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Abstract—A general framework for solving image inverse prob-
lems with piecewise linear estimations is introduced in this paper.
The approach is based on Gaussian mixture models, estimated
via a MAP-EM algorithm. A dual mathematical interpretation
of the proposed framework with structured sparse estimation is
described, which shows that the resulting piecewise linearestimate
stabilizes the estimation when compared to traditional sparse
inverse problem techniques. We demonstrate that in a number
of image inverse problems, including interpolation, zooming, and
deblurring of narrow kernels, the same simple and computationally
efficient algorithm yields results in the same ballpark as the state-
of-the-art.

I. I NTRODUCTION

Image restoration often requires to solve an inverse problem.
It amounts to estimate an imagef from a measurement

y = Uf +w,

obtained through a non-invertible linear degradation operatorU,
and contaminated by an additive noisew. Typical degradation
operators include masking, subsampling in a uniform grid and
convolution, the corresponding inverse problems often named
interpolation, zooming and deblurring. Estimatingf requires
some prior information on the image, or equivalently image
models. Finding good image models is therefore at the heart
of image estimation.

Mixture models are often used as image priors since they
enjoy the flexibility of signal description by assuming that
the signals are generated by a mixture of probability distribu-
tions [57]. Gaussian mixture models (GMM) have been shown to
provide powerful tools for data classification and segmentation
applications (see for example [13], [32], [62], [68]), however,
they have not yet been shown to generate state-of-the-art ina
general class of image inverse problems, though very good initial
steps were often reported. Ghahramani and Jordan have applied
GMM for learning from incomplete data, i.e., images degraded
by a masking operator, and have shown good classification
results, however, it does not lead to state-of-the-art interpola-
tion [33]. Portilla et al. have shown impressive image denoising
results by assuming Gaussian scale mixture models (deviating
from GMM by assuming different scale factors in the mixture
of Gaussians) on wavelet representations [36], [49], [65],and
have recently extended its applications on image deblurring [35].
Recently, Zhou et al. have developed an nonparametric Bayesian

approach using more elaborated models, such as beta and
Dirichlet processes, which leads to excellent results in denoising
and interpolation [84].

The now popular sparse signal models, on the other hand,
assume that the signals can be accurately represented with
a few coefficients selecting atoms in some dictionary [53],
[64]. Recently, very impressive image restoration resultshave
been obtained with local patch-based sparse representations
calculated with dictionaries learned from natural images [1],
[24], [48], [51], [76]. Relative to pre-fixed dictionaries such
as wavelets [53], curvelets [11], and bandlets [54], learned
dictionaries enjoy the advantage of being better adapted tothe
images, thereby enhancing the sparsity. However, dictionary
learning is a large-scale and highly non-convex problem. It
requires high computational complexity, and its mathematical
behavior is not yet well understood. In the dictionaries afore-
mentioned, the actual sparse image representation is calculated
with relatively expensive non-linear estimations, such asl1 or
matching pursuits [19], [23], [56]. More importantly, as will
be reviewed in Section III-A, with a full degree of freedom
in selecting the approximation space (atoms of the dictionary),
non-linear sparse inverse problem estimation may be unstable
and imprecise due to the coherence of the dictionary [55].

Structured sparse image representation models further reg-
ularize the sparse estimation by assuming dependency on the
selection of the active atoms. One simultaneously selects blocks
of approximation atoms, thereby reducing the number of possible
approximation spaces [3], [26], [27], [39], [40], [69]. These
structured approximations have been shown to improve the
signal estimation in a compressive sensing context for a ran-
dom operatorU. However, for more unstable inverse problems
such as zooming or deblurring, this regularization by itself is
not sufficient to reach state-of-the-art results. Recentlysome
good image zooming results have been obtained with structured
sparsity based on directional block structures in wavelet repre-
sentations [55]. However, this directional regularization is not
general enough to be extended to solve other inverse problems.

The Gaussian mixture models (GMM) developed in this work
lead to piecewise linear estimators.1 Image patches are far
from Gaussian, neither are they necessarily mixture of Gaus-
sians; on the other hand, piecewise linear approximations being

1The name “piecewise linear estimation” comes from the fact that for each
Gaussian, the estimator is linear, and then a non-linearityappears in the selection
of the best Gaussian model.
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optimal for GMM, remain effective for much larger classes
of functions and processes, including natural image patches as
here demonstrated. Comparing with fully non-linear estimations
based on the sparse models, piecewise linear estimations dramat-
ically reduce the degree of freedom in the estimations, and are
thus more stable. The piecewise linear estimations, calculated
with a simple MAP-EM (maximum a posteriori expectation-
maximization) algorithm, learns GMM from the degraded image,
and yield results in the same ballpark as the state-of-the-art in
a number of imaging inverse problems, often better than much
more sophisticated algorithms based on more complex models,
and at a lower computational cost.

The MAP-EM algorithm is described in Section II. After
briefly reviewing sparse inverse problem estimation approaches,
a mathematical equivalence between the proposed piecewise
linear estimation (PLE) from GMM and structured sparse es-
timation is shown in Section III. This connection shows that
PLE stabilizes the sparse estimation with a structured learned
overcomplete dictionary composed of a union of PCA (Prin-
cipal Component Analysis) bases, and with collaborative prior
information incorporated in the eigenvalues, that privileges in the
estimation the atoms that are more likely to be important. This
interpretation suggests also an effective dictionary motivated
initialization for the MAP-EM algorithm. In Section IV we
support the importance of different components of the proposed
PLE via some initial experiments. Applications of the proposed
PLE in image interpolation, zooming, and deblurring are pre-
sented in sections V, VI, and VII respectively, and are compared
with previous state-of-the-art methods. Conclusions are drawn in
Section VIII.

II. PIECEWISE L INEAR ESTIMATION

This section describes the Gaussian mixture models (GMM)
and the MAP-EM algorithm, which lead to the proposed piece-
wise linear estimation (PLE).

A. Gaussian Mixture Models

Natural images include rich and non-stationary content,
whereas when restricted to local windows, image structures
appear to be simpler and are therefore easier to model. Following
some previous works [1], [10], [51], an image is decomposed
into overlapping

√
N×
√

N, typically 8×8 following previous
works [1], [24], local patches

yi = Ui f i +wi, (1)

where Ui is the degradation operator, for example random
masking, subsampling or convolution, restricted to the patch
i, yi , f i and wi are respectively the degraded, original image
patches and the noise restricted to the patch, with 1≤ i ≤ I , I
being the total number of patches. Treated as a signal, each of
the patches is estimated, and their corresponding estimates are
finally combined and averaged, leading to the estimate of the
image. Note that for non-diagonal operatorUi such as blurring,
special care needs to be taken for boundary issue, and the
performance of the patch-based methods is generally limited as
the size of the non-diagonal operator becomes large relative to
the patch size. This will be further detailed in Section VII.

GMM describes local image patches with a mixture of Gaus-
sian distributions. Assume there existK Gaussian distributions

{N (µk,Σk)}1≤k≤K parametrized by their meansµk and covari-
ancesΣk. Each image patchf i is independently drawn from one
of these Gaussians with an unknown indexki ∈ [1,K], and with
equal probability, whose probability density function is

p(f i) =
1

(2π)N/2|Σki |1/2
exp

(

−1
2
(f i− µki )

TΣ−1
ki
(f i− µki )

)

. (2)

Estimating{f i}1≤i≤I from {yi}1≤i≤I can then be casted into the
following problems:
• Estimate the Gaussian parameters{(µk,Σk)}1≤k≤K , from

the degraded data{yi}1≤i≤I .
• Identify the Gaussian distributionki that generates the patch

i, ∀1≤ i ≤ I .
• Estimate f i from its corresponding Gaussian distribution
(µki ,Σki ), ∀1≤ i ≤ I .

These problems are overall non-convex. The next section
will present a maximum a posteriori expectation-maximization
(MAP-EM) algorithm that calculates a local-minimum solu-
tion [2].

B. MAP-EM Algorithm

Following an initialization, addressed in Section III-C, the
MAP-EM algorithm is an iterative procedure that alternates
between two steps. In the E-step, assuming that the estimates of
the Gaussian parameters{(µ̃k, Σ̃k)}1≤k≤K are known (following
the previous M-step), for each patch one calculates the maximum
a posteriori (MAP) estimates̃fk

i with all the Gaussian models,
and selects the best Gaussian modelk̃i to obtain the estimate of
the patchf̃ i = f̃ k̃i

i . In the M-step, assuming that the Gaussian
model selectionk̃i and the signal estimatẽf i , ∀i, are known
(following the previous E-step), one estimates (updates) the
Gaussian models{(µ̃k, Σ̃k)}1≤k≤K .

1) E-step: Signal Estimation and Model Selection:In the E-
step, the estimates of the Gaussian parameters{(µ̃k, Σ̃k)}1≤k≤K

are assumed to be known. To simplify the notation, we assume
without loss of generality that the Gaussians have zero means
µ̃k = 0, as one can always center the image patches with respect
to the means.

For each image patchi, the signal estimation and model se-
lection is calculated to maximize the log a-posteriori probability
logp(f i |yi , Σ̃ki ):

(f̃ i , k̃i) = argmax
f,k

logp(f|yi , Σ̃k) = argmax
f,k

(

logp(yi |f, Σ̃k)+ logp(f|Σ̃k)
)

= argmin
f,k

(

‖Ui f− yi‖2+σ2fT Σ̃−1
k f +σ2 log

∣

∣Σ̃k
∣

∣

)

, (3)

where the second equality follows the Bayes rule and the third
one is derived with the assumption thatwi ∼N (0,σ2Id), with
Id the identity matrix, andf ∼N (0, Σ̃k).

The maximization is first calculated overf and then overk.
Given a Gaussian signal modelf ∼N (0, Σ̃k), it is well known
that the MAP estimate

f̃k
i = argmin

f

(

‖Ui f− yi‖2+σ2fT Σ̃−1
k f
)

(4)

minimizes the riskE[‖f̃k
i − f i‖2] [53]. One can verify that the

solution to (4) can be calculated with a linear filtering

f̃k
i = Wk,iyi, (5)

where
Wk,i = ΣkU

T
i (UiΣkU

T
i +σ2Id)−1 (6)
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is a Wiener filter matrix. SinceUiΣkUT
i is semi-positive definite,

UiΣkUT
i +σ2Id is positive definite and its inverse is well defined.

The best Gaussian modelk̃i that generates the maximum
MAP probability among all the models is then selected with
the estimated̃fk

i

k̃i = argmin
k

(

‖Ui f̃k
i − y‖2+σ2(f̃k

i )
TΣ−1

k f̃k
i +σ2 log

∣

∣Σ̃k

∣

∣

)

. (7)

The signal estimate is obtained by plugging in the best model
k̃i in the MAP estimate (4)

f̃ i = f̃ k̃i
i . (8)

The whole E-step is basically calculated with a set of linear
filters. For typical applications such as zooming and deblurring
where the degradation operatorsUi are translation-invariant and
do not depend on the patch indexi, i.e., Ui ≡ U, the Wiener
filter matricesWk,i ≡ Wk (6) can be precomputed for theK
Gaussian distributions. Calculating (5) thus requires only 2N2

floating-point operations (flops), whereN is the image patch
size. For a translation-variant degradationUi , random masking
for example,Wk,i needs to be calculated at each position where
Ui changes. SinceUiΣkUT

i +σ2Id is positive definite, the matrix
inversion can be implemented withN3/3+ 2N2 ≈ N3/3 flops
through a Cholesky factorization [9]. All this makes the E-step
computationally efficient.

Note that in the caseUi is a masking or subsampling operator,
which maps fromRN to R

N
S extractingN/S entries off i ∈ R

N,
whereS is the masking or subsampling ratio,Ui can be written
as a matrix of sizeN

S×N by removing the zero rows, andyi =

Ui f i +wi can be written inR
N
S . The matrix inversion in (6)

thus involves a matrix of sizeNS× N
S instead ofN×N, further

considerably reducing the computational complexity of theE-
step fromN3/3 to N3

3S3 , as theUi is translation-variant.
2) M-step: Model Estimation:In the M-step, the Gaussian

model selectioñki and the signal estimatẽf i of all the patches
are assumed to be known. LetCk be the ensemble of the patch
indicesi that are assigned to thek-th Gaussian model, i.e.,Ck =
{i : k̃i = k}, and let |Ck| be its cardinality. The parameters of
each Gaussian model are estimated with the maximum likelihood
(ML) estimate using all the patches assigned to that Gaussian
cluster,

(µ̃k, Σ̃k) = argmax
µk,Σk

logp({f̃ i}i∈Ck|µk,Σk). (9)

With the Gaussian model (2) , one can easily verify that the
resulting estimate is the empirical estimate

µ̃k =
1
|Ck| ∑

i∈Ck

f̃ i and Σ̃k =
1
|Ck| ∑

i∈Ck

(f̃ i− µ̃k)(f̃ i− µ̃k)
T . (10)

The empirical covariance estimate may be improved through
regularization when there is lack of data [67] (for typical patch
size 8×8, the dimension of the covariance matrixΣk is 64×64,
while the |Ck| is typically in the order of a few hundred). A
simple and standard eigenvalue-based regularization [2] is used
here

Σ̃k← Σ̃k+ εId, (11)

whereε is a small constant. The regularization also guarantees
that the estimatẽΣk of the covariance matrix is full-rank, which
stabilizes the covariance matrix inversion, and is important for
the Gaussian model selection (7), since ifΣ̃k is not full rank, then

log
∣

∣Σ̃k
∣

∣→−∞, biasing the model selection. The computational
complexity of the M-step is negligible with respect to the E-step.

As the MAP-EM algorithm described above iterates, the MAP
probability of the observed signals
p({f̃ i}1≤i≤I |{yi}1≤i≤I ,{µ̃k, Σ̃k}1≤k≤K) always increases. This can
be observed by interpreting the E- and M-steps as a coordinate
descent optimization [38]. In the experiments, the convergence
of the patch clustering and resulting PSNR is always observed.

Note that we name the above algorithm MAP-EM as its two
steps go in parallel with those of the classic EM algorithm [21]
applied to the point clustering problem under the GMM [16],
with an extra MAP estimate in our E-step, as the original signals
are not observed but need to be estimated from the degraded
observations. The algorithm is also interpretable as an instance
of the greedy Iterated Conditional Modes (ICM) algorithm [5].

The MAP-EM implements a piecewise linear estimation, as it
estimates a piecewise Gaussian model from the image patches,
and for each image patch selects one best fit Gaussian model
and estimates the signal with the linear estimation therein.

III. PLE AND STRUCTURED SPARSEESTIMATION

The MAP-EM algorithm described above requires an initial-
ization. A good initialization is highly important for iterative
algorithms that try to solve non-convex problems, and remains
an active research topic [4], [31]. This section describes a
dual structured sparse interpretation of GMM and MAP-EM,
which suggests an effective dictionary motivated initialization
for the MAP-EM algorithm. Moreover, it shows that the resulting
piecewise linear estimate stabilizes traditional sparse inverse
problem estimation.

The sparse inverse problem estimation approaches will be first
reviewed. After describing the connection between MAP-EM
and structured sparsity via estimation in PCA bases, an intuitive
and effective initialization will be presented.

A. Sparse Inverse Problem Estimation

Traditional sparse super-resolution estimation in dictionaries
provides effective non-parametric approaches to inverse prob-
lems, although the coherence of the dictionary and their large
degree of freedom may become sources of instability and errors.
2These algorithms are briefly reviewed in this section. “Super-
resolution” is loosely used here as these approaches try to
recover information that is lost after the degradation.

A signal f ∈ R
N is estimated by taking advantage of prior

information which specifies a dictionaryD ∈RN×|Γ|, having|Γ|
columns corresponding to atoms{φm}m∈Γ, wheref has a sparse
approximation. This dictionary may be a basis or some redundant
frame, with|Γ| ≥N. Sparsity means thatf is well approximated
by its orthogonal projectionfΛ over a subspaceVΛ generated by
a small number|Λ| ≪ |Γ| of column vectors{φm}m∈Λ of D:

f = fΛ + εΛ = D(a ·1Λ)+ εΛ, (12)

wherea∈ R
|Γ| is the transform coefficient vector,a ·1Λ selects

the coefficients inΛ and sets the others to zero,D(a · 1Λ)

2While in some context “super-resolution” is referred to as the approaches that
calculate a high-resolution image from observed multiple low-resolution ones,
in this paper “super-resolution” means recovering a whole signal from partial
measurements [53].
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multiplies the matrixD with the vectora·1Λ, and‖εΛ‖2≪‖f‖2
is a small approximation error.

Sparse inversion algorithms try to estimate from the degraded
signaly = Uf+w the supportΛ and the coefficientsa in Λ that
specify the projection off in the approximation spaceVΛ. It
results from (12) that

y = UD(a ·1Λ)+ ε ′, with ε ′ = Uε +w. (13)

This means thaty is well approximated by the same sparse
set Λ of atoms and the same coefficientsa in the transformed
dictionary UD, whose columns are the transformed vectors
{Uφm}m∈Γ.

SinceU is not an invertible operator, the transformed dictio-
nary UD is redundant, with column vectors which are linearly
dependent. It results thaty has an infinite number of possible
decompositions inUD. A sparse approximatioñy = UDã of y
can be calculated with a basis pursuit algorithm which minimizes
a Lagrangian penalized by a sparsel1 norm [15], [71]

ã= argmin
a
‖UDa− y‖2+λ ‖a‖1, (14)

or with faster greedy matching pursuit algorithms [56]. The
resulting sparse estimation off is

f̃ = Dã. (15)

As we explain next, this simple approach is not straightfor-
ward and often not as effective as it seems. TheRestrictive
Isometry Propertyof Candès and Tao [12] and Donoho [22]
is a strong sufficient condition which guarantees the correctness
of the penalizedl1 estimation. This restrictive isometry property
is valid for certain classes of operatorsU, but not for important
structured operators such as subsampling on a uniform grid or
convolution. For structured operators, the precision and stability
of this sparse inverse estimation depends upon the “geometry”
of the approximation supportΛ of f, which is not well un-
derstood mathematically, despite some sufficient exact recovery
conditions proved for example by Tropp [72], and many others
(mostly related to the coherence of the equivalent dictionary).
Nevertheless, some necessary qualitative conditions for aprecise
and stable sparse super-resolution estimate (15) can be deduced
as follows [53], [55]:

• Sparsity. D provides a sparse representation forf.
• Recoverability. The atoms have non negligible norms
‖Uφm‖2≫ 0. If the degradation operatorU applied toφm

leaves no “trace,” the corresponding coefficienta[m] can
not be recovered fromy with (14). We will see in the next
subsection that this recoverability property of transformed
relevant atoms having sufficient energy is critical for the
GMM/MAP-EM introduced in the previous section as well.

• Stability. The transformed dictionaryUD is incoherent
enough. Sparse inverse problem estimation may be unstable
if some columns{Uφm}m∈Γ in UD are too similar. To
see this, let us imagine a toy example, where a constant-
value atom and a highly oscillatory atom (with values
−1,1,−1,1, . . .), after a×2 subsampling, become identical.
The sparse estimation (14) can not distinguish between
them, which results in an unstable inverse problem esti-
mate (15). The coherence ofUD depends onD as well as on
the operatorU. Regular operatorsU such as subsampling on
a uniform grid and convolution, usually lead to a coherent

UD, which makes accurate inverse problem estimation
difficult.

Several authors have applied this sparse super-resolution
framework (14) and (15) for image inverse problems. Sparse
estimation in dictionaries of curvelet frames and DCT have
been applied successfully to interpolation of randomly sampled
images [25], [29], [37]. However, for uniform grid interpolations,
Section VI shows that the resulting interpolation estimations
are not as precise as simple linear bicubic interpolations.A
contourlet zooming algorithm [59] can provide a slightly bet-
ter PSNR than a bicubic interpolation, but the results are
considerably below the state-of-the-art. Learned dictionaries of
image patches have generated good interpolation results [51],
[84]. In some recent works sparse super-resolution algorithms
with learned dictionary have been studied for zooming and
deblurring [48], [76]. As shown in sections VI and VII, although
they sometimes produce good visual quality, they often generate
artifacts and the resulting PSNRs are not as good as more
standard methods.

Another source of instability of these algorithms comes from
their full degree of freedom. The non-linear approximationspace
VΛ is estimated by selecting the approximation supportΛ,
with basically no constraint. A selection of|Λ| atoms from
a dictionary of size|Γ| thus corresponds to a choice of an
approximation space among

(|Γ|
|Λ|
)

possible subspaces. In a local
patch-based sparse estimation with 8× 8 patch size, typical
values of|Γ|= 256 and|Λ|= 8 lead to a huge degree of freedom
(256

8

)

∼ 1014, further stressing the inaccuracy of estimatinga
from anUD.

These issues are addressed with the proposed PLE framework
and its mathematical connection with structured sparse models
described next.

B. Structured Sparse Estimation in PCA bases

The PCA bases bridge the GMM/MAP-EM framework pre-
sented in Section II with the sparse estimation described above.
For signals{f i} following a statistical distribution, a PCA basis
is defined as the matrix that diagonalizes the data covariance
matrix Σk = E[f ifT

i ],
Σk = BkSkB

T
k , (16)

where Bk is the PCA basis andSk = diag(λ k
1 , . . . ,λ

k
N) is a

diagonal matrix, whose diagonal elementsλ k
1 ≥ λ k

2 ≥ . . . ≥ λ k
N

are the sorted eigenvalues. It can be shown that the PCA
basis is orthonormal, i.e.,BT

k Bk = Id, each of its columnsφk
m,

1≤m≤N, being an atom that represents one principal direction.
The eigenvalues are non-negative,λm ≥ 0, and measure the
energy of the signals{f i} in each of the principal directions [53].

Transformingf i from the canonical basis to the PCA basis
ak

i = BT
k f i , one can verify that the MAP estimate (4)-(6) can be

equivalently calculated as

f̃k
i = Bkã

k
i , (17)

where, following simple algebra and calculus, the MAP estimate
of the PCA coefficients̃ak

i is obtained by

ãk
i = argmin

a

(

‖UiBka− yi‖2+σ2
N

∑
m=1

|a[m]|2
λ k

m

)

. (18)

Comparing (18) with (14), the MAP-EM estimation can thus
be interpreted as a structured sparse estimation. As illustrated in
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Fig. 1. Left: Traditional overcomplete dictionary. Each column represents an
atom in the dictionary. Non-linear estimation has the full degree of freedom
to select any combination of atoms (marked by the columns in red). Right:
The underlying structured sparse piecewise linear dictionary of the proposed
approach. The dictionary is composed of a family of PCA baseswhose atoms are
pre-ordered by their associated eigenvalues. For each image patch, an optimal
linear estimator is calculated in each PCA basis and the best linearestimate
among the bases is selected (marked by the basis in red).

Figure 1, the proposed dictionary has the advantage of the tradi-
tional learned overcomplete dictionaries being overcomplete, and
adapted to the image under test thanks to the Gaussian model
estimation in the M-step (which is equivalent to updating the
PCAs), but the resulting piecewise linear estimator (PLE) is more
structured than the traditional nonlinear sparse estimation. PLE
is calculated with alinear estimation in each basis and anon-
linear best basis selection:

• Nonlinear block sparsity. The dictionary is composed of
a union ofK PCA bases. To represent an image patch, the
non-linear model selection (3) in the E-step restricts the
estimation to only one basis (N atoms out ofKN selected
in group), and has a degree of freedom equal toK, sharply
reduced from that in the traditional sparse estimation which
has the full degree of freedom in atom selection.

• Linear collaborative filtering. Inside each PCA basis,
the atoms are pre-ordered by their associated eigenvalues
(which decay very fast as we will later see, leading to spar-
sity inside the block as well). In contrast to the non-linear
sparsel1 estimation (14), the MAP estimate (18) imple-
ments the regularization with thel2 norm of the coefficients
weighted by the eigenvalues{λ k

m}1≤m≤N, and is calculated
with a linear filtering (5) (6). The eigenvalues are computed
from all the signals{f i} in the same Gaussian distribu-
tion class. The resulting estimation therefore implementsa
collaborative filtering which incorporates the information
from all the signals in the same cluster. The weighting
scheme privileges the coefficientsai [m] corresponding to
the principal directions with large eigenvaluesλm, where
the energy is likely to be high, and penalizes the others.
For the ill-posed inverse problems, the collaborative prior
information incorporated in the eigenvalues{λ k

m}1≤m≤N

further stabilizes the estimate.
Note that this collaborative weighting is fundamentally
different than the standard one used in iterative weighted
l2 approaches to sparse coding [20]. This collaborative
filtering is also fundamentally different than the “collab-
orative Wiener filtering” in [17], both in signal modeling
(GMM in this work and the nonlocal self-similarity models
in [17]), and in patch clustering and signal estimation (in
this work the patch clustering and signal estimation are
jointly calculated by maximizing a MAP probability (3),
which is optimal under the GMM model, whereas in [17]
they are calculated respectively by the block matching and
the empirical Wiener filtering). The collaboration in [17]
follows from the spectral representation for the whole
cluster, while here is obtained via the eigenvalues of the
cluster’s PCA.

Note that although PLE can be interpreted and connected
with structured sparse modeling via PCA, the algorithm can

be implemented as described in Section II without the PCA
transform. As described in Section II, the complexity of the
MAP-EM algorithm is dominated by the E-step. For an image
patch size of

√
N×
√

N (typical value 8×8), it costs 2KN2 flops
for translation-invariant degradation operators such as uniform
subsampling and convolution, andKN3/3 flops for translation-
variant operators such as random masking, whereK is the
number of PCA bases. The overall complexity is therefore tightly
upper bounded byO(2LKN2) or O(LKN3/3), whereL is the
number of iterations. As will be shown in Section IV, the
algorithm converges fast for image inverse problems, typically
in L = 3 to 5 iterations. On the other hand, the complexity of
the l1 minimization with the same dictionary isO(KN3), with
typically a large factor in front as thel1 converges slowly in
practice. The MAP-EM algorithm is thus typically one or two
orders of magnitude faster than the sparse estimation.

To conclude, let as come back to the recoverability property
mentioned in the previous section. We see from (18) that if an
eigenvector of the covariance matrix is killed by the operator Ui ,
then its contribution to the recovery ofyi is virtually null, while
it pays a price proportional to the corresponding eigenvalue.
Then, it will not be used in the optimization (18), and thereby
in the reconstruction of the signal following (17). This means
that the wrong model might be selected and an inaccurate
reconstruction obtained. This further stresses the importance of a
correct design of dictionary elements, which from the description
just presented, it is equivalent to the correct design of the
covariance matrix, including the initialization, which isdescribed
next.

C. Initialization of MAP-EM

The PCA formulation just described not only reveals the
connection between PLE and structured sparse estimations,but
it is crucial for understanding how to initialize the Gaussian
models for MAP-EM as well.

1) Sparsity: As explained in Section III-A, for the sparse
inverse problem estimations to have the super-resolution ability,
the first requirement on the dictionary is to be able to provide
sparse representations of the image. It has been shown that
capturing image directional regularity is highly important for
sparse representations [1], [11], [54]. In dictionary learning, for
example, most prominent atoms look like local edges good at
representing contours, as illustrated in Figure 2-(a). Therefore the
initial PCAs in our framework, which following (16) will lead to
the initial Gaussians, are designed to capture image directional
regularity.

(a) (b) (c)
Fig. 2. (a) Some typical dictionary atoms learned from the image Lena
(Figure 3-(a)) with K-SVD [1]. (b)-(d) A numerical procedure to obtain the
initial directional PCAs. (b) A synthetic edge image. Patches (8×8) that touch
the edge are used to calculate an initial PCA basis. (c) The first 8 atoms in the
PCA basis with the largest eigenvalues. (d) Typical eigenvalues.
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The initial directional PCA bases are calculated following
a simple numerical procedure. Directions from 0 toπ are
uniformly sampled toK angles, and one PCA basis is calculated
per angle. The calculation of the PCA at an angleθ uses
a synthetic blank-and-white edge image following the same
direction, as illustrated in Figure 2-(b). Local patches that touch
the contour are collected and are used to calculate the PCA basis
(following (10) and (16)). The first atom, which is almost DC,
is replaced by DC, and a Gram-Schmidt orthogonalization is
calculated on the other atoms to ensure the orthogonality ofthe
basis. The patches contain edges that are translation-invariant.
As the covariance of a stationary process is diagonalized bythe
Fourier basis, unsurprisingly, the resulting PCA basis hasfirst
few important atoms similar to the cosines atoms oscillating in
the directionθ from low-frequency to high-frequency, as shown
in Figure 2-(c). Comparing with the Fourier vectors, these PCAs
enjoy the advantage of being free of the periodic boundary issue,
so that they can provide sparse representations for local image
patches. The eigenvalues of all the bases are initiated withthe
same ones obtained from the synthetic contour image, that have
fast decay, Figure 2-(d). These, following (16), complete the
covariance initialization. The Gaussian means are initialized with
zeros.

It is worth noting that this directional PCA basis not only
provides sparse representations for contours and edges, but it
captures well textures of the same directionality as well. Indeed,
in a space of dimensionN corresponding to patches of size

√
N×√

N, the first about
√

N atoms illustrated in Figure 2-(c) absorb
most of the energy in local patterns following the same direction
in real images, as indicated by the fast decay of the eigenvalues
(very similar to Figure 2-(d)).

A typical patch size is
√

N×
√

N = 8× 8, as selected in
previous works [1], [24]. The number of directions in a local
patch is limited due to the pixelization. The DCT basis is also
included in competition with the directional bases to capture
isotropic image patterns. Our experiments have shown that in
image inverse problems, there is a significant average gain in
PSNR whenK grows from 0 to 3 (whenK = 0, the dictionary is
initialized with only a DCT basis and all the patches are assigned
to the same cluster), which shows that one Gaussian model, or
equivalently a single linear estimator, is not enough to accurately
describe the image. WhenK increases, the gain reduces and gets
stabilized at aboutK = 36. Compromising between performance
and complexity,K = 18, which corresponds to a 10◦ angle
sampling step, is selected in all the future experiments.

Figures 3-(a) and (b) illustrates the Lena image and the
corresponding patch clustering, i.e., the model selectionk̃i ,
obtained for the above initialization, calculated with (7)in the E-
step described in Section II. The patches are densely overlapped
and each pixel in Figure 3-(b) represents the modelki selected
for the 8×8 patch around it, different colors encoding different
values of k̃i , from 1 to 19 (18 directions plus a DCT). One
can observe, for example on the edges of the hat, that patches
where the image patterns follow similar directions are clustered
together, as expected. Let us note that on the uniform regions
such as the background, where there is no directional preference,
all the bases provide equally sparse representations. As the
log|Σk|= ΠN

m=1λ k
m term in the model selection (7) is initialized

as identical for all the Gaussian models, the clustering is random
inf these regions. The clustering will improve as the MAP-EM

progresses.

(a) (b) (c)
Fig. 3. (a). Lena image. ((b) to (d) are color images.) (b). Patch clustering
obtained with the initial directional PCAs (see Figure 2-(c)). The patches are
densely overlapped and each pixel represents the modelk̃i selected for the 8×8
patch around it, different colors encoding different direction values ofk̃i , from
1 to K = 19. (c). Patch clustering obtained with the initial position PCAs (see
Figure 4). Different colors encoding different position values of ki , from 1 to
P= 12. (d) and (e). Patch clustering with respectively directional and position
PCAs after the 2nd iteration.2) Recoverability: The oscillatory atoms illustrated in Fig-
ure 2-(c) are spread in space. Therefore, for diagonal operators
in space such as masking and subsampling, they satisfy well
the recoverability condition‖Uφk

m‖2 ≥ 0 for super-resolution
described in Section III-A. However, as these oscillatory atoms
have Dirac supports in Fourier, for convolution operators,the
recoverability condition is violated. For convolution operators
U, ‖Uφk

m‖2 ≥ 0 requires that the atoms have spread Fourier
spectrum. Spatially localized atoms have spread Fourier spec-
trum. Following a similar numerical scheme as described above,
patches touching the edge at afixed position are extracted
from synthetic edge images with different amounts of blur.
The resulting PCA basis, named position PCA basis hereafter,
contains localized atoms of different polarities and at different
scales, following the same directionθ , as illustrated in Figure 4
(which look like wavelets along the appropriate direction). For
each directionθ , a family of localized PCA bases{Bk,p}1≤p≤P

are calculated at all the positions translating within the patch.
The eigenvalues are initialized with the same fast decay ones as
illustrated in Figure 2-(d) for all the position PCA bases. Each
pixel in Figure 3-(c) represents the modelpi selected for the
8×8 patch around it, different colors encoding different position
values of pi , from 1 to 12. The rainbow-like color transitions
on the edges show that the position bases are accurately fitted
to the image structures. Note that although the position PCA
bases consisting of localized atoms may provide more sparse
representation for localized edges, as opposed to the directional
PCA bases they do not satisfy the recoverability condition under
masking degradation operators, and are thus less appropriate for
solving interpolation problems.

A summary of the complete algorithm is given in Figure 5.
The MAP-EM algorithm, with an imaging-motivated initializa-
tion, leads to successful applications in a number of image
inverse problems as will be shown below.

Fig. 4. The first 8 atoms in the position PCA basis with the largest eigenvalues.

3) Wiener Filtering Interpretation:Figure 6 illustrates some
typical Wiener filters, which are the rows ofWk in (6), calcu-
lated with the initial PCA bases described above for zooming
and deblurring. The filters have intuitive interpretations, for
example directional interpolator for zooming and directional
deconvolution for deblurring, confirming the effectiveness of the
initialization.
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The MAP-EM algorithm of the PLE image inverse problem estimate
1) Initialization.

• Eigenvectors. The initial eigenvectors of each Gaussian are calculated following the numerical procedure described in Section III-C1 for interpolation
and zooming, and sections III-C2 and VII-A for deblurring.

• Eigenvalues. The initial eigenvalues are obtained by calculating the eigenvalues of a collection of natural image patches. These same initial eigenvalues
are used for all the Gaussians.

The eigenvectors and eigenvalues are calculated once and stored. For each experiment they are then loaded.
2) E-step. For each image patch, estimate the original signal and its Gaussian identity by (5), (7) and (8).
3) M-step. For each Gaussian, estimate its mean and covariance matrix by (10) and (11).
4) If not converged, go to Step 2. (The algorithm typically converges in 3 to 5 iterations.)

Note that while the PCA formulation(18) reveals a connection between PLE and structured sparse models, the algorithm is actually implemented without PCA.

Fig. 5. Summary of the MAP-EM algorithm.

(a) (b) (c) (d)
Fig. 6. Some filters generated by the MAP estimator. (a) and (b) are for image
zooming, where the degradation operatorU is a 2× 2 subsampling operator.
Gray-level from white to black: values from negative to positive. (a) is computed
with a Gaussian distribution whose PCA basis is a DCT basis, and it implements
an isotropic interpolator. (b) is computed with a Gaussian distribution whose
PCA basis is a directional PCA basis (angleθ = 30◦), and it implements a
directional interpolator. (c) and (d) are shown in Fourier and are for image
deblurring, where the degradation operatorU is a Gaussian convolution operator.
Gray-level from white to black: Fourier modules from zero topositive. (c) is
computed with a Gaussian distribution whose PCA basis is a DCT basis, and
it implements an isotropic deblurring filter. (d) is computed with a Gaussian
distribution whose PCA basis is a directional PCA basis (angle θ = 30◦, at a
fixed position), and it implements a directional deblurringfilter.

D. Additional Comments on Related Works

Before proceeding with experimental results and applications,
let us further comment on some related works, in addition to
those already addressed in Section I.

The MAP-EM algorithm using various probability distribu-
tions such as Gaussian, Laplacian, Gamma and Gibbs, has been
widely applied in medical image reconstruction and analysis
(see for example [83], [47]). Following the Gaussian mixture
models, MAP-EM alternates between image patch estimation
and clustering, and Gaussian models estimation.

Clustering-based estimation based on self-similarity image
models has been shown effective for image restoration [10],
[17], [41], [45], [50], [63]. In these works, similar patches
are clustered typically using the block matching technique,
i.e., including in the same cluster the patches among which
the Euclidian distance or mean absolute difference is small.
Image segmentation algorithms such as k-means on local image
features has been considered as well [14]. While such clustering
is intuitive, the clustering and signal estimation are addressed
as two separate problems [14], [50]. The self-similarity patch-
based approaches have been equally addressed in the framework
of partial differential equations [28], [34], [73]. The general-
ized PCA [75] models and segments data using an algebraic
subspace clustering technique based on polynomial fitting and
differentiation, and while it has been shown effective in image
segmentation, it does not reach state-of-the-art in image restora-
tion. In the recent non-parametric Bayesian approach [84],an
image patch clustering is implemented with probability models,
which improves the denoising and interpolation results, although
still under performing, in quality and computational cost,the
framework here introduced.

Based on the Gaussian mixture models here developed, the
clustering in this framework is calculated jointly with thesignal
estimation as one consistent problem by maximizing the MAP
probability (3). The effectiveness of this modeling will befurther
supported next with examples in a number of imaging inverse
problem applications.

IV. I NITIAL SUPPORTIVEEXPERIMENTS

Before proceeding with detailed experimental results for a
number of applications of the proposed framework, this section
shows through some basic experiments the effectiveness and
importance of the initialization proposed above, the evolution of
the representations as the MAP-EM algorithm iterates, as well
as the improvement brought by the structure in PLE with respect
to traditional sparse estimation.

Following some recent works, e.g., [52], an image is decom-
posed into 128×128 regions, each region treated with the MAP-
EM algorithm separately. The idea is that image contents are
often more coherent semi-locally than globally, and Gaussian
model estimation or dictionary learning can be slightly improved
in semi-local regions. This also saves memory and enables the
processing to proceed as the image is being transmitted. Parallel
processing on image regions is also possible when the whole
image is available. Regions are half-overlapped to eliminate the
boundary effect between the regions, and their estimates are
averaged at the end to obtain the final estimate.

A. Initialization

Different initializations are compared in the context of dif-
ferent inverse problems, interpolation, zooming and deblurring.
The reported experiments are performed on some typical image
regions, Lena’s hat with sharp contours and Barbara’s clothrich
in texture, as illustrated in Figure 7.
Interpolation. In the addressed case of interpolation, the image
is degraded byU, that is a random masking operator which
randomly sets pixel values to zeros. The initialization described
above is compared with a random initialization, which initializes
in the E-step all the missing pixel value with zeros and starts
with a random patch clustering. Figure 7-(a) and (b) compare
the PSNRs obtained by the MAP-EM algorithm with those
two initializations. The algorithm with the random initialization
converges to a PSNR close to, about 0.4 dB lower than, that
with the proposed initialization, and the convergence takes
much longer time (about 6 iterations) than the latter (about3
iterations).

It is worth noting that on the contours of Lena’s hat, with
the proposed initialization the resulting PSNR is stable from the
initialization, which already produces accurate estimation, since
the initial directional PCA bases themselves are calculated over
synthetic contour images, as described in Section III-C.
Zooming. In the context of zooming, the degradationU is a
subsampling operator on a uniform grid, much structured than
that for interpolation of randomly sampled images. The MAP-
EM algorithm with the random initialization completely fails
to work: It gets stuck in the initialization and does not lead
to any changes on the degraded image. Instead of initializing
the missing pixels with zeros, a bicubic initialization is tested,
which initializes the missing pixels with bicubic interpolation.
Figure 7-(c) shows that, as the MAP-EM algorithm iterates, it
significantly improves the PSNR over the bicubic initialization,
however, the PSNR after a slower convergence is still about 0.5
dB lower than that obtained with the proposed initialization.
Deblurring. In the deblurring setting, the degradationU is a
convolution operator, which is very structured, and the image
is further contaminated with a white Gaussian noise. Four
initializations are under consideration: the initialization with
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directional PCAs (K directions plus a DCT basis), which is
exactly the same as that for interpolation and zooming tasks,
the proposed initialization with theposition PCA bases for
deblurring as described in Section III-C2 (P positions per each
of the K directions, all with the same eigenvalues as for the
directional PCAs initialization), and two random initializations
with the blurred image itself as the initial estimate and a random
patch clustering with, respectively,K+1 and(K+1)P clusters.
As illustrated in Figure 7-(d), the algorithm with the directional
PCAs initialization gets stuck in a local minimum since the
second iteration, and converges to a PSNR 1.5 dB lower than
that with the initialization using the position PCAs. Indeed,
since the recoverability condition for deblurring, as explained
in Section III-C2, is violated with just directional PCA bases,
the resulting images remain still quite blurred. The random
initialization with (K+1)P clusters results in better results than
with K + 1 clusters, which is 0.7 dB worse than the proposed
initialization with position PCAs.

These experiments confirm the importance of the initialization
in the MAP-EM algorithm to solve inverse problems. The
sparse modeling dual interpretation of GMM/MAP-EM helps
to deduce effective initializations for different inverseproblems,
which are further confirmed by the Wiener filter interpretation
described in Section III-C3. While for interpolation of random
masking operators, trivial initializations slowly converge to a
solution moderately worse than that obtained with the proposed
initialization, for more structured degradation operators such
as uniform subsampling and convolution, simple initializations
either fail to work or lead to worse results than with the proposed
initialization. Note that with the proposed initialization, the first
iteration leads already to good performance. The adaptation of
the PCAs to the image under consideration as the algorithm
iterates further improves the results.

(a) (b) (c) (d)
Fig. 7. PSNR comparison of the MAP-EM algorithm with different initial-
izations on different inverse problems. The horizontal axis corresponds to the
number of iterations. (a) and (b). Interpolation with 50% and 30% available
data at random position, on Lena’s hat and Barbara’s cloth. The initializations
under consideration are the random initialization and the initialization with
directional PCA bases. (c) Zooming, on Lena’s hat. The initializations under
consideration are bicubic initialization and the initialization with directional PCA
bases. (Random initialization completely fails to work.) (d) Deblurring, on Lena’s
hat. The initializations under consideration are the initialization with directional
PCAs (K directions plus a DCT basis), the initialization with theposition PCA
bases (P positions per each of theK directions), and two random initializations
with the blurred image itself as the initial estimate and a random patch clustering
with, respectively,K+1 (rand. 1) and(K+1)P (rand. 2) clusters. See text for
more details.

B. Evolution of Representations

Figure 8 illustrates, in an interpolation context on Barbara’s
cloth, which is rich in texture, the evolution of the patch
clustering as well as that of a typical PCA bases as the
MAP-EM algorithm iterates. The clustering gets cleaned up as

the algorithm iterates. (See figures 3-(d) and (e) for another
example.) Some high-frequency atoms are promoted to better
capture the oscillatory patterns, resulting in a significant PSNR
improvement of more than 3 dB. On contour images such as
Lena’s hat illustrated in Figure 7, on the contrary, although
the patch clustering is cleaned up as the algorithm iterates, the
resulting local PSNR evolves little after the initialization, which
already produces accurate estimation, since the directional PCA
bases themselves are calculated over synthetic contour images,
as described in Section III-C. The eigenvalues have always fast
decay as the iteration goes on, visually similar to the plot in
Figure 2-(d). The resulting PSNRs typically converge in 3 to5
iterations.

(a) (b) (c)
Fig. 8. Evolution of the representations. (a) The original image cropped from
Barbara. (b) The image masked with 30% available data. (c) and (d) are color
images. (c) Bottom: The first few atoms of an initial PCA basiscorresponding
to the texture on the right of the image. Top: The resulting patch clustering
after the 1st iteration. Different colors represent different clusters. (d) Bottom:
The first few atoms of the PCA basis updated after the 1st iteration. Top: The
resulting patch clustering after the 2nd iteration. (e) Theinterpolation estimate
after the 2nd iteration (32.30 dB).

C. Estimation Methods

(a) Original image. (b) Low-resolution image. (c) Globall1: 22.70 dB (d)

(e) Block l1: 26.35 dB (f) Block OMP: 29.27 dB (g) Block weighted l1: 35.94 dB (h)

Fig. 9. Comparison of different estimation methods on super-resolution
zooming. (a) The original image cropped from Lena. (b) The low-resolution
image, shown at the same scale by pixel duplication. From (c)to (h) are
the super-resolution results obtained with different estimation methods. As the
modeling methods get closer and closer to the proposed approach, which can
be interpreted as a weighted sparse coding, results get closer and closer to the
best one produced by the proposed approach, obtained at a significantly lower
computational cost. See text for more details.

From the sparse coding point of view, the gain of introducing
structure in sparse inverse problem estimation as described
in Section III is now shown through some experiments. An
overcomplete dictionaryD composed of a family of PCA bases
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{Bk}1≤k≤K , illustrated in Figure 1-(b), is learned as described
in Section II, and is then fed to the following estimation
schemes. (i)Global l1 and OMP: the ensemble ofD is used
as an overcomplete dictionary, and the zooming estimation is
calculated with the sparse estimate (14) through, respectively,
an l1 minimization or an orthogonal matching pursuit (OMP).
(ii) Block l1 and OMP: the sparse estimate is calculated in each
PCA basisBk through, respectively anl1 minimization and an
OMP, and the best estimate is selected with a model selection
procedure similar to (7), thereby reducing the degree of freedom
in the estimation with respect to the globall1 and OMP. [80]. (iii)
Block weighted l1: on top of the blockl1, weights are included
for each coefficient amplitude in the regularizer,

ãk
i = argmin

a

(

‖UiBka− yi‖2+σ2
N

∑
m=1

|a[m]|
τk

m

)

, (19)

with the weightsτk
m = (λ k

m)
1/2, whereλ k

m are the eigenvalues
of the k-th PCA basis. The weighting scheme penalizes the
atoms that are less likely to be important, following the spirit of
the weightedl2 deduced from the MAP estimate. (iv)Block
weighted l2: the proposed PLE. Comparing with (19), the
difference is that the weightedl2 (18) takes the place of the
weightedl1, thereby transforming the problem into a stable and
computationally efficient piecewise linear estimation.

The comparison on a typical region of Lena in the 2× 2
image zooming context is shown in Figure 9. The globall1 and
OMP produce some clear artifacts along the contours, which
degrade the PSNRs. The blockl1 or OMP considerably improves
the results (especially forl1). Comparing with the blockl1 or
OMP, a very significant improvement is achieved by adding the
collaborative weights on top of the blockl1. The proposed PLE
with the block weightedl2, computed with linear filtering, further
improves the estimation accuracy over the block weightedl1,
with a much lower computational cost.

In the following sections, PLE will be applied to a number of
inverse problems, including image interpolation, zoomingand
deblurring. The experiments are performed on some standard
gray-level and color images.3

V. I NTERPOLATION OFRANDOM SAMPLED IMAGES

In the addressed case of interpolation, the original imagef is
masked with a random mask,y = Uf, whereU is a diagonal
matrix whose diagonal entries are randomly either 1 or 0,
keeping or killing the corresponding pixels. Note that thiscan
be considered as a particular case of compressed sensing, or
when collectively considering all the image patches, as matrix
completion (and as here demonstrated, in contrast with the recent
literature on the subject, a single subspace is not sufficient, see
also [84]).

The experiments are performed on the gray-level images Lena,
Barbara, House, and Boat, and the color images Castle, Mush-
room, Train and Horses. Uniform random masks that retain 80%,
50%, 30% and 20% of the pixels are used. The masked images
are then inpainted with the algorithms under consideration.

For gray-level images, the image patch size is
√

N×
√

N =
8×8 when the available data is 80%, 50%, and 30%. Larger

3Gray-level: Lena, Barbara, Peppers, Mandril, House, Cameraman, Boats, and
Straws; Color images: Castle, Mushroom, Kangaroo, Train, Horses, Kodak05,
Kodak20, Girl, and Flower.

patches of size 12×12 are used when images are heavily masked
with only 20% pixels available. For color images, patches of
size

√
N×
√

N× 3 throughout the RGB color channels are
used to exploit the redundancy among the channels [51]. To
simplify the initialization in color image processing, theE-
step in the first iteration is calculated with “gray-level” patches
of size

√
N×
√

N on each channel, but with a unified model
selection across the channels: The same model selection is
performed throughout the channels by minimizing the sum of
the model selection energy (7) over all the channels; the signal
estimation is calculated in each channel separately. The M-step
then estimates the Gaussian models with the “color” patchesof
size
√

N×
√

N×3 based on the model selection and the signal
estimate previously obtained in the E-step. Starting from the
second iteration, both the E- and M-steps are calculated with
“color” patches, treating the

√
N×
√

N× 3 patches as vectors
of size 3N.

√
N is set to 6 for color images, as in the previous

works [51], [84]. The MAP-EM algorithm runs for 5 iterations.
The noise standard deviationσ is set to 3, which corresponds to
the typical noise level in these images. The small constantε in
the covariance regularization is set to 30 in all the experiments.

The PLE interpolation is compared with a number of recent
methods, including “MCA” (morphological component analy-
sis) [25], “ASR” (adaptive sparse reconstructions) [37] , “ECM”
(expectation conditional maximization) [29] , “KR” (kernel
regression) [70], “FOE” (fields of experts) [66], “BP” (beta
process) [84], “K-SVD” [51], and “NL” [45]. MCA and ECM
compute the sparse inverse problem estimate in a dictionary
that combines a curvelet frame [11], a wavelet frame [53] and
a local DCT basis. ASR calculates the sparse estimate with a
local DCT. BP infers a nonparametric Bayesian model from the
image under test (noise level is automatically estimated).Using
a natural image training set, FOE and K-SVD learn respectively
a Markov random field model and an overcomplete dictionary
that gives sparse representation for the images. Followingthe
self-similarity image prior, NL iterates between a projection
step based on the observation, and a non-local transform and
thresholding step. The results of MCA, ECM, KR, FOE, and
NL are generated by the original authors’ softwares, with the
parameters manually optimized over all the images, and those
of ASR are calculated with our own implementation. The PSNRs
of BP and K-SVD are cited from the corresponding papers. NL,
BP, and BK-SVD currently generate the best interpolation results
in the literature.

Table I-left gives the interpolation results on gray-levelim-
ages. Except at relatively high available data ratio (80% and
50%) where NL gives the results comparable to PLE, PLE
considerably outperforms the other methods in all the cases,
with an average PSNR improvement of about 0.5 dB over the
second best algorithm NL and about 2 dB over the algorithms
that follow (BP, FOE and MCA). With 20% available data on
Barbara, which is rich in textures, it gains as much as about 3
dB over MCA, 4 dB over ECM, 5.5 dB over NL, and 6 dB over
all the other methods. Let us remark that when the missing data
ratio is high, MCA generates quite good results, as it benefits
from the curvelet atoms that have large support relatively to the
local patches used by the other methods.

Figure 10 compares the results of different algorithms. All
the methods lead to good interpolation results on the smooth
regions. MCA is good at capturing contour structures. However,
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when the curvelet atoms are not correctly selected, MCA pro-
duces noticeable elongated curvelet-like artifacts that degrade the
visual quality and offset its gain in PSRN (see for example the
face of Barbara). MCA restores better textures than BP, ASR,
FOE, KR, and NL. PLE leads to accurate restoration on both the
directional structures and the textures, producing the best visual
quality with the highest PSNRs. An additional PLE interpolation
examples is shown in Figure 8.

Data ratio MCA ASR ECM KR FOE* NL BP PLE

Lena

80% 40.60 42.18 39.51 41.68 42.17 43.30 41.27 43.38
50% 35.63 36.16 34.43 36.77 36.66 37.82 36.94 37.78
30% 32.33 32.48 31.11 33.55 33.22 34.13 33.31 34.37
20% 30.30 30.37 28.93 31.21 31.06 31.62 31.00 32.22

Barbara

80% 41.50 39.63 39.10 37.81 38.27 43.50 40.76 43.85
50% 34.29 30.42 32.54 27.98 29.47 36.40 33.17 37.03
30% 29.98 25.72 28.46 24.00 25.36 29.65 27.52 32.73
20% 27.47 24.66 26.45 23.34 23.93 25.40 24.80 30.94

House

80% 42.91 43.79 40.61 42.57 44.70 45.27 43.03 44.77
50% 37.02 36.06 35.16 36.82 37.99 39.30 38.02 38.97
30% 33.41 31.86 31.46 33.62 33.86 35.92 33.14 34.88
20% 30.67 29.91 28.97 31.19 31.28 32.87 30.12 33.05

Boat

80% 38.61 39.52 37.45 37.91 38.33 40.52 39.50 40.49
50% 32.77 32.84 31.84 32.70 33.22 34.57 33.78 34.36
30% 29.57 29.55 28.46 29.28 29.80 30.51 30.00 30.77
20% 27.73 27.34 26.39 27.05 27.86 28.32 27.81 28.66

Average

80% 40.90 41.28 39.16 39.99 40.86 43.16 41.14 43.12
50% 34.93 33.87 33.49 33.56 34.33 37.02 35.47 37.03
30% 31.32 29.90 29.87 30.11 30.56 32.55 30.99 33.18
20% 29.04 28.07 27.68 28.19 28.53 29.55 28.43 31.21

Data ratio BP PLE

Castle

80% 41.51 48.26
50% 36.45 38.34
30% 32.02 33.01
20% 29.12 30.07

Mushroom

80% 42.56 49.25
50% 38.88 40.72
30% 34.63 35.36
20% 31.56 32.06

Train

80% 40.73 44.01
50% 32.00 32.75
30% 27.00 27.46
20% 24.59 24.73

Horses

80% 41.97 48.83
50% 37.27 38.52
30% 32.52 32.99
20% 29.99 30.26

Average

80% 41.69 47.59
50% 36.15 37.58
30% 31.54 32.18
20% 28.81 29.28

TABLE I
PSNRCOMPARISON ON GRAY-LEVEL (LEFT) AND COLOR (RIGHT) IMAGE

INTERPOLATION. FOR EACH IMAGE, UNIFORM RANDOM MASKS WITH FOUR

AVAILABLE DATA RATIOS ARE TESTED . THE ALGORITHMS UNDER
CONSIDERATION AREMCA [25], ASR [37] , ECM [29] , KR [70],

FOE [66], BP [84], NL [45],AND THE PROPOSEDPLE FRAMEWORK. THE

BOTTOM BOX SHOWS THE AVERAGEPSNRS GIVEN BY EACH METHOD OVER

ALL THE IMAGES AT EACH AVAILABLE DATA RATIO . THE HIGHESTPSNRIN
EACH ROW IS IN BOLDFACE. THE ALGORITHMS WITH * USE A TRAINING

DATASET.

(a) Original (b) Masked (c) MCA (24.18 dB) (d) ASR (21.84 dB)

(e) FOE (21.92 dB) (f) NL (23.31 dB) (g) BP (25.54 dB) (h) PLE (27.65 dB)
Fig. 10. Gray-level image interpolation. (a) Original image cropped from
Barbara. (b) Masked image with 20% available data (6.81 dB).From (c) to
(g): Image inpainted by different algorithms. Note the overall superior visual
quality obtained with the proposed approach. The PSNRs are calculated on the
cropped images.

Table I-right compares the PSNRs of the PLE color image
interpolation results with those of BP (the only one in the
literature that reports the comprehensive comparison in our
knowledge). Again, PLE generates higher PSNRs in all the cases.
While the gain is especially large, at about 6 dB, when the

available data ratio is high (at 80%), for the other masking rates,
it is mostly between 0.5 and 1 dB. Both methods use only the
image under test to learn the dictionaries.

Figure 11 illustrates the PLE interpolation result on Castle
with 20% available data. Calculated with a much reduced com-
putational complexity, the resulting 30.07 dB PSNR surpasses
the highest PSNR, 29.65 dB, reported in the literature, produced
by K-SVD [51], that uses a dictionary learned from a natural
image training set, followed by 29.12 dB given by BP (BP has
been recently improved adding spatial coherence in the code,
unpublished results). As shown in the zoomed region, PLE
accurately restores the details of the castle from the heavily
masked image. Let us remark that interpolation with random
masks on color images is in general more favorable than on gray-
level images, thanks to the information redundancy among the
color channels. A further comparison with a multiscale extension
of the K-SVD algorithm [52] shows that for restoring House
from 25% available data (the only result of this application
reported therein), the multiscale K-SVD leads to 33.97 and 31.75
dB at respectively two and one scales, in contrast to the 34.05
dB obtained by the proposed PLE without any parameter tuning.

(a) Original (b) Masked (c) PLE
Fig. 11. Color image interpolation. (a) Original image cropped from Castle.
(b) Masked image with 20% available data (5.44 dB). (c) Imageinpainted by
PLE (27.30 dB). The PSNR on the overall image obtained with PLE is 30.07
dB, higher than the best result reported so far in the literature 29.65 dB [51].

VI. I NTERPOLATION ZOOMING

Interpolation zooming is a special case of interpolation with
regular subsampling on uniform grids. As explained in Sec-
tion III-A, the regular subsampling operatorU may result in
a highly coherent transformed dictionaryUD. Calculating an
accurate sparse estimation for interpolation zooming is therefore
more difficult than that for interpolation of random sampled
images.

The experiments are performed on the gray-level images Lena,
Peppers, Mandril, Cameraman, Boat, and Straws, and the color
images Lena, Peppers, Kodak05 and Kokad20. The color images
are treated in the same way as for interpolation. These high-
resolution images are down-sampled by a factor 2×2 without
anti-aliasing filtering. The resulting low-resolution images are
aliased, which corresponds to the reality of television images that
are usually aliased, since this improves their visual perception.
The low-resolution images are then zoomed by the algorithms
under consideration. When the anti-aliasing blurring operator
is included before subsampling, zooming can be casted as a
deconvolution problem and will be addressed in Section VII.

The PLE interpolation zooming is compared with linear
interpolators [8], [42], [74], [60] as well as recent super-
resolution algorithms “NEDI” (new edge directed interpola-
tion) [46], “DFDF” (directional filtering and data fusion) [81],
“KR” (kernel regression) [70], “ECM” (expectation conditional
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maximization) [29], “Contourlet” [59], “ASR” (adaptive sparse
reconstructions) [37], “FOE” (fields of experts) [66], “SR”
(sparse representation) [76], “NL” [45], “SAI” (soft-decision
adaptive Interpolation) [82] and “SME” (sparse mixing es-
timators) [55]. KR, ECM, ASR, FOE and NL are generic
interpolation algorithms that have been described in Section V.
NEDI, DFDF and SAI are adaptive directional interpolation
methods that take advantage of the image directional regularity.
Contourlet is a sparse inverse problem estimator as described
in Section III-A, computed in a contourlet frame. SR is also
a sparse inverse estimator that learns the dictionaries from a
training image set. SME is a recent zooming algorithm that
exploits directional structured sparsity in wavelet representations.
Among the previously published algorithms, SAI and SME
currently provide the best PSNR for spatial image interpolation
zooming [55], [82]. The results of ASR are generated with our
own implementation, and those of all the other algorithms are
produced by the original authors’ softwares, with the parameters
manually optimized. As the anti-aliasing operator is not included
in the interpolation zooming model, to obtain correct results
with SR, the anti-aliasing filter used in the original authors’
SR software is deactivated in both dictionary training (with
the authors’ original training dataset of 92 images) and super-
resolution estimation. PLE is configured in the same way as for
interpolation as described in Section V, with patch size 8×8 for
gray-level images, and 6×6×3 for color images.

Table II gives the PSNRs generated by all algorithms on the
gray-level and the color images. Bicubic interpolation provides
nearly the best results among all tested linear interpolators,
including cubic splines [74], MOMS [8] and others [60], due
to the aliasing produced by the down-sampling. PLE gives
moderately higher PSNRs than SME and SAI for all the images,
with one exception where the SAI produces slightly higher
PSNR. Their gain in PSNR is significantly larger than with all
the other algorithms.

Figure 12 compares an interpolated image obtained by the
baseline bicubic interpolation and the algorithms that generate
the highest PSNRs, SAI and PLE. The local PSNRs on the
cropped images produced by all the methods under consideration
are reported as well. Bicubic interpolation produces some blur
and jaggy artifacts in the zoomed images. These artifacts are
reduced to some extent by the NEDI, DFDF, KR, FOE and NL
algorithms, but the image quality is still lower than with PLE,
SAI and SME algorithms, as also reflected in the PSNRs. SR
yields an image that looks sharp. However, due to the coherence
of the transformed dictionary, as explained in Section III-A,
when the approximating atoms are not correctly selected, it
produces artifact patterns along the contours, which degrade its
PSNR. The PLE algorithm restores slightly better than SAI and
SME on regular geometrical structures, as can be observed on
the upper and lower propellers, as well as on the fine lines on
the side of the plane indicated by the arrows.

VII. D EBLURRING

An image f is blurred and contaminated by additive noise,
y = Uf +w, where U is a convolution operator andw is the
noise. Image deblurring aims at estimatingf from the blurred
and noisy observationy.

Bicubic NEDI DFDF KR ECM Contourlet ASR FOE*
Lena 33.93 33.77 33.91 33.94 24.31 33.92 33.19 34.04

Peppers 32.83 33.00 33.18 33.15 23.60 33.10 32.33 31.90
Mandril 22.92 23.16 22.83 22.93 20.34 22.53 22.66 22.99

Cameraman 25.37 25.42 25.67 25.51 19.50 25.35 25.33 25.58
Boat 29.24 29.19 29.32 29.18 22.20 29.25 28.96 29.36

Straws 20.53 20.54 20.70 20.76 17.09 20.52 20.54 20.47

Ave. gain 0 0.04 0.13 0.11 -6.30 -0.02 -0.30 -0.08

Bicubic NEDI DFDF KR FOE* SR* SAI
Lena 32.41 32.47 32.46 32.55 32.55 26.42 32.98

Peppers 30.95 31.06 31.24 31.26 31.05 26.43 31.37
Kodak05 25.82 25.93 26.03 26.09 26.01 20.76 26.91
Kodak20 30.65 31.06 31.08 30.97 30.84 25.92 31.51

Ave. gain 0 0.17 0.25 0.27 0.16 -5.07 0.74

TABLE II
PSNRCOMPARISON ON GRAY-LEVEL (TOP) AND COLOR (BOTTOM) IMAGE

INTERPOLATION ZOOMING. THE ALGORITHMS UNDER CONSIDERATION ARE

BICUBIC INTERPOLATION, NEDI [46], DFDF [81], KR [70], ECM [29],
CONTOURLET [59], ASR [37], FOE [66], SR [76], NL [45] SAI [82] ,
SME [55] AND THE PROPOSEDPLE FRAMEWORK. THE BOTTOM ROW

SHOWS THE AVERAGE GAIN OF EACH METHOD RELATIVE TO THE BICUBIC

INTERPOLATION. THE HIGHESTPSNRIN EACH ROW IS IN BOLDFACE. THE
ALGORITHMS WITH * USE A TRAINING DATASET.

(a) HR (b) LR (c) Bibubic (d)
Fig. 12. Color image zooming. (a) Crop from the high-resolution image
Kodak20. (b) Low-resolution image. From (c) to (e), images zoomed by bicubic
interpolation (28.48 dB), SAI (30.32 dB) [82], and proposedPLE framework
(30.64 dB). PSNRs obtained by the other methods under consideration: NEDI
(29.68 dB) [46], DFDF (29.41 dB) [81], KR (29.49 dB) [70], FOE(28.73
dB) [66], SR (23.85 dB) [76], and SME (29.90 dB) [55]. Attention should be
focused on the places indicated by the arrows.
A. Hierarchical PLE

As explained in Section III-C2, the recoverability condition
of sparse super-resolution estimates for deblurring requires a
dictionary comprising atoms with spread Fourier spectrum and
thus localized in space, such as the position PCA basis illustrated
in Figure 4. To reduce the computational complexity, model
selection with a hierarchy of directional PCA bases and position
PCA bases is proposed, in the same spirit of [79]. Figure 13-
(a) illustrates the hierarchical PLE with a cascade of the two
layers of model selections. The first layer selects the direction,
and given the direction, the second layer further specifies the
position.

In the first layer, the model selection procedure is identical to
that in image interpolation and zooming, i.e., it is calculated with
the Gaussian models corresponding to the directional PCA bases
{Bk}1≤k≤K , Figure 2-(c). In this layer, a directional PCABk of
orientationθ is selected for each patch. Given the directional
basisBk selected in the first layer, the second layer recalculates
the model selection (7), this time with a family of position
PCA bases{Bk,p}1≤p≤P corresponding to the same direction
θ as the directional basisBk selected in the first layer, with
atoms in each basisBk,p localized at one position, and theP



12

bases translating in space and covering the whole patch. The
image patch estimation (8) is obtained in the second layer. This
hierarchical calculation reduces the computational complexity
from O(KP) to O(K +P).

(a) (b)
Fig. 13. (a). Hierarchical PLE for deblurring. Each patch inthe first layer
symbolizes a directional PCA basis. Each patch in the secondlayer symbolizes
a position PCA basis. (b) To circumvent boundary issues, deblurring a patch
whose support isΩ can be casted as inverting an operator compounded by a
masking and a convolution defined on a larger supportΩ̄. See text for details.

For deblurring, boundary issues on the patches need to be
addressed. Since the convolution operator is non-diagonal, the
deconvolution of each pixely(x) in the blurred imagey involves
the pixels in a neighborhood aroundx whose size depends
on the blurring kernel. As the patch based methods deal with
the local patches, for a given patch, the information outside
of it is missing. Therefore, it is impossible to obtain accurate
deconvolution estimation on the boundaries of the patches.To
circumvent this boundary problem, a larger patch is considered
and the deconvolution is casted as a deconvolution plus an
interpolation problem. Let us retake the notationsf i, yi and
wi to denote respectively the patches of size

√
N×
√

N in the
original imagef, the degraded imagey, and the noisew. Let
Ω be their support. Let̄f i, ȳi and w̄i be the corresponding
larger patches of size(

√
N+ 2r)× (

√
N+ 2r), whose support

Ω̄ is centered at the same position asΩ and with an extended
boundaryΩ̄\Ω of width r (the width of the blurring kernel, see
below), as illustrated in Figure 13-(b). Let̄U be an extension
of the convolution operatorU on Ω̄ such thatŪf i(x) = Uf i(x) if
x∈Ω, and 0 if x∈ Ω̄\Ω. Let M be a masking operator defined
on Ω̄ which keeps all the pixels in the central partΩ and kills the
rest, i.e.,Mf̄ i(x) = f i(x) if x∈Ω, and 0 ifx∈ Ω̄\Ω. If the width
r of the boundaryΩ̄\Ω is larger than the radius of the blurring
kernel, one can show that the blurring operation can be rewritten
locally as an extended convolution on the larger support followed
by a masking,Mȳi = MŪf̄ i +Mw̄i . Estimatingf i from yi can
thus be calculated by estimatinḡf i from Mȳi , following exactly
the same algorithm, now treating the compoundedMŪ as the
degradation operator to be inverted. The boundary pixels inthe
estimate˜̄f i(x), x∈ Ω̄\Ω, can be interpreted as an extrapolation
from yi , therefore less reliable. The deblurring estimatef̃ i is
obtained by discarding these boundary pixels from˜̄f i (which are
outside ofΩ anyway).

Local patch based deconvolution algorithms become less ac-
curate if the blurring kernel support is large relative to the patch
size. In the deconvolution experiments reported below,Ω andΩ̄
are respectively set to 8×8 and 12×12. In the initialization the
number of directions is set toK = 18, the same as in the image
interpolation and zooming experiments, andP= 16 positions is
set for each direction. The blurring kernels are restrictedto a
5×5 support.

B. Deblurring Experiments

The deblurring experiments are performed on the gray-
level images Lena, Barbara, Boat, House, and Cameraman,

with different amounts of blur and noise. The PLE deblur-
ring is compared with a number of deconvolution algorithms:
“ForWaRD” (Fourier-wavelet regularized deconvolution) [61],
“TVB” (total variation based) [7], “TwIST” (two-step iterative
shrinkage/thresholding) [6], “SP” (sparse prior) [44], “SA-DCT”
(shape adaptive DCT) [30], “BM3D” (3D transform-domain
collaborative filtering) [18], and “DSD” (direction sparsedecon-
volution) [48]. ForWaRD, SA-DCT and BM3D first calculate
the deconvolution with a regularized Wiener filter in Fourier,
and then denoise the Wiener estimate with, respectively, a
thresholding estimator in wavelet and SA-DCT representations,
and with the non-local 3D collaborative filtering [17]. TVB and
TwIST deconvolutions regularize the estimate with the image
total variation prior. SP assumes a sparse prior on the image
gradient. DSD is a recently developed sparse inverse problem
estimator, described in Section III-A. In the previous published
works, BM3D and SA-DCT are among the deblurring methods
that produce the highest PSNRs, followed by SP. The results of
all the methods under comparison are generated by the authors’
original softwares, with the parameters manually optimized. The
proposed algorithm runs for 5 iterations.

Table III gives the ISNRs (improvement in PSNR relative to
the input image) of the different algorithms for restoring images
blurred with Gaussian kernels of standard deviationσb = 1 and
2 (truncated to a 5×5 support), and 5×5 uniform box kernel,
all then contaminated by a white Gaussian noise of standard
deviationσn = 5. 4 BM3D produces the highest ISNRs, followed
closely in the case of Gaussian blurring kernels by SA-DCT and
PLE, whose ISNRs are comparable and are moderately higher
than with SP on average. As the more aggressive uniform box
kernel is tested, the local patch-based PLE is outperformedby
most methods under comparison, which calculates the deblurring
on the whole image instead of patch by patch. Since the
convolution operator is non-diagonal, it leads to a border effect
in the deblurred image or image patches. Such border effect may
dominate in local patches as the kernel size increases, degrading
the performance of patch-based deblurring method. The same
is observed with other patch-based deblurring algorithms as
well [48]. Let us remark that BM3D, SA-DCT and ForWaRD
include an empirical Wiener filtering post-processing that, as
reported in the table, boosts the ISNR on average from 0.3 to 2
dB, leading to state-of-the-art results for the case of BM3D.

Figure 14 shows a deblurring example. All the algorithms
under consideration reduce the amount of blur and attenuate
the noise. BM3D generates the highest ISNR, followed by SA-
DCT, PLE and SP, all producing similar visual quality, which
are moderately better than the other methods. DSD accurately
restores sharp image structures when the atoms are correctly
selected, however, some artifacts due to the incorrect atom
selection offset its gain in ISNR. As a core component in BM3D
and SA-DCT, the empirical Wiener filtering efficiently removes
some artifacts and significantly improves the visual quality and
the ISNR. More examples of PLE deblurring will be shown in
the next section.

4When calculating the ISNRs, the image borders of width 6 pixels are removed
in order to eliminate the boundary effects.
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Kernel size and input PSNR ForWaRD TVB TwIST SA-DCT BM3D SP DSD* PLE

Lena
σb = 1 30.62 2.20/2.16 3.03 2.87 3.56/2.58 4.03/3.45 3.31 2.56 3.77
σb = 2 28.84 2.50/2.51 3.15 3.13 3.46/3.00 3.91/3.20 3.40 2.47 3.52
Box 5 28.19 2.79/2.69 3.25 3.22 3.86/3.22 4.11/1.20 3.48 NA 3.07

House
σb = 1 30.04 2.60/2.18 3.12 3.23 4.14/3.07 4.29/3.80 3.52 2.27 4.38
σb = 2 28.02 3.16/2.79 3.24 3.82 4.21/3.64 4.73/4.11 3.92 2.97 3.90
Box 5 27.26 3.86/3.29 4.20 4.60 5.22/4.29 5.46/4.58 4.57 NA 4.26

Boat
σb = 1 28.29 2.01/1.68 2.45 2.44 2.93/2.21 3.23/2.46 2.70 1.93 2.72
σb = 2 26.21 2.44/2.12 2.67 2.59 3.71/2.63 3.33/2.44 2.60 2.02 2.48
Box 5 25.45 3.04/2.62 3.18 3.21 3.91/3.24 4.07/1.66 3.39 NA 2.62

Average
σb = 1 29.65 2.27/2.01 2.87 2.84 3.54/2.62 3.85/3.23 3.17 2.25 3.62
σb = 2 27.69 2.70/2.47 3.02 3.18 3.79/3.09 3.99/3.25 3.30 2.48 3.31
Box 5 27.69 3.23/2.87 3.54 3.68 4.33/3.58 4.54/2.48 3.81 NA 3.32

TABLE III
ISNR (IMPROVEMENT IN PSNRWITH RESPECT TO INPUT IMAGE)

COMPARISON ON IMAGE DEBLURRING. IMAGES ARE BLURRED BY A

GAUSSIAN KERNEL OF STANDARD DEVIATIONσb = 1 AND 2, AND A 5×5
UNIFORM BOX KERNEL, AND ARE THEN CONTAMINATED BY WHITE

GAUSSIAN NOISE OF STANDARD DEVIATIONσn = 5. FROM LEFT TO RIGHT:
FORWARD (WITH /WITHOUT EMPIRICAL WIENER POST-PROCESSING) [61],

TVB [7], T WIST [6], SA-DCT (WITH /WITHOUT EMPIRICAL WIENER
POST-PROCESSING) [30], BM3D (WITH /WITHOUT EMPIRICAL WIENER

POST-PROCESSING) [18], SP [44], DSD [48],AND THE PROPOSEDPLE
FRAMEWORK. THE BOTTOM BOX SHOWS THE AVERAGEISNRS GIVEN BY

EACH METHOD OVER ALL THE IMAGES WITH DIFFERENT AMOUNTS OF BLUR.
THE HIGHESTISNR IN EACH ROW IS IN BOLDFACE, WHILE THE HIGHEST

WITHOUT POST-PROCESSING IS IN ITALIC. THE ALGORITHMS WITH * USE A

TRAINING DATASET.

(a) Original (b) Blurred and noisy (c) BM3D (D) PLE
Fig. 14. Gray-level image deblurring. (a) Crop from Lena. (b) Image blurred
by a Gaussian kernel of standard deviationσb = 1 and contaminated by white
Gaussian noise of standard deviationσn = 5 (PSNR=27.10). (c) and (d). Images
deblurred by BM3D with empirical Wiener post-processing (ISNR 3.40 dB
dB) [18], and the proposed PLE framework (ISNR 2.94 dB).
C. Zooming deblurring

When an anti-aliasing filtering is taken into account, image
zooming-out can be formulated asy = SUf, where f is the
high-resolution image,U andS are respectively an anti-aliasing
convolution and a subsampling operator, andy is the resulting
low-resolution image. Image zooming aims at estimatingf from
y, which amounts to inverting the combination of the two
operatorsS andU.

Image zooming can be calculated differently under different
amounts of blur introduced byU. Let us distinguish between
three cases: (i) If the anti-aliasing filteringU removes enough
high-frequencies fromf so that y = SUf is free of aliasing,
then the subsampling operatorS can be perfectly inverted with
a linear interpolation denoted asI , i.e., IS = Id [53]. In this
case, zooming can can be calculated as a deconvolution problem
on Iy = Uf, where one seeks to invert the convolution operator
U. In reality, however, camera and television images contain,
always a certain amount of aliasing, since it improves the visual
perception, i.e., the anti-aliasing filteringU does not eliminate
all the high-frequencies fromf. (ii) When U removes a small
amount of high-frequencies, which is often the case in reality,
zooming can be casted as an interpolation problem [46], [55],
[59], [70], [81], [82], where one seeks to invert onlyS, as
addressed in Section VI. (iii) WhenU removes an intermediate
amount of blur fromf, the optimal zooming solution is inverting
SU together as a compounded operator, as investigated in [76].

This section introduces a possible solution for the case (iii)
with the PLE deblurring. A linear interpolationI is first applied
to partially invert the subsampling operatorS. Due to the
aliasing, the linear interpolation does not perfectly restore Uf,
nevertheless it remains rather accurate, i.e., the interpolated
image Iy = ISUf is close to the blurred imageUf, as Uf has
limited high-frequencies in the case (iii). The PLE deblurring
framework is then applied to deconvolveU from Iy . Inverting the
operatorU is simpler than inverting the compounded operator
SU. As the linear interpolationI in the first step is accurate
enough in the case (iii), deconvolvingIy results in accurate
zooming estimates.

In the experiments below, the anti-aliasing filterU is set as
a Gaussian convolution of standard deviationσG = 1.0 andS is
an s×s= 2×2 subsampling operator. It has been shown that a
pre-filtering with a Gaussian kernel ofσG = 0.8s guarantees that
the following s× s subsampling generates a quasi aliasing-free
image [58]. For a 2×2 subsampling, the anti-aliasing filteringU
with σG = 1.0 leads to an amount of aliasing and visual quality
comparable to that in typical camera pictures in reality.

(a) f (b) Uf (c) y= SUf (d) Iy
Fig. 15. Color image zooming deblurring. (a) Crop from Lena:f. (b) Image
pre-filtered with a Gaussian kernel of standard deviationσG = 1.0: Uf. (c) Image
subsampled fromUf by a factor of 2×2: y = SUf. (d) Image interpolated from
y with a cubic spline interpolation:Iy (31.03 dB). (e) Image deblurred fromIy
by the proposed PLE framework (34.27 dB). (f) Image zoomed from y with [76]
(29.66 dB). The PSNRs are calculated on the cropped image between the original
f and the one under evaluation.Figure 15 illustrates an experiment on the image Lena. Fig-
ures 15-(a) to (c) show, respectively, a crop of the original
image f, the pre-filtered versionUf, and the low-resolution
image after subsamplingy = SUf. As the amount of aliasing
is limited in y thanks to the anti-aliasing filtering, a cubic spline
interpolation is more accurate than lower ordered interpolations
such as bicubic [74], and is therefore applied to upsampley,
the resulting imageIy illustrated in Figure 15-(d). A visual
inspection confirms thatIy is very close toUf, the PSNR
between them being as high as 50.02 dB. The PLE deblurring
is then applied to calculate the final zooming estimatef̃ by
deconvolvingU from Iy . (As no noise is added after the anti-
aliasing filter, the noise standard deviation is set to a small value
σ = 1.) As illustrated in Figure 15-(e), the resulting imagef is
much sharper, without noticeable artifacts, and improves by 3.12
dB with respect toIy . Figure 15-(f) shows the result obtained
with “SR” (sparse representation) [76]. SR implements a sparse
inverse problem estimator that tries to invert the compounded
operatorSU, with a dictionary learned from a natural image
dataset. The experiments were performed with the authors’
original software and training image set. The dictionarieswere
retrained with theUS described above. It can be observed
that the resulting image looks sharper and the restoration is
accurate when the atoms selection is correct. However, due to
the coherence of the dictionaries as explained in Section III-A,
some noticeable artifacts along the edges are produced when
the atoms are incorrectly selected, which also offset its gain in
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PSNR.
Figure 16 shows another set of experiments on the image Girl.

Again PLE efficiently reduces the blur from the interpolated
image and leads to a sharp zoomed image without noticeable
artifacts. SR produces similarly good visual quality as PLE,
however, some slight but noticeable artifacts (near the endof
the nose for example) due to the incorrect atom selection offset
its gain in PSNR.

Comparing the PSNR for the color image images Lena, Girl
and Flower. PLE deblurring from the cubic spline interpolation
improves from 1 to 2 dB PSNR over the interpolated images
(33.78, 31.82, and 39.06 dB respectively for PLE; and 31.60,
30.62, and 37.02 dB for the cubic spline). Although SR is able
to restore sharp images, its gain in PSNR (30.64, 30.43, and
35.96 dB respectively) is offset by the noticeable artifacts.

(a) HR (b) LR (c) Cubic spline (d) PLE (e) SR
Fig. 16. Color image zooming deblurring. (a) Crop from Girl:f. (b) Image pre-
filtered with a Gaussian kernel of standard deviationσG = 1.0, and subsampled
by a factor of 2×2: y = SUf. (c) Image interpolated fromy with a cubic spline
interpolation:Iy (29.40 dB). (d) Image deblurred fromIy by the proposed PLE
framework (30.49 dB). (e) Image zoomed fromy with [76] (28.93 dB).

VIII. C ONCLUSION AND FUTURE WORKS

This work has shown that a piecewise linear estimation (PLE)
based on Gaussian mixture models (GMM) and calculated with
a MAP-EM algorithm provides general and effective solutions
for inverse problems, leading to results in the same ballpark as
state-of-the-art ones in various image inverse problems. Adual
mathematical interpretation of the framework with structured
sparse estimation is described, which shows that PLE stabilizes
and improves the traditional fully non-linear sparse inverse
problem approaches. This connection also suggests an effective
dictionary motivated initialization for the MAP-EM algorithm. In
a number of image restoration applications, including interpola-
tion, zooming, and deblurring of narrow kernels, the same simple
(its core is formulated in four equations (5), (7), (8), and (10),
implementing a MAP and a ML estimations) and computation-
ally efficient algorithm produces results in the same ballpark
as the state-of-the-art, with a reduced computational complexity
than other popular leading algorithms, e.g.,l1 sparse estimations.
The proposed PLE has also been applied to image denoising (U
being the identity matrix), achieving good performance (see the
full presentation [78] for details and comparisons with leading
algorithms such as those in [17], [50] in the noise standard
deviation range of[5,25]).

A theoretical study considering Gaussian models in com-
pressed sensing is being undertaken [77], and applicationsof
Gaussian models as those here developed have been extended to
matrix completion problems [43].
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framework for dense deformable template estimation.J.R. Statist. Soc. B,
69(1):3–29, 2007.

[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based
compressive sensing.IEEE Trans. on Info. Theo., 56:1982–2001, 2010.

[4] J.P. Baudry, A.E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining
mixture components for clustering.Journal of Computational and Graph-
ical Statistics, 19(2):332–353, 2010.

[5] J. Besag. On the statistical analysis of dirty pictures.Journal of the Royal
Statistical Society. Series B (Methodological), 48(3):259–302, 1986.

[6] J.M. Bioucas-Dias and M.A.T. Figueiredo. A new TwIST: two-step iterative
shrinkage/thresholding algorithms for image restoration. IEEE Trans. on
Image Proc., 16(12):2992–3004, 2007.



15

[7] J.M. Bioucas-Dias, M.A.T. Figueiredo, and J.P. Oliveira. Total variation-
based image deconvolution: a majorization-minimization approach. In
ICASSP, volume 2, 2006.
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