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Abstract

This paper describes the construction of second generation bandelet
bases and their application to 3D geometry compression. This new
coding scheme is orthogonal and the corresponding basis functions
are regular. In our method, surfaces are decomposed in a bandelet
basis with a fast bandeletization algorithm that removes the geo-
metric redundancy of orthogonal wavelet coefficients. The result-
ing transform coding scheme has an error decay that is asymptoti-
cally optimal for geometrically regular surfaces. We then use these
bandelet bases to perform geometry image and normal map com-
pression. Numerical tests show that for complex surfaces bandelets
bring an improvement of 1.5dB to 2dB over state of the art com-
pression schemes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface and object representations

Keywords: Bandelets, discrete multiscale geometry, geometry im-
age, normal map, compression.

1 Discrete Multiscale Geometry

The geometry of natural surfaces is complex and intrinsically mul-
tiscale [Dana et al. 1999]. The different techniques used to describe
this geometry must account for a variety of structures at different
levels of detail: macro structures (the traditional 3D mesh repre-
sentation), mesostructures (bump map or displacement map), and
micro-scale material structures (reflectance function). In this paper
we will focus on the problem ofcompressionof these geometric
structures and provide a new representation calledsecond genera-
tion bandelets.

Geometry Drives Creation and Computation The geometric
features of a surface are at the heart of the design process, both for
artists and for CAD editing: human perception is mainly sensitive
to lines of curvature which create most lighting effects. In the pro-
cessing steps, most algorithms take special care of these geometric
features, both for efficiency (anisotropy in meshing [Alliez et al.
2003]) and aesthetic considerations (non-photorealistic rendering
[Hertzmann and Zorin 2000]).

Geometry is Discrete Working with digital data means work-
ing in a discrete setting. Even if the underlying functional model
is continuous, the first step before any processing of the surface is
a sampling stage which can model various acquisition processes
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(range scanning [Levoy et al. 2000], reconstruction from pho-
tographs [Slabaugh et al. 2001], etc) and remeshing of the 3D model
(see e.g. [Alliez et al. 2003]). A wavelet transform can then be ap-
plied on the discrete samples to obtain a multiresolution represen-
tation of the original data [Alliez and Gotsman 2005].

Geometry is Multiscale The geometry of surfaces is naturally
multiscale, as one can see it directly on various surfaces. On finely
scanned models (acquired for artistic studies [Levoy et al. 2000]
or for reverse engineering [Hoppe et al. 1994]), sharp features are
often located on a width of a few vertices. For such surfaces, the
geometry is not a collection of discontinuities, but rather areas of
high curvature. Locating these geometric features is an ill-posed
problem [Ohtake et al. 2004], and we will explain in this paper how
to recast it into aregularity directionestimation, which is well-
posed and optimal for the purpose of surface compression.

Image-based Surface Processing The use of regular grids for
surface representation and compression is a unifying framework for
most 3D surface data. We will use it to propose a common func-
tional model for geometric surfaces, formulate the coding problem,
and provide an algorithmic tool to solve the problem. By fixing
the parameterization of the 3D model we are able to use classical
techniques from harmonic analysis such as orthogonal projections
and best basis algorithms. Although the final distortion we want
to minimize is geometric (e.g. Hausdorff distance), we will target
the L2 norm for stating the main theorem, and exploit the degree of
freedom in bit allocation to optimize the geometric error.

The main image-based representations for surfaces include:
• Geometry images [Gu et al. 2002]: the 3D geometry is resam-

pled on a regular grid, and is compactly encoded as an RGB im-
age. It is mostly used to represent large scale features of the mesh
(overall shape and deep creases).

• Normal map [Peercy et al. 1997]: to model fine scale details of
the geometry, the normals are encoded with a high sampling rate
in an RGB image. On recent hardware, per-pixel bump-mapping
can be done in real time with normal maps.

• Other maps: one can cite texture mapping, displacement map
[Wang et al. 2003], environnement mapping [Agarwal et al.
2003], volumetric textures [Owada et al. 2004], etc.
In this paper, we will focus on the compression of geometry im-

ages and normal maps. However, as soon as some geometric regu-
larity exists in a map (e.g. creases in displacement map) our ban-
delet scheme will provide similar enhancement as well.

2 Geometric Compression of Surfaces

Surface Functional Model In this paper, we model a function
f : [0,1]2 7→ R with geometric regularity as C2-regular outside a set
of edges which are themselves C2-regular curves. In the continuous
setting, we consider a function from[0,1]2 to R

3 which can model
either a geometry image or a normal map. We treat each component
of this 3D-valued function independently, and assume each has a
geometric regularity.

However, natural surfaces often do not have sharp discontinu-
ities, so the model also includes some smoothing by an unknown
kernel. The resulting functions can be written as a convolution



f = f̃ ∗h where f̃ is a function with sharp features (regular outside
a set of edges) andh is the unknown smoothing kernel. We will call
this class of functions C2-geometrically regular functions. Figure
1, (a), shows such a function that has a sharp feature that smoothly
vanishes (the size of the kernel is progressively increasing along the
edge).

(a) Original Surface (b) Triangulation (c) Wavelets

Figure 1: Approximation of a surface with a fading-away edge.
Only the support of the underlying basis functions are depicted.

In graphics, uniformly regular surfaces were the first functional
model proposed for 3D surfaces, such as NURBS in CAD model-
ing [Farin 1993]. Later, the introduction of subdivision surfaces for
modeling [Biermann et al. 2000] and reconstruction [Hoppe et al.
1994] enabled the description of complex piecewise smooth sur-
faces. The geometrically regular functional model we propose in
this paper allows us to replace sharp discontinuities with semi-sharp
creases. This model has already been used successfully for charac-
ter modeling and animation [DeRose et al. 1998].

Classical Isotropic Surface Compression Many methods
have been proposed to solve the problem of 3D geometry compres-
sion, see the recent survey of [Alliez and Gotsman 2005]. In order
to perform such compression, one often relies on a semi-regular
remeshing of the original model. The first construction of wavelets
on triangulations was built by encoding the differences with re-
spect to a subdivision scheme [Eck et al. 1995]. The lifting scheme
[Schr̈oder and Sweldens 1995] extends this construction and pro-
vides a useful tool for surface analysis. In fact, best known coders
include the normal multiresolution construction of [Khodakovsky
and Guskov 2003]. All these schemes are closely related to classi-
cal wavelet bases on regular grids, and few theoretical results exist
for these surface-based constructions (except for the 2D case, see
[Daubechies et al. 2004]).

For images and geometry images compression, currently the
most efficient algorithms are transform codes that decompose the
signal in an orthonormal (or nearly orthonormal) basis and quan-
tize the resulting coefficients. JPEG and JPEG2000 are examples
of such algorithms. Using regular basis functions is also necessary
to avoid introducing blocking artifacts in the compressed signal.

When one considers the class of C2-geometrically regular sur-
faces with sharp or semi-sharp features, represented with a geome-
try image f and a normal mapg, the best wavelet transform codes
fR andgR with R bits satisfies

|| f − fR||2 6 CR−3/2 log3/2(R) and ||g−gR||2 6 CR−1 log(R),

whereC is a constant that depends only onf . This difference is
due to the fact that geometry images only have discontinuities of
tangents whereas normal maps have step discontinuities. These ap-
proximation rates are not optimal. In order to exploit the regularity
that exists along sharp or semi-sharp transitions, one has to build
elongated functions that are adapted to the geometry of the surface.
In this paper we construct a new class of orthogonal bases that ex-
hibits the optimalR−2 log2(R) transform coding rates for geometry
images and normal maps.

Surface Approximation and Anisotropy Geometric approx-
imation problems have been well studied, and although the con-
struction of an optimal triangulation is NP-hard [Agarwal and Suri

1998], some effective greedy solutions exist, such as [Hoppe 1996;
Garland and Heckbert 1997; Lindstrom and Turk 1998], and more
global error-driven methods [Cohen-Steiner et al. 2004] are promis-
ing. The problem is even more complicated for semi-sharp features,
because the aspect ratio of each triangle has to be tuned adaptively
depending on the unknown smoothing kernelh (see figure 1, (b)).

In order to have a well-posed problem (with polynomial com-
plexity), one must fix a scale for the geometry and build an approx-
imation for this scale. In computer graphics, the problem of sharp
features detection is well studied [Ohtake et al. 2004], and involves
some smoothing to fix the scale of the salient structures. For the
bandelet scheme, with coding efficiency in mind, we will follow
this paradigm and show that working at a fixed scale 2j (construct-
ing a different geometry for each scale) is equivalent to regularizing
the geometry (allowing error in location up to 2j ), which in turn
makes the optimization tractable in nearly linear time complexity.

In the image analysis community, some recent constructions are
able to capture this geometric regularity. Most notably are the
curvelets [Cand̀es and Donoho 1999], contourlets [Do and Vetterli
2005], wedgeprints [Wakin et al. 2005] and non-linear subdivision
schemes [Matei and Cohen 2002]. However, none of these schemes
is able to construct orthogonal bases of regular functions which is
highly desirable for compression.

3 The Bandelet Approach

The bandelet approximation scheme, introduced in [Le Pennec and
Mallat 2004], takes advantage of geometric image regularity by re-
moving the redundancy of a warped wavelet transform by perform-
ing abandeletization. Unfortunately, the resulting transform is non
orthogonal and the warping introduces boundary artifacts. Instead,
our second generation bandelet transform is constructed over a stan-
dard orthogonal wavelet transform. It is thus simpler, orthogonal,
and without border effect. We implement this second generation
bandeletization first by reordering the 2D wavelet coefficients and
then performing a 1D wavelet transform.

Wavelet Algorithms Both 1D and 2D wavelet transforms are
explained in [Mallat 1998], and we will just recall some basic facts
in the 2D setting.

The wavelet transform of a functionf : R
2 7→ R is the decom-

position of f on an orthogonal basis composed of translates and
dilates of three mother wavelets{ψH ,ψV ,ψD} (for the horizontal,
vertical and diagonal directions). More formally, it is the set of dot
products

〈 f , ψs
jn〉 with

{
s∈ {H,V,D}, j ∈ Z, n∈ Z

2,
ψs

jn(x) = 1
2 j ψs(2− jx1−n1,2− jx2−n2).

The functionψs
jn is supported near the point 2jn on a square of

width ∼ 2 j . In the discrete setting, the wavelet transform takes an
image ofN pixels and computes the set ofN dot products

{
〈 f , ψs

jn〉 for 2−J 6 2− j <
√

N, and 06 n1,n2 < 2− j ,

〈 f , ϕJn〉 for 0 6 n1,n2 < 2−J,

where the projection onϕJn functions produces a coarse approxi-
mation at scale 2J. This scale 2J represents the level at which we
stop the wavelet transform (one could go all the way down toJ = 0).
These values can be conveniently stored in an array ofN pixels as
shown on figure 2 (b). Note that the square in the upper left corner
of the transformed image contains the dot products with the func-
tions{φJn}n (coarse scale approximation).

Transform coding in a wavelet basis performs an adaptive ap-
proximation using functions with square supports of various sizes,
as shown in figure 1 (c).

2D Wavelet Transform Working in the wavelet domain allows
us to treat each scale of the transform independently. For our dis-
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Figure 2:Discrete reordering of the sampling points.

cussion, we will use a fixed scale 2j , which is equivalent to select-
ing the three sub-images in the wavelet transform containing the
coefficients〈 f , ψs

jn〉 for s∈ {V,H,D}. Also, we denotef a C2-
geometrically regular function as previously defined.

A wavelet transform is able to compress the regular parts of the
surface well. On figure 2 (b), one can see that the only non-zero
wavelet coefficients are close to the singularity. To achieve a better
compression of the original surface, we focus on these high coeffi-
cients at scale 2j and re-transform them to obtain a great number of
values that are close to zero.

This bandeletization removes the correlation that exists between
wavelet coefficients near the singularity. In order to remove this re-
dundancy, we must find some regularity in the wavelet transform of
the surface and construct an adapted approximation scheme. There
are in fact two sources for this regularity that we can use:
• Regularity due to the wavelet: dot products with a set of trans-

lated functions can be computed using aconvolution:

〈 f , ψs
jn〉 = f ∗ψs

j (n12 j ,n22 j ) where ψs
j (x) = 1

2 j ψs(−2− jx),

ands∈ {V,H,D}. As a result, although the original function can
be singular at edge locations, the wavelet coefficients are samples
of a regularized functionf s

j obtained by convolving the original

function f with the “blurring” kernelψs
j of width ∼ 2 j . This

blurring ensures a regularity in the direction orthogonal to the
geometry. This is important because it allows us to make some
errors in the localization of the exact geometry without too much
impact on the approximation.

• Regularity along the geometry: the function f is regular in the
direction of the geometry. Indeed, when one moves parallel to
the geometric curve, the transformed functionf ∗ψs

j is smoothly
varying. We use this regularity to compress the remaining non-
zero wavelet coefficients.

These two sources of regularity work hand in hand to make the
compression algorithm fast. Indeed, the first regularity allows us
to make small mistakes which enables us to extract the geometric
regularity quickly, but still precisely.

Reordering of the Grid Points (bandeletization, step 1)
Until the end of the section, we select a squareS of width L in
the wavelet domain at some scale 2j and orientations∈ {H,V,D}.
Our goal is to clear the anisotropic redundancy that has not been
removed by the 2D wavelet transform. We want to find a correct
numbering of the grid points so that the 1D discrete signal obtained
from this reordering is smooth.

This reordering must be described in a simple manner, more for-
mally it should be parameterized by a small number of parame-
ters. To recover the geometric regularity that exists around sharp
features, our scheme is based on directional projections. The re-
ordering will be described by a single directiond, that should be
as parallel as possible to the real geometry. As shown on figure
2 (c), we select each sampling locationx of the regular grid, and
project it orthogonally onto the lined⊥ to get a new point̃x. To
construct a discrete 1D signal we now order the pointsx̃ according

to their numbering along the axisd⊥. The pointx̃i is thus theith
point alongd⊥. We get a new 1D discrete signalfd defined by

∀i, fd[i] = f (xi).

Note that the only thing that matters is the relative position of the
sampling locations, and the resulting signal is considered as if it
was regularly sampled.

1D Wavelet Transform (bandeletization, step 2) We use
a 1D wavelet transform to compress the 1D discrete signalfd, see
[Mallat 1998]. This transform also provides an effective way to
discriminate between good and bad reorderings. To that end, the
user provides a thresholdT that is the only input parameter of our
bandelet algorithm and controls its compression rate. Bandelet co-
efficients bellowT will be discarded, so that higherT gives rise to
a more agressive compression.

For each squareS and directiond, we are able to compute a
reordering that shuffles the points insideSand produces a 1D signal
fd. We are then left with two questions:
• What should be the size of the squareS?
• What should be the directiond in each square?
Hopefully, the 1D wavelet transform provides a simple way to dis-
criminate between the possibleS andd. Our goal is to find a re-
ordering, or equivalently a size of squareS and a directiond, that
produces as few as possible 1D wavelet coefficients greater thanT.

Figure 3 shows how this 1D wavelet transform is able to choose
both an admissible orientation and the right size of the square. On
top row one can see various squaresSextracted around a singularity
in wavelet space. On middle row the discrete signalfd is shown
(only the central part is depicted). On bottom row on can see the
magnitude of the 1D wavelet coefficients offd.
(a) The square is too small, since extending a bitS does not pro-

duce additional wavelet coefficientsbk such that|bk| > T.
(b) The square is too big, there is too much coefficientsbk above

T. This is because the real geometry has some curvature and
the directiond deviates too much from it.

(c) The square has the correct size, and the 1D signalfd is smooth.
Note that there are much morebk satisfying|bk| < T than orig-
inal coefficientsfd[i] with | fd[i]| < T.

(d) The directiond deviates too much from the real geometry.
Note that this choice ofS andd is relative to the precisionT, and
squares that are correct for a largeT (agressive compression) can
be too big for a smallerT since more precision is needed.

The bestd is the once that leads to the best compressed repre-
sentation after the bandeletization. If there is no preferential orien-
tation in the squareS then it is better not to perform any bandeleti-
zation. In this case the bandelet transform is a standard 2D wavelet
transform, and we setd = NULL.

We are still stuck with the problem of designing the exact parti-
tion into squares of the wavelet domain at scale 2j . What we are
looking for is the partition that gives rise to the best compression of
the surface. We will see in sections 4 and 5 how our algorithm can
perform this construction in a provably optimal manner.
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Figure 3:Influence of the size of S and of the direction d.

4 Bandelet Approximation Algorithm

We will now explain in details the different steps of the bandelet ap-
proximation algorithm, see also figure 4. A Matlab implementation
of this algorithm is freely available [Peyré and Mallat 2005a].

(1) Input of the algorithm. The user provides a surface (or
normal map), stored as an 3-channels image using any geometry
image method. He also provides a thresholdT that controls the
compression rate of the algorithm.

(2) 2D wavelet transform. We first compute the 2D wavelet
transform of the original imagef . This transform can be either
orthogonal or biorthogonal, and is applied to each of the 3 channels
of the image. This results into a collection of 3-tupple of images
( f H

j , fV
j , f D

j ). The new imagesf s
j , for each scale 2j and orientation

s∈ {V,H,D}, are stored in a single image of the same size as the
original imagef , see also figure 2 (b). The following steps (3)-(7)
implement the bandeletization, which is repeated for each scale and
orientation.

(3) Selecting each dyadic square. A dyadic square is by defi-
nition a square obtained by recursively splitting the original wavelet
transformed imagef s

j into four sub-squares of equal size. We re-

strict ourselves to squares of widthL pixels with 46 L 6 2− j/2.
The following steps (4)-(7) are repeated for each dyadic squareSat
a given scale 2j and orientations of the wavelet transform.

(4) Selecting each geometry. There are as many possible 1D
reordering of the grid points as directionsd joining pairs of points
in the squareS of width L. The number of potential directions is
less than 2L2. The following steps (5)-(7) are repeated for each of
these potential directionsd.

(5) Projection of the sampling locations. We now perform
the 1D discrete reordering of the sampling location explained in the
previous section. This is done by projecting the sampling location
alongd and sorting the resulting 1D points from left to right.

(6) 1D resulting signal. This 1D numbering of the sampling
points defines a 1D discrete signalfd as explained in the previous
section

(7) 1D wavelet transform. We perform a 1D discrete wavelet
transform offd.

(8) Selection of the best geometry (not shown). For a given

thresholdT, we have to choose the directiond which generates
the less approximation error. In the following, we denote by{bk}
the coefficients of the 1D wavelet transform offd, and byRB the
number of bits needed to code the quantized coefficients{QT(bk)}.
We use a nearly uniform quantizer

{
QT(x) = 0 if |x| 6 T,
QT(x) = sign(x)(q+1/2)T if qT 6 |x| < (q+1)T.

To select the best geometry, we must choose the directiond that
minimizes the Lagrangian

L ( fd,R) = || fd − fdR||2 +λT2(RG +RB),

where fdR is the signal recovered from the quantized coefficients
{QT(bk)} using the inverse 1D wavelet transform, andRG is the
number of bits needed to code the geometric parameterd with an
entropy coder. We useλ = 3/28, see [Le Pennec and Mallat 2004]
for a justification of this value.

(9) Output of the transform. The resulting 1D wavelet coef-
ficients{bk} corresponding to the best geometryd can be stored in
a 2D image of the same size asS. We use a zig-zag scanning order,
so that low-scale wavelet coefficientsbk are stored in the upper-left
corner of the output square. The fact that high coefficients usually
correspond to these scales can be exploited in the arithmetic coder
that codes bandelet coefficients. When comparing the images in
steps (3) and (9), we can notice that the anisotropic redundancy has
almost disappeared.

(10) Build the quadtree (not shown). Once we have com-
puted the approximation over each dyadic square, we must choose
the best layout of squares. This is explained in the next section.

What Do Bandelets Look like? A second generation bandelet
transform is a 2D wavelet transform followed by a bandeletization.
The transformation of a functionf using this algorithm is equiva-
lent to a decomposition off on a bandelet basisB. The bandelet
functionsbµ are specified byµ = ( j,S,k,m) where

• 2 j is the scale of the 2D wavelet transform,
• S is a dyadic square of widthL pixels, with 16 L 6 2− j ,
• k∈ {0, . . . ,2log2(L)} andm∈ {1, . . . ,2k} are the scale and index

in the 1D wavelet transform.
The continuous underlying bandelet functions are roughly con-
tained in a band of width 2jL and of height 2j+k, but the functions
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Figure 4:Overview of the algorithm.

overlap each other. This is because the bandelet transform can be
written as the succession of two transforms (2D wavelet and 1D
wavelet along the geometry). This leads to several important re-
marks:
• The bandelet functions are asregular as the underlying wavelet

functions.
• Although each quadtree segments the space in non-overlapping

squares, the bandelet reconstruction does not suffer from blocking
artifact. This is because the block-reconstruction in wavelet space
is filtered through the wavelet transform.

• Working at fixed scale regularizes the geometry and the corre-
sponding reconstruction

j =−5j =−6j =−7

Figure 5: Graphical display of continuous bandelet functions for
various scales2 j .

5 Construction of the Quadtree

In the previous section, we have presented the first part of the
bandelet algorithm that computes a bandelet transform over each
dyadic square at each scale 2j in the wavelet domain. This is
of course a redundant transform, and we must choose a layout of
squares that forms the best segmentation of each scale. Such a seg-
mentation is conveniently represented as a quadtree. The second
part of the transform builds the best quadtree in a provably optimal
manner, using a Lagrangian optimization on the quantized geome-
try and bandelet coefficients.

Specification of a Bandelet Basis Figure 6 (bottom) shows
two different quadtrees for the finest scale 2j . Once a quadtree is
chosen, the complete bandelet transform discards the transformed
coefficients, produced by step (8), that do not belong to squares

S in the quadtree. This bandelet transform is an orthogonal (resp.
biorthogonal) transform since the 1D and 2D wavelet transforms
are orthogonal (resp. biorthogonal).

Once we have chosen a segmentation for each scale 2j and an
approximate geometry directiond inside each square, we have the
associated bandelet basisB = {bµ}µ , whereµ is some parame-
ter indexing the vectors of the basis. The bandelet transform com-
putes the projection of a functionf on this basis, i.e. the set of dot
products{〈 f , bµ 〉}µ , using the algorithm described in the previous
section. A complete bandelet representation is thus composed of:
• A quadtree segmentation for each scale 2j .
• For each scale 2j and each dyadic square in the quadtree:

– the directiond,
– the bandelet coefficients{〈 f , bµ 〉}.

Note that there might exist some dyadic squares in which we do not
have a geometry because the square does not contains any geomet-
ric singularity. In those cases we simply keep the original wavelet
coefficients.

Think in Terms of Number of Bits We denote byR the num-
ber of bits needed to both specify a bandelet basisB = {bµ}µ and
code the coefficients off in this basis. It can be decomposed into
R= ∑Rj = ∑(RjS+RjG +RjB), where, for each scale 2j :
• RjS is the number of bits needed to encode the dyadic segmenta-

tion. To code the quadtree we use 1 bit for each split.
• RjG is the number of bits that code the optimal directiond in each

square of widthL using an arithmetic coder.
• RjB is the number of bits needed to encode the quantized bandelet

coefficientsQT(〈 f , bµ 〉) using an arithmetic coder.
The function restored from its quantized bandelet coefficients is

fR = ∑
µ

QT(〈 f , bµ 〉)bµ with distortion || f − fR||2.

To find the best basisB for a given quantization stepT, we min-
imize a LagrangianL that can be shown to approximate the La-
grangian of the true distortion rate (see [Le Pennec and Mallat
2004]):

L ( f ,R,B) = || f − fR||2 +λ T2 ∑ j (RS j+RG j +RB j).

The Quadtree Optimization Thanks to the additivity of the
Lagrangian and the quadtree structure, the minimization ofL can
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Figure 6: Two examples of quadtree segmentations of the wavelet space. Each segmentation leads to a different bandelet bases.

be performed using a fast bottom-up algorithm, this is the last step
(10) of the bandelet transform algorithm.

Recall that in the previous steps (1)-(9), see figure 4, we have
recorded, for each dyadic squareS(of size less than 2− j/2) the value
L (S) = L ( f ,R,B) of the Lagrangian restricted toS, together with
the best quantized directiond. Then, for each scale 2j , we compute
the quadtree structure:
• Initialize the quadtree: each smallest squareS of width L = 4

pixels is a leaf, record the corresponding optimal geometryd,
and initializeL0, the cumulative Lagrangian of the sub-tree, to
L0(S) = L (S).

• Start with squaresSof sizeL = 8 pixels.
• For each squareS, we denote by(S1,S2,S3,S4) its 4 sub-squares,

and L ′(S) = L0(S1)+L0(S2)+L0(S3)+L0(S4)+λ T2

is the Lagrangian of the sub-tree (the additionalλT2 is due to
the split costRS = 1 bit). The sub-squares should be merged if
L (S) < L ′(S). If so, declareS as a leaf, record the optimal
geometryd. UpdateL0(S) = min(L (S),L ′(S)).

• While L < 2− j/2, doL ← 2L and repeat the previous step.

This algorithm explore each dyadic square up to a size 2− j/2. A
progressive refinement to search for the optimald can avoid test-
ing every possible direction, and leads to an overall complexity of
O(N5/4) for an image ofN pixels.

Mathematical Result Replacing the 1D wavelet transform by
a 1D Alpert multiwavelet transform [Alpert 1992] allows to prove
the following result exposed in [Peyré and Mallat 2005b]. It is an
extension of the results on the optimality of bandelet approximation
[Le Pennec and Mallat 2005].

Given f a C2-geometrically regular function, the transform cod-
ing fR with Rbits in the bandelet basisB minimizingL ( f ,R,B),
with R= RS+RG +RB, satisfies

|| f − fR||2 6 CR−2 log2(R),

with C a constant that depends only on the functionf . We note the
following important points:
• The bandelet approximation exponent−2 is optimal for C2-

geometrically regular functions.
• The reconstructed function is as regular as the original function.
• There is no blocking artifact due to the segmentation.

6 Application to Geometry Image and Nor-
mal Map Compression

Geometry Images Compression Geometry images [Gu et al.
2002] perform a completely regular remeshing of a 3D model so
that it can be stored in an RGB image. The main issue with this ap-
proach is the large distortion induced by the planar mapping. How-
ever, multi-chart and spherical geometry images have been intro-
duced to overcome this difficulty [Sander et al. 2003; Hoppe and
Praun 2003]. We have chosen to use spherical geometry images,
which limits our tests to genus-0 closed surfaces. The extension to

multi-chart geometry images is possible but out of the scope of this
paper.

The simplest way to compress a geometry image is to use an im-
age transform (e.g. wavelets) with special boundary conditions (see
[Hoppe and Praun 2003]). This is natural and follows the theoret-
ical construction proposed in [Dahmen and Schneider 2000]. We
measure the reconstruction error between a meshM and its recon-
struction withRbitsMR using

PSNR(M ,MR) = 20log10(peak/dH(M ,MR)),

wherepeakis the bounding box diagonal anddH is the RMS sym-
metric Hausdorff distance, computed using [Cignoni et al. 1998].

The main difference between the L2 norm and the geometric dis-
tancedH is that the latter is insensitive to warpings in parameter
space, which do not change the shape of the surface. To remove
this bias in coding, we use a simple fix by first performing a lo-
cal change of coordinates (estimated using coarse scale approxi-
mation), and then allocating more bits (3x) for the details in the
normal direction rather than in the tangential direction. This has
proven useful in other compression schemes [Hoppe and Praun
2003; Guskov et al. 2000], but further theoretical studies remain
to be done.

Figure 9 shows the Hausdorff distortion curves. Note that even
for geometry images with blurred features (Gargoyle), there is still
a PSNR improvement of over 1.4dB. On these geometry images,
large distorsion is caused by the spherical mapping, which adds
some artificial anisotropy. Figure 8 shows the Hausdorff distortion
on small patches extracted from various surfaces. These geometry
images are not corrupted with artificial geometry, but we still notice
a PSNR improvement of over 1.5dB.

Normal Maps Compression A normal map is a color texture
that encodes the normals of the surface on a regular grid. One usu-
ally renders a coarse mesh and adds the high-frequency geometric
details of the surface using a normal map. In our tests we use nor-
mal maps that are either created by hand (see figure 1 and 9 for the
generator models) or by using the methodology of spherical geom-
etry images (see figure 9 for the other normal maps).

In our tests we encode the maps as RGB images, one channel
per spacial axis, and we re-normalize the normal map after com-
pression. The reconstruction error is measured using the traditional
PSNR

PSNR( f , fR) = 20log10(|| f ||∞/|| f − fR||2).
Figure 9 shows the L2 distortion curves, with a typical PSNR

enhancement of+2dB for normal maps with strong geometri-
cal features (Generator), and+1.3dB for normal maps with more
smoothed features (Armadillo and Tira). These results clearly show
the strength of our approach for normal map compression, which is
more agressive than for geometry image compression. Some argu-
ments can explain this fact:
• Wavelets perform reasonably well for geometry images, which

only have discontinuities of tangents (decay exponent of−3/2).
• A normal map has strong fine scale geometric content where our

bandelet transform performs well.



7 Conclusion

In this paper we have described a surface functional model that
takes into account most geometric features present in CAD and
scanned 3D surfaces. In this setting, the compression problem is
well understood, and can be solved using harmonic analysis con-
struction. We introduced second generation orthogonal bandelets
that have several desirable properties for compression
• The construction isorthogonalwhich is important for compres-

sion.
• Basis functions areregular and hence introduce no blocking arti-

facts.
• It provides amultiscalerepresentation of the geometry. This cor-

responds to the nature of most surfaces, and eases theoretical
analysis.

• The transform coding rate is asymptotically optimal for the L2

norm on C2-geometrically regular functions.
Our numerical results show that bandelet bases provide a signif-

icant improvement over state of the art compression schemes for
geometrically regular surfaces.
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PEYRÉ, G., AND MALLAT , S., 2005. Bandelets toolbox, available on Mat-
lab Central.http://www.mathworks.com/matlabcentral/.

PEYRÉ, G., AND MALLAT , S. 2005. Image approximation with geometric
bandelets. InPreprint CMAP.

SANDER, P., WOOD, Z., GORTLER, S., SNYDER, J., AND HOPPE, H.
2003. Multi-chart Geometry Images.Proc. Symposium on Geometry
Processing 2003, 146–155.
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Figure 7: Hausdorff distortion results for geometry images compression.
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Figure 8: Hausdorff distortion results for geometry images patches compression.
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Figure 9: L2 distortion results for normal maps compression.


