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Deep convolutional networks provide state-of-the-art
classifications and regressions results over many high-
dimensional problems. We review their architecture,
which scatters data with a cascade of linear
filter weights and nonlinearities. A mathematical
framework is introduced to analyse their properties.
Computations of invariants involve multiscale
contractions with wavelets, the linearization of
hierarchical symmetries and sparse separations.
Applications are discussed.

1. Introduction
Supervised learning is a high-dimensional interpolation
problem. We approximate a function f (x) from q training
samples {xi, f (xi)}i≤q, where x is a data vector of very high
dimension d. This dimension is often larger than 106, for
images or other large size signals. Deep convolutional
neural networks have recently obtained remarkable
experimental results [1]. They give state-of-the-art
performances for image classification with thousands of
complex classes [2], speech recognition [3], biomedical
applications [4], natural language understanding [5]
and in many other domains. They are also studied as
neurophysiological models of vision [6].

Multilayer neural networks are computational
learning architectures that propagate the input data
across a sequence of linear operators and simple
nonlinearities. The properties of shallow networks, with
one hidden layer, are well understood as decompositions
in families of ridge functions [7]. However, these
approaches do not extend to networks with more layers.
Deep convolutional neural networks, introduced by
Le Cun [8], are implemented with linear convolutions
followed by nonlinearities, over typically more than five
layers. These complex programmable machines, defined
by potentially billions of filter weights, bring us to a
different mathematical world.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Many researchers have pointed out that deep convolution networks are computing
progressively more powerful invariants as depth increases [1,6], but relations with networks
weights and nonlinearities are complex. This paper aims at clarifying important principles that
govern the properties of such networks, although their architecture and weights may differ
with applications. We show that computations of invariants involve multiscale contractions, the
linearization of hierarchical symmetries and sparse separations. This conceptual basis is only a
first step towards a full mathematical understanding of convolutional network properties.

In high dimension, x has a considerable number of parameters, which is a dimensionality
curse. Sampling uniformly a volume of dimension d requires a number of samples which grows
exponentially with d. In most applications, the number q of training samples rather grows linearly
with d. It is possible to approximate f (x) with so few samples, only if f has some strong regularity
properties allowing one to ultimately reduce the dimension of the estimation. Any learning
algorithm, including deep convolutional networks, thus relies on an underlying assumption of
regularity. Specifying the nature of this regularity is one of the core mathematical problems.

One can try to circumvent the curse of dimensionality by reducing the variability or the
dimension of x, without sacrificing the ability to approximate f (x). This is done by defining a
new variable Φ(x), where Φ is a contractive operator which reduces the range of variations of x,
while still separating different values of f : Φ(x) �=Φ(x′) if f (x) �= f (x′). This separation–contraction
trade-off needs to be adjusted to the properties of f .

Linearization is a strategy used in machine learning to reduce the dimension with a linear
projector. A low-dimensional linear projection of x can separate the values of f if this function
remains constant in the direction of a high-dimensional linear space. This is rarely the case, but
one can try to find Φ(x) which linearizes high-dimensional domains where f (x) remains constant.
The dimension is then reduced by applying a low-dimensional linear projector on Φ(x). Finding
such a Φ is the dream of kernel learning algorithms, explained in §2.

Deep neural networks are more conservative. They progressively contract the space and
linearize transformations along which f remains nearly constant, to preserve separation. Such
directions are defined by linear operators which belong to groups of local symmetries, introduced
in §3. To understand the difficulty to linearize the action of high-dimensional groups of
operators, we begin with the groups of translations and diffeomorphisms, which deform signals.
They capture essential mathematical properties that are extended to general deep network
symmetries in §7.

To linearize diffeomorphisms and preserve separability, §4 shows that we must separate
the variations of x at different scales, with a wavelet transform. This is implemented with
multiscale filter convolutions, which are building blocks of deep convolution filtering. General
deep network architectures are introduced in §5. They iterate on linear operators which
filter and linearly combine different channels in each network layer, followed by contractive
nonlinearities.

To understand how nonlinear contractions interact with linear operators, §6 begins with
simpler networks which do not recombine channels in each layer. It defines a nonlinear scattering
transform, introduced in [9], where wavelets have a separation and linearization role. The
resulting contraction, linearization and separability properties are reviewed. We shall see that
sparsity is important for separation.

Section 7 extends these ideas to a more general class of deep convolutional networks. Channel
combinations provide the flexibility needed to extend translations to larger groups of local
symmetries adapted to f . The network is structured by factorizing groups of symmetries, in which
case all linear operators are generalized convolutions. Computations are ultimately performed
with filter weights, which are learned. Their relation with groups of symmetries is explained. A
major issue is to preserve a separation margin across classification frontiers. Deep convolutional
networks have the ability to do so, by separating network fibres which are progressively more
invariant and specialized. This can give rise to invariant grandmother type neurons observed
in deep networks [10]. The paper studies architectures as opposed to computational learning of
network weights, which is an outstanding optimization issue [1].

 on March 9, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150203

.........................................................

Notations. ‖z‖ is a Euclidean norm if z is a vector in a Euclidean space. If z is a function in L2,
then ‖z‖2 = ∫ |z(u)|2 du. If z = {zk}k is a sequence of vectors or functions, then ‖z‖2 = ∑

k ‖zk‖2.

2. Linearization, projection and separability
Supervised learning computes an approximation f̃ (x) of a function f (x) from q training samples
{xi, f (xi)}i≤q, for x = (x(1), . . . , x(d)) ∈Ω . The domain Ω is a high-dimensional open subset of R

d,
not a low-dimensional manifold. In a regression problem, f (x) takes its values in R, whereas in
classification, its values are class indices.

Separation. Ideally, we would like to reduce the dimension of x by computing a low-
dimensional vector Φ(x) such that one can write f (x) = f0(Φ(x)). It is equivalent to impose that if
f (x) �= f (x′) thenΦ(x) �=Φ(x′). We then say thatΦ separates f . For regression problems, to guarantee
that f0 is regular, we further impose that the separation is Lipschitz:

∃ε > 0 ∀(x, x′) ∈Ω2, ‖Φ(x) −Φ(x′)‖ ≥ ε|f (x) − f (x′)|. (2.1)

It implies that f0 is Lipschitz continuous: |f0(z) − f0(z′)| ≤ ε−1|z − z′|, for (z, z′) ∈Φ(Ω)2. In a
classification problem, f (x) �= f (x′) means that x and x′ are not in the same class. The Lipschitz
separation condition (2.1) becomes a margin condition specifying a minimum distance across
classes:

∃ε > 0 ∀(x, x′) ∈Ω2, ‖Φ(x) −Φ(x′)‖ ≥ ε if f (x) �= f (x′). (2.2)

We can try to find a linear projection of x in some space V of lower dimension k, which separates
f . It requires that f (x) = f (x + z) for all z ∈ V⊥, where V⊥ is the orthogonal complement of V in R

d,
of dimension d − k. In most cases, the final dimension k cannot be much smaller than d.

Linearization. An alternative strategy is to linearize the variations of f with a first change of
variable Φ(x) = {φk(x)}k≤d′ of dimension d′ potentially much larger than the dimension d of x. We
can then optimize a low-dimensional linear projection along directions where f is constant. We
say that Φ separates f linearly if f (x) is well approximated by a one-dimensional projection:

f̃ (x) = 〈Φ(x), w〉 =
d′∑

k=1

wkφk(x). (2.3)

The regression vector w is optimized by minimizing a loss on the training data, which needs to be
regularized if d′ > q, for example by an lp norm of w with a regularization constant λ:

q∑
i=1

loss( f (xi) − f̃ (xi)) + λ

d′∑
k=1

|wk|p. (2.4)

Sparse regressions are obtained with p ≤ 1, whereas p = 2 defines kernel regressions [11].
Classification problems are addressed similarly, by approximating the frontiers between

classes. For example, a classification with Q classes can be reduced to Q − 1 ‘one versus all’
binary classifications. Each binary classification is specified by an f (x) equal to 1 or −1 in each
class. We approximate f (x) by f̃ (x) = sign(〈Φ(x), w〉), where w minimizes the training error (2.4).

3. Invariants, symmetries and diffeomorphisms
We now study strategies to compute a change of variables Φ which linearizes f . Deep
convolutional networks operate layer per layer and linearize f progressively, as depth increases.
Classification and regression problems are addressed similarly by considering the level sets of f ,
defined byΩt = {x : f (x) = t} if f is continuous. For classification, each level set is a particular class.
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Linear separability means that one can find w such that f (x) ≈ 〈Φ(x), w〉. It implies that Φ(Ωt) is in
a hyperplane orthogonal to some w.

Symmetries. To linearize level sets, we need to find directions along which f (x) does not vary
locally, and then linearize these directions in order to map them in a linear space. It is tempting
to try to do this with some local data analysis along x. This is not possible, because the training
set includes few close neighbours in high dimension. We thus consider simultaneously all points
x ∈Ω and look for common directions along which f (x) does not vary. This is where groups of
symmetries come in. Translations and diffeomorphisms will illustrate the difficulty to linearize
high-dimensional symmetries, and provide a first mathematical ground to analyse convolution
networks architectures.

We look for invertible operators that preserve the value of f . The action of an operator g on
x is written g.x. A global symmetry is an invertible and often nonlinear operator g from Ω to
Ω , such that f (g.x) = f (x) for all x ∈Ω . If g1 and g2 are global symmetries, then g1.g2 is also a
global symmetry, so products define groups of symmetries. Global symmetries are usually hard
to find. We shall first concentrate on local symmetries. We suppose that there is a metric |g|G
which measures the distance between g ∈ G and the identity. A function f is locally invariant to
the action of G if

∀ x ∈Ω , ∃Cx > 0, ∀ g ∈ G with |g|G <Cx, f (g.x) = f (x). (3.1)

We then say that G is a group of local symmetries of f . The constant Cx is the local range of
symmetries which preserve f . Because Ω is a continuous subset of R

d, we consider groups of
operators which transport vectors in Ω with a continuous parameter. They are called Lie groups
if the group has a differential structure.

Translations and diffeomorphisms. Let us interpolate the d samples of x and define x(u) for all
u ∈ R

n, with n = 1, 2, 3, respectively, for time-series, images and volumetric data. The translation
group G = R

n is an example of a Lie group. The action of g ∈ G = R
n over x ∈Ω is g.x(u) = x(u − g).

The distance |g|G between g and the identity is the Euclidean norm of g ∈ R
n. The function f is

locally invariant to translations if sufficiently small translations of x do not change f (x). Deep
convolutional networks compute convolutions because they assume that translations are local
symmetries of f . The dimension of a group G is the number of generators that define all group
elements by products. For G = R

n it is equal to n.
Translations are not powerful symmetries because they are defined by only n variables,

and n = 2 for images. Many image classification problems are also locally invariant to small
deformations, which provide much stronger constraints. It means that f is locally invariant to
diffeomorphisms G = Diff(Rn), which transform x(u) with a differential warping of u ∈ R

n. We
do not know in advance what is the local range of diffeomorphism symmetries. For example, to
classify images x of handwritten digits, certain deformations of x will preserve a digit class but
modify the class of another digit. We shall linearize small diffeomorphims g. In a space where
local symmetries are linearized, we can find global symmetries by optimizing linear projectors
that preserve the values of f (x), and thus reduce dimensionality.

Local symmetries are linearized by finding a change of variable Φ(x) which locally linearizes
the action of g ∈ G. We say that Φ is Lipschitz continuous if

∃C> 0, ∀(x, g) ∈Ω × G, ‖Φ(g.x) −Φ(x)‖ ≤ C|g|G‖x‖. (3.2)

The norm ‖x‖ is just a normalization factor often set to 1. The Radon–Nikodim property proves
that the map that transforms g into Φ(g.x) is almost everywhere differentiable in the sense of
Gâteaux. If |g|G is small, thenΦ(x) −Φ(g.x) is closely approximated by a bounded linear operator
of g, which is the Gâteaux derivative. Locally, it thus nearly remains in a linear space.

Lipschitz continuity over diffeomorphisms is defined relative to a metric, which is now
defined. A small diffeomorphism acting on x(u) can be written as a translation of u by a g(u):

g.x(u) = x(u − g(u)) with g ∈ C1(Rn). (3.3)
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This diffeomorphism translates points by at most ‖g‖∞ = supu∈Rn |g(u)|. Let |∇g(u)| be the
matrix norm of the Jacobian matrix of g at u. Small diffeomorphisms correspond to ‖∇g‖∞ =
supu |∇g(u)|< 1. Applying a diffeomorphism g transforms two points (u1, u2) into (u1 −
g(u1), u2 − g(u2)). Their distance is thus multiplied by a scale factor, which is bounded above and
below by 1 ± ‖∇g‖∞. The distance of this diffeomorphism to the identity is defined by

|g|Diff = 2−J‖g‖∞ + ‖∇g‖∞. (3.4)

The factor 2J is a local translation invariance scale. It gives the range of translations over which
small diffeomorphisms are linearized. For J = ∞, the metric is globally invariant to translations.

4. Contractions and scale separation with wavelets
Deep convolutional networks can linearize the action of very complex nonlinear transformations
in high dimensions, such as inserting glasses in images of faces [12]. A transformation of x ∈Ω
is a transport of x in Ω . To understand how to linearize any such transport, we shall begin
with translations and diffeomorphisms. Deep network architectures are covariant to translations,
because all linear operators are implemented with convolutions. To compute invariants to
translations and linearize diffeomorphisms, we need to separate scales and apply a nonlinearity.
This is implemented with a cascade of filters computing a wavelet transform, and a pointwise
contractive nonlinearity. Section 7 extends these tools to general group actions.

A linear operator can compute local invariants to the action of the translation group G, by
averaging x along the orbit {g.x}g∈G, which are translations of x. This is done with a convolution
by an averaging kernel φJ(u) = 2−nJφ(2−Ju) of size 2J , with

∫
φ(u) du = 1:

ΦJx(u) = x � φJ(u). (4.1)

One can verify [9] that this averaging is Lipschitz continuous to diffeomorphisms for all x ∈
L2(Rn), over a translation range 2J . However, it eliminates the variations of x above the frequency
2−J . If J = ∞, then Φ∞x = ∫

x(u) du, which eliminates nearly all information.

Wavelet transform. A diffeomorphism acts as a local translation and scaling of the variable u. If
we let aside translations for now, to linearize a small diffeomorphism, then we must linearize this
scaling action. This is done by separating the variations of x at different scales with wavelets.
We define K wavelets ψk(u) for u ∈ R

n. They are regular functions with a fast decay and a
zero average

∫
ψk(u) du = 0. These K wavelets are dilated by 2j: ψj,k(u) = 2−jnψk(2−ju). A wavelet

transform computes the local average of x at a scale 2J , and variations at scales 2j ≥ 2J with wavelet
convolutions:

Wx = {x � φJ(u), x � ψj,k(u)}j≤J,1≤k≤K. (4.2)

The parameter u is sampled on a grid such that intermediate sample values can be recovered
by linear interpolations. The wavelets ψk are chosen, so that W is a contractive and invertible
operator, and in order to obtain a sparse representation. This means that x � ψj,k(u) is mostly zero
besides few high amplitude coefficients corresponding to variations of x(u) which ‘match’ ψk at
the scale 2j. This sparsity plays an important role in nonlinear contractions.

For audio signals, n = 1, sparse representations are usually obtained with at least K = 12
intermediate frequencies within each octave 2j, which are similar to half-tone musical notes. This
is done by choosing a wavelet ψ(u) having a frequency bandwidth of less than 1/12 octave and
ψk(u) = 2k/Kψ(2−k/Ku) for 1 ≤ k ≤ K. For images, n = 2, we must discriminate image variations
along different spatial orientation. It is obtained by separating angles πk/K, with an oriented
wavelet which is rotated ψk(u) =ψ(r−1

k u). Intermediate rotated wavelets are approximated by
linear interpolations of these K wavelets. Figure 1 shows the wavelet transform of an image,
with J = 4 scales and K = 4 angles, where x � ψj,k(u) is subsampled at intervals 2j. It has few large
amplitude coefficients shown in white.
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Ùx    yj,kÙ

x     fj–1 x     fj x     fJ

Figure 1. Wavelet transform of an image x(u), computed with a cascade of convolutions with filters over J = 4 scales and
K = 4 orientations. The low-pass and K = 4 band-pass filters are shown on the first arrows. (Online version in colour.)

Filter bank. Wavelet transforms can be computed with a fast multiscale cascade of filters, which
is at the core of deep network architectures. At each scale 2j, we define a low-pass filter wj,0

which increases the averaging scale from 2j−1 to 2j, and band-pass filters wj,k which compute each
wavelet:

φj = wj,0 � φj−1 and ψj,k = wj,k � φj−1. (4.3)

Let us write xj(u, 0) = x � φj(u) and xj(u, k) = x � ψj,k(u) for k �= 0. It results from (4.3) that for 0< j ≤ J
and all 1 ≤ k ≤ K:

xj(u, k) = xj−1(·, 0) � wj,k(u). (4.4)

These convolutions may be subsampled by 2 along u; in that case xj(u, k) is sampled at intervals
2j along u.

Phase removal contraction. Wavelet coefficients xj(u, k) = x � ψj,k(u) oscillate at a scale 2j.
Translations of x smaller than 2j modify the complex phase of xj(u, k) if the wavelet is complex
or its sign if it is real. Because of these oscillations, averaging xj with φJ outputs a zero signal. It
is necessary to apply a nonlinearity which removes oscillations. A modulus ρ(α) = |α| computes
such a positive envelope. Averaging ρ(x � ψj,k(u)) by φJ outputs non-zero coefficients which are
locally invariant at a scale 2J :

ΦJx(u, j, k) = ρ(x � ψj,k) � φJ(u) . (4.5)

Replacing the modulus by a rectifier ρ(α) = max(0,α) gives nearly the same result, up to a factor 2.
One can prove [9] that this representation is Lipschitz continuous to actions of diffeomorphisms
over x ∈ L2(Rn), and thus satisfies (3.2) for the metric (3.4). Indeed, the wavelet coefficients of
x deformed by g can be written as the wavelet coefficients of x with deformed wavelets. Small
deformations produce small modifications of wavelets in L2(Rn), because they are localized and
regular. The resulting modifications of wavelet coefficients are of the order of the diffeomorphism
metric |g|Diff.

A modulus and a rectifier are contractive nonlinear pointwise operators:

|ρ(α) − ρ(α′)| ≤ |α − α′|. (4.6)

However, if α= 0 or α′ = 0, then this inequality is an equality. Replacing α and α′ by x � ψj,k(u) and
x′ � ψj,k(u) shows that distances are much less reduced if x � ψj,k(u) is sparse. Such contractions do
not reduce as much the distance between sparse signals and other signals. This is illustrated by
reconstruction examples in §6.

Scale separation limitations. The local multiscale invariants in (4.5) have dominated pattern
classification applications for music, speech and images, until 2010. It is called Mel-spectrum for
audio [13] and SIFT-type feature vectors [14] in images. Their limitations comes from the loss
of information produced by the averaging by φJ in (4.5). To reduce this loss, they are computed
at short time scales 2J ≤ 50 ms in audio signals, or over small image patches 22J = 162 pixels. As
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a consequence, they do not capture large-scale structures, which are important for classification
and regression problems. To build a rich set of local invariants at a large scale 2J , it is not sufficient
to separate scales with wavelets, we must also capture scale interactions.

A similar issue appears in physics to characterize the interactions of complex systems.
Multiscale separations are used to reduce the parametrization of classical many body systems, for
example with multipole methods [15]. However, it does not apply to complex interactions, as in
quantum systems. Interactions across scales, between small and larger structures, must be taken
into account. Capturing these interactions with low-dimensional models is a major challenge.
We shall see that deep neural networks and scattering transforms provide high-order coefficients
which partly characterize multiscale interactions.

5. Deep convolutional neural network architectures
Deep convolutional networks are computational architectures introduced by Le Cun [8],
providing remarkable regression and classification results in high dimension [1–3]. We describe
these architectures illustrated by figure 2. They iterate over linear operators Wj including
convolutions, and predefined pointwise nonlinearities.

A convolutional network takes in input a signal x(u), which is here an image. An internal
network layer xj(u, kj) at a depth j is indexed by the same translation variable u, usually
subsampled and a channel index kj. A layer xj is computed from xj−1 by applying a linear operator
Wj followed by a pointwise nonlinearity ρ:

xj = ρWjxj−1.

The nonlinearity ρ transforms each coefficient α of the array Wjxj−1, and satisfies the contraction
condition (4.6). A usual choice is the rectifier ρ(α) = max(α, 0) for α ∈ R, but it can also be a
sigmoid, or a modulus ρ(α) = |α| where α may be complex.

Because most classification and regression functions f (x) are invariant or covariant to
translations, the architecture imposes that Wj is covariant to translations. The output is translated
if the input is translated. Because Wj is linear, it can thus be written as a sum of convolutions:

Wjxj−1(u, kj) =
∑

k

∑
v

xj−1(v, k)wj,kj (u − v, k) =
∑

k

(xj−1(·, k) � wj,kj (·, k))(u). (5.1)

The variable u is usually subsampled. For a fixed j, all filters wj,kj (u, k) have the same support
width along u, typically smaller than 10.

The operators ρWj propagate the input signal x0 = x until the last layer xJ . This cascade of
spatial convolutions defines translation covariant operators of progressively wider supports as
the depth j increases. Each xj(u, kj) is a nonlinear function of x(v), for v in a square centred at u,
whose width �j does not depend upon kj. The width �j is the spatial scale of a layer j. It is equal
to 2j� if all filters wj,kj have a width � and the convolutions (5.1) are subsampled by 2.

Neural networks include many side tricks. They sometimes normalize the amplitude of xj(v, k),
by dividing it by the norm of all coefficients xj(v, k) for v in a neighbourhood of u. This eliminates
multiplicative amplitude variabilities. Instead of subsampling (5.1) on a regular grid, a max
pooling may select the largest coefficients over each sampling cell. Coefficients may also be
modified by subtracting a constant adapted to each coefficient. When applying a rectifier ρ,
this constant acts as a soft threshold, which increases sparsity. It is usually observed that inside
network coefficients xj(u, kj) have a sparse activation.

The deep network output xJ =ΦJ(x) is provided to a classifier, usually composed of fully
connected neural network layers [1]. Supervised deep learning algorithms optimize the filter
values wj,kj (u, k) in order to minimize the average classification or regression error on the training
samples {xi, f (xi)}i≤q. There can be more than 108 variables in a network [1]. The filter update
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x (u) x1(u, k1)

rW1
rW2

rWJ

x2(u, k2) xJ (u, kJ)

Figure 2. A convolution network iteratively computes each layer xj by transforming the previous layer xj−1, with a linear
operatorWj and a pointwise nonlinearityρ . (Online version in colour.)

is done with a back-propagation algorithm, which may be computed with a stochastic gradient
descent, with regularization procedures such as dropout. This high-dimensional optimization is
non-convex, but despite the presence of many local minima, the regularized stochastic gradient
descent converges to a local minimum providing good accuracy on test examples [16]. The
rectifier nonlinearity ρ is usually preferred, because the resulting optimization has a better
convergence. It however requires a large number of training examples. Several hundreds of
examples per class are usually needed to reach a good performance.

Instabilities have been observed in some network architectures [17], where additions of small
perturbations on x can produce large variations of xJ . It happens when the norms of the matrices
Wj are larger than 1, and hence amplified when cascaded. However, deep networks also have a
strong form of stability illustrated by transfer learning [1]. A deep network layer xJ , optimized
on particular training databases, can approximate different classification functions, if the final
classification layers are trained on a new database. This means that it has learned stable structures,
which can be transferred across similar learning problems.

6. Scattering on the translation group
A deep network alternates linear operators Wj and contractive nonlinearities ρ. To analyse the
properties of this cascade, we begin with a simpler architecture, where Wj does not combine
multiple convolutions across channels in each layer. We show that such network coefficients are
obtained through convolutions with a reduced number of equivalent wavelet filters. It defines
a scattering transform [9] whose contraction and linearization properties are reviewed. Variance
reduction and loss of information are studied with reconstructions of stationary processes.

No channel combination. Suppose that xj(u, kj) is computed by convolving a single channel
xj−1(u, kj−1) along u:

xj(u, kj) = ρ(xj−1(·, kj−1) � wj,h(u)) with kj = (kj−1, h). (6.1)

It corresponds to a deep network filtering (5.1), where filters do not combine several channels.
Iterating on j defines a convolution tree, as opposed to a full network. It results from (6.1) that

xJ(u, kJ) = ρ(ρ(ρ(ρ(x � w1,h1 ) � . . .) � wJ−1,hJ−1 ) � wJ,hJ ). (6.2)

If ρ is a rectifier ρ(α) = max(α, 0) or a modulus ρ(α) = |α| then ρ(α) = α if α ≥ 0. We can thus
remove this nonlinearity at the output of an averaging filter wj,h. Indeed, this averaging filter is
applied to positive coefficients and thus computes positive coefficients, which are not affected by
ρ. On the contrary, if wj,h is a band-pass filter, then the convolution with xj−1(·, kj−1) has alternating
signs or a complex phase which varies. The nonlinearity ρ removes the sign or the phase, which
has a strong contraction effect.
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Equivalent wavelet filter. Suppose that there are m band-pass filters {wjn,hjn
}1≤n≤m in the

convolution cascade (6.2), and that all others are low-pass filters. If we remove ρ after each
low-pass filter, then we get m equivalent band-pass filters:

ψjn,kn (u) = wjn−1+1,hjn−1+1 � . . . � wjn,hjn
(u). (6.3)

The cascade of J convolutions (6.2) is reduced to m convolutions with these equivalent filters

xJ(u, kJ) = ρ(ρ(. . . ρ(ρ(x � ψj1,k1 ) � ψj2,k2 ) . . . � ψjm−1,km−1 ) � ψJ,kJ (u)), (6.4)

with 0< j1 < j2 < · · ·< jm−1 < J. If the final filter wJ,hJ at the depth J is a low-pass filter, then
ψJ,kJ = φJ is an equivalent low-pass filter. In this case, the last nonlinearity ρ can also be removed,
which gives

xJ(u, kJ) = ρ(ρ(. . . ρ(ρ(x � ψj1,k1 ) � ψj2,k2 ) . . . � ψjm−1,km−1 ) � φJ(u). (6.5)

The operator ΦJx = xJ is a wavelet scattering transform, introduced in [9]. Changing the network
filters wj,h modifies the equivalent band-pass filters ψj,k. As in the fast wavelet transform
algorithm (4.4), if wj,h is a rotation of a dilated filter wj, then ψj,h is a dilation and rotation of a
single mother wavelet ψ .

Scattering order. The order m = 1 coefficients xJ(u, kJ) = ρ(x � ψj1,k1 ) � φJ(u) are the wavelet
coefficient computed in (4.5). The loss of information owing to averaging is now compensated
by higher-order coefficient. For m = 2, ρ(ρ(x � ψj1,k1 ) � ψj2,k2 ) � φJ are complementary invariants.
They measure interactions between variations of x at a scale 2j1 , within a distance 2j2 , and along
orientation or frequency bands defined by k1 and k2. These are scale interaction coefficients,
missing from first-order coefficients. Because ρ is strongly contracting, order m coefficients have
an amplitude which decreases quickly as m increases [9,18]. For images and audio signals,
the energy of scattering coefficients becomes negligible for m ≥ 3. Let us emphasize that the
convolution network depth is J, whereas m is the number of effective nonlinearity of an output
coefficient.

Section 4 explains that a wavelet transform defines representations which are Lipschitz
continuous to actions of diffeomorphisms. Scattering coefficients up to the order m are computed
by applying m wavelet transforms. One can prove [9] that it thus defines a representation which
is Lipschitz continuous to the action of diffeomorphisms. There exists C> 0 such that

∀(g, x) ∈ Diff(Rn) × L2(Rn), ‖ΦJ(g.x) −ΦJx‖ ≤ Cm(2−J‖g‖∞ + ‖∇g‖∞)‖x‖,

plus a Hessian term which is neglected. This result is proved in [9] for ρ(α) = |α|, but it remains
valid for any contractive pointwise operator such as rectifiers ρ(α) = max(α, 0). It relies on
commutation properties of wavelet transforms and diffeomorphisms. It shows that the action
of small diffeomorphisms is linearized over scattering coefficients.

Classification. Scattering vectors are restricted to coefficients of order m ≤ 2, because their
amplitude is negligible beyond. A translation scattering ΦJx is well adapted to classification
problems where the main sources of intraclass variability are owing to translations, to
small deformations or to ergodic stationary processes. For example, intraclass variabilities of
handwritten digit images are essentially owing to translations and deformations. On the MNIST
digit data basis [19], applying a linear classifier to scattering coefficients ΦJx gives state-of-the-
art classification errors. Music or speech classification over short time-intervals of 100 ms can be
modelled by ergodic stationary processes. Good music and speech classification results are then
obtained with a scattering transform [20]. Image texture classification is also problems where
intraclass variability can be modelled by ergodic stationary processes. Scattering transforms give
state-of-the-art results over a wide range of image texture databases [19,21], compared with other
descriptors including power spectrum moments.

Stationary processes. To analyse the information loss, we now study the reconstruction of x from
its scattering coefficients, in a stochastic framework where x is a stationary process. This will raise
variance and separation issues, where sparsity plays a role. It also demonstrates the importance
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Figure 3. First row: original images. Second row: realization of a Gaussian process with same second covariance moments.
Third row: reconstructions from first- and second-order scattering coefficients.

of second-order scale interaction terms, to capture non-Gaussian geometric properties of ergodic
stationary processes. Let us consider scattering coefficients of order m

ΦJx(u, k) = ρ(. . . ρ(ρ(x � ψj1,k1 ) � ψj2,k2 ) . . . � ψjm,km ) � φJ(u), (6.6)

with
∫
φJ(u) du = 1. If x is a stationary process, then ρ(. . . ρ(x � ψj1,k1 ) . . . � ψjm,km ) remains

stationary, because convolutions and pointwise operators preserve stationarity. The spatial
averaging by φJ provides a non-biased estimator of the expected value of ΦJx(u, k), which is a
scattering moment:

E(ΦJx(u, k)) = E(ρ(. . . ρ(ρ(x � ψj1,k1 ) � ψj2,k2 ) . . . � ψjm,km )). (6.7)

If x is a slow mixing process, which is a weak ergodicity assumption, then the estimation
variance σ 2

J = ‖ΦJx − E(ΦJx)‖2 converges to zero [22] when J goes to ∞. Indeed, ΦJ is computed
by iterating on contractive operators, which average an ergodic stationary process x over
progressively larger scales. One can prove that scattering moments characterize complex
multiscale properties of fractals and multifractal processes, such as Brownian motions, Levi
processes or Mandelbrot cascades [23].

Inverse scattering and sparsity. Scattering transforms are generally not invertible but given ΦJ(x)
one can compute vectors x̃ such that ‖ΦJ(x) −ΦJ(x̃)‖ ≤ σJ . We initialize x̃0 as a Gaussian white
noise realization, and iteratively update x̃n by reducing ‖ΦJ(x) −ΦJ(x̃n)‖ with a gradient descent
algorithm, until it reaches σJ [22]. BecauseΦJ(x) is not convex, there is no guaranteed convergence,
but numerical reconstructions converge up to a sufficient precision. The recovered x̃ is a stationary
process having nearly the same scattering moments as x, the properties of which are similar to a
maximum entropy process for fixed scattering moments [22].

Figure 3 shows several examples of images x with N2 pixels. The first three images are
realizations of ergodic stationary textures. The second row gives realizations of stationary
Gaussian processes having the same N2 second-order covariance moments as the top textures.
The third column shows the vorticity field of a two-dimensional turbulent fluid. The Gaussian
realization is thus a Kolmogorov-type model, which does not restore the filament geometry.
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The third row gives reconstructions from scattering coefficients, limited to order m ≤ 2. The
scattering vector is computed at the maximum scale 2J = N, with wavelets having K = 8 different
orientations. It is thus completely invariant to translations. The dimension of ΦJx is about
(K log2 N)2/2 � N2. Scattering moments restore better texture geometries than the Gaussian
models obtained with N2 covariance moments. This geometry is mostly captured by second-order
scattering coefficients, providing scale interaction terms. Indeed, first-order scattering moments
can only reconstruct images which are similar to realizations of Gaussian processes. First- and
second-order scattering moments also provide good models of ergodic audio textures [22].

The fourth image has very sparse wavelet coefficients. In this case, the image is nearly perfectly
restored by its scattering coefficients, up to a random translation. The reconstruction is centred
for comparison. Section 4 explains that if wavelet coefficients are sparse then a rectifier or an
absolute value contractions ρ does not contract as much as distances with other signals. Indeed,
|ρ(α) − ρ(α′)| = |α − α′| if α= 0 or α′ = 0. Inverting a scattering transform is a nonlinear inverse
problem, which requires one to recover a lost phase information. Sparsity has an important role
in such phase recovery problems [18]. Translating randomly the last motorcycle image defines
a non-ergodic stationary process, whose wavelet coefficients are not as sparse. As a result, the
reconstruction from a random initialization is very different, and does not preserve patterns
which are important for most classification tasks. This is not surprising, because there are much
fewer scattering coefficients than image pixels. If we reduce 2J , so that the number of scattering
coefficients reaches the number of pixels, then the reconstruction is of good quality, but there is
little variance reduction.

Concentrating on the translation group is not so effective to reduce variance when the process
is not translation ergodic. Applying wavelet filters can destroy important structures which are
not sparse over wavelets. Section 7 addresses both issues. Impressive texture synthesis results
have been obtained with deep convolutional networks trained on image databases [24], but
with much more output coefficients. Numerical reconstructions [25] also show that one can also
recover complex patterns, such as birds, aeroplanes, cars, dogs, ships, if the network is trained
to recognize the corresponding image classes. The network keeps some form of memory of
important classification patterns.

7. Multiscale hierarchical convolutional networks
Scattering transforms on the translation group are restricted deep convolutional network
architectures, which suffer from variance issues and loss of information. We shall explain why
channel combinations provide the flexibility needed to avoid some of these limitations. We
analyse a general class of convolutional network architectures by extending the tools previously
introduced. Contractions and invariants to translations are replaced by contractions along groups
of local symmetries adapted to f , which are defined by parallel transports in each network layer.
The network is structured by factorizing groups of symmetries, as depth increases. It implies
that all linear operators can be written as generalized convolutions across multiple channels.
To preserve the classification margin, wavelets must also be replaced by adapted filter weights,
which separate discriminative patterns in multiple network fibres.

Separation margin. Network layers xj = ρWjxj−1 are computed with operators ρWj which
contract and separate components of xj. We shall see that Wj also needs to prepare xj for the next
transformation Wj+1, so consecutive operators Wj and Wj+1 are strongly dependent. Each Wj
is a contractive linear operator, ‖Wjz‖ ≤ ‖z‖ to reduce the space volume, and avoid instabilities
when cascading such operators [17]. A layer xj−1 must separate f , so that we can write f (x) =
fj−1(xj−1) for some function fj−1(z). To simplify explanations, we concentrate on classification,
where separation is an ε > 0 margin condition:

∀(x, x′) ∈Ω2, ‖xj−1 − x′
j−1‖ ≥ ε if f (x) �= f (x′). (7.1)
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Figure 4. A multiscale hierarchical networks computes convolutions along the fibres of a parallel transport. It is defined by
a group Gj of symmetries acting on the index set Pj of a layer xj . Filter weights are transported along fibres. (Online version
in colour.)

The next layer xj = ρWjxj−1 lives in a contracted space but it must also satisfy

∀(x, x′) ∈Ω2, ‖ρWjxj−1 − ρWjx
′
j−1‖ ≥ ε if f (x) �= f (x′). (7.2)

The operator Wj computes a linear projection which preserves this margin condition, but the
resulting dimension reduction is limited. We can further contract the space nonlinearly with ρ. To
preserve the margin, it must reduce distances along nonlinear displacements which transform any
xj−1 into an x′

j−1 which is in the same class. Such displacements are defined by local symmetries
(3.1), which are transformations ḡ such that fj−1(xj−1) = fj−1(ḡ.xj−1).

Parallel transport. To define a local invariant to a group of transformations G, we must process
the orbit {ḡ.xj−1}g∈G. However, Wj is applied to xj−1 not on the nonlinear transformations ḡ.xj−1 of
xj−1. The key idea is that a deep network can proceed in two steps. Let us write xj(u, kj) = xj(v) with
v ∈ Pj. First, ρWj computes an approximate mapping of such an orbit {ḡ.xj−1}ḡ∈G into a parallel
transport in Pj, which moves coefficients of xj. Then Wj+1 applied to xj is filtering the orbits of
this parallel transport. A parallel transport is defined by operators g ∈ Gj acting on v ∈ Pj, and
we write

∀(g, v) ∈ Gj × Pj, g.xj(v) = xj(g.v).

The operator Wj is defined, so that Gj is a group of local symmetries: fj(g.xj) = fj(xj) for small |g|Gj .
This is obtained if transports by g ∈ Gj correspond approximatively to local symmetries ḡ of fj−1.
Indeed, if g.xj = g.[ρWjxj−1] ≈ ρWj[ḡ.xj−1] then fj(g.xj) ≈ fj−1(ḡ.xj−1) = fj−1(xj−1) = f (xj).

The index space Pj is called a Gj-principal fibre bundle in differential geometry [26], illustrated
by figure 4. The orbits of Gj in Pj are fibres, indexed by the equivalence classes Bj = Pj/Gj. They
are globally invariant to the action of Gj, and play an important role to separate f . Each fibre is
indexing a continuous Lie group, but it is sampled along Gj at intervals such that values of xj can
be interpolated in between. As in the translation case, these sampling intervals depend upon the
local invariance of xj, which increases with j.

Hierarchical symmetries. In a hierarchical convolution network, we further impose that local
symmetry groups are growing with depth, and can be factorized:

∀j ≥ 0, Gj = Gj−1 � Hj. (7.3)

The hierarchy begins for j = 0 by the translation group G0 = R
n, which acts on x(u) through the

spatial variable u ∈ R
n. The condition (7.3) is not necessarily satisfied by general deep networks,

besides j = 0 for translations. It is used by joint scattering transforms [21,27] and has been
proposed for unsupervised convolution network learning [28]. Proposition 7.1 proves that this
hierarchical embedding implies that each Wj is a convolution on Gj−1.
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Proposition 7.1. The group embedding (7.3) implies that xj can be indexed by (g, h, b) ∈ Gj−1 × Hj ×
Bj and there exists wj,h.b ∈ C

Pj−1 such that

xj(g, h, b) = ρ

⎛
⎝ ∑
v′∈Pj−1

xj−1(v′)wj,h.b(g−1.v′)

⎞
⎠ = ρ(xj−1 �

j−1 wj,h.b(g)), (7.4)

where h.b transports b ∈ Bj by h ∈ Hj in Pj.

Proof. We write xj = ρWjxj−1 as inner products with row vectors:

∀v ∈ Pj, xj(v) = ρ

⎛
⎝ ∑
v′∈Pj−1

xj−1(v′)wj,v(v′)

⎞
⎠ = ρ(〈xj−1, wj,v〉). (7.5)

If ḡ ∈ Gj, then ḡ.xj(v) = xj(ḡ.v) = ρ(〈xj−1, wj,ḡ.v〉. One can write wj,v = wj,ḡ.b with ḡ ∈ Gj and b ∈
Bj = Pj/Gj. If Gj = Gj−1 � Hj, then ḡ ∈ Gj can be decomposed into ḡ = (g, h) ∈ Gj−1 � Hj, where
g.xj = ρ(〈g.xj−1, wj,b〉). But g.xj−1(v′) = xj−1(g.v′) so with a change of variable, we get wj,g.b(v′) =
wj,b(g−1.v′). Hence, wj,ḡ.b(v′) = wj,(g,l).b(v) = h.wj,h.b(g−1.v′). Inserting this filter expression in (7.5)
proves (7.4). �

This proposition proves that Wj is a convolution along the fibres of Gj−1 in Pj−1. Each wj,h.b
is a transformation of an elementary filter wj,b by a group of local symmetries h ∈ Hj, so that
fj(xj(g, h, b)) remains constant when xj is locally transported along h. We give below several
examples of groups Hj and filters wj,h.b. However, learning algorithms compute filters directly,
with no prior knowledge on the group Hj. The filters wj,h.b can be optimized, so that variations
of xj(g, h, b) along h capture a large variance of xj−1 within each class. Indeed, this variance is
then reduced by the next ρWj+1. The generators of Hj can be interpreted as principal symmetry
generators, by analogy with the principal directions of a principal component analysis.

Generalized scattering. The scattering convolution along translations (6.1) is replaced in (7.4) by
a convolution along Gj−1, which combines different layer channels. Results for translations can
essentially be extended to the general case. If wj,h.b is an averaging filter, then it computes positive
coefficients, so the nonlinearity ρ can be removed. If each filter wj,h.b has a support in a single fibre
indexed by b, as in figure 4, then Bj−1 ⊂ Bj. It defines a generalized scattering transform, which is a
structured multiscale hierarchical convolutional network such that Gj−1 � Hj = Gj and Bj−1 ⊂ Bj.
If j = 0, then G0 = P0 = R

n so B0 is reduced to 1 fibre.
As in the translation case, we need to linearize small deformations in Diff(Gj−1), which include

much more local symmetries than the low-dimensional group Gj−1. A small diffeomorphism
g ∈ Diff(Gj−1) is a non-parallel transport along the fibres of Gj−1 in Pj−1, which is a perturbation
of a parallel transport. It modifies distances between pairs of points in Pj−1 by scaling factors.
To linearize such diffeomorphisms, we must use localized filters whose supports have different
scales. Scale parameters are typically different along the different generators of Gj−1 = R

n
�

H1 � · · · � Hj−1. Filters can be constructed with wavelets dilated at different scales, along the
generators of each group Hk for 1 ≤ k ≤ j. Linear dimension reduction mostly results from this
filtering. Variations at fine scales may be eliminated, so that xj(g, h, b) can be coarsely sampled
along g.

Rigid movements. For small j, the local symmetry groups Hj may be associated with linear
or nonlinear physical phenomena such as rotations, scaling, coloured illuminations or pitch
frequency shifts. Let SO(n) be the group of rotations. Rigid movements SE(n) = R

n
� SO(n) is

a non-commutative group, which often includes local symmetries. For images, n = 2, this group
becomes a transport in P1 with H1 = SO(n) which rotates a wavelet filter w1,h(u) = w1(r−1

h u). Such
filters are often observed in the first layer of deep convolutional networks [25]. They map the
action of ḡ = (v, rk) ∈ SE(n) on x to a parallel transport of (u, h) ∈ P1 defined for g ∈ G1 = R

2 × SO(n)
by g.(u, h) = (v + rku, h + k). Small diffeomorphisms in Diff(Gj) correspond to deformations along
translations and rotations, which are sources of local symmetries. A roto-translation scattering
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[21,29] linearizes them with wavelet filters along translations and rotations, with Gj = SE(n) for
all j> 1. This roto-translation scattering can efficiently regress physical functionals which are
often invariant to rigid movements, and Lipschitz continuous to deformations. For example,
quantum molecular energies f (x) are well estimated by sparse regressions over such scattering
representations [30].

Audio pitch. Pitch frequency shift is a more complex example of a nonlinear symmetry for
audio signals. Two different musical notes of a same instrument have a pitch shift. Their harmonic
frequencies are multiplied by a factor 2h, but it is not a dilation, because the note duration is
not changed. With narrow band-pass filters w1,h(u) = w1(2−hu), a pitch shift is approximatively
mapped to a translation along h ∈ H1 = R of ρ(x � w1,h(u)), with no modification along the time
u. The action of g = (v, k) ∈ G1 = R × R = R

2 over (u, h) ∈ P1 is thus a two-dimensional translation
g.(u, h) = (u + v, h + k). A pitch shift also comes with deformations along time and log-frequencies,
which define a much larger class of symmetries in Diff(G1). Two-dimensional wavelets along
(u, h) can linearize these small time and log-frequency deformations. These define a joint time–
frequency scattering applied to speech and music classifications [27]. Such transformations were
first proposed as neurophysiological models of audition [13].

Manifolds of patterns. The group Hj is associated with complex transformations when j
increases. It needs to capture large transformations between different patterns in a same class,
for example chairs of different styles. Let us consider training samples {xi}i of a same class. The
iterated network contractions transform them into vectors {xi

j−1}i which are much closer. Their
distances define weighted graphs which sample underlying continuous manifolds in the space.
Such manifolds clearly appear in [31], for high-level patterns such as chairs or cars, together with
poses and colours. As opposed to manifold learning, deep network filters result from a global
optimization which can be computed in high dimension. The principal symmetry generators of Hj

are associated with common transformations over all manifolds of examples xi
j−1, which preserve

the class while capturing large intraclass variance. They are approximatively mapped to a parallel
transport in xj by the filters wj,h.b. The diffeomorphisms in Diff(Gj) are non-parallel transports
corresponding to high-dimensional displacements on the manifolds of xj−1. Linearizing Diff(Gj)
is equivalent to partially flattening simultaneously all these manifolds, which may explain why
manifolds are progressively more regular as the network depth increases [31], but it involves open
mathematical questions.

Sparse support vectors. We have up to now concentrated on the reduction of the data variability
through contractions. We now explain why the classification margin can be preserved, thanks to
the existence of multiple fibres Bj in Pj, by adapting filters instead of using standard wavelets.
The fibres indexed by b ∈ Bj are separation instruments, which increase dimensionality to avoid
reducing the classification margin. They prevent from collapsing vectors in different classes,
which have a distance ‖xj−1 − x′

j−1‖ close to the minimum margin ε. These vectors are close to
classification frontiers. They are called multiscale support vectors, by analogy with support vector
machines. To avoid further contracting their distance, they can be separated along different
fibres indexed by b. The separation is achieved by filters wj,h.b, which transform xj−1 and x′

j−1
into xj(g, h, b) and x′

j(g, h, b) having sparse supports on different fibres b. The next contraction
ρWj+1 reduces distances along fibres indexed by (g, h) ∈ Gj, but not across b ∈ Bj, which preserves
distances. The contraction increases with j, so the number of support vectors close to frontiers also
increases, which implies that more fibres are needed to separate them.

When j increases, the size of xj is a balance between the dimension reduction along fibres,
by subsampling g ∈ Gj, and an increasing number of fibres Bj which encode progressively more
support vectors. Coefficients in these fibres become more specialized and invariants, as the
grandmother neurons observed in deep layers of convolutional networks [10]. They have a strong
response to particular patterns and are invariant to a large class of transformations. In this model,
the choice of filters wj,h.b are adapted to produce sparse representations of multiscale support
vectors. They provide a sparse distributed code, defining invariant pattern memorization. This
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memorization is numerically observed in deep network reconstructions [25], which can restore
complex patterns within each class. Let us emphasize that groups and fibres are mathematical
ghosts behind filters, which are never computed. The learning optimization is directly performed
on filters, which carry the trade-off between contractions to reduce the data variability and
separation to preserve classification margin.

8. Conclusion
This paper provides a mathematical framework to analyse contraction and separation properties
of deep convolutional networks. In this model, network filters are guiding nonlinear contractions,
to reduce the data variability in directions of local symmetries. The classification margin can
be controlled by sparse separations along network fibres. Network fibres combine invariances
along groups of symmetries and distributed pattern representations, which could be sufficiently
stable to explain transfer learning of deep networks [1]. However, this is only a framework. We
need complexity measures, approximation theorems in spaces of high-dimensional functions,
and guaranteed convergence of filter optimization, to fully understand the mathematics of these
convolution networks.

Besides learning, there are striking similarities between these multiscale mathematical tools
and the treatment of symmetries in particle and statistical physics [32]. One can expect a rich
cross fertilization between high-dimensional learning and physics, through the development of a
common mathematical language.
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