compute fa[n] for f [n] = cos(2πkn/N) with 0 < k < N/2.
(b) Prove that the real part g[n] = Re(f [n]) satisfies ĝ[k] = (f̂ [k] + f̂∗[−k])/2.
(c) Prove that Re(fa) = f .

3.23. 1 Prove that if {ek1 [n1]}0!k1<N1 is an orthonormal basis of C
N1 and {ek2 [n2]}0!k1<N1 is an

orthonormal basis of CN2 then {ek1 [n1] ek2 [n2]}0!k1<N1,0!k2<N2 is orthogonal basis of the space
CN = CN1 N2 of images f [n1, n2] of N = N1 N2 pixels.

3.24. 2 Let h[n1, n2] be a non-separable filter which is non-zero for 0 ! n1, n2 < M . Let f [n1, n2]
be a square image defined for 0 ! n1, n2 ! L M of N = (L M)2 pixels. Describe an overlap-
add algorithm to compute g[n1, n2] = f % h[n1, n2]. By using an FFT that requires K P log P
operators to compute the Fourier transform of an image of P pixels, how many operations does
your algorithm require? If K = 6, for what range of M is it better to compute the convolution
with a direct summation?

3.25. 2 Let f [n1, n2, n3] be a 3-dimensional signal of size N = N1 N2 N3. The discrete Fourier trans-
form is defined as a decomposition in a separable discrete Fourier basis. Give a separable algo-
rithm which decomposes f in this basis with K N log N operations, by using a one-dimensional
FFT algorithm that requires K P log P operations for a one-dimensional signal of size P .
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IV

Time Meets Frequency

When we listen to music, we clearly “hear” the time variation of the sound “frequencies.” These
localized frequency events are not pure tones but packets of close frequencies. The properties of
sounds are revealed by transforms that decompose signals over elementary functions that are well
concentrated in time and frequency. Windowed Fourier transforms and wavelet transforms are two
important classes of local time-frequency decompositions. Measuring the time variations of “in-
stantaneous” frequencies illustrates the limitations imposed by the Heisenberg uncertainty. These
instantaneous frequencies are detected as local maxima in windowed Fourier and wavelet dictio-
naries, and define a signal approximation support. Audio processing algorithms are implemented
by modifying the geometry of this approximation support.

There is no unique definition of time-frequency energy density. All quadratic time-frequency
distributions are related through the averaging of a single quadratic form called the Wigner-Ville
distribution. This framework gives another perspective on windowed Fourier and wavelet trans-
forms.

4.1 Time-Frequency Atoms

A linear time-frequency transform correlates the signal with a dictionary of waveforms that are
well concentrated in time and in frequency. These waveforms are called time-frequency atoms.
Let us consider a general dictionary of time-frequency atoms D = {φγ}γ∈Γ, where γ might be a
multi-index parameter. We suppose that φγ ∈ L2(R) and that ‖φγ‖ = 1. The corresponding linear
time-frequency transform of f ∈ L2(R) is defined by

Φf(γ) =

∫ +∞

−∞
f(t)φ∗

γ(t) dt = 〈f,φγ〉.

The Parseval formula (2.25) proves that

Φf(γ) =

∫ +∞

−∞
f(t)φ∗

γ(t) dt =
1

2π

∫ +∞

−∞
f̂(ω) φ̂∗

γ(ω) dω. (4.1)

If φγ(t) is nearly zero when t is outside a neighborhood of an abscissa u, then 〈f,φγ〉 depends only

on the values of f in this neighborhood. Similarly, if φ̂γ(ω) is negligible for ω far from ξ, then the

right integral of (4.1) proves that 〈f,φγ〉 reveals the properties of f̂ in the neighborhood of ξ.

Heisenberg Boxes The slice of information provided by 〈f,φγ〉 is represented in a time-frequency
plane (t,ω) by a region whose location and width depends on the time-frequency spread of φγ .
Since

‖φγ‖2 =

∫ +∞

−∞
|φγ(t)|2 dt = 1,

63
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we interpret |φγ(t)|2 as a probability distribution centered at

uγ =

∫ +∞

−∞
t |φγ(t)|2 dt. (4.2)

The spread around uγ is measured by the variance

σ2
t (γ) =

∫ +∞

−∞
(t− uγ)2 |φγ(t)|2 dt. (4.3)

The Plancherel formula (2.26) proves that
∫ +∞
−∞ |φ̂γ(ω)|2 dω = 2π‖φγ‖2. The center frequency of

φ̂γ is therefore defined by

ξγ =
1

2π

∫ +∞

−∞
ω |φ̂γ(ω)|2 dω, (4.4)

and its spread around ξγ is

σ2
ω(γ) =

1

2π

∫ +∞

−∞
(ω − ξγ)2 |φ̂γ(ω)|2 dω. (4.5)

The time-frequency resolution of φγ is represented in the time-frequency plane (t,ω) by a
Heisenberg box centered at (uγ , ξγ), whose width along time is σt(γ) and whose width along
frequency is σω(γ). This is illustrated by Figure 4.1. The Heisenberg uncertainty Theorem 2.6
proves that the area of the rectangle is at least 1/2:

σt σω "
1

2
. (4.6)

This limits the joint resolution of φγ in time and frequency. The time-frequency plane must be
manipulated carefully because a point (t0,ω0) is ill-defined. There is no function that is perfectly
well concentrated at a point t0 and a frequency ω0. Only rectangles with area at least 1/2 may
correspond to time-frequency atoms.

tγ|φ  (  )|

|φ       |

u

ξ

0 t

ω

(ω) σ

σ
 t  

ω

γ
^

Figure 4.1: Heisenberg box representing an atom φγ .

Translation Invariant Dictionaries For pattern recognition, it can be important to construct sig-
nal representations that are translation invariant. When a pattern is translated, its numerical
descriptors are then translated but not modified. Observe that for any φγ ∈ D and any shift u

〈f(t− u),φγ(t)〉 = 〈f(t),φγ(t + u)〉 .

A translation invariant representation is thus obtained if φγ(t + u) is in D up to a multiplicative
constant. Such a dictionary is said to be translation invariant.

A translation invariant dictionary is obtained by translating a family of generators {φγ}γ∈Γ,
and can be written D = {φu,γ}γ∈Γ,u∈R, with φu,γ(t) = λu,γ φγ(t−u). The resulting time-frequency
transform of f can then be written as a convolution:

Φf(u, γ) = 〈f,φu,γ〉 =

∫ +∞

−∞
f(t)λu,γφ

∗
γ(t− u) dt = λu,γ f # φ̃γ(u)

with φ̃γ(t) = φ∗
γ(−t).
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Energy Density Let us suppose that φγ(t) is centered at t = 0 so that φu,γ(t) is centered at u.

Let ξγ be the center frequency of φ̂γ(ω) defined in (4.4). The time-frequency box of φu,γ specifies
a neighborhood of (u, ξγ) where the energy of f is measured by

PΦf(u, ξγ) = |〈f,φu,γ〉|2 =

∣∣∣∣

∫ +∞

−∞
f(t)φ∗

u,γ(t) dt

∣∣∣∣

2

. (4.7)

Section 4.5.1 proves that any such energy density is an averaging of the Wigner-Ville distribution,
with a kernel that depends on the atoms φu,γ .

Example 4.1. A windowed Fourier atom is constructed with a window g modulated by the frequency
ξ and translated by u:

φu,γ(t) = gu,ξ(t) = eiξt g(t− u). (4.8)

The resulting window Fourier dictionary D = {gu,ξ(t)}u,ξ∈R2 is translation invariant since gu,ξ =
eiξu g0,ξ(t− u). A windowed Fourier dictionary is also frequency shit invariant because

eiωt gu,ξ(t) = gu,ξ+ω(t) ∈ D .

This dictionary is thus particularly useful to analyze patterns that are translated in time and fre-
quency.

A wavelet atom is a dilation by s and a translation by u of a mother wavelet ψ:

φu,γ(t) = ψu,s(t) =
1√
s
ψ

(
t− u

s

)
. (4.9)

A wavelet dictionary D = {ψu,s(t)}u∈R,s∈R+ translation invariant but also scale invariant, because
scaling any wavelet produces a dilated wavelet that remains in the dictionary. A wavelet dictionary
is well adapted to analyze patterns that are translated and scaled by arbitrary factors.

Wavelets and windowed Fourier atoms have their energy well localized in time, while their
Fourier transform is mostly concentrated in a limited frequency band. The properties of the resulting
transforms are studied in Sections 4.2 and 4.3.

4.2 Windowed Fourier Transform

In 1946, Gabor [266] introduced windowed Fourier atoms to measure the “frequency variations”
of sounds. A real and symmetric window g(t) = g(−t) is translated by u and modulated by the
frequency ξ:

gu,ξ(t) = eiξtg(t− u). (4.10)

It is normalized ‖g‖ = 1 so that ‖gu,ξ‖ = 1 for any (u, ξ) ∈ R2. The resulting windowed Fourier
transform of f ∈ L2(R) is

Sf(u, ξ) = 〈f, gu,ξ〉 =

∫ +∞

−∞
f(t) g(t− u) e−iξt dt. (4.11)

This transform is also called the short time Fourier transform because the multiplication by g(t−u)
localizes the Fourier integral in the neighborhood of t = u.

As in (4.7), one can define an energy density called a spectrogram, denoted PS :

PSf(u, ξ) = |Sf(u, ξ)|2 =

∣∣∣∣

∫ +∞

−∞
f(t) g(t− u) e−iξt dt

∣∣∣∣

2

. (4.12)

The spectrogram measures the energy of f in a time-frequency neighborhood of (u, ξ) specified by
the Heisenberg box of gu,ξ.
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Heisenberg Boxes Since g is even, gu,ξ(t) = eiξtg(t−u) is centered at u. The time spread around
u is independent of u and ξ:

σ2
t =

∫ +∞

−∞
(t− u)2 |gu,ξ(t)|2 dt =

∫ +∞

−∞
t2 |g(t)|2 dt. (4.13)

The Fourier transform ĝ of g is real and symmetric because g is real and symmetric. The
Fourier transform of gu,ξ is

ĝu,ξ(ω) = ĝ(ω − ξ) exp[−iu(ω − ξ)] . (4.14)

It is a translation by ξ of the frequency window ĝ, so its center frequency is ξ. The frequency
spread around ξ is

σ2
ω =

1

2π

∫ +∞

−∞
(ω − ξ)2 |ĝu,ξ(ω)|2 dω =

1

2π

∫ +∞

−∞
ω2 |ĝ(ω)|2 dω. (4.15)

It is independent of u and ξ. Hence gu,ξ corresponds to a Heisenberg box of area σt σω centered at
(u, ξ), as illustrated by Figure 4.2. The size of this box is independent of (u, ξ), which means that
a windowed Fourier transform has the same resolution across the time-frequency plane.

ξξξu,|g      (t) |
,γv|g      (t) |

|g          |

γ

ξ

0 t

ω

(ω)

(ω)
ξξu,

v

σ

σ

σ

σ

 t  

 t  

ω

ω

u v

,γ
^

^

|g        |

Figure 4.2: Heisenberg boxes of two windowed Fourier atoms gu,ξ and gν,γ .

Example 4.2. A sinusoidal wave f(t) = exp(iξ0t) whose Fourier transform is a Dirac f̂(ω) =
2πδ(ω − ξ0) has a windowed Fourier transform

Sf(u, ξ) = ĝ(ξ − ξ0) exp[−iu(ξ − ξ0)] .

Its energy is spread over the frequency interval [ξ0 − σω/2, ξ0 + σω/2].

Example 4.3. The windowed Fourier transform of a Dirac f(t) = δ(t− u0) is

Sf(u, ξ) = g(u0 − u) exp(−iξu0) .

Its energy is spread in the time interval [u0 − σt/2, u0 + σt/2].

Example 4.4. A linear chirp f(t) = exp(iat2) has an “instantaneous frequency” that increases
linearly in time. For a Gaussian window g(t) = (πσ2)−1/4 exp[−t2/(2σ2)], the windowed Fourier
transform of f is calculated using the Fourier transform (2.34) of Gaussian chirps. One can verify
that its spectrogram is

PSf(u, ξ) = |Sf(u, ξ)|2 =

(
4πσ2

1 + 4a2σ4

)1/2

exp

(
−
σ2(ξ − 2au)2

1 + 4a2σ4

)
.

(4.16)

For a fixed time u, PSf(u, ξ) is a Gaussian that reaches its maximum at the frequency ξ(u) = 2au.
Observe that if we write f(t) = exp[iφ(t)], then ξ(u) is equal to the “instantaneous frequency,”
defined as the derivative of the phase: ω(u) = φ′(u) = 2au. Section 4.4.1 explains this result.
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Figure 4.3: The signal includes a linear chirp whose frequency increases, a quadratic chirp whose
frequency decreases, and two modulated Gaussian functions located at t = 0.5 and t = 0.87. (a)
Spectrogram PSf(u, ξ). Dark points indicate large amplitude coefficients. (b) Complex phase of
Sf(u, ξ) in regions where the modulus PSf(u, ξ) is non-zero.
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Example 4.5. Figure 4.3 gives the spectrogram of a signal that includes a linear chirp, a quadratic
chirp and two modulated Gaussians. The spectrogram is computed with a Gaussian window dilated
by σ = 0.05. As expected from (4.16), the linear chirp yields large amplitude coefficients along the
trajectory of its instantaneous frequency, which is a straight line. The quadratic chirp yields large
coefficients along a parabola. The two modulated Gaussians produce low and high frequency blobs
at u = 0.5 and u = 0.87.

4.2.1 Completeness and Stability

When the time-frequency indices (u, ξ) vary across R2, the Heisenberg boxes of the atoms gu,ξ cover
the whole time-frequency plane. One can thus expect that f can be recovered from its windowed
Fourier transform Sf(u, ξ). The following theorem gives a reconstruction formula and proves that
the energy is conserved.

Theorem 4.1. If f ∈ L2(R) then

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Sf(u, ξ) g(t− u) eiξt dξ du (4.17)

and ∫ +∞

−∞
|f(t)|2 dt =

1

2π

∫ +∞

−∞

∫ +∞

−∞
|Sf(u, ξ)|2 dξ du. (4.18)

Proof. The reconstruction formula (4.17) is proved first. Let us apply the Fourier Parseval formula
(2.25) to the integral (4.17) with respect to the integration in u. The Fourier transform of fξ(u) =
Sf(u, ξ) with respect to u is computed by observing that

Sf(u, ξ) = exp(−iuξ)

Z +∞

−∞
f(t) g(t − u) exp[iξ(u − t)] dt = exp(−iuξ) f % gξ(u),

where gξ(t) = g(t) exp(iξt), because g(t) = g(−t). Its Fourier transform is therefore

f̂ξ(ω) = f̂(ω + ξ) ĝξ(ω + ξ) = f̂(ω + ξ) ĝ(ω).

The Fourier transform of g(t − u) with respect to u is ĝ(ω) exp(−itω). Hence

1
2π

„Z +∞

−∞

Z +∞

−∞
Sf(u, ξ) g(t − u) exp(iξt) du

«
dξ =

1
2π

Z +∞

−∞

„
1
2π

Z +∞

−∞
f̂(ω + ξ) |ĝ(ω)|2 exp[it(ω + ξ)] dω

«
dξ .

If f̂ ∈ L
1(R), we can apply the Fubini Theorem A.2 to reverse the integration order. The inverse

Fourier transform proves that

1
2π

Z +∞

−∞
f̂(ω + ξ) exp[it(ω + ξ)] dξ = f(t).

Since 1
2π

R +∞
−∞ |ĝ(ω)|2 dω = 1, we derive (4.17). If f̂ ∈/ L

1(R), a density argument is used to verify this
formula.

Let us now prove the energy conservation (4.18). Since the Fourier transform in u of Sf(u, ξ) is
f̂(ω + ξ) ĝ(ω), the Plancherel formula (2.26) applied to the right-hand side of (4.18) gives

1
2π

Z +∞

−∞

Z +∞

−∞
|Sf(u, ξ)|2 du dξ =

1
2π

Z +∞

−∞

1
2π

Z +∞

−∞
|f̂(ω + ξ) ĝ(ω)|2 dω dξ.

The Fubini theorem applies and the Plancherel formula proves that

1
2π

Z +∞

−∞
|f̂(ω + ξ)|2 dξ = ‖f‖2,

which implies (4.18).
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The reconstruction formula (4.17) can be rewritten

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
〈f, gu,ξ〉 gu,ξ(t) dξ du. (4.19)

It resembles the decomposition of a signal in an orthonormal basis but it is not, since the functions
{gu,ξ}u,ξ∈R2 are very redundant in L2(R). The second equality (4.18) justifies the interpretation of
the spectrogram PSf(u, ξ) = |Sf(u, ξ)|2 as an energy density, since its time-frequency sum equals
the signal energy.

Reproducing Kernel A windowed Fourier transform represents a one-dimensional signal f(t) by
a two-dimensional function Sf(u, ξ). The energy conservation proves that Sf ∈ L2(R2). Because
Sf(u, ξ) is redundant, it is not true that any Φ ∈ L2(R2) is the windowed Fourier transform of
some f ∈ L2(R). The next theorem gives a necessary and sufficient condition for such a function
to be a windowed Fourier transform.

Theorem 4.2. Let Φ ∈ L2(R2). There exists f ∈ L2(R) such that Φ(u, ξ) = Sf(u, ξ) if and only
if

Φ(u0, ξ0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Φ(u, ξ)K(u0, u, ξ0, ξ) du dξ, (4.20)

with
K(u0, u, ξ0, ξ) = 〈gu,ξ, gu0,ξ0〉 . (4.21)

Proof. Suppose that there exists f such that Φ(u, ξ) = Sf(u, ξ). Let us replace f with its reconstruction
integral (4.17) in the windowed Fourier transform definition:

Sf(u0, ξ0) =

Z +∞

−∞

„
1
2π

Z +∞

−∞

Z +∞

−∞
Sf(u, ξ) gu,ξ(t) du dξ

«
g∗

u0,ξ0(t) dt. (4.22)

Inverting the integral on t with the integrals on u and ξ yields (4.20). To prove that the condition
(4.20) is sufficient, we define f as in the reconstruction formula (4.17):

f(t) =
1
2π

Z +∞

−∞

Z +∞

−∞
Φ(u, ξ) g(t − u) exp(iξt) dξ du

and show that (4.20) implies that Φ(u, ξ) = Sf(u, ξ).

Ambiguity Function The reproducing kernel K(u0, u, ξ0, ξ) measures the time-frequency overlap
of the two atoms gu,ξ and gu0,ξ0 . The amplitude of K(u0, u, ξ0, ξ) decays with u0 − u and ξ0 − ξ
at a rate that depends on the energy concentration of g and ĝ. Replacing gu,ξ and gu0,ξ0 by their
expression and making the change of variable v = t−(u+u0)/2 in the inner product integral (4.21)
yields

K(u0, u, ξ0, ξ) = exp

(
−

i

2
(ξ0 − ξ)(u + u0)

)
Ag(u0 − u, ξ0 − ξ) (4.23)

where

Ag(τ, γ) =

∫ +∞

−∞
g
(
v +

τ

2

)
g
(
v −

τ

2

)
e−iγv dv (4.24)

is called the ambiguity function of g. Using the Parseval formula to replace this time integral with
a Fourier integral gives

Ag(τ, γ) =
1

2π

∫ +∞

−∞
ĝ
(
ω +

γ

2

)
ĝ
(
ω −

γ

2

)
eiτω dω. (4.25)

The decay of the ambiguity function measures the spread of g in time and of ĝ in frequency. For
example, if g has a support included in an interval of size T , then Ag(τ,ω) = 0 for |τ | " T/2. The
integral (4.25) shows that the same result applies to the support of ĝ.
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4.2.2 Choice of Window

The resolution in time and frequency of the windowed Fourier transform depends on the spread of
the window in time and frequency. This can be measured from the decay of the ambiguity function
(4.24) or more simply from the area σt σω of the Heisenberg box. The uncertainty Theorem 2.6
proves that this area reaches the minimum value 1/2 if and only if g is a Gaussian. The ambiguity
function Ag(τ, γ) is then a two-dimensional Gaussian.

Window Scale The time-frequency localization of g can be modified with a scaling. Suppose
that g has a Heisenberg time and frequency width respectively equal to σt and σω. Let gs(t) =
s−1/2 g(t/s) be its dilation by s. A change of variables in the integrals (4.13) and (4.15) shows
that the Heisenberg time and frequency width of gs are respectively sσt and σω/s. The area of the
Heisenberg box is not modified but it is dilated by s in time and compressed by s in frequency.
Similarly, a change of variable in the ambiguity integral (4.24) shows that the ambiguity function
is dilated in time and frequency respectively by s and 1/s

Ags(τ, γ) = Ag
(τ

s
, sγ
)

.

The choice of a particular scale s depends on the desired resolution trade-off between time and
frequency.

Finite Support In numerical applications, g must have a compact support. Theorem 2.7 proves
that its Fourier transform ĝ necessarily has an infinite support. It is a symmetric function with
a main lobe centered at ω = 0, which decays to zero with oscillations. Figure 4.4 illustrates its
behavior. To maximize the frequency resolution of the transform, we must concentrate the energy
of ĝ near ω = 0. Three important parameters evaluate the spread of ĝ:

• The root mean-square bandwidth ∆ω, which is defined by

|ĝ(∆ω/2)|2

|ĝ(0)|2
=

1

2
.

• The maximum amplitude A of the first side-lobes located at ω = ±ω0 in Figure 4.4. It is
measured in decibels:

A = 10 log10
|ĝ(ω0)|2

|ĝ(0)|2
.

• The polynomial exponent p, which gives the asymptotic decay of |ĝ(ω)| for large frequencies:

|ĝ(ω)| = O(ω−p−1). (4.26)

Table 4.1 gives the values of these three parameters for several windows g whose supports
are restricted to [−1/2, 1/2] [292]. Figure 4.5 shows the graph of these windows.

Δω

^

ω
ω−ω0 0

ΑΑ

ωg(    )

Figure 4.4: The energy spread of ĝ is measured by its bandwidth ∆ω and the maximum amplitude
A of the first side-lobes, located at ω = ±ω0.
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Name g(t) ∆ω A p

Rectangle 1 0.89 −13db 0

Hamming 0.54 + 0.46 cos(2πt) 1.36 −43db 0

Gaussian exp(−18t2) 1.55 −55db 0

Hanning cos2(πt) 1.44 −32db 2

Blackman 0.42 + 0.5 cos(2πt)
+0.08 cos(4πt) 1.68 −58db 2

Table 4.1: Frequency parameters of five windows g whose supports are restricted to [−1/2, 1/2].
These windows are normalized so that g(0) = 1 but ‖g‖ 8= 1.

To interpret these three frequency parameters, let us consider the spectrogram of a frequency
tone f(t) = exp(iξ0t). If ∆ω is small, then |Sf(u, ξ)|2 = |ĝ(ξ − ξ0)|2 has an energy concentrated
near ξ = ξ0. The side-lobes of ĝ create “shadows” at ξ = ξ0 ± ω0, which can be neglected if A is
also small.

If the frequency tone is embedded in a signal that has other components of much higher energy
at different frequencies, the tone can still be detected if ĝ(ω − ξ) attenuates these components
rapidly when |ω − ξ| increases. This means that |ĝ(ω)| has a rapid decay, and Theorem 2.5 proves
that this decay depends on the regularity of g. Property (4.26) is typically satisfied by windows
that are p times differentiable.
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Figure 4.5: Graphs of four windows g whose support are [−1/2, 1/2].

4.2.3 Discrete Windowed Fourier Transform

The discretization and fast computation of the windowed Fourier transform follow the same ideas
as the discretization of the Fourier transform described in Section 3.3. We consider discrete signals
of period N . The window g[n] is chosen to be a symmetric discrete signal of period N with unit
norm ‖g‖ = 1. Discrete windowed Fourier atoms are defined by

gm,l[n] = g[n−m] exp

(
i2πln

N

)
.

The discrete Fourier transform of gm,l is

ĝm,l[k] = ĝ[k − l] exp

(
−i2πm(k − l)

N

)
.
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The discrete windowed Fourier transform of a signal f of period N is

Sf [m, l] = 〈f, gm,l〉 =
N−1∑

n=0

f [n] g[n−m] exp

(
−i2πln

N

)
, (4.27)

For each 0 ! m < N , Sf [m, l] is calculated for 0 ! l < N with a discrete Fourier transform of
f [n]g[n −m]. This is performed with N FFT procedures of size N , and thus requires a total of
O(N2 log2 N) operations. Figure 4.3 is computed with this algorithm.

Inverse Transform The following theorem discretizes the reconstruction formula and the energy
conservation of Theorem 4.1.

Theorem 4.3. If f is a signal of period N then

f [n] =
1

N

N−1∑

m=0

N−1∑

l=0

Sf [m, l] g[n−m] exp

(
i2πln

N

)
(4.28)

and
N−1∑

n=0

|f [n]|2 =
1

N

N−1∑

l=0

N−1∑

m=0

|Sf [m, l]|2. (4.29)

This theorem is proved by applying the Parseval and Plancherel formulas of the discrete Fourier
transform, exactly as in the proof of Theorem 4.1. The energy conservation (4.29) proves that this
windowed Fourier transform defines a tight frame, as explained in Chapter 5. The reconstruction
formula (4.28) is rewritten

f [n] =
1

N

N−1∑

m=0

g[n−m]
N−1∑

l=0

Sf [m, l] exp

(
i2πln

N

)
.

The second sum computes for each 0 ! m < N the inverse discrete Fourier transform of Sf [m, l]
with respect to l. This is calculated with N FFT procedures, requiring a total of O(N2 log2 N)
operations.

A discrete windowed Fourier transform is an N2 image Sf [l,m] that is very redundant, since
it is entirely specified by a signal f of size N . The redundancy is characterized by a discrete
reproducing kernel equation, which is the discrete equivalent of (4.20).

4.3 Wavelet Transforms

To analyze signal structures of very different sizes, it is necessary to use time-frequency atoms with
different time supports. The wavelet transform decomposes signals over dilated and translated
wavelets. A wavelet is a function ψ ∈ L2(R) with a zero average:

∫ +∞

−∞
ψ(t) dt = 0. (4.30)

It is normalized ‖ψ‖ = 1, and centered in the neighborhood of t = 0. A dictionary of time-
frequency atoms is obtained by scaling ψ by s and translating it by u:

D =

{
ψu,s(t) =

1√
s
ψ

(
t− u

s

)}

u∈R,s∈R+

.

These atoms remain normalized: ‖ψu,s‖ = 1. The wavelet transform of f ∈ L2(R) at time u and
scale s is

Wf(u, s) = 〈f,ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (4.31)
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Linear Filtering The wavelet transform can be rewritten as a convolution product:

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt = f # ψ̄s(u) (4.32)

with

ψ̄s(t) =
1√
s
ψ∗
(
−t

s

)
.

The Fourier transform of ψ̄s(t) is
̂̄ψs(ω) =

√
s ψ̂∗(sω). (4.33)

Since ψ̂(0) =
∫ +∞
−∞ ψ(t) dt = 0, it appears that ψ̂ is the transfer function of a band-pass filter. The

convolution (4.32) computes the wavelet transform with dilated band-pass filters.

Analytic Versus Real Wavelets Like a windowed Fourier transform, a wavelet transform can mea-
sure the time evolution of frequency transients. This requires using a complex analytic wavelet,
which can separate amplitude and phase components. The properties of this analytic wavelet
transform are described in Section 4.3.2, and its application to the measurement of instantaneous
frequencies is explained in Section 4.4.2. In contrast, real wavelets are often used to detect sharp
signal transitions. Section 4.3.1 introduces elementary properties of real wavelets, which are devel-
oped in Chapter 6.

4.3.1 Real Wavelets

Suppose that ψ is a real wavelet. Since it has a zero average, the wavelet integral

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt

measures the variation of f in a neighborhood of u, whose size is proportional to s. Section 6.1.3
proves that when the scale s goes to zero, the decay of the wavelet coefficients characterizes the
regularity of f in the neighborhood of u. This has important applications for detecting transients
and analyzing fractals. This section concentrates on the completeness and redundancy properties
of real wavelet transforms.

Example 4.6. Wavelets equal to the second derivative of a Gaussian are called Mexican hats.
They were first used in computer vision to detect multiscale edges [487]. The normalized Mexican
hat wavelet is

ψ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (4.34)

For σ = 1, Figure 4.6 plots −ψ and its Fourier transform

ψ̂(ω) =
−
√

8σ5/2 π1/4

√
3

ω2 exp

(
−σ2ω2

2

)
. (4.35)

Figure 4.7 shows the wavelet transform of a signal that is piecewise regular on the left and
almost everywhere singular on the right. The maximum scale is smaller than 1 because the support
of f is normalized to [0, 1]. The minimum scale is limited by the sampling interval of the discretized
signal used in numerical calculations. When the scale decreases, the wavelet transform has a rapid
decay to zero in the regions where the signal is regular. The isolated singularities on the left create
cones of large amplitude wavelet coefficients that converge to the locations of the singularities. This
is further explained in Chapter 6.

A real wavelet transform is complete and maintains an energy conservation, as long as the
wavelet satisfies a weak admissibility condition, specified by the following theorem. This theorem
was first proved in 1964 by the mathematician Calderón [131], from a different point of view.
Wavelets did not appear as such, but Calderón defines a wavelet transform as a convolution operator
that decomposes the identity. Grossmann and Morlet [287] were not aware of Calderón’s work when
they proved the same formula for signal processing.
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Figure 4.6: Mexican hat wavelet (4.34) for σ = 1 and its Fourier transform.
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Figure 4.7: Real wavelet transform Wf(u, s) computed with a Mexican hat wavelet (4.34). The
vertical axis represents log2 s. Black, grey and white points correspond respectively to positive,
zero and negative wavelet coefficients.
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Theorem 4.4 (Calderón, Grossmann, Morlet). Let ψ ∈ L2(R) be a real function such that

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞. (4.36)

Any f ∈ L2(R) satisfies

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)

1√
s
ψ

(
t− u

s

)
du

ds

s2
, (4.37)

and ∫ +∞

−∞
|f(t)|2dt =

1

Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (4.38)

Proof. The proof of (4.38) is almost identical to the proof of (4.18). Let us concentrate on the proof
of (4.37). The right integral b(t) of (4.37) can be rewritten as a sum of convolutions. Inserting
Wf(u, s) = f % ψ̄s(u) with ψs(t) = s−1/2 ψ(t/s) yields

b(t) =
1

Cψ

Z +∞

0

Wf(., s) % ψs(t)
ds
s2

=
1

Cψ

Z +∞

0

f % ψ̄s % ψs(t)
ds
s2

. (4.39)

The “.” indicates the variable over which the convolution is calculated. We prove that b = f by
showing that their Fourier transforms are equal. The Fourier transform of b is

b̂(ω) =
1

Cψ

Z +∞

0

f̂(ω)
√

s ψ̂∗(sω)
√

s ψ̂(sω)
ds
s2

=
f̂(ω)
Cψ

Z +∞

0

|ψ̂(sω)|2 ds
s

.

Since ψ is real we know that |ψ̂(−ω)|2 = |ψ̂(ω)|2. The change of variable ξ = sω thus proves that

b̂(ω) =
1

Cψ
f̂(ω)

Z +∞

0

|ψ̂(ξ)|2

ξ
dξ = f̂(ω).

The theorem hypothesis

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞

is called the wavelet admissibility condition. To guarantee that this integral is finite we must
ensure that ψ̂(0) = 0, which explains why we imposed that wavelets must have a zero average.
This condition is nearly sufficient. If ψ̂(0) = 0 and ψ̂(ω) is continuously differentiable then the
admissibility condition is satisfied. One can verify that ψ̂(ω) is continuously differentiable if ψ has
a sufficient time decay ∫ +∞

−∞
(1 + |t|) |ψ(t)| dt < +∞.

Reproducing Kernel Like a windowed Fourier transform, a wavelet transform is a redundant rep-
resentation, whose redundancy is characterized by a reproducing kernel equation. Inserting the
reconstruction formula (4.37) into the definition of the wavelet transform yields

Wf(u0, s0) =

∫ +∞

−∞

(
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)ψu,s(t) du

ds

s2

)
ψ∗

u0,s0
(t) dt.

Interchanging these integrals gives

Wf(u0, s0) =
1

Cψ

∫ +∞

−∞
K(u, u0, s, s0)Wf(u, s) du

ds

s2
, (4.40)

with
K(u0, u, s0, s) = 〈ψu,s,ψu0,s0〉 . (4.41)

The reproducing kernel K(u0, u, s0, s) measures the correlation of two wavelets ψu,s and ψu0,s0 .
The reader can verify that any function Φ(u, s) is the wavelet transform of some f ∈ L2(R) if and
only if it satisfies the reproducing kernel equation (4.40).
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Scaling Function When Wf(u, s) is known only for s < s0, to recover f we need a complement
of information corresponding to Wf(u, s) for s > s0. This is obtained by introducing a scaling
function φ that is an aggregation of wavelets at scales larger than 1. The modulus of its Fourier
transform is defined by

|φ̂(ω)|2 =

∫ +∞

1
|ψ̂(sω)|2

ds

s
=

∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ, (4.42)

and the complex phase of φ̂(ω) can be arbitrarily chosen. One can verify that ‖φ‖ = 1 and we
derive from the admissibility condition (4.36) that

lim
ω→0

|φ̂(ω)|2 = Cψ. (4.43)

The scaling function can thus be interpreted as the impulse response of a low-pass filter. Let us
denote

φs(t) =
1√
s
φ

(
t

s

)
and φ̄s(t) = φ∗

s(−t).

The low-frequency approximation of f at the scale s is

Lf(u, s) =

〈
f(t),

1√
s
φ

(
t− u

s

)〉
= f # φ̄s(u). (4.44)

With a minor modification of the proof of Theorem 4.4, it can be shown that (Exercise 4.6)

f(t) =
1

Cψ

∫ s0

0
Wf(., s) # ψs(t)

ds

s2
+

1

Cψs0
Lf(., s0) # φs0(t). (4.45)

Example 4.7. If ψ is the second order derivative of a Gaussian whose Fourier transform is given
by (4.35), then the integration (4.42) yields

φ̂(ω) =
2σ3/2π1/4

√
3

√
ω2 +

1

σ2
exp

(
−
σ2ω2

2

)
. (4.46)

Figure 4.8 displays φ and φ̂ for σ = 1.
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Figure 4.8: Scaling function associated to a Mexican hat wavelet and its Fourier transform calcu-
lated with (4.46).

4.3.2 Analytic Wavelets

To analyze the time evolution of frequency tones, it is necessary to use an analytic wavelet to
separate the phase and amplitude information of signals. The properties of the resulting analytic
wavelet transform are studied.
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Analytic Signal A function fa ∈ L2(R) is said to be analytic if its Fourier transform is zero for
negative frequencies:

f̂a(ω) = 0 if ω < 0.

An analytic function is necessarily complex but is entirely characterized by its real part. Indeed,
the Fourier transform of its real part f = Re[fa] is

f̂(ω) =
f̂a(ω) + f̂∗

a (−ω)

2
,

and this relation can be inverted:

f̂a(ω) =

{
2 f̂(ω) if ω " 0
0 if ω < 0

. (4.47)

The analytic part fa(t) of a signal f(t) is the inverse Fourier transform of f̂a(ω) defined by (4.47).

Discrete Analytic Part The analytic part fa[n] of a discrete signal f [n] of size N is also computed
by setting to zero the negative frequency components of its discrete Fourier transform. The Fourier
transform values at k = 0 and k = N/2 must be carefully adjusted so that Re[fa] = f (Exercise
3.22):

f̂a[k] =






f̂ [k] if k = 0, N/2
2 f̂ [k] if 0 < k < N/2
0 if N/2 < k < N

. (4.48)

We obtain fa[n] by computing the inverse discrete Fourier transform.

Example 4.8. The Fourier transform of

f(t) = a cos(ω0t + φ) =
a

2

(
exp[i(ω0t + φ)] + exp[−i(ω0t + φ)]

)

is
f̂(ω) = πa

(
exp(iφ) δ(ω − ω0) + exp(−iφ) δ(ω + ω0)

)
.

The Fourier transform of the analytic part computed with (4.47) is f̂a(ω) = 2πa exp(iφ) δ(ω − ω0)
and hence

fa(t) = a exp[i(ω0t + φ)]. (4.49)

Time-Frequency Resolution An analytic wavelet transform is calculated with an analytic wavelet
ψ:

Wf(u, s) = 〈f,ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (4.50)

Its time-frequency resolution depends on the time-frequency spread of the wavelet atoms ψu,s. We
suppose that ψ is centered at 0, which implies that ψu,s is centered at t = u. With the change of
variable v = t−u

s , we verify that

∫ +∞

−∞
(t− u)2 |ψu,s(t)|2 dt = s2 σ2

t , (4.51)

with σ2
t =
∫ +∞
−∞ t2 |ψ(t)|2 dt. Since ψ̂(ω) is zero at negative frequencies, the center frequency η of

ψ̂ is

η =
1

2π

∫ +∞

0
ω |ψ̂(ω)|2 dω. (4.52)

The Fourier transform of ψu,s is a dilation of ψ̂ by 1/s:

ψ̂u,s(ω) =
√

s ψ̂(sω) exp(−iωu) . (4.53)



78 Chapter 4. Time Meets Frequency

Its center frequency is therefore η/s. The energy spread of ψ̂u,s around η/s is

1

2π

∫ +∞

0

(
ω −

η

s

)2 ∣∣∣ψ̂u,s(ω)
∣∣∣
2
dω =

σ2
ω

s2
, (4.54)

with

σ2
ω =

1

2π

∫ +∞

0
(ω − η)2 |ψ̂(ω)|2 dω.

The energy spread of a wavelet time-frequency atom ψu,s thus corresponds to a Heisenberg box
centered at (u, η/s), of size sσt along time and σω/s along frequency. The area of the rectangle
remains equal to σt σω at all scales but the resolution in time and frequency depends on s, as
illustrated in Figure 4.9.

An analytic wavelet transform defines a local time-frequency energy density PW f , which mea-
sures the energy of f in the Heisenberg box of each wavelet ψu,s centered at (u, ξ = η/s):

PW f(u, ξ) = |Wf(u, s)|2 =
∣∣∣Wf
(
u,
η

ξ

)∣∣∣
2
. (4.55)

This energy density is called a scalogram.

0 tσs
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η
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s

|ψ     (ω)|

|ψ   (ω)|^

^

η

Figure 4.9: Heisenberg boxes of two wavelets. Smaller scales decrease the time spread but increase
the frequency support, which is shifted towards higher frequencies.

Completeness An analytic wavelet transform of f depends only on its analytic part fa. The
following theorem derives a reconstruction formula and proves that energy is conserved for real
signals.

Theorem 4.5. For any f ∈ L2(R)

Wf(u, s) =
1

2
Wfa(u, s). (4.56)

If Cψ =
∫ +∞
0 ω−1 |ψ̂(ω)|2 dω < +∞ and f is real then

f(t) =
2

Cψ
Re

[∫ +∞

0

∫ +∞

−∞
Wf(u, s)ψs(t− u) du

ds

s2

]
, (4.57)

and

‖f‖2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (4.58)

Proof. Let us first prove (4.56). The Fourier transform with respect to u of

fs(u) = Wf(u, s) = f % ψ̄s(u)
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is

f̂s(ω) = f̂(ω)
√

s ψ̂∗(sω).

Since ψ̂(ω) = 0 at negative frequencies, and f̂a(ω) = 2f̂(ω) for ω " 0, we derive that

f̂s(ω) =
1
2

f̂a(ω)
√

s ψ̂∗(sω),

which is the Fourier transform of (4.56).

With the same derivations as in the proof of (4.37) one can verify that the inverse wavelet formula
reconstructs the analytic part of f :

fa(t) =
1

Cψ

Z +∞

0

Z +∞

−∞
Wfa(u, s)ψs(t − u)

ds
s2

du. (4.59)

Since f = Re[fa], inserting (4.56) proves (4.57).

An energy conservation for the analytic part fa is proved as in (4.38) by applying the Plancherel
formula: Z +∞

−∞
|fa(t)|2 dt =

1
Cψ

Z +∞

0

Z +∞

−∞
|Waf(u, s)|2 du

ds
s2

.

Since Wfa(u, s) = 2Wf(u, s) and ‖fa‖2 = 2‖f‖2, equation (4.58) follows.

If f is real the change of variable ξ = 1/s in the energy conservation (4.58) proves that

‖f‖2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
PW f(u, ξ) du dξ.

It justifies the interpretation of a scalogram as a time-frequency energy density.

Wavelet Modulated Windows An analytic wavelet can be constructed with a frequency modulation
of a real and symmetric window g. The Fourier transform of

ψ(t) = g(t) exp(iηt) (4.60)

is ψ̂(ω) = ĝ(ω− η). If ĝ(ω) = 0 for |ω| > η then ψ̂(ω) = 0 for ω < 0. Hence ψ is analytic, as shown
in Figure 4.10. Since g is real and even, ĝ is also real and symmetric. The center frequency of ψ̂
is therefore η and

|ψ̂(η)| = sup
ω∈R

|ψ̂(ω)| = ĝ(0). (4.61)

A Gabor wavelet ψ(t) = g(t) eiηt is obtained with a Gaussian window

g(t) =
1

(σ2π)1/4
exp

(
−t2

2σ2

)
. (4.62)

The Fourier transform of this window is ĝ(ω) = (4πσ2)1/4 exp(−σ2ω2/2). If σ2η2 & 1 then ĝ(ω) ≈ 0
for |ω| > η. Such Gabor wavelets are thus considered to be approximately analytic.

ψ(ω)^

^ ω

0 ωη

g(   )

Figure 4.10: Fourier transform ψ̂(ω) of a wavelet ψ(t) = g(t) exp(iηt).
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Example 4.9. The wavelet transform of f(t) = a exp(iω0t) is

Wf(u, s) = a
√

s ψ̂∗(sω0) exp(iω0t) = a
√

s ĝ(sω0 − η) exp(iω0t).

Observe that the normalized scalogram is maximum at ξ = ω0:

ξ

η
PW f(u, ξ) =

1

s
|Wf(u, s)|2 = a2

∣∣∣∣ĝ
(
η
(ω0

ξ
− 1
))∣∣∣∣

2

.

Example 4.10. The wavelet transform of a linear chirp f(t) = exp(iat2) = exp[iφ(t)] is computed
for a Gabor wavelet whose Gaussian window is (4.62). By using the Fourier transform of Gaussian
chirps (2.34) one can verify that

|Wf(u, s)|2

s
=

(
4πσ2

1 + 4s2a2σ4

)1/2

exp

(
−σ2

1 + 4a2s4σ4
(η − 2asu)2

)
.

As long as 4a2s4σ4 2 1, at a fixed time u the renormalized scalogram η−1ξPW f(u, ξ) is a Gaussian
function of s that reaches its maximum at

ξ(u) =
η

s(u)
= φ′(u) = 2 a u. (4.63)

Section 4.4.2 explains why the amplitude is maximum at the instantaneous frequency φ′(u).
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Figure 4.11: (a) Normalized scalogram η−1ξPW f(u, ξ) computed from the signal in Figure 4.3.
Dark points indicate large amplitude coefficients. (b) Complex phase ΘW (u, ξ) of Wf(u, η/ξ),
where the modulus is non-zero.

Example 4.11. Figure 4.11 displays the normalized scalogram η−1ξPW f(u, ξ), and the complex
phase ΘW (u, ξ) of Wf(u, s), for the signal f of Figure 4.3. The frequency bandwidth of wavelet
atoms is proportional to 1/s = ξ/η. The frequency resolution of the scalogram is therefore finer
than the spectrogram at low frequencies but coarser than the spectrogram at higher frequencies.
This explains why the wavelet transform produces interference patterns between the high frequency
Gabor function at the abscissa t = 0.87 and the quadratic chirp at the same location, whereas the
spectrogram in Figure 4.3 separates them well.
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4.3.3 Discrete Wavelets

Let f̄(t) be a continuous time signal defined over [0, 1]. Let f [n] be a the discrete signal obtained
by a low-pass filtering of f̄ and a uniform sampling at intervals N−1. Its discrete wavelet transform
can only be calculated at scales N−1 < s < 1, as shown in Figure 4.7. It is calculated for s = aj ,
with a = 21/v, which provides v intermediate scales in each octave [2j , 2j+1).

Let ψ(t) be a wavelet whose support is included in [−K/2,K/2]. For 1 ! aj ! N K−1, a
discrete wavelet scaled by aj is defined by

ψj [n] =
1√
aj

ψ
( n

aj

)
.

This discrete wavelet has Kaj non-zero values on [−N/2, N/2]. The scale aj is larger than 1
otherwise the sampling interval may be larger than the wavelet support.

Fast Transform To avoid border problems, we treat f [n] and the wavelets ψj [n] as periodic signals
of period N . The discrete wavelet transform can then be written as a circular convolution with
ψ̄j [n] = ψ∗

j [−n]:

Wf [n, aj ] =
N−1∑

m=0

f [m]ψ∗
j [m− n] = f /# ψ̄j [n]. (4.64)

This circular convolution is calculated with the fast Fourier transform algorithm, which requires
O(N log2 N) operations. If a = 21/v, there are v log2(N/(2K)) scales aj ∈ [2N−1,K−1]. The total
number of operations to compute the wavelet transform over all scales is therefore O(vN(log2 N)2)
[407].

To compute the scalogram PW [n, ξ] = |Wf [n, η
ξ ]|2 we calculate Wf [n, s] at any scale s with a

parabola interpolation. Let j be the closest integer to log2 s/log2 a, and p(x) be the parabola such
that

p(j − 1) = Wf [n, aj−1] , p(j) = Wf [n, aj ] , p(j + 1) = Wf [n, aj+1].

A second order interpolation computes

Wf [n, s] = p

(
log2 s

log2 a

)
.

Parabolic interpolations are used instead of linear interpolations in order to locate more precisely
the ridges defined in Section 4.4.2.

Discrete Scaling Filter A wavelet transform computed up to a scale aJ is not a complete signal
representation. It is necessary to add the low frequencies Lf [n, aJ ] corresponding to scales larger
than aJ . A discrete and periodic scaling filter is computed by sampling the scaling function φ(t)
defined in (4.42):

φJ [n] =
1√
aJ

φ
( n

aJ

)
for n ∈ [−N/2, N/2].

Let φ̄J [n] = φ∗
J [−n]. The low frequencies are carried by

Lf [n, aJ ] =
N−1∑

m=0

f [m]φ∗
J [m− n] = f /# φ̄J [n]. (4.65)

Reconstruction An approximate inverse wavelet transform is implemented by discretizing the in-
tegral (4.45). Suppose that aI = 1 is the finest scale. Since ds/s2 = d loge s/s and the discrete
wavelet transform is computed along an exponential scale sequence {aj}j with a logarithmic in-
crement d loge s = loge a, we obtain

f [n] ≈
loge a

Cψ

J∑

j=I

1

aj
Wf [., aj ]/# ψj [n] +

1

Cψ aJ
Lf [., aJ ]/# φJ [n]. (4.66)
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The “.” indicates the variable over which the convolution is calculated. These circular convolutions
are calculated using the FFT, with O(vN(log2 N)2) operations.

Analytic wavelet transforms are often computed over real signals f [n] that have no energy at
low frequencies. The scaling filter component is then negligible. Theorem 4.5 shows that

f [n] ≈
2 loge a

Cψ
Re




J∑

j=I

1

aj
Wf [., aj ]/# ψj [n]



 . (4.67)

The error introduced by the discretization of scales decreases when the number v of voices
per octave increases. However, the approximation of continuous time convolutions with discrete
convolutions also creates high frequency errors. Perfect reconstructions are obtained with a more
careful design of the reconstruction filters (Exercise 4.3). Section 5.2.2 describes an exact inverse
wavelet transform computed at dyadic scales aj = 2j .

4.4 Time-Frequency Geometry of Instantaneous Frequencies

When listening to music, we perceive several frequencies that change with time. In music, it is
associated to the geometric perception of “movements”. This notion of instantaneous frequency
remains to be defined. The time variation of several instantaneous frequencies is measured with
local maxima of windowed Fourier transforms and wavelet transforms. They define a geomet-
ric time-frequency support from which signal approximations are recovered. Audio processing is
implemented by modifying this time-frequency support.

Analytic Instantaneous Frequency A cosine modulation

f(t) = a cos(ω0t + θ0) = a cos θ(t)

has a frequency ω0 that is the derivative of the phase θ(t) = ω0t + θ0. To generalize this notion,
real signals f are written as an amplitude a(t) modulated with a time varying phase θ(t):

f(t) = a(t) cos θ(t) with a(t) " 0 . (4.68)

The instantaneous frequency is defined as a positive derivative of the phase:

ω(t) = θ′(t) " 0 .

The derivative can be chosen to be positive by adapting the sign of θ(t). For a given f(t) there are
many possible choices of a(t) and θ(t) satisfying (4.68), so ω(t) is not uniquely defined relative to
f .

A particular decomposition (4.68) is obtained from the analytic part fa of f , whose Fourier
transform is defined in (4.47) by

f̂a(ω) =

{
2 f̂(ω) if ω " 0
0 if ω < 0

. (4.69)

This complex signal is represented by separating the modulus and the complex phase:

fa(t) = a(t) exp[iθ(t)] . (4.70)

Since f = Re[fa], it follows that

f(t) = a(t) cos θ(t).

We call a(t) the analytic amplitude of f(t) and θ′(t) its instantaneous frequency; they are uniquely
defined.
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Example 4.12. If f(t) = a(t) cos(ω0t + θ0), then

f̂(ω) =
1

2

(
exp(iθ0) â(ω − ω0) + exp(−iθ0) â(ω + ω0)

)
.

If the variations of a(t) are slow compared to the period 2π/ω0, which is achieved by requiring that
the support of â be included in [−ω0,ω0], then

f̂a(ω) = â(ω − ω0) exp(iθ0)

so fa(t) = a(t) exp[i(ω0t + θ0)].

If a signal f is the sum of two sinusoidal waves:

f(t) = a cos(ω1t) + a cos(ω2t),

then

fa(t) = a exp(iω1t) + a exp(iω2t) = 2a cos

(
1

2
(ω1 − ω2) t

)
exp

(
i

2
(ω1 + ω2) t

)
.

The instantaneous frequency is θ′(t) = (ω1 + ω2)/2 and the amplitude is

a(t) = 2a

∣∣∣∣cos

(
1

2
(ω1 − ω2) t

)∣∣∣∣ .

This result is not satisfying because it does not reveal that the signal includes two sinusoidal waves
of the same amplitude. It measures an average frequency value. Next sections explain how to
measure the instantaneous frequencies of several spectral components by separating them with a
windowed Fourier transform or a wavelet transform. We first describe two important applications
of instantaneous frequencies.

Frequency Modulation In signal communications, information can be transmitted through the
amplitude a(t) (amplitude modulation) or the instantaneous frequency θ′(t) (frequency modulation)
[59]. Frequency modulation is more robust in the presence of additive Gaussian white noise. In
addition, it better resists multi-path interferences, which destroy the amplitude information. A
frequency modulation sends a message m(t) through a signal

f(t) = a cos θ(t) with θ′(t) = ω0 + k m(t).

The frequency bandwidth of f is proportional to k. This constant is adjusted depending on the
transmission noise and the available bandwidth. At the reception, the message m(t) is restored
with a frequency demodulation that computes the instantaneous frequency θ′(t) [118].

Additive Sound Models Musical sounds and voiced speech segments can be modeled with sums of
sinusoidal partials:

f(t) =
K∑

k=1

fk(t) =
K∑

k=1

ak(t) cos θk(t) , (4.71)

where ak and θ′k are vary slowly [412, 413]. Such decompositions are useful for pattern recognition
and for modifying sound properties [338]. Sections 4.4.1 and 4.4.2 explain how to compute ak and
the instantaneous frequency θ′k and reconstruct signals from these information.

Reducing or increasing the duration of a sound f by a factor α in time is used by radio broadcast
to adjust recorded sequences to a precise time schedule. A scaling f(αt) transforms each θk(t) in
θk(αt) and hence θ′k(t) in αθ′k(t). For sound reduction, with α > 1 all frequencies are thus increased.
To avoid modifying the values of θ′k and ak, a new sound is synthesized

fα(t) =
K∑

k=1

ak(α t) cos
( 1

α
θk(α t)

)
. (4.72)



84 Chapter 4. Time Meets Frequency

The partials of fα at t = t0/α and the partials of f at t = t0 have the same amplitudes and the
same instantaneous frequencies and the properties of these sounds are thus perceived as identical.

A frequency transposition with same duration is calculated by dividing each phase by a constant
α in order to shift the sound harmonics:

fα(t) =
K∑

k=1

bk(t) cos
(
θk(t)/α

)
. (4.73)

The instantaneous frequency of each partial is now θ′k(t)/α. To maintain the sound properties, the
amplitudes bk(t) must be adjusted in order not to modify the global frequency envelop F (t,ω) of
the harmonics:

ak(t) = F
(
t, θ′k(t)

)
and bk(t) = F

(
t, θ′k(t)/α

)
. (4.74)

Many types of sounds, musical instruments or speech, are produced by an excitation that
propagates across a wave guide. Locally, F (t,ω) is the transfer function of the wave guide. In
speech processing, it is called a formant . This transfer function is often approximated with an
autoregressive filter of order M , in which case:

F (t,ω) =
C

∑M−1
m=0 cm e−imω

. (4.75)

The parameters cm are identified with (4.74) from the ak and the bk are then derived with (4.74)
and (4.75).

4.4.1 Windowed Fourier Ridges

The spectrogram PSf(u, ξ) = |Sf(u, ξ)|2 measures the energy of f in a time-frequency neighbor-
hood of (u, ξ). The ridge algorithm computes the signal instantaneous frequencies and amplitudes
from the local maxima of PSf(u, ξ). These local maxima define a geometric support in the time-
frequency plane. Modifications of sound durations or frequency transpositions are computed with
time or frequency dilations of the ridge support.

Time-frequency ridges were introduced by Delprat, Escudié, Guillemain, Kronland-Martinet,
Tchamitchian and Torrésani [203, 64] to analyze musical sounds. Since then it has found applica-
tions for a wide range of signals [288, 64] that have time varying frequency tones.

The windowed Fourier transform is computed with a symmetric window g(t) = g(−t) whose
support is equal to [−1/2, 1/2]. The Fourier transform ĝ is a real symmetric function. We suppose

that |ĝ(ω)| ! ĝ(0) for all ω ∈ R, and that ĝ(0) =
∫ 1/2
−1/2 g(t) dt is on the order of 1. Table 4.1 gives

several examples of such windows. The window g is normalized so that ‖g‖ = 1. For a fixed scale s,
gs(t) = s−1/2g(t/s) has a support of size s and a unit norm. The corresponding windowed Fourier
atoms are

gs,u,ξ(t) = gs(t− u) eiξt,

and the resulting windowed Fourier transform is

Sf(u, ξ) = 〈f, gs,u,ξ〉 =

∫ +∞

−∞
f(t) gs(t− u) e−iξt dt. (4.76)

The following theorem relates Sf(u, ξ) to the instantaneous frequency of f .

Theorem 4.6. Let f(t) = a(t) cos θ(t). If ξ " 0 then

〈f, gs,u,ξ〉 =

√
s

2
a(u) exp(i[θ(u)− ξu])

(
ĝ(s[ξ − θ′(u)]) + ε(u, ξ)

)
. (4.77)

The corrective term satisfies

|ε(u, ξ)| ! εa,1 + εa,2 + εθ,2 + sup
|ω|"sθ′(u)

|ĝ(ω)| (4.78)
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with

εa,1 !
s |a′(u)|
|a(u)|

, εa,2 ! sup
|t−u|!s/2

s2 |a′′(t)|
|a(u)|

, (4.79)

and if s |a′(u)| |a(u)|−1 ! 1, then

εθ,2 ! sup
|t−u|!s/2

s2|θ′′(t)| . (4.80)

If ξ = θ′(u) then

εa,1 =
s |a′(u)|
|a(u)|

∣∣∣ĝ′
(
2 s θ′(u)

)∣∣∣ . (4.81)

Proof. Observe that

〈f, gs,u,ξ〉 =

Z +∞

−∞
a(t) cos θ(t) gs(t − u) exp(−iξt) dt

=
1
2

Z +∞

−∞
a(t) (exp[iθ(t)] + exp[−iθ(t)]) gs(t − u) exp[−iξt] dt

= I(θ) + I(−θ).

We first concentrate on

I(θ) =
1
2

Z +∞

−∞
a(t) exp[iθ(t)] gs(t − u) exp(−iξt) dt

=
1
2

Z +∞

−∞
a(t + u) eiθ(t+u) gs(t) exp[−iξ(t + u)] dt.

This integral is computed by using second order Taylor expansions:

a(t + u) = a(u) + t a′(u) +
t2

2
α(t) with |α(t)| ! sup

h∈[u,t+u]
|a′′(h)|

θ(t + u) = θ(u) + t θ′(u) +
t2

2
β(t) with |β(t)| ! sup

h∈[u,t+u]
|θ′′(h)| .

We get

2 exp
“
−i(θ(u) − ξu)

”
I(θ) =

Z +∞

−∞
a(u) gs(t) exp

“
−it(ξ − θ′(u))

”
exp
“
i
t2

2
β(t)

”
dt

+

Z +∞

−∞
a′(u) t gs(t) exp

“
−it(ξ − θ′(u))

”
exp
“
i
t2

2
β(t)

”
dt

+
1
2

Z +∞

−∞
α(t) t2 gs(t) exp

“
−i(tξ + θ(u) − θ(t + u))

”
dt .

A first order Taylor expansion of exp(ix) gives

exp
“
i
t2

2
β(t)

”
= 1 +

t2

2
β(t) γ(t) with |γ(t)| ! 1 . (4.82)

Since Z +∞

−∞
gs(t) exp[−it(ξ − θ′(u))] dt =

√
s ĝ(s[ξ − θ′(u)]) ,

inserting (4.82) in the expression of I(θ) yields

˛̨
˛̨I(θ) −

√
s

2
a(u) exp[i(θ(u) − ξu)] ĝ(ξ − θ′(u))

˛̨
˛̨ !

√
s |a(u)|

4
(ε+a,1 + εa,2 + εθ,2) (4.83)
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with

ε+a,1 =
2|a′(u)|
|a(u)|

˛̨
˛̨
Z +∞

−∞
t

1√
s

gs(t) exp[−it(ξ − θ′(u))] dt

˛̨
˛̨ , (4.84)

εa,2 =

Z +∞

−∞
t2 |α(t)| 1√

s
|gs(t)| dt , (4.85)

εθ,2 =

Z +∞

−∞
t2 |β(t)| 1√

s
|gs(t)| dt (4.86)

+
|a′(u)|
|a(u)|

Z +∞

−∞
|t3| |β(t)| 1√

s
|gs(t)|dt.

Applying (4.83) to I(−θ) gives

|I(−θ)| !

√
s |a(u)|

2
|ĝ(ξ + θ′(u))| +

√
s |a(u)|

4
(ε−a,1 + εa,2 + εθ,2) ,

with

ε−a,1 =
2|a′(u)|
|a(u)|

˛̨
˛̨
Z +∞

−∞
t

1√
s

gs(t) exp[−it(ξ + θ′(u))] dt

˛̨
˛̨ . (4.87)

Since ξ " 0 and θ′(u) " 0, we derive that

|ĝ(s[ξ + θ′(u)])| ! sup
|ω|"sθ′(u)

|ĝ(ω)| ,

and hence

I(θ) + I(−θ) =

√
s

2
a(u) exp[i(θ(u) − ξu)]

“
ĝ
`
s[ξ − θ′(u)]

´
+ ε(u, ξ)

”

with

ε(u, ξ) =
ε+a,1 + ε−a,1

2
+ εa,2 + εθ,2 + sup

|ω|"s|θ′(u)|
|ĝ(ω)| .

Let us now verify the upper bound (4.79) for εa,1 = (ε+a,1 + ε−a,1)/2. Since gs(t) = s−1/2g(t/s), a
simple calculation shows that for n " 0

Z +∞

−∞
|t|n 1√

s
|gs(t)| dt = sn

Z 1/2

−1/2

|t|n |g(t)| dt !
sn

2n
‖g‖2 =

sn

2n
. (4.88)

Inserting this for n = 1 in (4.84) and (4.87) gives

εa,1 =
ε+a,1 + ε−a,1

2
!

s |a′(u)|
|a(u)| .

The upper bounds (4.79) and (4.80) of the second order terms εa,2 and εθ,2 are obtained by observing
that the remainder α(t) and β(t) of the Taylor expansion of a(t + u) and θ(t + u) satisfy

sup
|t|!s/2

|α(t)| ! sup
|t−u|!s/2

|a′′(t)| , sup
|t|!s/2

|β(t)| ! sup
|t−u|!s/2

|θ′′(t)|. (4.89)

Inserting this in (4.85) yields

εa,2 ! sup
|t−u|!s/2

s2 |a′′(t)|
|a(u)| .

When s |a′(u)||a(u)|−1
! 1, replacing |β(t)| by its upper bound in (4.86) gives

εθ,2 !
1
2

“
1 +

s |a′(u)|
|a(u)|

”
sup

|t−u|!s/2
s2|θ′′(t)| ! sup

|t−u|!s/2
s2|θ′′(t)|.

Let us finally compute εa when ξ = θ′(u). Since g(t) = g(−t), we derive from (4.84) that

ε+a,1 =
2|a′(u)|
|a(u)|

˛̨
˛̨
Z +∞

−∞
t

1√
s

gs(t) dt

˛̨
˛̨ = 0 .

We also derive from (2.22) that the Fourier transform of t 1√
s
gs(t) is i s ĝ′(sω), so (4.87) gives

εa =
1
2
ε−a,1 =

s|a′(u)|
|a(u)| |ĝ′(2sθ′(u))| .



4.4. Instantaneous Frequency 87

Delprat et al. [203] give a different proof of a similar result when g(t) is a Gaussian, using a
stationary phase approximation. If we can neglect the corrective term ε(u, ξ) we shall see that
(4.77) enables us to measure a(u) and θ′(u) from Sf(u, ξ). This implies that the decomposition
f(t) = a(t) cos θ(t) is uniquely defined. By reviewing the proof of Theorem 4.6, one can verify that
a and θ′ are the analytic amplitude and instantaneous frequencies of f .

The expressions (4.79, 4.80) show that the three corrective terms εa,1, εa,2 and εθ,2 are small
if a(t) and θ′(t) have small relative variations over the support of the window gs. Let ∆ω be the
bandwidth of ĝ defined by

|ĝ(ω)|2 1 for |ω| " ∆ω. (4.90)

The term sup
|ω|"s|θ′(u)|

|ĝ(ω)| of ε(u, ξ) is negligible if

θ′(u) "
∆ω

s
.

Ridge Points Let us suppose that a(t) and θ′(t) have small variations over intervals of size s and
that θ′(t) " ∆ω/s so that the corrective term ε(u, ξ) in (4.77) can be neglected. Since |ĝ(ω)| is
maximum at ω = 0, (4.77) shows that for each u the spectrogram |Sf(u, ξ)|2 = |〈f, gs,u,ξ〉|2 is
maximum at ξ(u) = θ′(u). The corresponding time-frequency points (u, ξ(u)) are called ridges. At
ridge points, (4.77) becomes

Sf(u, ξ) =

√
s

2
a(u) exp(i[θ(u)− ξu])

(
ĝ(0) + ε(u, ξ)

)
. (4.91)

Theorem 4.6 proves that the ε(u, ξ) is smaller at a ridge point because the first order term εa,1

becomes negligible in (4.81). This is shown by verifying that |ĝ′(2sθ′(u))| is negligible when sθ′(u) "

∆ω. At ridge points, the second order terms εa,2 and εθ,2 are predominant in ε(u, ξ).
The ridge frequency gives the instantaneous frequency ξ(u) = θ′(u) and the amplitude is cal-

culated by

a(u) =
2
∣∣Sf
(
u, ξ(u)

)∣∣
√

s |ĝ(0)|
. (4.92)

Let ΘS(u, ξ) be the complex phase of Sf(u, ξ). If we neglect the corrective term, then (4.91) proves
that ridges are also points of stationary phase:

∂ΘS(u, ξ)

∂u
= θ′(u)− ξ = 0.

Testing the stationarity of the phase locates the ridges more precisely.

Multiple Frequencies When the signal contains several spectral lines whose frequencies are suffi-
ciently apart, the windowed Fourier transform separates each of these components and the ridges
detect the evolution in time of each spectral component. Let us consider

f(t) = a1(t) cos θ1(t) + a2(t) cos θ2(t),

where ak(t) and θ′k(t) have small variations over intervals of size s and sθ′k(t) " ∆ω. Since the
windowed Fourier transform is linear, we apply (4.77) to each spectral component and neglect the
corrective terms:

Sf(u, ξ) =

√
s

2
a1(u) ĝ(s[ξ − θ′1(u)]) exp(i[θ1(u)− ξu])

+

√
s

2
a2(u) ĝ(s[ξ − θ′2(u)]) exp(i[θ2(u)− ξu]) . (4.93)

The two spectral components are discriminated if for all u

ĝ(s|θ′1(u)− θ′2(u)|)2 1, (4.94)
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which means that the frequency difference is larger than the bandwidth of ĝ(sω):

|θ′1(u)− θ′2(u)| "
∆ω

s
. (4.95)

In this case, when ξ = θ′1(u), the second term of (4.93) can be neglected and the first term generates
a ridge point from which we may recover θ′1(u) and a1(u), using (4.92). Similarly, if ξ = θ′2(u) the
first term can be neglected and we have a second ridge point that characterizes θ′2(u) and a2(u).
The ridge points are distributed along two time-frequency lines ξ(u) = θ′1(u) and ξ(u) = θ′2(u).
This result is valid for any number of time varying spectral components, as long as the distance
between any two instantaneous frequencies satisfies (4.95). If two spectral lines are too close, they
interfere, which destroys the ridge pattern.

Time-Frequency Ridge Support The number of instantaneous frequencies is typically unknown.
The ridge support Λ is thus defined as the set of all (u, ξ) which are local maxima of |Sf(u, ξ)|2
for u fixed and ξ varying and points of stationary phase ∂ΘS(u, ξ)/∂u ≈ 0. This support is often
reduced by removing small ridge amplitudes |Sf(u, ξ)| that are mostly dominated by the noise,
or because smaller ridges may be “shadows” of other instantaneous frequencies created by the
side-lobes of ĝ(ω).

Let {gs,u,ξ}(u,ξ)∈Λ be the set of ridge atoms. For discrete signals, there is a finite number of
ridge points, which thus define a frame of the space VΛ they generate. A ridge signal approximation
is computed as an orthogonal projection of f on VΛ. Section 5.1.3 shows that it is obtained with
the dual frame {g̃Λ,u,ξ}(u,ξ)∈Λ of {gs,u,ξ}(u,ξ)∈Λ in VΛ:

fΛ =
∑

(u,ξ)∈Λ

Sf(u, ξ) g̃Λ,u,ξ (4.96)

The dual synthesis algorithm of Section 5.1.3 computes this orthogonal projection by inverting the
symmetric operator

Lh =
∑

(u,ξ)∈Λ

〈h, gs,u,ξ〉 gs,u,ξ . (4.97)

The inversion requires to iterate on this operator many times. If there are few ridge points then
(4.97) is efficiently computed by evaluating the inner product and the sum only for (u, ξ) ∈ Λ. If
there many ridge points, it can be more efficient to compute the full windowed Fourier transform
Sh(u, ξ) = 〈h, gs,u,ξ〉 with the FFT algorithm described in Section 4.2.3, set to zero all coefficients
for (u, ξ) /∈ Λ, and apply the fast inverse windowed Fourier transform over all coefficients. The
normalization factor N−1 in (4.28) must be removed (set to 1) to implement (4.97).
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Figure 4.12: Support of larger amplitude ridges calculated from the spectrogram in Figure 4.3.
These ridges give the instantaneous frequencies of the linear and quadratic chirps, and of the low
and high frequency transients at t = 0.5 and t = 0.87.

Figure 4.12 displays the ridge support computed from the modulus and phase of the windowed
Fourier transform shown in Figure 4.3. For t ∈ [0.4, 0.5], the instantaneous frequencies of the linear
chirp and the quadratic chirps are close and the frequency resolution of the window is not sufficient
to discriminate them. As a result, the ridges detect a single average instantaneous frequency.
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Time Scaling and Frequency Transpositions A reduction of sound duration by a factor α is imple-
mented according to the deformation model (4.72), by dilating in time the ridge support Λ:

Λα = {(u, ξ) : (αu, ξ) ∈ Λ} . (4.98)

The windowed-Fourier coefficients c(u, ξ) in Λα are derived from the modulus and phase of ridge
coefficients

∀(v, ξ) ∈ Λα , c(v, ξ) = |Sf(αv, ξ)| eiΘS(αv,ξ)/α . (4.99)

The scaled signal is reconstructed from these coefficients, with the dual synthesis algorithm of
Section 5.1.3, as in (4.96):

fα =
∑

(v,ξ)∈Λα

c(v, ξ) g̃Λα,v,ξ .

Similarly, a sound transposition is implemented according to the transposition model (4.73) by
dilating in frequency the ridge support Λ:

Λα = {(u, ξ) : (u,αξ) ∈ Λ} . (4.100)

The transposed coefficient amplitudes |c(u, ξ)| in Λα are calculated with (4.74). At any fixed
time u0, the ridge amplitudes at all frequencies {a(u0, ξ) = |Sf(u0, ξ)}(u0,ξ)∈Λ are mapped to
a transposed amplitudes {b(u0, η)}(u0,η)∈Λα

at frequencies η = ξ/α, by computing a frequency
envelop. The resulting ridge coefficients are

∀(u, η) ∈ Λα , c(u, η) = b(u, η) eiΘS(u,αη)/α . (4.101)

The transposed signal is reconstructed with the dual synthesis algorithm of Section 5.1.3:

fα =
∑

(u,η)∈Λα

c(u, η) g̃Λα,u,η .

Choice of Window The measurement of instantaneous frequencies at ridge points is valid only if
the size s of the window gs is sufficiently small so that the second order terms εa,2 and εθ,2 in
(4.79) and (4.80) are small:

sup
|t−u|!s/2

s2 |a′′
k(t)|

|ak(u)|
2 1 and sup

|t−u|!s/2
s2|θ′′k(t)|2 1 . (4.102)

On the other hand, the frequency bandwidth ∆ω/s must also be sufficiently small to discriminate
consecutive spectral components in (4.95). The window scale s must therefore be adjusted as a
trade-off between both constraints.

Table 4.1 gives the spectral parameters of several windows of compact support. For instanta-
neous frequency detection, it is particularly important to ensure that ĝ has negligible side-lobes
at ±ω0, as illustrated by Figure 4.4. The reader can verify with (4.77) that these side-lobes “re-
act” to an instantaneous frequency θ′(u) by creating shadow maxima of |Sf(u, ξ)|2 at frequencies
ξ = θ′(u) ± ω0. The ratio of the amplitude of these shadow maxima to the amplitude of the main
local maxima at ξ = θ′(u) is |ĝ(ω0)|2 |ĝ(0)|−2. They can be removed by thresholding or by testing
the stationarity of the phase.

Example 4.13. The sum of two parallel linear chirps

f(t) = a1 cos(bt2 + ct) + a2 cos(bt2) (4.103)

has two instantaneous frequencies θ′1(t) = 2bt + c and θ′2(t) = 2bt. Figure 4.13 gives a numerical
example. The window gs has enough frequency resolution to discriminate both chirps if

|θ′1(t)− θ′2(t)| = |c| "
∆ω

s
. (4.104)
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Figure 4.13: Sum of two parallel linear chirps. (a): Spectrogram PSf(u, ξ) = |Sf(u, ξ)|2. (b):
Ridge support calculated from the spectrogram.
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Its time support is small enough compared to their time variation if

s2 |θ′′1 (u)| = s2 |θ′′2 (u)| = 2 b s2 2 1. (4.105)

Conditions (4.104) and (4.105) prove that there exists an appropriate window g if and only if

c√
b
& ∆ω. (4.106)

Since g is a smooth window with a support [−1/2, 1/2], its frequency bandwidth ∆ω is on the order
of 1. The linear chirps in Figure 4.13 satisfy (4.106). Their ridges are computed with the truncated
Gaussian window of Table 4.1, with s = 0.5.
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Figure 4.14: Sum of two hyperbolic chirps. (a): Spectrogram PSf(u, ξ). (b): Ridge support
calculated from the spectrogram

Example 4.14. The hyperbolic chirp

f(t) = cos

(
α

β − t

)

for 0 ! t < β has an instantaneous frequency

θ′(t) =
α

(β − t)2
,

which varies quickly when t is close to β. The instantaneous frequency of hyperbolic chirps goes
from 0 to +∞ in a finite time interval. This is particularly useful for radars. These chirps are
also emitted by the cruise sonars of bats [203].
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The instantaneous frequency of hyperbolic chirps cannot be estimated with a windowed Fourier
transform because for any fixed window size the instantaneous frequency varies too quickly at high
frequencies. When u is close enough to β then (4.102) is not satisfied because

s2|θ′′(u)| =
s2α

(β − u)3
> 1.

Figure 4.14 shows a signal that is a sum of two hyperbolic chirps:

f(t) = a1 cos

(
α1

β1 − t

)
+ a2 cos

(
α2

β2 − t

)
, (4.107)

with β1 = 0.68 and β2 = 0.72. At the beginning of the signal, the two chirps have close instantaneous
frequencies that are discriminated by the windowed Fourier ridge computed with a large size window.
When getting close to β1 and β2, the instantaneous frequency varies too quickly relative to the
window size. The resulting ridges cannot follow these instantaneous frequencies.

4.4.2 Wavelet Ridges

Windowed Fourier atoms have a fixed scale and thus cannot follow the instantaneous frequency
of rapidly varying events such as hyperbolic chirps. In contrast, an analytic wavelet transform
modifies the scale of its time-frequency atoms. The ridge algorithm of Delprat et al. [203] is
extended to analytic wavelet transforms to accurately measure frequency tones that are rapidly
changing at high frequencies.

An approximately analytic wavelet is constructed in (4.60) by multiplying a window g with a
sinusoidal wave:

ψ(t) = g(t) exp(iηt) .

As in the previous section, g is a symmetric window with a support equal to [−1/2, 1/2], and a
unit norm ‖g‖ = 1. Let ∆ω be the bandwidth of ĝ defined in (4.90). If η > ∆ω then

∀ω < 0 , ψ̂(ω) = ĝ(ω − η)2 1 .

The wavelet ψ is not strictly analytic because its Fourier transform is not exactly equal to zero at
negative frequencies.

Dilated and translated wavelets can be rewritten

ψu,s(t) =
1√
s
ψ

(
t− u

s

)
= gs,u,ξ(t) exp(−iξu) ,

with ξ = η/s and

gs,u,ξ(t) =
√

s g

(
t− u

s

)
exp(iξt).

The resulting wavelet transform uses time-frequency atoms similar to those of a windowed Fourier
transform (4.76) but in this case the scale s varies over R+ while ξ = η/s:

Wf(u, s) = 〈f,ψu,s〉 = 〈f, gs,u,ξ〉 exp(iξu) .

Theorem 4.6 computes 〈f, gs,u,ξ〉 when f(t) = a(t) cos θ(t), which gives

Wf(u, s) =

√
s

2
a(u) exp[iθ(u)]

(
ĝ(s[ξ − θ′(u)]) + ε(u, ξ)

)
. (4.108)

The corrective term ε(u, ξ) is negligible if a(t) and θ′(t) have small variations over the support of
ψu,s and if θ′(u) " ∆ω/s.
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Ridge Detection The instantaneous frequency is measured from ridges defined over the wavelet
transform. The normalized scalogram defined by

ξ

η
PW f(u, ξ) =

|Wf(u, s)|2

s
for ξ = η/s

is calculated with (4.108):

ξ

η
PW f(u, ξ) =

1

4
a2(u)

∣∣∣∣ĝ
(
η
[
1−

θ′(u)

ξ

])
+ε(u, ξ)

∣∣∣∣
2

.

Since |ĝ(ω)| is maximum at ω = 0, if we neglect ε(u, ξ), this expression shows that the scalogram
is maximum at η

s(u)
= ξ(u) = θ′(u) . (4.109)

The corresponding points (u, ξ(u)) are called wavelet ridges. The analytic amplitude is given by

a(u) =
2
√
η−1ξ PW f(u, ξ)

|ĝ(0)|
. (4.110)

The complex phase of Wf(u, s) in (4.108) is ΘW (u, ξ) = θ(u). At ridge points,

∂ΘW (u, ξ)

∂u
= θ′(u) = ξ. (4.111)

When ξ = θ′(u), the first order term εa,1 calculated in (4.81) becomes negligible. The corrective
term is then dominated by εa,2 and εθ,2. To simplify their expression, we approximate the sup of
a′′ and θ′′ in the neighborhood of u by their value at u. Since s = η/ξ = η/θ′(u), (4.79) and (4.80)
imply that these second order terms become negligible if

η2

|θ′(u)|2
|a′′(u)|
|a(u)|

2 1 and η2 |θ′′(u)|
|θ′(u)|2

2 1. (4.112)

The presence of θ′ in the denominator proves that a′ and θ′ must have slow variations if θ′ is small
but may vary much more quickly for large instantaneous frequencies.

Multispectral Estimation Suppose that f is a sum of two spectral components:

f(t) = a1(t) cos θ1(t) + a2(t) cos θ2(t).

As in (4.94), we verify that the second instantaneous frequency θ′2 does not interfere with the ridge
of θ′1 if the dilated window has a sufficient spectral resolution at the ridge scale s = η/ξ = η/θ′1(u):

ĝ(s|θ′1(u)− θ′2(u)|)2 1. (4.113)

Since the bandwidth of ĝ(ω) is ∆ω, this means that

|θ′1(u)− θ′2(u)|
θ′1(u)

"
∆ω

η
. (4.114)

Similarly, the first spectral component does not interfere with the second ridge located at s =
η/ξ = η/θ′2(u) if

|θ′1(u)− θ′2(u)|
θ′2(u)

"
∆ω

η
. (4.115)

To separate spectral lines whose instantaneous frequencies are close, these conditions prove that
the wavelet must have a small octave bandwidth ∆ω/η. The bandwidth ∆ω is a fixed constant,
which is on the order of 1. The frequency η is a free parameter whose value is chosen as a trade-off
between the time-resolution condition (4.112) and the frequency bandwidth conditions (4.114) and
(4.115).

Figure 4.15 displays the ridges computed from the normalized scalogram and the wavelet phase
shown in Figure 4.11. The ridges of the high frequency transient located at t = 0.87 have oscillations
because of the interferences with the linear chirp above. The frequency separation condition (4.114)
is not satisfied. This is also the case in the time interval [0.35, 0.55], where the instantaneous
frequencies of the linear and quadratic chirps are too close.
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Figure 4.15: Ridge support calculated from the scalogram shown in Figure 4.11. Compare with
the windowed Fourier ridges in Figure 4.12.
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Figure 4.16: (a): Normalized scalogram η−1ξPW f(u, ξ) of two parallel linear chirps shown in Figure
4.13. (b): Wavelet ridges.
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Ridge Support and Processing The wavelet ridge support Λ of f is the set of all ridge points (u, s)
in the time-scale plane or (u, ξ = η/s) in the time-frequency plane, corresponding to local maxima
of |Wf(u, s)|/s for a fixed u and s varying, where the complex phase ΘW (u, s) nearly satisfies
(4.111).

As in the windowed Fourier case, an orthogonal projection is computed over the space VΛ

generated by the ridge wavelets {ψu,s}(u,s)∈Λ, by using the dual wavelet frame {ψ̃Λ,u,s}(u,s)∈Λ:

fΛ =
∑

(u,s)∈Λ

Wf(u, s) ψ̃Λ,u,s , (4.116)

It is implemented with the dual synthesis algorithm of Section 5.1.3, by inverting the symmetric
operator

Lh =
∑

(u,s)∈Λ

〈h,ψu,s〉ψu,s , (4.117)

which is performed by computing this operator many times. When there are many ridge points,
instead of computing this sum only for (u, s) ∈ Λ, it may require less operations to compute
Wf(u, s) with the fast wavelet transform algorithm of Section 4.3.3. All coefficients (u, s) /∈ Λ
are set to zero, and the fast inverse wavelet transform algorithm is applied. The inverse wavelet
transform formula (4.66) must be modified by removing the renormalization factor a−j and a−J

in the sum (set them to 1), to implement the operator (4.117).
Like in the windowed Fourier case, modifications of the sound durations or frequency transpo-

sitions are computed with by modifying the ridge support. A reduction of sound duration by a
factor α transforms the ridge support Λ into:

Λα = {(u, s) : (αu, s) ∈ Λ} . (4.118)

A sound transposition is implemented by modifying the scales of the time-scale ridge support Λ,
which defines:

Λα = {(u, s) : (u, s/α) ∈ Λ} . (4.119)

The wavelet coefficients over these supports are derived from the deformation model (4.72) or
(4.74), similarly to (4.99) and (4.101) for the windowed Fourier transform. Processed signal are
recovered from the modified wavelet coefficients and modified supports with the dual synthesis
algorithm of Section 5.1.3.

Example 4.15. The instantaneous frequencies of two linear chirps

f(t) = a1 cos(b t2 + c t) + a2 cos(b t2)

are not well measured by wavelet ridges. Indeed

|θ′2(u)− θ′1(u)|
θ′1(u)

=
c

b t

converges to zero when t increases. When it is smaller than ∆ω/η the two chirps interact and
create interference patterns like those in Figure 4.16. The ridges follow these interferences and do
not estimate properly the two instantaneous frequencies, as opposed to the windowed Fourier ridges
shown in Figure 4.13.

Example 4.16. The instantaneous frequency of a hyperbolic chirp

f(t) = cos

(
α

β − t

)

is θ′(t) = α (1− t)−2. Wavelet ridges can measure this instantaneous frequency if the time resolu-
tion condition (4.112) is satisfied:

η2 2
θ′(t)2

|θ′′(t)|
=

α

|t− β|
.
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Figure 4.17: (a): Normalized scalogram η−1ξPW f(u, ξ) of two hyperbolic chirps shown in Figure
4.14. (b): Wavelet ridges.

This is the case if |t− β| is not too large.
Figure 4.17 displays the scalogram and the ridges of two hyperbolic chirps

f(t) = a1 cos

(
α1

β1 − t

)
+ a2 cos

(
α2

β2 − t

)
,

with β1 = 0.68 and β2 = 0.72. As opposed to the windowed Fourier ridges shown in Figure
4.14, the wavelet ridges follow the rapid time modification of both instantaneous frequencies. This
is particularly useful in analyzing the returns of hyperbolic chirps emitted by radars or sonars.
Several techniques have been developed to detect chirps with wavelet ridges in presence of noise
[150, 455].

Better is More Sparse The linear and hyperbolic chirp examples show that the best transform
depends upon the signal time-frequency property. All examples also show that when the time-
frequency transform has a resolution adapted to the signal time-frequency properties then the
number of ridge points is reduced. Indeed, if signal structures do not match the dictionary time-
frequency atoms then their energy is diffused over many more atoms, which produces more local
maxima. Sparsity thus appears as a natural criteria to adjust the resolution of time-frequency
transforms.

Section 12.3.3 studies sparse time-frequency decompositions in very redundant Gabor time-
frequency dictionaries, including windowed Fourier atoms and wavelet atoms, with a computation-
ally more intensive matching pursuit algorithm.

4.5 Quadratic Time-Frequency Energy

The wavelet and windowed Fourier transforms are computed by correlating the signal with families
of time-frequency atoms. The time and frequency resolution of these transforms is thus limited
by the time-frequency resolution of the corresponding atoms. Ideally, one would like to define a
density of energy in a time-frequency plane, with no loss of resolution.
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The Wigner-Ville distribution is a time-frequency energy density computed by correlating f
with a time and frequency translation of itself. Despite its remarkable properties, the application
of Wigner-Ville distributions is limited by the existence of interference terms. These interferences
can be attenuated by a time-frequency averaging, but this results in a loss of resolution. It is
proved that the spectrogram, the scalogram and all squared time-frequency decompositions can
be written as a time-frequency averaging of the Wigner-Ville distribution, which gives a common
framework to relate these transforms.

4.5.1 Wigner-Ville Distribution

To analyze time-frequency structures, in 1948 Ville [475] introduced in signal processing a quadratic
form that had been studied by Wigner [484] in a 1932 article on quantum thermodynamics:

PV f(u, ξ) =

∫ +∞

−∞
f
(
u +

τ

2

)
f∗
(
u−

τ

2

)
e−iτξ dτ. (4.120)

The Wigner-Ville distribution remains real because it is the Fourier transform of f(u+ τ/2)f∗(u−
τ/2), which has a Hermitian symmetry in τ . Time and frequency have a symmetrical role. This
distribution can also be rewritten as a frequency integration by applying the Parseval formula:

PV f(u, ξ) =
1

2π

∫ +∞

−∞
f̂
(
ξ +

γ

2

)
f̂∗
(
ξ −

γ

2

)
eiγu dγ. (4.121)

Time-Frequency Support The Wigner-Ville transform localizes the time-frequency structures of
f . If the energy of f is well concentrated in time around u0 and in frequency around ξ0 then PV f
has its energy centered at (u0, ξ0), with a spread equal to the time and frequency spread of f . This
property is illustrated by the following theorem, which relates the time and frequency support of
PV f to the support of f and f̂ .

Theorem 4.7. • If the support of f is [u0 − T/2, u0 + T/2], then for all ξ the support in u of
PV f(u, ξ) is included in this interval.

• If the support of f̂ is [ξ0 − ∆/2, ξ0 + ∆/2], then for all u the support in ξ of PV f(u, ξ) is
included in this interval.

Proof. Let f̄(t) = f(−t). The Wigner-Ville distribution is rewritten

PV f(u, ξ) =

Z +∞

−∞
f

„
τ + 2u

2

«
f̄∗
„
τ − 2u

2

«
e−iξτ dτ. (4.122)

Suppose that f has a support equal to [u0 −T/2, u0 +T/2]. The supports of f(τ/2+u) and f̄(τ/2−u)
are then respectively

[2(u0 − u) − T, 2(u0 − u) + T ] and [−2(u0 + u) − T,−2(u0 + u) + T ].

The Wigner-Ville integral (4.122) shows that PV f(u, ξ) is non-zero if these two intervals overlap, which
is the case only if |u0−u| < T . The support of PV f(u, ξ) along u is therefore included in the support of
f . If the support of f̂ is an interval, then the same derivation based on (4.121) shows that the support
of PV f(u, ξ) along ξ is included in the support of f̂ .

Example 4.17. Theorem 4.7 proves that the Wigner-Ville distribution does not spread the time or
frequency support of Diracs or sinusoids, unlike windowed Fourier and wavelet transforms. Direct
calculations yield

f(t) = δ(u− u0) =⇒ PV f(u, ξ) = δ(u− u0) , (4.123)

f(t) = exp(iξ0t) =⇒ PV f(u, ξ) =
1

2π
δ(ξ − ξ0) . (4.124)
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Example 4.18. If f is a smooth and symmetric window then its Wigner-Ville distribu-
tion PV f(u, ξ) is concentrated in a neighborhood of u = ξ = 0. A Gaussian f(t) =
(σ2π)−1/4 exp(−t2/(2σ2)) is transformed into a two-dimensional Gaussian because its Fourier
transform is also a Gaussian (2.32) and one can verify that

PV f(u, ξ) =
1

π
exp

(
−u2

σ2
− σ2ξ2

)
. (4.125)

In this particular case PV f(u, ξ) = |f(u)|2|f̂(ξ)|2.

The Wigner-Ville distribution has important invariance properties. A phase shift does not
modify its value:

f(t) = eiθ g(t) =⇒ PV f(u, ξ) = PV g(u, ξ) . (4.126)

When f is translated in time or frequency, its Wigner-Ville transform is also translated:

f(t) = g(t− u0) =⇒ PV f(u, ξ) = PV g(u− u0, ξ) , (4.127)

f(t) = exp(iξ0t)g(t) =⇒ PV f(u, ξ) = PV g(u, ξ − ξ0) . (4.128)

If f is scaled by s and thus f̂ is scaled by 1/s then the time and frequency parameters of PV f are
also scaled respectively by s and 1/s

f(t) =
1√
s

g
( t

s

)
=⇒ PV f(u, ξ) = PV f

(u

s
, sξ
)

. (4.129)

Example 4.19. If g is a smooth and symmetric window then PV g(u, ξ) has its energy concentrated
in the neighborhood of (0, 0). The time-frequency atom

f0(t) =
a√
s

exp(iθ0) g
( t− u0

s

)
exp(iξ0t) .

has a Wigner-Ville distribution that is calculated with (4.126), (4.127) and (4.128):

PV f0(u, ξ) = |a|2 PV g
(u− u0

s
, s(ξ − ξ0)

)
. (4.130)

Its energy is thus concentrated in the neighborhood of (u0, ξ0), on an ellipse whose axes are propor-
tional to s in time and 1/s in frequency.

Instantaneous Frequency Ville’s original motivation for studying time-frequency decompositions
was to compute the instantaneous frequency of a signal [475]. Let fa be the analytic part of f
obtained in (4.69) by setting to zero f̂(ω) for ω < 0. We write fa(t) = a(t) exp[iθ(t)] to define
the instantaneous frequency ω(t) = θ′(t). The following theorem proves that θ′(t) is the “average”
frequency computed relative to the Wigner-Ville distribution PV fa.

Theorem 4.8. If fa(t) = a(t) exp[iθ(t)] then

θ′(u) =

∫ +∞
−∞ ξ PV fa(u, ξ) dξ
∫ +∞
−∞ PV fa(u, ξ) dξ

. (4.131)

Proof. To prove this result, we verify that any function g satisfies
Z Z

ξ g
“
u +

τ
2

”
g∗
“
u − τ

2

”
exp(−iτξ) dξ dτ = −πi

h
g′(u) g∗(u) − g(u) g∗′(u)

i
. (4.132)

This identity is obtained by observing that the Fourier transform of iξ is the derivative of a Dirac,
which gives an equality in the sense of distributions:

Z +∞

−∞
ξ exp(−iτξ) dξ = −i 2π δ′(τ).
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Since
R +∞
−∞ δ′(τ) h(τ)dτ = −h′(0), inserting h(τ) = g(u + τ/2) g∗(u − τ/2) proves (4.132). If g(u) =

fa(u) = a(u) exp[iθ(u)] then (4.132) gives
Z +∞

−∞
ξ PV fa(u, ξ) dξ = 2π a2(u) θ′(u).

We will see in (4.136) that |fa(u)|2 = (2π)−1
R +∞
−∞ PV fa(u, ξ) dξ, and since |fa(u)|2 = a(u)2 we derive

(4.131).

This theorem shows that for a fixed u the mass of PV fa(u, ξ) is typically concentrated in the
neighborhood of the instantaneous frequency ξ = θ′(u). For example, a linear chirp f(t) = exp(iat2)
is transformed into a Dirac located along the instantaneous frequency ξ = θ′(u) = 2au:

PV f(u, ξ) = δ(ξ − 2au).

Similarly, the multiplication of f by a linear chirp exp(iat2) makes a frequency translation of PV f
by the instantaneous frequency 2au:

f(t) = exp(iat2) g(t) =⇒ PV f(u, ξ) = PV g(u, ξ − 2au) . (4.133)

Energy Density The Moyal [378] formula proves that the Wigner-Ville transform is unitary, which
implies energy conservation properties.

Theorem 4.9 (Moyal). For any f and g in L2(R)

∣∣∣∣

∫ +∞

−∞
f(t) g∗(t) dt

∣∣∣∣

2

=
1

2π

∫ ∫
PV f(u, ξ)PV g(u, ξ) du dξ. (4.134)

Proof. Let us compute the integral

I =

Z Z
PV f(u, ξ) PV g(u, ξ) du dξ

=

Z Z Z Z
f
“
u +

τ
2

”
f∗
“
u − τ

2

”
g
“
u +

τ ′

2

”
g∗
“
u − τ ′

2

”

exp[−iξ(τ + τ ′)] dτ dτ ′ du dξ.

The Fourier transform of h(t) = 1 is ĥ(ω) = 2πδ(ω), which means that we have a distribution equalityR
exp[−iξ(τ + τ ′)]dξ = 2πδ(τ + τ ′). As a result,

I = 2π

Z Z Z
f
“
u +

τ
2

”
f∗
“
u − τ

2

”
g
“
u +

τ ′

2

”
g∗
“
u − τ ′

2

”
δ(τ + τ ′) dτ dτ ′ du

= 2π

Z Z
f
“
u +

τ
2

”
f∗
“
u − τ

2

”
g
“
u − τ

2

”
g∗
“
u +

τ
2

”
dτ du.

The change of variable t = u + τ/2 and t′ = u − τ/2 yields (4.134).

One can consider |f(t)|2 and |f̂(ω)|2/(2π) as energy densities in time and frequency that satisfy a
conservation equation:

‖f‖2 =

∫ +∞

−∞
|f(t)|2 dt =

1

2π

∫ +∞

−∞
|f̂(ω)|2 dω.

The following theorem shows that these time and frequency densities are recovered with marginal
integrals over the Wigner-Ville distribution.

Theorem 4.10. For any f ∈ L2(R)
∫ +∞

−∞
PV f(u, ξ) du = |f̂(ξ)|2, (4.135)

and
1

2π

∫ +∞

−∞
PV f(u, ξ) dξ = |f(u)|2. (4.136)
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Proof. The frequency integral (4.121) proves that the one-dimensional Fourier transform of gξ(u) =
PV f(u, ξ) with respect to u is

ĝξ(γ) = f̂
“
ξ +

γ
2

”
f̂∗
“
ξ − γ

2

”
.

We derive (4.135) from the fact that is

ĝξ(0) =

Z +∞

−∞
gξ(u) du.

Similarly, (4.120) shows that PV f(u, ξ) is the one-dimensional Fourier transform of f(u+τ/2)f∗(u−
τ/2) with respect to τ , where ξ is the Fourier variable. Its integral in ξ thus gives the value for τ = 0,
which is the identity (4.136).

This theorem suggests interpreting the Wigner-Ville distribution as a joint time-frequency energy
density. However, the Wigner-Ville distribution misses one fundamental property of an energy
density: positivity. Let us compute for example the Wigner-Ville distribution of f = 1[−T,T ] with
the integral (4.120):

PV f(u, ξ) =
2 sin
(
2(T − |u|)ξ

)

ξ
1[−T,T ](u).

It is an oscillating function that takes negative values. In fact, one can prove that translated and
frequency modulated Gaussians are the only functions whose Wigner-Ville distributions remain
positive. As we will see in the next section, to obtain positive energy distributions for all signals, it
is necessary to average the Wigner-Ville transform and thus lose some time-frequency resolution.

4.5.2 Interferences and Positivity

At this point, the Wigner-Ville distribution may seem to be an ideal tool for analyzing the time-
frequency structures of a signal. This is however not the case because of interferences created by
the quadratic properties of this transform. These interferences can be removed by averaging the
Wigner-Ville distribution with appropriate kernels which yield positive time-frequency densities.
However, this reduces the time-frequency resolution. Spectrograms and scalograms are examples
of positive quadratic distributions obtained by smoothing the Wigner-Ville distribution.

Cross Terms Let f = f1 + f2 be a composite signal. Since the Wigner-Ville distribution is a
quadratic form,

PV f = PV f1 + PV f2 + PV [f1, f2] + PV [f2, f1], (4.137)

where PV [h, g] is the cross Wigner-Ville distribution of two signals

PV [h, g](u, ξ) =

∫ +∞

−∞
h
(
u +

τ

2

)
g∗
(
u−

τ

2

)
e−iτξ dτ. (4.138)

The interference term
I[f1, f2] = PV [f1, f2] + PV [f2, f1]

is a real function that creates non-zero values at unexpected locations of the (u, ξ) plane.
Let us consider two time-frequency atoms defined by

f1(t) = a1 eiθ1 g(t− u1) eiξ1t and f2(t) = a2 eiθ2 g(t− u2) eiξ2t,

where g is a time window centered at t = 0. Their Wigner-Ville distributions computed in (4.130)
are

PV f1(u, ξ) = a2
1PV g(u− u1, ξ − ξ1) and PV f2(u, ξ) = a2

2PV g(u− u2, ξ − ξ2).

Since the energy of PV g is centered at (0, 0), the energy of PV f1 and PV f2 is concentrated in the
neighborhoods of (u1, ξ1) and (u2, ξ2) respectively. A direct calculation verifies that the interference
term is

I[f1, f2](u, ξ) = 2a1a2 PV g(u− u0, ξ − ξ0) cos
(
(u− u0)∆ξ − (ξ − ξ0)∆u + ∆θ

)
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with

u0 =
u1 + u2

2
, ξ0 =

ξ1 + ξ2
2

∆u = u1 − u2 , ∆ξ = ξ1 − ξ2
∆θ = θ1 − θ2 + u0 ∆ξ.

It is an oscillatory waveform centered at the middle point (u0, ξ0). This is quite counter-intuitive
since f and f̂ have very little energy in the neighborhood of u0 and ξ0. The frequency of the
oscillations is proportional to the Euclidean distance

√
∆ξ2 + ∆u2 of (u1, ξ1) and (u2, ξ2). The

direction of these oscillations is perpendicular to the line that joins (u1, ξ1) and (u2, ξ2). Figure
4.18 displays the Wigner-Ville distribution of two atoms obtained with a Gaussian window g. The
oscillating interference appears at the middle time-frequency point.
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Figure 4.18: Wigner-Ville distribution PV f(u, ξ) of two Gabor atoms shown at the top. The
oscillating interferences are centered at the middle time-frequency location.

This example shows that the interference I[f1, f2](u, ξ) has some energy in regions where
|f(u)|2 ≈ 0 and |f̂(ξ)|2 ≈ 0. These interferences can have a complicated structure [25, 301]
but they are necessarily oscillatory because the marginal integrals (4.135) and (4.136) vanish:

∫ +∞

−∞
PV f(u, ξ)dξ = 2π|f(u)|2 ,

∫ +∞

−∞
PV f(u, ξ)du = |f̂(ξ)|2.

Analytic Part Interference terms also exist in a real signal f with a single instantaneous frequency
component. Let fa(t) = a(t) exp[iθ(t)] be its analytic part:

f = Re[fa] =
1

2
(fa + f∗

a ).

Theorem 4.8 proves that for fixed u, PV fa(u, ξ) and PV f∗
a (u, ξ) have an energy concentrated

respectively in the neighborhood of ξ1 = θ′(u) and ξ2 = −θ′(u). Both components create an
interference term at the intermediate zero frequency ξ0 = (ξ1 + ξ2)/2 = 0. To avoid this low
frequency interference, we often compute PV fa as opposed to PV f .

Figure 4.19 displays PV fa for a real signal f that includes a linear chirp, a quadratic chirp and
two isolated time-frequency atoms. The linear and quadratic chirps are localized along narrow time
frequency lines, which are spread on wider bands by the scalogram and the scalogram shown in
Figure 4.3 and 4.11. However, the interference terms create complex oscillatory patterns that make
it difficult to detect the existence of the two time-frequency transients at t = 0.5 and t = 0.87,
which clearly appear in the spectrogram and the scalogram.
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Figure 4.19: The bottom displays the Wigner-Ville distribution PV fa(u, ξ) of the analytic part of
the top signal.

Positivity Since the interference terms include positive and negative oscillations, they can be partly
removed by smoothing PV f with a kernel K:

PKf(u, ξ) =

∫ +∞

−∞

∫ +∞

−∞
PV f(u′, ξ′)K(u, u′, ξ, ξ′) du′ dξ′. (4.139)

The time-frequency resolution of this distribution depends on the spread of the kernel K in the
neighborhood of (u, ξ). Since the interferences take negative values, one can guarantee that
all interferences are removed by imposing that this time-frequency distribution remain positive
PKf(u, ξ) " 0 for all (u, ξ) ∈ R2.

The spectrogram (4.12) and scalogram (4.55) are examples of positive time-frequency energy
distributions. In general, let us consider a family of time-frequency atoms {φγ}γ∈Γ. Suppose that
for any (u, ξ) there exists a unique atom φγ(u,ξ) centered in time-frequency at (u, ξ). The resulting
time-frequency energy density is

Pf(u, ξ) = |〈f,φγ(u,ξ)〉|2.

The Moyal formula (4.134) proves that this energy density can be written as a time-frequency
averaging of the Wigner-Ville distribution

Pf(u, ξ) =
1

2π

∫ ∫
PV f(u′, ξ′) PV φγ(u,ξ)(u

′, ξ′) du′ dξ′. (4.140)

The smoothing kernel is the Wigner-Ville distribution of the atoms

K(u, u′, ξ, ξ′) =
1

2π
PV φγ(u,ξ)(u

′, ξ′).

The loss of time-frequency resolution depends on the spread of the distribution PV φγ(u,ξ)(u
′, ξ′) in

the neighborhood of (u, v).

Example 4.20. A spectrogram is computed with windowed Fourier atoms

φγ(u,ξ)(t) = g(t− u) eiξt.

The Wigner-Ville distribution calculated in (4.130) yields

K(u, u′, ξ, ξ′) =
1

2π
PV φγ(u,ξ)(u

′, ξ′) =
1

2π
PV g(u′ − u, ξ′ − ξ). (4.141)

For a spectrogram, the Wigner-Ville averaging (4.140) is therefore a two-dimensional convolution
with PV g. If g is a Gaussian window, then PV g is a two-dimensional Gaussian. This proves that
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averaging PV f with a sufficiently wide Gaussian defines a positive energy density. The general class
of time-frequency distributions obtained by convolving PV f with an arbitrary kernel K is studied
in Section 4.5.3.

Example 4.21. Let ψ be an analytic wavelet whose center frequency is η. The wavelet atom
ψu,s(t) = s−1/2ψ((t− u)/s) is centered at (u, ξ = η/s) and the scalogram is defined by

PW f(u, ξ) = |〈f,ψu,s〉|2 for ξ = η/s.

Properties (4.127,4.129) prove that the averaging kernel is

K(u, u′, ξ, ξ′) =
1

2π
PV ψ

(
u′ − u

s
, sξ′
)

=
1

2π
PV ψ

(
ξ

η
(u′ − u),

η

ξ
ξ′
)

.

Positive time-frequency distributions totally remove the interference terms but produce a loss
of resolution. This is emphasized by the following theorem, due to Wigner [485].

Theorem 4.11 (Wigner). There is no positive quadratic energy distribution Pf that satisfies

∫ +∞

−∞
Pf(u, ξ) dξ = 2π |f(u)|2 and

∫ +∞

−∞
Pf(u, ξ) du = |f̂(ξ)|2. (4.142)

Proof. Suppose that Pf is a positive quadratic distribution that satisfies these marginals. Since
Pf(u, ξ) " 0, the integrals (4.142) imply that if the support of f is included in an interval I then
Pf(u, ξ) = 0 for u∈/ I. We can associate to the quadratic form Pf a bilinear distribution defined for
any f and g by

P [f, g] =
1
4

“
P (f + g) − P (f − g)

”
.

Let f1 and f2 be two non-zero signals whose supports are two intervals I1 and I2 that do not intersect,
so that f1 f2 = 0. Let f = a f1 + b f2:

Pf = |a|2 Pf1 + ab∗ P [f1, f2] + a∗b P [f2, f1] + |b|2 Pf2.

Since I1 does not intersect I2, Pf1(u, ξ) = 0 for u ∈ I2. Remember that Pf(u, ξ) " 0 for all a and b
so necessarily P [f1, f2](u, ξ) = P [f2, f1](u, ξ) = 0 for u ∈ I2. Similarly we prove that these cross terms
are zero for u ∈ I1 and hence

Pf(u, ξ) = |a|2 Pf1(u, ξ) + |b|2 Pf2(u, ξ).

Integrating this equation and inserting (4.142) yields

|f̂(ξ)|2 = |a|2 |f̂1(ξ)|2 + |b|2 |f̂2(ξ)|2.

Since f̂(ξ) = a f̂1(ξ) + b f̂2(ξ) it follows that f̂1(ξ) f̂∗
2 (ξ) = 0. But this is not possible because f1 and

f2 have a compact support in time and Theorem 2.7 proves that f̂1 and f̂2 are C
∞ functions that

cannot vanish on a whole interval. We thus conclude that one cannot construct a positive quadratic
distribution Pf that satisfies the marginals (4.142).

4.5.3 Cohen’s Class

While attenuating the interference terms with a smoothing kernel K, we may want to retain
certain important properties. Cohen [176] introduced a general class of quadratic time-frequency
distributions that satisfy the time translation and frequency modulation invariance properties
(4.127) and (4.128). If a signal is translated in time or frequency, its energy distribution is just
translated by the corresponding amount. This was the beginning of a systematic study of quadratic
time-frequency distributions obtained as a weighted average of a Wigner-Ville distribution [6, 25,
177, 300].

Section 2.1 proves that linear translation invariant operators are convolution products. The
translation invariance properties (4.127,4.128) are thus equivalent to imposing that the smoothing
kernel in (4.139) be a convolution kernel

K(u, u′, ξ, ξ′) = K(u− u′, ξ − ξ′), (4.143)
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and hence

PKf(u, ξ) = PV f #K(u, ξ) =

∫ ∫
K(u− u′, ξ − ξ′)PV f(u′, ξ′) du′ dξ′. (4.144)

The spectrogram is an example of Cohen’s class distribution, whose kernel in (4.141) is the Wigner-
Ville distribution of the window

K(u, ξ) =
1

2π
PV g(u, ξ) =

1

2π

∫ +∞

−∞
g
(
u +

τ

2

)
g
(
u−

τ

2

)
e−iτξ dτ. (4.145)

Ambiguity Function The properties of the convolution (4.144) are more easily studied by calcu-
lating the two-dimensional Fourier transform of PV f(u, ξ) with respect to u and ξ. We denote by
Af(τ, γ) this Fourier transform

Af(τ, γ) =

∫ +∞

−∞

∫ +∞

−∞
PV f(u, ξ) exp[−i(uγ + ξτ)] du dξ.

Note that the Fourier variables τ and γ are inverted with respect to the usual Fourier notation.
Since the one-dimensional Fourier transform of PV f(u, ξ) with respect to u is f̂(ξ+γ/2) f̂∗(ξ−γ/2),
applying the one-dimensional Fourier transform with respect to ξ gives

Af(τ, γ) =

∫ +∞

−∞
f̂
(
ξ +

γ

2

)
f̂∗
(
ξ −

γ

2

)
e−iτξ dξ. (4.146)

The Parseval formula yields

Af(τ, γ) =

∫ +∞

−∞
f
(
u +

τ

2

)
f∗
(
u−

τ

2

)
e−iγu du. (4.147)

We recognize the ambiguity function encountered in (4.24) when studying the time-frequency res-
olution of a windowed Fourier transform. It measures the energy concentration of f in time and
in frequency.

Kernel Properties The Fourier transform of K(u, ξ) is

K̂(τ, γ) =

∫ +∞

−∞

∫ +∞

−∞
K(u, ξ) exp[−i(uγ + ξτ)] du dξ.

As in the definition of the ambiguity function (4.146), the Fourier parameters τ and γ of K̂ are
inverted. The following theorem gives necessary and sufficient conditions to ensure that PK satisfies
marginal energy properties like those of the Wigner-Ville distribution. The Wigner Theorem 4.11
proves that in this case PKf(u, ξ) takes negative values.

Theorem 4.12. For all f ∈ L2(R)

∫ +∞

−∞
PKf(u, ξ) dξ = 2π |f(u)|2 ,

∫ +∞

−∞
PKf(u, ξ) du = |f̂(ξ)|2, (4.148)

if and only if
∀(τ, γ) ∈ R2 , K̂(τ, 0) = K̂(0, γ) = 1. (4.149)

Proof. Let AKf(τ, γ) be the two-dimensional Fourier transform of PKf(u, ξ). The Fourier integral at
(0, γ) gives Z +∞

−∞

Z +∞

−∞
PKf(u, ξ) e−iuγ dξ du = AKf(0, γ). (4.150)

Since the ambiguity function Af(τ, γ) is the Fourier transform of PV f(u, ξ), the two-dimensional con-
volution (4.144) gives

AK(τ, γ) = Af(τ, γ) K̂(τ, γ). (4.151)
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The Fourier transform of 2π|f(u)|2 is f̂ % f̂(γ), with f̂(γ) = f̂∗(−γ). The relation (4.150) shows that
(4.148) is satisfied if and only if

AKf(0, γ) = Af(0, γ) K̂(0, γ) = f̂ % f̂(γ). (4.152)

Since PV f satisfies the marginal property (4.135), we similarly prove that

Af(0, γ) = f̂ % f̂(γ).

Requiring that (4.152) be valid for any f̂(γ), is equivalent to requiring that K̂(0, γ) = 1 for all γ ∈ R.
The same derivation applied to the other marginal integration yields K̂(ξ, 0) = 1.

In addition to requiring time-frequency translation invariance, it may be useful to guarantee that
PK satisfies the same scaling property as a Wigner-Ville distribution:

g(t) =
1√
s
f

(
t

s

)
=⇒ PKg(u, ξ) = PKf

(u

s
, sξ
)

.

Such a distribution PK is affine invariant. One can verify that affine invariance is equivalent to
imposing that

∀s ∈ R+ , K

(
s u,

ξ

s

)
= K(u, ξ), (4.153)

and hence
K(u, ξ) = K(u ξ, 1) = β(u ξ).
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Figure 4.20: Choi-William distribution PKf(u, ξ) of the two Gabor atoms shown at the top.
The interference term that appears in the Wigner-Ville distribution of Figure 4.18 has nearly
disappeared.

Example 4.22. The Rihaczek distribution is an affine invariant distribution whose convolution
kernel is

K̂(τ, γ) = exp

(
i τ γ

2

)
. (4.154)

A direct calculation shows that

PKf(u, ξ) = f(u) f̂∗(ξ) exp(−iuξ). (4.155)
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Figure 4.21: Choi-William distribution PKfa(u, ξ) of the analytic part of the signal shown at the
top. The interferences remain visible.

Example 4.23. The kernel of the Choi-William distribution is [160]

K̂(τ, γ) = exp(−σ2 τ2 γ2) . (4.156)

It is symmetric and thus corresponds to a real function K(u, ξ). This distribution satisfies the
marginal conditions (4.149). Since limσ→0 K̂(τ, γ) = 1, when σ is small the Choi-William distri-
bution is close to a Wigner-Ville distribution. Increasing σ attenuates the interference terms, but
spreads K(u, ξ), which reduces the time-frequency resolution of the distribution.

Figure 4.20 shows that the interference terms of two modulated Gaussians nearly disappear
when the Wigner-Ville distribution of Figure 4.18 is averaged by a Choi-William kernel having a
sufficiently large σ. Figure 4.21 gives the Choi-William distribution of the analytic signal whose
Wigner-Ville distribution is in Figure 4.19. The energy of the linear and quadratic chirps are
spread over wider time-frequency bands but the interference terms are attenuated, although not
totally removed. It remains difficult to isolate the two modulated Gaussians at t = 0.5 and t = 0.87,
which clearly appear in the spectrogram of Figure 4.3.

4.5.4 Discrete Wigner-Ville Computations

The Wigner integral (4.120) is the Fourier transform of f(u + τ/2)f∗(u− τ/2):

PV f(u, ξ) =

∫ +∞

−∞
f
(
u +

τ

2

)
f∗
(
u−

τ

2

)
e−iτξ dτ. (4.157)

For a discrete signal f [n] defined over 0 ! n < N , the integral is replaced by a discrete sum:

PV f [n, k] =
N−1∑

p=−N

f
[
n +

p

2

]
f∗
[
n−

p

2

]
exp

(
−i2πkp

N

)
. (4.158)

When p is odd, this calculation requires knowing the value of f at half integers. These values are
computed by interpolating f , with an addition of zeroes to its Fourier transform. This is necessary
to avoid the aliasing produced by the discretization of the Wigner-Ville integral [164].

The interpolation f̃ of f is a signal of size 2N whose discrete Fourier transform ̂̃f is defined
from the discrete Fourier transform f̂ of f by

̂̃f [k] =






2f̂ [k] if 0 ! k < N/2

0 if N/2 < k < 3N/2

2f̂ [k −N ] if 3N/2 < k < 2N

f̂ [N/2] if k = N/2 , 3N/2

.
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Computing the inverse discrete Fourier transform shows that f̃ [2n] = f [n] for n ∈ [0, N−1]. When
n∈/ [0, 2N − 1], we set f̃ [n] = 0. The Wigner summation (4.158) is calculated from f̃ :

PV f [n, k] =
N−1∑

p=−N

f̃ [2n + p] f̃∗[2n− p] exp

(
−i2πkp

N

)

=
2N−1∑

p=0

f̃ [2n + p−N ] f̃∗[2n− p + N ] exp

(
−i2π(2k)p

2N

)
.

For 0 ! n < N fixed, PV f [n, k] is the discrete Fourier transform of size 2N of g[p] = f̃ [2n + p −
N ] f̃∗[2n − p + N ] at the frequency 2k. The discrete Wigner-Ville distribution is thus calculated
with N FFT procedures of size 2N , which requires O(N2 log N) operations. To compute the
Wigner-Ville distribution of the analytic part fa of f , we use (4.48).

Cohen’s Class A Cohen’s class distribution is calculated with a circular convolution of the discrete
Wigner-Ville distribution with a kernel K[p, q]:

PK [n, k] = PV /# K[n, k]. (4.159)

Its two-dimensional discrete Fourier transform is therefore

AK [p, q] = Af [p, q] K̂[p, q]. (4.160)

The signal Af [p, q] is the discrete ambiguity function, calculated with a two-dimensional FFT of the
discrete Wigner-Ville distribution PV f [n, k]. As in the case of continuous time, we have inverted
the index p and q of the usual two-dimensional Fourier transform. The Cohen’s class distribution
(4.159) is obtained by calculating the inverse Fourier transform of (4.160). This also requires a
total of O(N2 log N) operations.

4.6 Exercises

4.1. 2 Instantaneous frequency Let f(t) = exp[iφ(t)].

(a) Prove that
R +∞
−∞ |Sf(u, ξ)|2 dξ = 2π. Hint: Sf(u, ξ) is a Fourier transform; use the Parseval

formula.
(b) Similarly, show that

Z +∞

−∞
ξ |Sf(u, ξ)|2 dξ = 2π

Z +∞

−∞
φ′(t) |g(t − u)|2 dt,

and interpret this result.

4.2. 1 When g(t) = (πσ2)−1/4 exp(−t2/(2σ2)), compute the ambiguity function Ag(τ, γ).

4.3. 1 Prove that the approximate reconstruction formula (4.66) is exact if and only if

loge a
Cψ

JX

j=I

1
aj

ψ̂j [k] +
1

Cψ aJ
φ̂J [k] = 1 .

Compute numerically the left equation value for different a when ψj [n] is constructed from the
Gabor wavelet (4.60) and (4.62) with σ = 1 and 2J < N/4.

4.4. 1 Let g[n] be a window with L non-zero coefficients. For signals of size N , describe a fast
algorithm that computes the discrete windowed Fourier transform (4.27) with O(N log2 L) op-
erations.

4.5. 3 Let K be the reproducing kernel (4.21) of a windowed Fourier transform: K(u0, u, ξ0, ξ) =
〈gu,ξ, gu0,ξ0〉.
(a) For any Φ ∈ L

2(R2) we define:

TΦ(u0, ξ0) =
1
2π

Z +∞

−∞

Z +∞

−∞
Φ(u, ξ) K(u0, u, ξ0, ξ) du dξ.

Prove that T is an orthogonal projector on the space of functions Φ(u, ξ) that are windowed
Fourier transforms of functions in L

2(R).
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(b) Suppose that for all (u, ξ) ∈ R2 we are given S̃f(u, ξ) = Q
“
Sf(u, ξ)

”
, which is a quanti-

zation of the windowed Fourier coefficients. How can we reduce the norm L
2(R2) of the

quantification error ε(u, ξ) = Sf(u, ξ) − Q
“
Sf(u, ξ)

”
?

4.6. 3 Prove the wavelet reconstruction formula (4.45).

4.7. 3 Prove that a scaling function φ defined by (4.42) satisfies ‖φ‖ = 1.

4.8. 2 Let ψ be a real and even wavelet such that C =
R +∞
0

ω−1 ψ̂(ω) dω < +∞. Prove that

∀f ∈ L
2(R) , f(t) =

1
C

Z +∞

0

Wf(t, s)
ds

s3/2
. (4.161)

4.9. 3 Analytic Continuation Let f ∈ L
2(R) be a function such that f̂(ω) = 0 for ω < 0. For any

complex z ∈ C such that Im(z) " 0, we define

f (p)(z) =
1
π

Z +∞

0

(iω)p f̂(ω) eizω dω .

(a) Verify that if f is C
p then f (p)(t) is the derivative of order p of f(t).

(b) Prove that if Im(z) > 0, then f (p)(z) is differentiable relatively to the complex variable z.
Such a function is said to be analytic on the upper half complex plane.

(c) Prove that this analytic extension can be written as a wavelet transform

f (p)(x + iy) = y−p−1/2 Wf(x, y) ,

calculated with an analytic wavelet ψ that you will specify.

4.10. 2 Let f(t) = cos(a cos bt). We want to compute precisely the instantaneous frequency of f from
the ridges of its windowed Fourier transform. Find a necessary condition on the window support
as a function of a and b. If f(t) = cos(a cos bt) + cos(a cos bt + ct), find a condition on a, b and
c in order to measure both instantaneous frequencies with the ridges of a windowed Fourier
transform. Verify your calculations with a numerical implementation.

4.11. 4 Noise removal We want to suppress noise from audio signals by thresholding ridge coefficients.
Implement a dual synthesis algorithm that reconstruct audio signal approximations from win-
dowed Fourier ridge points (4.96) or wavelet ridge points (4.116), with the conjugate gradient
inverse frame algorithm of Theorem 5.8. Study the SNR of audio denoising by thresholding the
ridge coefficients. Try to improve this SNR by averaging the spectrogram values along ridges.
Compare the SNR with a linear filtering estimator.

4.12. 4 Sound duration Make a program that modifies the sound duration with the formula (4.72) by
modifying the ridges of a window Fourier transform with (4.99) or of a wavelet transform with
(4.118), and by reconstructing a signal with a dual synthesis.

4.13. 4 Sound transposition Implement a sound transposition, with windowed Fourier or wavelet
ridges, with the transposition model (4.73). The resulting modifications of the ridge supports are
specified by (4.100) and (4.119). The amplitude of the transposed harmonics can be computed
with the auto-regressive model (4.75). A signal is restored with a dual synthesis algorithm.

4.14. 4 The sinusoidal model (4.71) is improved for speech signals by adding a non-harmonic compo-
nent B(t) to the partials [338]:

F (t) =
KX

k=1

ak(t) cosφk(t) + B(t). (4.162)

Given a signal f(t) that is considered to be a realization of F (t), compute the ridges of a
windowed Fourier transform, find the “main” partials and compute their amplitude ak and
phase φk. These partials are subtracted from the signal. Over intervals of fixed size, the
residue is modeled as the realization of an autoregressive process B(t), of order 10 to 15. Use a
standard algorithm to compute the parameters of this autoregressive process [56]. Evaluate the
audio quality of the sound restored from the calculated model (4.162). Study an application to
audio compression by quantizing and coding the parameters of the model.

4.15. 2 Prove that Pf(u, ξ) = ‖f‖−2 |f(u)|2 |f̂(ξ)|2 satisfies the marginal properties (4.135) and
(4.136). Why can’t we apply the Wigner Theorem 4.11?
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4.16. 1 Let gσ be a Gaussian of variance σ2. Prove that Pθf(u, ξ) = PV f % θ(u, ξ) is a positive
distribution if θ(u, ξ) = gσ(u) gβ(ξ) with σ β " 1/2. Hint: consider a spectrogram calculated
with a Gaussian window.

4.17. 3 Let {gn(t)}n∈N be an orthonormal basis of L
2(R). Prove that

∀(t,ω) ∈ R
2 ,

+∞X

n=0

PV gn(t,ω) = 1 .

4.18. 2 Let fa(t) = a(t) exp[iφ(t)] be the analytic part of f(t). Prove that

Z +∞

−∞

“
ξ − φ′(t)

”2
PV fa(t, ξ) dξ = −π a2(t)

d2 log a(t)
dt2

.

4.19. 4 To avoid the time-frequency resolution limitations of a windowed Fourier transform, we want
to adapt the window size to the signal content. Let g(t) be a window supported in [− 1

2 , 1
2 ].

We denote by Sjf(u, ξ) the windowed Fourier transform calculated with the dilated window
gj(t) = 2−j/2g(2−jt). Find a procedure that computes a single map of ridges by choosing a
“best” window size at each (u, ξ). One approach is to choose the scale 2l for each (u, ξ) such
that |Slf(u, ξ)|2 = supj |Sjf(u, ξ)|2. Test your algorithm on the linear and hyperbolic chirp
signals (4.103,4.107). Test it on the Tweet and Greasy signals in WaveLab.


