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Abstract

We introduce a class of inverse problem estimators computedby mixing adaptively a family of
linear estimators corresponding to different priors. Sparse mixing weights are calculated over blocks of
coefficients in a frame providing a sparse signal representation. They minimize anl1 norm taking into
account the signal regularity in each block. Adaptive directional image interpolations are computed over
a wavelet frame with anO(N logN) algorithm.

I. INTRODUCTION

Many signal acquisition and restoration require to solve aninverse problem while trying to

improve the signal resolution. It amounts to estimate a highresolution signalf ∈ RN from Q

measurementsy[q], obtained through a linear operatorU , and contaminated by an additive noise

w

y[q] = U f [q]+w[q] q∈ G with |G | = Q < N .

Image interpolation is an important example, whereU is a subsampling operator. Many image

display devices have zooming abilities that interpolate input images to adapt their size to high

resolution screens. For example, high definition televisions include a spatial interpolator which

increases the size of standard definition videos to match thehigh definition screen format and

possibly improve the image quality.

Linear operators compute an estimatorf̃ which also belongs to a space of dimensionQ,

and thus does not improve the signal resolution. For image interpolations, bicubic interpolators

most often provide nearly the best results among linear operators [35]. To estimatef in a space

of dimension larger thanQ requires using non-linear estimators adapted to prior information

on the signal properties. A wide range of techniques have been developed to improve linear

image interpolators. Directional image interpolations take advantage of the geometric regularity

of image structures by performing the interpolation in a chosen direction along which the image
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is locally regular. The main difficulty is to locally identify this direction of regularity. Along

an edge, the interpolation direction should be parallel to the edge. Many adaptive interpolations

have been thus developed with edge detectors [33], [2], [51]and by finding the direction of

regularity with gradient operators [62], [36], [13], [59],[34], [18], [7], [1], [6], [16], [58].

More global image models impose image smoothness priors such as a bounded total variation

to optimize the interpolation [39], [44], [3], [43]. Other image smoothness priors have also been

used to compute interpolated images with alternate projections on convex sets [49], [9]. These

algorithms can provide a better image quality then a linear interpolator but they also produces

artifacts so that the resulting PSNR remains of the same order as a bicubic interpolator. The

introduction of interpolators adapted to local covarianceimage models have lead to more precise

estimators [38]. This approach has been improved by Zhang and Wu [63] by using autoregressive

image models optimized over image blocks. In most cases, it currently provides the best PSNR

for spatial image interpolation. Super-resolution interpolations can further be improved by using

a sequence of images [48], [30], [31], [46], [27] or a comparison dataset [28], [22], [58] to

perform the interpolation. While these approaches can be more accurate, they are much more

demanding in computation and memory resources.

Prior information on the image sparsity has also been used for image interpolation. Wavelet

estimators were introduced to compute fine scale wavelet coefficients by extrapolating larger scale

wavelet coefficients [12], [15]. A more general and promising class of non-parametric super-

resolution estimators assumes that the high resolution signal f is sparse in some dictionary of

vectors. This sparse representation is estimated by decomposing the low-resolution measurements

y in a transformed dictionary. These algorithms, which are reviewed in Section II, have found

important applications for sparse spike inversion in geophysics or image inpainting [23], [26].

However, they do not provide state-of-the-art results for image interpolation.

Section III describes a new class of adaptive inverse estimators, calculated over a sparse

signal representation in a frame. It is obtained with a sparse adaptive mixing of a family of

linear estimators, which are optimized for different signal priors. Mixing linear estimators has

been shown to be very effective for noise removal [37]. However, these approaches do not apply

to inverse problems because they rely on a Stein unbiased empirical estimator of the risk, which

is then not valid.

Our inverse sparse mixing estimator is derived from a mixture model of the measurementsy.
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It is computed in Section IV by minimizing anl1 norm over blocks of frame coefficients, with

weights depending upon the different signal priors. Section V describes a fast block orthogonal

matching pursuit algorithm which computes the mixing weights. Linear mixture models have

been studied over wavelet coefficients for image denoising [47]. For image interpolation, Sec-

tion VI implements the inverse mixing estimator in a waveletframe withO(N logN) operations,

with state-of-the-art numerical results.

II. SPARSE INVERSE PROBLEM ESTIMATION IN DICTIONARIES

Sparse super-resolution estimations over dictionaries provide effective non parametric ap-

proaches to inverse problems. These algorithms are reviewed with their application to image

interpolation.

A signal f ∈ RN is estimated by taking advantage of prior information whichspecifies a

dictionary D = {φp}p∈Γ where f has a sparse approximation. This dictionary may be a basis

or some redundant frame, with a size|Γ| = P≥ N. Sparsity means thatf is well approximated

by its orthogonal projectionfΛ over a sub-spaceVΛ generated by a small numberM = |Λ| of

vectors{φp}p∈Λ chosen inD :

fΛ = ∑
p∈Λ

c(p)φp. (1)

Measurements are obtained with a linear operatorU , with an additive noisew:

y(q) = U f (q)+w(q) for q∈ G , with |G | = Q < N . (2)

Sparse inversion algorithms estimate the approximation spaceVΛ of f from y, together with the

decomposition coefficientsc(p) of the projection off in VΛ. It results from (1) and (2) that

y = ∑
p∈Λ

c(p)Uφp+w′ with w′ = U( f − fΛ)+w . (3)

This means thaty is well approximated by a projection in a spaceUVΛ = {Uφp}p∈Λ. The

spaceVΛ and the coefficientsc(p) are estimated by finding a sparse representation ofy in the

transformed dictionary

DU =
{

Uφp
}

p∈Γ . (4)

All vectors Uφp belong to the image space ofU , which is of dimensionQ. Since there are

P ≥ N > Q such vectors, the transformed dictionaryDU is redundant, andy has an infinite
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number of possible decompositions in this dictionary. A sparse approximation

ỹ = ∑
p∈Λ̃

c̃(p)Uφp . (5)

can be calculated with a basis pursuit algorithm which minimizes a Lagrangian penalized by an

l1 norm [53], [14]
1
2
‖y− ∑

p∈Γ
c̃(p)Ugp‖

2+λ ∑
p∈Γ

|c̃(p)| . (6)

A sparse representation can also be calculated with faster greedy matching pursuit algorithms [42].

Let Λ̃ be the support of ˜c(p) in Γ. The resulting sparse estimatioñf of f is given by

f̃ = ∑
p∈Λ̃

c̃(p)φp . (7)

Such an estimation is precise and stable if the supportΛ̃ of c̃ includes a precise approximation

supportΛ of the decomposition coefficients off , so that it recovers an estimatorf̃ in a space

VΛ̃ ⊂ VΛ. One must also guarantee that the computations are stable and hence that{Uφp}p∈Λ

is a Riesz basis. The “Restrictive Isometry Property” of Candes and Tao [11] and Donoho [21]

imposes that the Riesz constants are uniformly bounded for all supports of a given size. They

then proved that the recovery is precise and stable. This restrictive isometry property is valid for

certain classes of random operatorsU but not for structured operators such as a subsampling

on a uniform grid. For structured operators, the precision and stability of this sparse inverse

estimation depends upon the “geometry” ofΛ, which is not well understood mathematically,

despite some sufficient exact recovery conditions proved byTropp [55], [56].

Several authors have applied this sparse super-resolutionalgorithm for image interpolation and

inpainting. Curvelet frames [10] and contourlet frames [20] build sparse image approximations

by taking advantage of the image directional regularity. Dictionaries of curvelet frames have been

applied successfully to image inpainting [23], [26]. For uniform grid interpolations, Table I in

Section VI shows that the resulting estimations are not as precise as linear bicubic interpolations.

Table I shows that a contourlet algorithm [45] sometimes canprovide a slightly better PSNR

then a bicubic interpolation, but these results are below the state of the art obtained with adaptive

directional interpolators [63]. Dictionaries of image patches have also been studied for image

interpolations with sparse representations [60], but withlittle PSNR improvements compared to

bicubic interpolations.
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A source of instability of these algorithms come from their flexibility, which does not in-

corporate enough prior information. The approximation space VΛ is estimated by selecting

independently each of the dictionary vectorφp. A selection ofM vectors thus corresponds

to a choice of an approximation space among
(P

M

)

possible subspaces. It does not take into

account geometric image structures which create dependencies on the choice of approximation

vectors. Structured approximation algorithms use such prior information to restrict the set of

possible approximation spaces [29], [32]. Since approximation vectors often appear in groups,

one can select simultaneously blocks of approximation vectors [25], [24], [52], which reduces

the number of possible approximation spaces. Thel1 penalization in (6) is then replaced by

a sum of thel2 norm over each block, which results in a mixedl1 and l2 norm [65]. This is

also called a “group lasso” optimization [61], [50], [4]. These structured approximations have

been shown to improve the signal estimation in a compressivesensing context for a random

operatorU [5], [24]. However, for more unstable inverse problems suchas image interpolation,

this regularization is not sufficient to reach state-of-the-art results.

III. M IXING ESTIMATORS OVERFRAME BLOCKS

Sparse super-resolution algorithms can be improved by using more prior information on the

signal properties. This section introduces a general classof sparse inverse estimators that define

signal approximations over blocks of vectors in a frame. This class of estimators are introduced

as an adaptive mixing of linear estimators.

A Tikhonov regularization optimizes a linear estimator by imposing that the solution has a

regularity specified by a quadratic prior [54]. Suppose thatf has a regularity which is measured

by a quadratic regularity norm‖Rθ f‖2, where Rθ is a linear operator. Sobolev norms are

particular examples whereRθ are differential operators. Letσ2 be the variance of the noise

w. A Tikhonov estimator computes̃f = U+
θ y by minimizing ‖Rθ f̃ ‖2 subject to

‖U f̃ −y‖2 ≤ Qσ2 . (8)

The solution of this quadratic minimization problem is alsoobtained by minimizing a Lagrangian

1
2
‖U f̃ −y‖2+λ ‖Rθ f̃‖2 . (9)

In Bayesian terms, this Lagrangian is minus the log of the posterior distribution of the signal

given the observationsy, whose minimization yields a maximum a posterior estimator. The first
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term is proportional to minus the log probability of the Gaussian distribution of the noise. The

second term is minus the log probability of a Gaussian prior distribution whose covariance is

(R∗
θ Rθ )−1, whereR∗

θ is the adjoint ofRθ . In this framework, the regularity prior is thus interpreted

as a covariance prior.

If we neglect the noise, which is often the case for image interpolation then (8) becomes

UU+
θ y= y. If U is a subsampling operator by a factor 2 and ifRθ is a convolution operator then

the resulting Tikhonov interpolatorU+
θ implements a linear filtering with an impulse response

hθ :

f̃ (n) = U+
θ y(n) = ∑

q∈G

y(q)hθ (n−2q) for n = (n1,n2).

Let Vθ be the image space of a linear estimatorU+
θ . The estimationf̃ = U+

θ y can only be

a precise approximation iff is well approximated by its projection inVθ . Adaptive estimators

introduce more flexibility on the construction of this approximation space, which is obtained as

a union of subspaces selected depending upon the signal regularity. We introduce a class of such

estimators by estimating a mixture model off .

A global linear mixture would decomposef as a combination of signals having a regularity

Rθ . This is equivalent to modelf as a realization of a linear mixture of Gaussian random

vectors with covariances(R∗
θ Rθ )−1. The regularity‖Rθ f‖2 is estimated fromy by minimizing

‖Rθ f̃ ‖2 = ‖R̃θ y‖2 which is obtained with the Tikhonov estimatorU+
θ :

R̃θ = RθU+
θ .

To adapt the mixture to local signal properties, it is not computed globally but locally in a basis

or frame providing a sparse signal representation. A sparserepresentation reduces the estimation

to lower dimensional spaces where the signal projection is non-negligible.

Let us consider a basis or frame{ψp}p∈Γ and its dual frame{ψ̃p}p∈Γ, which provide a sparse

representation ofy

y = ∑
p∈Γ

c(p) ψ̃p with c(p) = 〈 f ,ψp〉 .

Suppose that we are given a family of regularization operators {Rθ}θ∈Θ specifying different

signal priors. We define a mixture ofy with components having different regularitiesR̃θ = RθU+
θ .

For eachθ , we consider index blocksBθ ,q ⊂ Γ whereq is a position parameter that is sampled
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over a subgridΓθ of Γ. These blocks cover the index setΓ but may have a non-empty intersection

∪q∈Γθ Bθ ,q = Γ .

Let Vθ ,q be the space generated by{ψp}p∈Bθ ,q. We want to select blocksBθ ,q where the signal

projection

yθ ,q = ∑
p∈Bθ ,q

c(p) ψ̃p ∈ Vθ ,q (10)

has mostly a regularitỹRθ or can be interpreted as the realization of a Gaussian vectorwhose

covariance is dominated by(R̃∗
θ R̃θ )−1. It defines an adaptive local signal mixture over blocks

y = ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)yθ ,q+yr . (11)

Each blockBθ ,q is selected if the mixing coefficient ˜a(θ ,q) is close to 1 and it is removed if

ã(θ ,q) is close to 0. The residual signalyr is not dominated by one component and thus has no

specific regularity.

Let {U+
θ }θ∈Θ be the optimal linear Tikhonov estimators corresponding tothe priors{Rθ}θ∈Θ.

For interpolation, theU+
θ are interpolators in several directionsθ . A mixture estimator is defined

from a mixture model (11) by inverting each signal componentof prior Rθ with U+
θ and the

residue with a generic estimatorU+:

f̃ = ∑
θ∈Θ

U+
θ

(

∑
q∈Γθ

ã(θ ,q)yθ ,q

)

+U+(yr) . (12)

The generic linear estimatorU+ does not incorporate any prior knowledge concerning theRθ

signal regularity. In a Bayesian framework,U+ is an estimator computed with a prior Gaussian

distribution whose covariance is not conditioned onθ . It can be computed from the covariances

(R∗
θ Rθ )−1 of each prior distribution conditioned uponθ , and from the probability distribution of

θ . For image interpolations,U+ is isotropic, or nearly isotropic if implemented with a separable

interpolation such as a bicubic interpolation.

Inserting (10) in (12) yields a mixing estimator which locally adapts the inverse operator to

the signal regularity:

f̃ = ∑
p∈Γ

c(p)
(

∑
θ∈Θ

aθ (p)U+
θ +ar(p)U+

)

ψ̃p, (13)

with mixing weights

aθ (p) = ∑
q∈Γθ

ã(θ ,q)1Bθ ,q(p) and ar(p) = 1− ∑
θ∈Θ

aθ (p) . (14)
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IV. SPARSEM IXTURE ESTIMATION

The choice of a mixing estimator (12) is derived from a mixture model ofy:

y = ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)yθ ,q+yr with yθ ,q = ∑
p∈Bθ ,q

c(p) ψ̃p . (15)

Computing such a model can be interpreted as a non-standard source separation problem,

with only one measurement channel. The mixing parameters ˜a(θ ,q) must be estimated from

a known set of potential sourcesyθ ,q which are highly redundant, with a prior information on

their quadratic regularity. A sparse mixing estimator is introduced with a weightedl1 norm

optimization.

A linear mixture estimator can be obtained by minimizing theresidue energy‖yr‖
2 penalized

by the signal regularity over all blocks measured by

∑
θ∈Θ

∑
q∈Γθ

‖R̃θ ãθ ,qyθ ,q‖
2 = ∑

θ∈Θ
∑

q∈Γθ

|ãθ ,q|
2‖R̃θ yθ ,q‖

2. (16)

However, this approach does not take advantage of the sparsity prior.

Since the signal has a sparse representation, many block signalsyθ ,q are close to zero. If it is

not the case then the signal model assumes that they have a regularity specified by one of the

operatorsRθ . It implies that the mixing coefficients ˜a(θ ,q) should locally be non-negligible for

one or no parameterθ , and is therefore sparse. Sparsity priors have been used in standard blind

source separation problems [64], [8], with a sparsity prioron the unknown sources. In this case

the sparsity is not imposed on the sources but on mixing coefficients. According to the sparsity

approach reviewed in Section II, the quadratic prior norm onmixing coefficients in (16) is thus

replaced by anl1 norm. Mixing coefficients are obtained by minimizing the residual norm‖yr‖
2

penalized by the resulting weightedl1 prior

L (ã) =
1
2
‖y− ∑

θ∈Θ
∑

q∈Γθ

ã(θ ,q)yθ ,q‖
2+λ ∑

θ∈Θ
∑

q∈Γθ

|ã(θ ,q)|‖R̃θyθ ,q‖
2. (17)

The minimization of such a quadratic function of the unknownã(θ ,q) penalized by theirl1

norm can be computed with standard algorithms, such as an iterative thresholding [19].

As opposed to group lasso algorithms using mixedl2 andl1 norms, this minimization does not

only recover the signal with a sparse set of blocks but it alsoregularizes the decomposition by

imposing a signal regularity within each block. Moreover, it does not optimize a decomposition
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parameter for each frame coefficient but a single mixing parameter per block. The signal regu-

larity in each block can also be interpreted as a linear approximation property in an orthonormal

basis defined in the block. Let us denote

R̃θ ,qy = R̃θ yθ ,q = ∑
p∈Bθ ,q

c(p) R̃θ ψ̃p .

It results that

‖R̃θ yθ ,q‖
2 = 〈R̃∗

θ ,qR̃θ ,qy,y〉 .

The symmetric operator̃R∗
θ ,qR̃θ ,q is diagonalized inVθ ,q in an orthonormal basis{bθ ,q,m}m with

eigenvaluesλ 2
m:

R̃∗
θ ,qR̃θ ,qy = ∑

m
λ 2

m〈y,bθ ,q,m〉bθ ,q,m.

If the eigenvaluesλ 2
m vary by a large factor then the energy‖R̃θ yθ ,q‖

2/‖yθ ,q‖
2 is small if and only

if y has an energy concentrated over the eigenvectors{bθ ,q,m}m corresponding to the smallest

eigenvaluesλ 2
m. The regularity condition is therefore equivalent to a sparse linear approximation

condition in this eigenvectors basis.

The blocksBθ ,q have a regularization role in the adaptive selection of estimatorsU+
θ but should

not be too large to maintain enough flexibility in the choice of θ . The regularization is effective

if the eigenvalues{λ 2
m}m vary by a sufficiently large factor so that one can indeed “observe”

the signal regularity in each block. The block shape must therefore be adapted accordingly to

the properties ofRθ . For directional interpolation in the direction ofθ , a better regularization

is obtained with blocks elongated in the direction ofθ .

The estimation depends upon the gridsΓθ of the position indexesq of the blocksBθ ,q. To

reduce this grid effect, the estimation can be computed withseveral sets of translated grids.

Each gridΓθ is translated by several vectors{τθ ,i}1≤i≤I : Γθ ,i = Γθ + τθ ,i. For eachi, mixing

coefficients ˜ai(θ ,q) are computed with blocksBθ ,q translated on the gridΓθ ,i . The final estimator

is obtained by averaging these mixing coefficients

ã(θ ,q) =
1
I

I

∑
i=1

ãi(θ ,q) . (18)
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V. COMPUTATIONS AND ORTHOGONAL BLOCK MATCHING PURSUIT

To reduce the computation of mixing coefficients, an upper bound of the Lagrangian (17)

is computed from the frame coefficients off in each block. Efficient algorithms have been

developed forl1 minimization but they remain slow for image processing applications. An

orthogonal block matching pursuit algorithm is introducedto approximate the optimization,

with much less computations.

The Euclidean norm of coefficients in a block is written:

‖c‖2
Bθ ,q

= ∑
p∈Bθ ,q

|c(p)|2 .

Proposition 1. If B is the upper frame constant of{ψp}p∈Γ then for all y andã:

L (ã) ≤ BL1(ã) (19)

where

L1(ã) =
1
2 ∑

p∈G

|c(p)|2
(

1− ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)1Bθ ,q(p)
)2

(20)

+
λ
B ∑

θ∈Θ
∑

q∈Γθ

|ã(θ ,q)|‖R̄θ ,qc‖
2
Bθ ,q

,

and R̄θ ,q satisfies

∀(p, p′) ∈ Bθ ,q , ∑
m∈Bq,θ

R̄θ ,q(p,m)R̄θ ,q(m, p′) = 〈R̃θ ψ̃p, R̃θ ψ̃p′〉 (21)

If the frame is an orthonormal basis then B= 1 and L (ã) = L1(ã).

Proof: Observe that

‖y− ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)yθ ,q‖
2 = ‖ ∑

p∈Γ
c(p)(1− ∑

θ∈Θ
∑

q∈Γθ

ã(θ ,q)1Bθ ,q(p))ψ̃p‖
2.

SinceB is the upper frame bound of{ψp}p∈Γ

‖y− ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)yθ ,q‖
2 ≤ B ∑

p∈Γ
|c(p)|2|1− ∑

θ∈Θ
∑

q∈Γθ

ã(θ ,q)1Bθ ,q(p)|2 . (22)

The regularity norm can be written

‖R̃θ yθ ,q‖
2 = ∑

(p,p′)∈B2
θ ,q

c(p)c(p′)〈R̃θ ψ̃p, R̃θ ψ̃p′〉
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The matrix {〈R̃θ ψ̃p, R̃θ ψ̃p′〉}(p,p′)∈Bθ ,q
is symmetric positive and can thus be (non uniquely)

factorized intoR̄∗
θ ,qR̄θ ,q whereR̄θ ,q satisfies (21). One can thus rewrite

‖R̃θ yθ ,q‖
2 = 〈R̄∗

θ ,qR̄θ ,qc,c〉 = ‖R̄θ ,qc‖2
Bθ ,q

.

Inserting this together with (22) in (17) proves (19). If theframe is an orthonormal basis then

the inequality (22) is an equality withB = 1, soL (ã) = L1(ã). 2

In the following, mixing coefficients are computed by minimizing the upper boundL1(ã),

which is faster to compute from the frame coefficients off . With the change of variable

ā(θ ,q) = ã(θ ,q)‖R̄θ ,qc‖
2
Bθ ,q

the LagrangianL1(ã) can be rewritten in a standard form

L1(ã) =
1
2
‖x−Φā‖2+λ ‖ā‖1 = ∑

p∈G

|x(p)−Φā(p)|2+λ ∑
θ∈Θ

∑
q∈Γθ

|ā(θ ,q)| (23)

with x(p) = |c(p)| and

Φā(p) = ∑
θ∈Θ

∑
q∈Γθ

ā(θ ,q)
|c(p)|1Bθ ,q(p)

‖R̄θ ,qc‖2
Bθ ,q

. (24)

The minimization of (23) is implemented with iterative algorithms such as [19], which all have

a computational complexity dominated by the calculation ofΦ∗ and Φ at each iteration. Let

K be the total number of blocks{Bθ ,q}θ∈Θ,q∈Γq and S be the maximum size of these blocks.

We verify from (24) that the operatorsΦ and Φ∗ are computed withO(K S) operations soL

iterations of anl1 minimizer is implemented withO(K SL) operations.

To further reduce the number of operations, a solution is computed with a greedy minimization

implementing an orthogonal block matching pursuit. The algorithm is initialized by setting

ã(θ ,q) = 0 and it computes progressively non-zero mixing coefficients ã(θ ,q) to minimize

L1(ã) at each step.

If a single ã(θ ,q) is chosen to be non-zero, then (20) becomes

L1(ã) =
1
2 ∑

p∈G

|c(p)|2+
1
2 ∑

p∈Bθ ,q

|c(p)|2
(

ã(θ ,q)2−2ã(θ ,q)
)

+λ |ã(θ ,q)|‖R̄θ ,qc‖
2
Bθ ,q

.

The minimum is thus obtained with a soft thresholding

ã(θ ,q) = ρ(θ ,q) = max
(

1−λ
‖R̄θ ,qc‖2

Bθ ,q

‖c‖2
Bθ ,q

,0
)

. (25)
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The corresponding minimum Lagrangian value is

L1(ã) =
1
2
(‖c‖2−e(θ ,q))

with

e(θ ,q) = ‖c‖2
Bθ ,q

ρ(θ ,q)2 . (26)

The minimization ofL1(ã) with a single non-zero mixing coefficient is thus obtained bychoosing

the block index(θ ,q) which maximizese(θ ,q).

An orthogonal matching pursuit algorithm selects one by oneblocks that do not intersect. If ˜a

hasL non-zero coefficients{ã(θl ,ql)}1≤l≤L corresponding to non-intersecting blocksBθl ,ql then

we verify similarly that the mixing coefficients which minimize L1(ã) are

ã(θl ,ql) = ρ(θl ,ql)

and

L1(ã) =
1
2

(

‖c‖2−
L

∑
l=1

e(θl ,ql)

)

with

e(θl ,ql) = ‖c‖2
Bθl ,ql

ρ(θl ,ql)
2 .

At each iteration, to minimizeL1(ã), an orthogonal block matching pursuit findsBθl ,ql
which

maximizese(θ ,q) among all blocks that do not intersect with the previously selected blocks.

The resulting algorithm is described below.

1) Initialization: setl = 0 and compute

∀θ ∈ Θ, ∀q∈ Γθ , e(θ ,q) = ‖c‖2
Bθ ,q

ρ(θ ,q)2 , ã(θ ,q) = 0 . (27)

2) Maxima finding:

(θl ,ql) = argmax
θ ,q

e(θ ,q) and set ˜a(θl ,ql) = ρ(θl ,ql).

3) Energy update: ife(θl ,ql) > T then eliminate all blocks that intersect withBθl ,ql

∀θ ∈ Θ, ∀q∈ Γθ , if ∑
p

1Bθ ,q(p)1Bθl ,ql
(p) 6= 0 set e(θ ,q) = 0 ,

set l = l +1 and go back to step 2).

Otherwise stop.
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This algorithm computes mixing coefficients ˜a(θ ,q) for all θ ∈ Θ andq∈ Γθ . It stops when

there is no sufficiently energetic block compared to a precision thresholdT that is typically

proportional to the noise variance. In the image interpolation numerical experimentsT = 0 as

the noise is neglected. The following proposition gives an upper bound of the computations

and memory requirements required for an efficient implementation of this algorithm, which is

described in the proof. The operators̄Rθ ,q are said to be sparse if̄Rθ ,qc is computed overBθ ,q

with O(|Bθ ,q|) operations.

Proposition 2. Over a family of K blocks of maximum size S, an orthogonal block matching
pursuit can be implemented in O(K(S2+ log2K)) operations with O(K S) memory. For sparse
regularity operators, the computational complexity is O(K(S+ log2K)).

Proof: The geometry of all blocks is stored in an arrayB(θ ,q) which gives the list of all

p∈ Bθ ,q. Each list has less thenS elements so the array requiresO(K S) memory.

Let us build an arrayL(p) for p∈ Γ which stores the list of all(θ ,q) for which p∈ Bθ ,q. If

|L(p)| is the size of such a list then

∑
p∈Γ

|L(p)| = ∑
p∈Γ

∑
θ∈Θ

∑
q∈Γθ

1Bθ ,q(p) = ∑
θ∈Θ

∑
q∈Γθ

∑
p∈Γ

1Bθ ,q(p) .

Since∑p∈Γ 1Bθ ,q(p) ≤ S it results that

∑
p∈Γ

|L(p)| ≤ K S .

This array thus requiresO(K S) memory.

Energy values are stored in an array of sizeK indexed by(θ ,q) and in an ordered heap of

sizeK. A heap is a binary tree data structure which stores the elements of a set and allows to

find the maximum element withO(1) operations [17]. The construction of a heap for a set ofK

elements requiresO(K) operations. The array and the heap requireO(K) memory, so the total

memory isO(K S). If the blocks are highly structured, which is often the casein applications,

then we do not need to storeB(θ ,q) andL(p) because these lists can be computed analytically

from the blocks shape and position parameters(θ ,q). The required memory is then onlyO(K).

At the initialization, the computation of each of theK energy valuese(θ ,q) is dominated

by the calculation of‖R̄θ ,qc‖Bθ ,q which requires at mostO(S2) operations. The total is thus

O(KS2) operations. IfRθ ,q is a sparse regularity operator such as a derivative operator, then it

is computed withO(S) operations and the total is thereforeO(K S).
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The selection of the index(θl ,ql) corresponding to the largest energy is implemented inO(1)

operation by finding the element at the top of the heap. Since there are mostK iterations, these

steps are implemented inO(K) operations.

For the energy update, for allp∈ Bθl ,ql stored inB(θl ,ql) we extract each(θ ,q) in the list

L(p) of blocks which includep and hence which intersectBθl ,ql . If e(θ ,q) 6= 0 then we set

e(θ ,q) = 0. Since the selected blocks do not intersect, eachp ∈ Γ is covered by at most one

selected blocks so over all iterations, this step requiresO(∑p∈Γ |L(p)|) = O(K S) operations.

If e(θ ,q) 6= 0 then we also suppresse(θ ,q) from the heap. Suppressing an element from a

heap of sizeK requiresO(log2K) operations. Since there areK elements in the heap after

the initialization, the suppression of elements across alliterations is done withO(K log2K)

operations.

Summing the operations of each steps, it results thatO(K(S2+ log2K)) operations are sufficient

over all iterations. If the operatorsRθ ,q are sparse operators then it reduces toO(K(S+ log2K)).

2

In most applications, the geometry of blocks is highly structured, so as explained by the proof,

the algorithm then only requiresO(K) memory. The computational upper boundsO(K(S2 +

log2K)) and O(K(S+ log2K)) are pessimistic because they do not take into account the fact

that signals have a sparse representation so blocks are not computed over regions where the

frame coefficients have a negligible energy. The algorithm stops and does not select blocks

covering all the frame indexes. The computational complexity is thus much smaller than with

an l1 minimizer which requiresO(KS) operation per iteration.

VI. I NTERPOLATIONS WITH SPARSEWAVELET M IXTURES

An adaptive directional image interpolation is computed byestimating sparse image mixture

models in a wavelet frame. This section describes a fast block matching pursuit implementation,

which requiresO(N logN) operations and gives state-of-the-art interpolation results.

The subsampled imagey[n] for n∈ G is decomposed in a translation invariant wavelet frame

{ψd,m}0≤d≤3,m∈G on a single scale (the finest one), and is reconstructed with adual frame

{ψ̃d,m}0≤d≤3,m∈G [40]. Wavelet coefficients are written

c(d,m) = 〈y,ψd,m〉 .
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The wavelet transform separates a low frequency imageyl projected over the low-frequency

scaling filters{ψ0,m}m∈G and a high-frequency imageyh projected over the finest scale wavelets

in three directions{ψd,m}1≤d≤3,m∈G :

yl = ∑
m∈G

c(0,m) ψ̃0,m andyh =
3

∑
d=1

c(d,m) ψ̃d,m. (28)

The low frequency imageyl has little aliasing and can thus be precisely interpolated with a

cubic spline interpolatorU+. The high frequency imageyh is interpolated by selecting directional

interpolatorsU+
θ for θ ∈Θ, whereΘ is a set of angles uniformly discretized between 0 andπ . The

appendix specifies the directional cubic spline interpolatorsU+
θ used in numerical experiments.

For each angleθ , a directional interpolatorU+
θ is applied over a blockBθ ,q of wavelet

coefficients if the directional regularity factor‖R̄θ ,qc‖ is relatively small in the block. As

explained in Section III, such a regularization is effective if the eigenvalues of̄R∗
θ ,qR̄θ ,q have

an overall variation that is sufficiently large to distinguish regular from non-regular variations

in the directionθ . This is obtained by choosing rectangular blocksBθ ,q that are elongated in

the direction ofθ . Each blockBθ ,q in the spatial neighborhood ofq is chosen to be identical in

the three directionsd = 1,2,3 so 1Bθ ,q(d,m) = 1Bθ ,q(m). Numerical experiments are performed

with 20 anglesθ , with blocks having a width of 2 pixels and a length between 6 and 12

pixels depending upon their orientation. Each block thus includes between 36 and 72 wavelet

coefficients over thed = 1,2,3 directions.

d = 1 d = 2 d = 3

Fig. 1. A block Bθ ,q is composed of 3 elongated blocks (shown with the same gray level) of orientationθ in the 3 wavelet
directionsd = 1,2,3. In the neighborhood of an edge, a block is selected if the wavelet coefficients have regular variations in
the directionθ , as shown by the 3 different blocks.

According to the algorithm of Section V, an adaptive interpolation estimator is obtained by

estimating the mixing coefficients ˜a(θ ,q) of a mixture model which minimizes the Lagrangian
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Fig. 2. Example of sampling gridΓθ (black dots) included inΓ (white dots) forθ = arctan(3). A block Bθ ,q of lengthL = 6
is shown, whereq∈ Γθ is indicated with a cross.

(20)

L1(ã) =
1
2

3

∑
d=1

∑
m∈G

|c(d,m)|2
(

1− ∑
θ∈Θ

∑
q∈Γθ

ã(θ ,q)1Bθ ,q(m)
)2

(29)

+λ ∑
θ∈Θ

∑
q∈Γθ

|ã(θ ,q)|‖R̄θ ,qc‖
2
Bθ ,q

.

To further reduce computations, we do not implement exactlythe regularity operators̄Rθ ,q

corresponding to the interpolatorsU+
θ of the appendix. These operators are replaced by an

approximation:

R̄θ ,qc(d,m) = c(d,m)−Aθ ,qc(d,m).

For eachd = 1,2,3, Aθ ,qc(d,m) is the average of the wavelet coefficients in the blockBθ ,q

which are located on the line of angleθ that goes throughm. So R̄θ ,qc can be computed with

two operations per block point. The regularity norm‖R̄θ ,qc‖2
Bθ ,q

is the energy of the coefficient

variations relatively to their average in the directionθ . It is also the norm of the error when

approximating wavelet coefficients by lines of constant wavelet coefficients along an angleθ in

a block. These lines of wavelet coefficients are low-frequency bandlets of angleθ , as defined

in [41]. The minimization in (29) can thus also be interpreted as an optimized approximation in

orthogonal bandlets computed over adapted blocks of wavelet coefficients.

Block positionsq are sampled along a gridΓθ to cover the image sampling grid:G =

∪q∈Γθ Bθ ,q. If the block has a lengthL, the sampling grid is constructed by subsampling the

image sampling grid by a factorL/2 in the horizontal or vertical direction closest toθ , and by
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a factor 2 in the perpendicular direction, as illustrated inFigure 2. The resulting total number of

blocksK over all angles is proportional to the numberN of pixels, and in this implementation

K ≤ 4N.

Section V explains that thel1 Lagrangian (29) can be minimized with an iterative algorithm

which requiresO(K S) operations per iteration, whereS= 72 is the maximum block size. An

orthogonal block matching pursuit requires much less operations. Since the directional regularity

operators are sparse, Proposition 2 gives a heap implementation that requiresO(K(S+ log2K)) =

O(N logN) operations. Blocks are rectangles translated on a uniform grid, so block points and

the intersection of blocks can be computed analytically with no storage requirements. The block

matching pursuit implementation of Proposition 2 thus requiresO(K) = O(N) memory. To reduce

grid effects, as explained at the end of Section V, several estimators are computed with different

translations of these grids. The adaptive wavelet interpolator is derived from the averaged mixing

coefficients (18).

Figure 3 shows an example of mixing coefficientsaθ (m) computed over wavelet coefficients

along 20 anglesθ of a discrete grid, which are the arctangent of rational numbers. The coefficient

aθ (m) are sparse and close to 1 only at the locations and in the appropriate directionθ where

wavelet coefficients have a relatively large amplitude and are regular, which illustrates the

accuracy of the direction estimation. Figure 4 also compares the energy of wavelets coefficients

along all directions∑3
d=1 |c(d,m)|2 with the aggregation of mixing coefficients along all angles

∑θ∈Θ aθ (m). Observe that it is close to one where wavelet coefficients have a relatively large am-

plitude along geometric structures having some directional regularity. Directional interpolations

are performed at these locations and are otherwise replacedby a separable interpolator.

The image low frequencies are interpolated with a cubic spline estimatorU+ and the highest

frequency wavelets with the adaptive interpolator defined in (13):

f̃ = U+yl +
3

∑
d=1

∑
m∈Γ

c(d,m)
(

∑
θ∈Θ

aθ (m)U+
θ +ar(m)U+

)

ψ̃d,m , (30)

with

aθ (m) = ∑
q∈Γθ

ã(θ ,q)1Bθ ,q(m) and ar(m) = 1− ∑
θ∈Θ

aθ (m) .

Since wavelets are translated,ψ̃d,m(n) = ψ̃d(n−m), their interpolation are also translated:

U+
θ ψ̃d,m(n) = (U+

θ ψ̃d)(n−m) .
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Fig. 3. (a) An image crop from Lena’s hat. (b)-(d) Wavelet coefficients in the horizontal, vertical and diagonal directions.
Black, gray and white represent negative, zero and positivecoefficients. (e) Aggregation of mixing coefficients∑θ∈Θ aθ (m).
White mixing coefficients are close to 0 and black coefficients are close to 1. Second row to bottom row: each image gives the
mixing coefficientsaθ (m) for a specific angleθ , which is the arctangent of a rational number.

If we precomputeψ̄d = U+ψ̃d and ψ̄θ
d = U+

θ ψ̃d then (30) is a reconstruction from an adapted

set of wavelets

f̃ = U+yl +
3

∑
d=1

∑
m∈Γ

c(d,m)
(

∑
θ∈Θ

aθ (m) ψ̄θ
d,m+ar(m) ψ̄d,m

)

. (31)

For compactly supported wavelets, the wavelet interpolations are truncated to maintain a compact

support. The mixing weightsaθ (m) are zero for most angles and (31) is computed withO(N)
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Fig. 4. (a) Low-resolution Lena imagey. (b) Energy of wavelet coefficients in all directions∑3
d=1 |c(d,m)|2. White and black

pixels represent respectively small and large coefficients. (c) Aggregation of mixing coefficients∑θ∈Θ aθ (m). White coefficients
are close to 0 and black coefficients are close to 1.

operations. The overall adaptive interpolation algorithmis therefore implemented withO(N logN)

operations.

The adaptive interpolator can also be computed by rewriting(30) as

f̃ = U+

(

yl +
3

∑
d=1

∑
m∈Γ

ar(m)c(d,m) ψ̃d,m

)

+ ∑
θ∈Θ

U+
θ

(

3

∑
d=1

∑
m∈Γ

aθ (m)c(d,m) ψ̃d,m

)

. (32)

For each angle, an inverse wavelet transform is computed on wavelet coefficients multiplied by

the mixing weights, and the resulting signal is interpolated in the corresponding direction.

The proposed image zooming algorithm, named hereafter SME (Sparse Mixing Estimation), is

compared with a bicubic interpolation as well as recent super-resolution algorithms “NEDI” (New

edge directed interpolation) [38], “DFDF” (Directional filtering and data fusion), “Curvelet” [26],

“Contourlet” [45] and “SAI” (Soft-decision Adaptive Interpolation) [63]. As explained in Sec-

tion I, NEDI, DFDF and SAI are adaptive directional interpolation methods. Curvelet and Con-

tourlet are sparse inverse problem estimators described inSection II, computed in different dictio-

naries. Among previously published algorithms, SAI currently provides the best PSNR for spatial

image interpolation [63]. All experiments are performed with softwares provided by the authors of

these algorithms, and the SME software is available athttp://www.cmap.polytechnique.fr/∼mallat/SME.htm.

Figure 5 shows the six images used in the numerical experiments. Lena and Boat include

both fine details and regular regions. Peppers and Cameramanare mainly composed of regular

regions separated from sharp contours. Baboon is rich in finedetails. Straws (from the Brodatz

texture database) contains directional patterns that are superposed in various directions. These
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high-resolution images are down-sampled by a factor 2×2. The resulting low-resolution images

are then zoomed by the algorithms under comparison.

Fig. 5. Images used in the numerical experiments. From top tobottom, left to right: Lena, Peppers, Baboon, Cameraman,
Boat, Straws.

Table I gives the PSNRs generated by all algorithms for the images in Figure 5. The SME

algorithm is implemented with a Lagrangian multiplierλ = 0.6 in (29). For all these images,

the results obtained with an orthogonal matching pursuit minimization of the Lagrangian or with

an iterativel1 minimizer are within 0.1db. In the following, all SME numerical results are thus

computed with an orthogonal block matching pursuit which requires much less operations. SME

and SAI give similar PSNRs for all the images, the overall gain of SME being slightly better.

Their gain in PSNR is significantly larger than with all otheralgorithms.

The sparse Contourlet interpolation algorithm yields almost the same PSNR as a bicubic

interpolation but often provides better image quality. Sparse estimations in a curvelet dictionary

as implemented in [26] provides good results for image inpainting but is not suitable for image

zooming.

Figure 6 compares the interpolated image obtained by different algorithms. The local PSNRs

on the cropped images are reported as well. Bicubic interpolations produce some blur and jaggy

artifacts in the zoomed images. These artifacts are reducedto some extent by the NEDI and
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Bicubic NEDI DFDF Curvelet Contourlet SAI SME
Lena 33.93 33.77 33.91 24.31 33.92 34.68 34.58

Peppers 32.83 33.00 33.18 23.60 33.10 33.52 33.52
Baboon 22.92 23.16 22.83 20.34 22.53 23.19 23.16

Cameraman 25.37 25.42 25.67 19.50 25.35 25.88 26.26
Boat 29.24 29.19 29.32 22.20 29.25 29.68 29.76

Straws 20.53 20.54 20.70 17.09 20.52 21.48 21.61

Ave. gain 0 0.04 0.13 -6.30 -0.02 0.60 0.68

TABLE I
COMPARISON OF IMAGE ZOOMING ALGORITHMS. PSNRS (IN DB) ARE COMPUTED OVER IMAGES OFFIGURE 5. FROM LEFT

TO RIGHT: BICUBIC INTERPOLATION, NEDI [38], DFDF [62], CURVELET [26], CONTOURLET [45], SAI [63] AND SME
(SPARSEM IXING ESTIMATOR). THE BOTTOM ROW SHOWS THE AVERAGE GAIN OF EACH METHOD RELATIVE TO BICUBIC

INTERPOLATION. THE HIGHESTPSNRIN EACH ROW IS IN BOLDFACE.

DFDF algorithms, but the image quality is lower than with SMEand SAI algorithms, as shown

by the PSNRs. The SME algorithms restores slightly better regular geometrical structures than

SAI, as shown by the middle leg of the tripod in Cameraman and the beards of Baboon. The

contourlet algorithm is able to restore the geometrical structures (see Baboon’s beard) when

the underlying contourlet vectors are accurately estimated. However, as explained in Section II,

the vector support recovery is not stable. When the approximating contourlet vectors are not

estimated correctly, it produces directional artifact patterns, which offsets its gain in PSNR.

Figure 7 further compares SME with bicubic interpolation. SME improves the PSNR and the

visual image quality where the image has some directional regularity. It appears in the straws, the

hat border and the hairs of various directions. Otherwise, it is similar to a bicubic interpolation

since it also implements a non-directional separable interpolation.

VII. CONCLUSION

This paper introduces a new class of adaptive estimators obtained by mixing a family of linear

inverse estimators, derived from different priors on the signal regularity. Mixing coefficients are

calculated in a frame over blocks of coefficients having an appropriate regularity and providing

a sparse signal representation. They are computed by minimizing anl1 norm which is weighted

by the signal regularity in each block. This regularizationimproves the estimation for highly

unstable inverse problems relatively to lasso estimators which compute anl1 norm or a mixedl2

andl1 norm over blocks of dictionary coefficients. A fast orthogonal matching pursuit algorithm
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High-resolution image Low-resolution image Bicubic 21.60 dB SME 23.54 dB

NEDI 22.00 dB DFDF 22.18 dB Contourlet 21.79 dB SAI 22.38 dB

High-resolution image Low-resolution image Bicubic 23.00 dB SME 23.88 dB

NEDI 23.80 dB DFDF 23.16 dB Contourlet 23.06 dB SAI 23.62 dB

Fig. 6. PSNRs (in dB) are computed in the cropped images (fromCameraman and Babboon). From left to right: high-resolution
image, low-resolution image (shown at the same scale by enlarging the pixel size), bicubic interpolation, SME (Sparse Mixing
Estimator), NEDI [38], DFDF [62], Contourlet [45], SAI [63].
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High-resolution image Bicubic 33.67 dB SME 35.75 dB

High-resolution image Bicubic 29.30 dB SME 29.99 dB

High-resolution image Bicubic 21.46 dB SME 23.98 dB

Fig. 7. PSNRs (in dB) are computed in the illustrated croppedimages (from Lena and Straws). From left to right: high-resolution
image, bicubic interpolation, SME.
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is introduced to reduce the number of operations. A particular application to image interpolations

is studied by mixing directional interpolators over oriented blocks in a wavelet frame. For an

image ofN pixels, the computational complexity isO(N logN) and it provides state-of-the-art

interpolation results.

APPENDIX

A cubic-spline [57] directional interpolatorU+
θ in a directionθ is described for upscaling

images by a factor 2. It is illustrated in Fig. 8. Original samples are shown as crosses.

Fig. 8. Directional interpolation scheme. Samples represented by the crosses, circles, dots and squares will be named crosses,
circles, dots and squares for short. The directional interpolation starts from the low-resolution image defined on the crosses and
proceeds in three steps: (1) One-dimensional interpolations along the angleθ , which reconstructs the circles from the crosses.
(2) A one-dimensional vertical interpolation which reconstructs the dots from the crosses and the circles. The dots do not belong
to the resulting high-resolution image and will be used in the following step. (3) Another one-dimensional interpolation along
θ , which reconstructs the squares from the dots.

• Step 1 computes a one-dimensional interpolations in the directionθ . We consider all lines

of angleθ that intersect original image samples (crosses in Fig. 8) and we compute mid-

points (circles) between image samples (crosses), with a cubic spline interpolation. This

operation oversamples by a factor two either the image rows,or the image columns, or the

diagonals of angle±π/4. The missing coefficients are shown as squares in Fig. 8.

• Step 2 computes new samples (dots) with a cubic spline interpolation along these oversam-

pled rows, columns or diagonals. This interpolation introduces little aliasing because of the

oversampling provided by the previous step. The positions of these new samples (dots) are

chosen so that any missing coefficient (square) is a mid-point between two dots on a line

of angleθ .

• Step 3 computes missing samples (squares) with a cubic spline linear interpolation along

the directionθ from the previously calculated new samples (dots).
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