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An orthogonal Haar scattering transform is a deep network computed with a hierarchy of additions,
subtractions and absolute values over pairs of coefficients. Unsupervised learning optimizes Haar pairs
to obtain sparse representations of training data with an algorithm of polynomial complexity. For signals
defined on a graph, a Haar scattering is computed by cascading orthogonal Haar wavelet transforms on
the graph, with Haar wavelets having connected supports. It defines a representation which is invariant to
local displacements of signal values on the graph. When the graph connectivity is unknown, unsupervised
Haar learning can provide a consistent estimation of connected wavelet supports. Classification results
are given on image data bases, defined on regular grids or graphs, with a connectivity which may be
known or unknown.

Keywords: deep learning; neural network; scattering transform; Haar wavelet; classification; images;
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1. Introduction

Deep neural networks provide scalable learning architectures for high-dimensional data, with impres-
sive results on many different types of data and signals [3]. The networks alternate linear operators,
whose coefficients are optimized with training samples, with point-wise nonlinearities. To obtain good
classification results, strong constraints are imposed on the network architecture on the support of these
linear operators [27]. Despite their efficiency, there are many open issues to understand the properties
of these architectures [31].

Over the past few years, much of the efforts in deep learning has been devoted to supervised
learning. Supervised deep neural networks have achieved great successes in the classifications of
images, video, speech, audio and texts. Convolutional neural networks [27] usually provide the
most efficient architectures among supervised deep neural networks. They implement a cascade of
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linear filtering based on convolutions, followed by pointwise nonlinearities and subsampling or max
pooling operators. Deep convolutional networks get state-of-the-art results for almost all classifica-
tion and detection problems in computer vision, with performances comparable to humans in some
tasks [18,44].

Despite the phenomenal success of supervised deep neural networks, a fundamental challenge to
deep learning is the lack of sufficient labeled training data in many practical situations. The availability
of huge amounts of unlabeled examples motivates unsupervised learning. Unsupervised learning is
about discovering regularities, features or structures from unlabeled data. Many unsupervised methods
are designed to maximize entropy-related objectives or to generate distributed and sparse representa-
tions of the input signals. Unsupervised layer-wise pre-training is useful for training deep networks such
as DBNs [19] and Stacked Auto-encoders [14,21]. It can help prevent overfitting when the data set is
small [4]. Unsupervised deep learning is also used to estimate probability distributions and generate
new samples from these distributions [5,41].

This paper studies unsupervised deep learning by introducing a simple deep Haar scattering archi-
tecture, which only computes the sum of pairs of coefficients, and the absolute value of their difference.
Inspired by scattering networks [6,30], the architecture preserves some important properties of deep
networks, while reducing the computational complexity and simplifying their mathematical analysis.
Most deep neural networks are fighting against the curse of dimensionality by reducing the variance of
the input data with contractive nonlinearities [3,38]. The danger of such contractions is to nearly col-
lapse together vectors which belong to different classes. We will show that unsupervised Haar scattering
can optimize an average discriminability by computing sparse features. Sparse unsupervised learning,
which is usually NP hard, is reduced to a pair-matching problem for Haar scattering. It can thus be com-
puted with a polynomial complexity algorithm. Under appropriate assumptions, we prove that pairing
problems avoid the curse of dimensionality.

In social, sensor or transportation networks, high-dimensional data vectors are supported on a graph
[42]. In most cases, propagation phenomena require to define translation invariant representations for
classification. We will show that an appropriate configuration of an orthogonal Haar scattering defines
such a translation invariant representation on a graph. When the connectivity of the graph is unknown,
building invariant representations requires to estimate the graph connectivity. Such information can be
inferred from unlabeled data by analyzing the joint variability of signals defined on the unknown graph.
Despite its simplicity, a Haar scattering gives good classification results compared to other deep learning
networks, to classify scrambled images (so that the pixel grid information is removed), or other datasets
defined on unknown graphs.

Haar wavelets on graphs have already been studied for machine learning. A tree representation of
graph data defines a multi-resolution analysis associated to a Haar wavelet basis [10,16]. For unknown
graphs, a hierarchical tree can be computed with iterative algorithms based on diffusion maps and spec-
tral clustering [1,10]. There are many possible constructions of wavelets on graphs [11,43], providing
sparse representation of graph signals [40]. These techniques have mostly been applied to image and
network data reconstructions, as opposed to classification problems.

Section 2 introduces the learning pipeline of a Haar scattering transform. It optimizes an
orthogonal Haar scattering representation from unsupervised data, to which is applied a supervised
classification including feature selection. Section 3 studies locally invariant representations of sig-
nals defined on a graph, with a Haar scattering transform. Section 4 gives numerical results on
several classification problems. All computations can be reproduced with a software available at
www.di.ens.fr/data/scattering/haar.

http://www.di.ens.fr/data/scattering/haar
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2. Orthogonal Haar scattering

2.1 Haar scattering transform

We progressively introduce an orthogonal Haar scattering by specializing a general deep neural network.
The input layer is a positive d-dimensional signal x ∈ (R+)d . The positivity assumption simplifies the
model, and positive data are widely encountered in image data and other applications. When the data
takes negative values, the algorithm is adapted in [8], by not applying an absolute value to additions,
which play the role of low-pass filters in scattering transforms [6,30].

We denote by Sjx the network layer at the depth j, and S0x = x. A deep neural network computes
Sj+1x by applying a linear operator Hj to Sjx, followed by a nonlinear point-wise operator. Particular deep
network architectures impose that Hj preserves distances, up to a constant normalization factor λ [34]:

∥Hjy − Hjy′∥ = λ∥y − y′∥.

The network then applies a pointwise contraction ρ to each value of the output vector HjSjx. If |ρ(a) −
ρ(b)| ! |a − b| for any (a, b) ∈ R2, then the network is contractive. Examples include rectifications
ρ(a) = max(0, a) and sigmoids. In a Haar scattering network, we use an absolute value ρ(a) = |a|. It
preserves amplitude and gives a permutation invariance which is studied. For any vector y = (y(n))n,
the pointwise absolute value is written |y| = (|y(n)|)n. The next network layer is thus:

Sj+1x = |HjSjx|. (2.1)

This transform is iterated up to a maximum depth J ! log2(d) to compute the network output SJ x.
We shall further impose that each layer Sjx has the same dimension as x, and hence that Hj is an

orthogonal operator in Rd , up to the scaling factor λ. Geometrically, Sj+1x is thus obtained by rotating
Sjx with Hj, and by contracting each of its coordinate with the absolute value. The geometry of this
contraction is defined by the choice of the operator Hj, which adjusts the one-dimensional directions
along which the contraction is performed.

An orthogonal Haar scattering is implemented with an orthogonal Haar filter Hj at each layer. The
vector Hjy regroups the coefficients of y ∈ Rd into d/2 pairs and computes their sums and differences.
The rotation Hj is thus factorized into d/2 rotations by π/4 in R2, and multiplications by 21/2. The
transformation of each coordinate pair (α,β) ∈ R2 is

(α,β) −→ (α + β, α − β).

The operator |Hj| applies an absolute value to each output coordinate, which has no effect on α + β

since α " 0 and β " 0, while it removes the sign of their difference:

(α,β) −→ (α + β, |α − β|). (2.2)

Observe that this nonlinear operator defines a permutation invariant representation of (α,β). Indeed, the
output values are not modified by a permutation of α and β, and the two values of α, β are recovered
without order, by

max(α,β) = 1
2 (α + β + |α − β|) and min(α,β) = 1

2 (α + β − |α − β|). (2.3)
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Fig. 1. A free Haar scattering network computes a layer Sj+1x by pairing the coefficients of the previous layer Sjx, and storing the
sum of coefficients and the amplitude of their difference in each pair.

The operator |Hj| can thus also be interpreted as a calculation of d/2 permutation invariant representa-
tions of pairs of coefficients.

Applying |Hj| to Sjx computes the next layer Sj+1x = |HjSjx|, obtained by regrouping the coefficients
of Sjx ∈ Rd into d/2 pairs of indices written πj = {πj(2n),πj(2n + 1)}0!n<d/2:

Sj+1x(2n) = Sjx(πj(2n)) + Sjx(πj(2n + 1)), (2.4)

Sj+1x(2n + 1) = |Sjx(πj(2n)) − Sjx(πj(2n + 1))|. (2.5)

The pairing πj specifies which index πj(2n + 1) is paired with πj(2n), but the ordering index n is not
important, as n specifies the storing position in Sj+1x of the transformed values. The network output SJ x
is calculated with Jd/2 additions, subtractions and absolute values. Each coefficient of SJ x is calculated
by cascading J permutation invariant operators over pairs, and thus defines an invariant over a group
of 2J coefficients. The network depth J thus corresponds to an invariance scale 2J . This deep network
computation is illustrated in Fig. 1. The Haar transforms Hj are specified by the multi-layer pairings πj.
Section 2.4 studies an unsupervised optimization of these pairings.

2.2 Contractions and orthogonal transforms

Since the network is computed by iterating orthogonal linear operators, up to a normalization, and a
contractive absolute value, the following theorem proves that it defines a contractive transform, which
preserves the norm up to a normalization. It also proves that an orthogonal Haar scattering SJ x applies
an orthogonal matrix to x, which depends upon x and J .

Theorem 2.1 For any J " 0 and any (x, x′) ∈ R2d

∥SJ x − SJ x′∥ ! 2J/2∥x − x′∥. (2.6)

Moreover, SJ x = 2J/2Mx,J x, where Mx,J is an orthogonal matrix which depends on x and J , and

∥SJ x∥ = 2J/2∥x∥. (2.7)

Proof. Since Sj+1x = |HjSjx|, where Hj is an orthogonal operator multiplied by 21/2,

∥Sj+1x − Sj+1x′∥ ! ∥HjSjx − HjSjx′∥ = 21/2∥Sjx − Sjx′∥.
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Since S0x = x, equation (2.6) is verified by induction on j. We can also rewrite

Sj+1x = |HjSjx| = Ej,xHjx,

where Ej,x is a diagonal matrix where the diagonal entries are ±1, with a sign which depend on Sjx.
Since 2−1/2Hj is orthogonal, 2−1/2Ej,xHj is also orthogonal, so Mx,J = 2−J/2∏J

j=1 Ej,xHj is orthogonal,
and depends on x and J . It results that ∥SJ x∥ = 2J/2 ∥x∥. #

2.3 Completeness with bagging

A single Haar scattering loses information, since it applies orthogonal operators followed by an abso-
lute value which removes the sign information. However, the following theorem proves that x can be
recovered from 2J distinct orthogonal Haar scattering transforms, computed with different pairings πj

at each layer.

Theorem 2.2 There exist 2J different orthogonal Haar scattering transforms such that almost all x ∈ Rd

can be reconstructed from the coefficients of these 2J transforms.

This theorem is proved by observing that a Haar scattering transform is computed with permutation
invariants operators over pairs. Inverting these operators recovers values of signal pairs, but not their
locations. However, recombining these values on enough overlapping sets can recover their locations,
and hence the original signal x. This is proved by the following lemma applied to interlaced pairings.
We say that two pairings π0 = {π0(2n),π0(2n + 1)}0!n<d/2 and π1 = {π1(2n),π1(2n + 1)}0!n<d/2 are
interlaced if there exists no strict subsetΩ of {1, . . . , d} such that π0 and π1 are pairing elements within
Ω . The following lemma shows that a single-layer scattering is invertible with two interlaced pairings.

Lemma 2.1 If two pairings π0 and π1 of {1, . . . , d} are interlaced, then any x ∈ Rd whose coordinates
have more than two different values can be recovered from the values of S1x computed with π0 and the
values of S1x computed with π1.

Proof. Let us consider a triplet n1, n2, n3, where (n1, n2) is a pair in π0 and (n1, n3) is a pair in π1. From
S1x computed with π0, we get

x(n1) + x(n2), |x(n1) − x(n2)|,

and we saw in (2.3) that it determines the values of {x(n1), x(n2)} up to a permutation. Similarly,
{x(n1), x(n3)} are determined up to a permutation by S1x computed with π1. Then unless x(n1) |= x(n2)

and x(n2) = x(n3), the three values x(n1), x(n2), x(n3) are recovered. The interlacing condition implies
that π1 pairs n2 to an index n4 which cannot be n3 or n1. Thus, the four values of x(n1), x(n2), x(n3), x(x4)

are specified unless x(n4) = x(n1) |= x(n2) = x(n3). This interlacing argument can be used to extend to
{1, . . . , d} the set of all indices ni for which x(ni) is specified, unless x takes only two values. #

Proof of Theorem 2.2. Suppose that the 2J Haar scatterings are associated with the J hierarchical pair-
ings (πϵ1

1 , . . . ,πϵJ
J ) where ϵj ∈ {0, 1}, where for each j, π0

j and π1
j are two interlaced pairings of d

elements. The sequence (ϵ1, . . . , ϵJ ) is a binary vector taking 2J different values.
The constraint on the signal x is that each of the intermediate scattering coefficients takes more than

two distinct values, which holds for x ∈ Rd except for a union of hyperplanes, which has zero measure.
Thus for almost every x ∈ Rd , the theorem follows from applying Lemma 2.1 recursively to the jth level
scattering coefficients for J − 1 " j " 0. #
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Lemma 2.1 proves that only two pairings are sufficient to invert one Haar scattering layer. The
argument proving that 2J pairings are sufficient to invert J layers is quite brute-force. It is conjectured
that the number of pairings needed to obtain a complete representation for almost all x ∈ Rd does not
need to grow exponentially in J , but rather linearly.

Theorem 2.2 also suggests to define a signal representation by aggregating different Haar orthog-
onal scattering transforms. Numerical results in Section 4 show that bagging is important to improve
classification accuracy.

2.4 Unsupervised optimization of free pairing

A Haar scattering can be combined with any Haar pairing strategies, including random pairings. How-
ever, classifications with random pairings gives poor classification results because it is not adapted to
signal properties. As previously explained, an orthogonal Haar scattering is contractive. The pairing
optimization amounts to find the best directions along which to perform the space compression. Con-
tractions reduce the space volume, and hence the variance of scattering vectors, but it may also collapse
together examples which belong to different classes. To maximize the ‘average discriminability’ among
signal examples, we study an unsupervised optimization, which maximizes the variance of the scat-
tering transform over the training set. Following [32], we show that it yields a representation whose
coefficients are sparsely excited. This section studies ‘free pairings,’ as opposed to constrained pairings
for data defined on graphs, studied in Section 3.1.

A Haar pairing sequence {πj}0!j<J is optimized from N unlabeled data samples {xi}1!i!N . The
algorithm follows a greedy layer-wise strategy, similar to many deep unsupervised learning algorithms
[3,20]. It computes progressively each πj as the depth j increases. We learn T different Haar pairings
by dividing the training set {xi}i into T non-overlapping subsets, and by optimizing one Haar pairing
sequence per subset.

Let us suppose that Haar scattering operators Hℓ are already computed for 1 ! ℓ< j. One can thus
compute Sjx for any x ∈ Rd . We explain how to optimize Hj to maximize the variance of the next layer
Sj+1x. The non-normalized empirical variance of Sj over N samples {xi}N

i=1 is

σ 2(Sjx) = 1
N

∑

i

∥Sjxi∥2 −
∥∥∥∥∥

1
N

∑

i

Sjxi

∥∥∥∥∥

2

.

The following proposition, adapted from [32], proves that the scattering variance decreases as the
depth increases, up to a factor 2. It gives a condition on Hj to maximize the variance of the next
layer.

Proposition 2.1 For any j " 0 and x ∈ Rd , σ 2(2−(j+1)/2Sj+1x) ! σ 2(2−j/2Sjx). Maximizing σ 2(Sj+1x)
given Sjx is equivalent to finding Hj, which minimizes

∥∥∥∥∥
∑

i

HjSjxi

∥∥∥∥∥

2

=
∑

n

(
∑

i

|HjSjxi(n)|
)2

. (2.8)
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Proof. Since Sj+1x = |HjSjx| and ∥HjSjx∥ = 21/2∥Sjx∥, we have

σ 2(Sj+1x) = 1
N

∑

i

∥Sj+1xi∥2 −
∥∥∥∥∥

1
N

∑

i

Sj+1xi

∥∥∥∥∥

2

= 2
1
N

N∑

i=1

∥Sjxi∥2 −
∥∥∥∥∥

1
N

N∑

i=1

|HjSjxi|
∥∥∥∥∥

2

.

Optimizing σ 2(Sj+1x) is thus equivalent to minimizing (2.8). Moreover,

σ 2(Sj+1x) = 2
1
N

N∑

i=1

∥Sjxi∥2 −
∥∥∥∥∥Hj

1
N

N∑

i=1

Sjxi

∥∥∥∥∥

2

+
∥∥∥∥∥

1
N

N∑

i=1

HjSjxi

∥∥∥∥∥

2

−
∥∥∥∥∥

1
N

N∑

i=1

|HjSjxi|
∥∥∥∥∥

2

= 2
1
N

N∑

i=1

∥Sjxi∥2 − 2

∥∥∥∥∥
1
N

N∑

i=1

Sjxi

∥∥∥∥∥

2

+

⎛

⎝
∥∥∥∥∥

1
N

N∑

i=1

HjSjxi

∥∥∥∥∥

2

−
∥∥∥∥∥

1
N

N∑

i=1

|HjSjxi|
∥∥∥∥∥

2
⎞

⎠

! 2
1
N

N∑

i=1

∥Sjxi∥2 − 2

∥∥∥∥∥
1
N

N∑

i=1

Sjxi

∥∥∥∥∥

2

= 2σ 2(Sjx),

which proves the first claim of the proposition. #

This proposition relies on the energy conservation ∥Hjy∥ = 21/2∥y∥. Because of the contraction
of the absolute value, it proves that the variance of the normalized scattering 2−j/2Sjx decreases as j
increases. Moreover, the maximization of σ 2(Sj+1x) amounts to minimize a mixed l1- and l2-norm on
HjSjxi(n), where the sparsity l1-norm is along the realization index i, where as the l2-norm is along the
feature index n of the scattering vector.

Minimizing the first l1-norm for n fixed tends to produce a coefficient indexed by n, which is
sparsely excited across the examples indexed by i. It implies that this feature is discriminative among all
examples. On the contrary, the l2-norm along the index n has a tendency to produce l1-sparsity norms,
which have a uniformly small amplitude. The resulting ‘features’ indexed by n are thus uniformly
sparse.

Because Hj preserves the norm, the total energy of coefficients is conserved:

∑

n

∑

i

|HjSjxi(n)|2 = 2
∑

i

∥Sjxi∥2.

It results that a sparse representation along the index i implies that HjSjxi(n) is also sparse along n. The
same type of result is thus obtained by replacing the mixed l1- and l2-norm (2.8) by a simpler l1-sparsity
norm along both the i and n variables

∑

n

∑

i

|HjSjxi(n)|. (2.9)

This sparsity norm is often used by sparse auto-encoders for unsupervised learning of deep networks
[3]. Numerical results in Section 4 verify that both norms have very close classification performances.
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For Haar operators Hj, the l1-norm leads to a simpler interpretation of the result. Indeed, a Haar
filtering is defined by a pairing πj of d integers {1, . . . , d}. Optimizing Hj amounts to optimize πj, and
hence minimize
∑

n

∑

i

|HjSjxi(n)| =
∑

n

∑

i

(Sjxi(πj(2n)) + Sjxi(πj(2n + 1)) + |Sjxi(πj(2n)) − Sjxi(πj(2n + 1))|).

But
∑

n(Sjx(πj(2n)) + Sjx(πj(2n + 1))) =
∑

n Sjx(n) does not depend upon the pairing πj. Minimizing
the l1-norm (2.9) is thus equivalent to minimizing

∑

n

∑

i

|Sjxi(πj(2n)) − Sjxi(πj(2n + 1))|. (2.10)

It minimizes the average variation within pairs, and thus tries to regroup pairs having close values.
Finding a linear operator Hj which minimizes (2.8) or (2.9) is a ‘dictionary learning’ problem which

is in general an NP hard problem. For a Haar dictionary, we show that it is equivalent to a pair-matching
problem, and can thus be solved with O(d3) operations. For both optimization norms, it amounts to
finding a pairing πj which minimizes an additive cost

C(πj) =
∑

n

C(πj(2n),πj(2n + 1)), (2.11)

where C(πj(2n),πj(2n + 1)) =
∑

i |HjSjxi(n)| for (2.9) and C(πj(2n),πj(2n + 1)) = (
∑

i |HjSjxi(n)|)2

for (2.8). This optimization can be converted to a maximum matching problem on a weighted
complete graph, and thus can be solved exactly by the Edmonds’ 1960 Blossom algorithm [13],
which is of O(d3) complexity in the worst case. The program used in this paper is based on an
implementation by E. Rothberg of the algorithm as in [15], and the source code is available at
http://www.zib.de/en/services/web-services/mathprog/matching.html. The Greedy method obtains a
1
2 -approximation in O(d2) time [37]. Randomized approximation similar to [24] could also be adapted
to achieve a complexity of O(d log d) for very large size problems.

2.5 Supervised feature selection and classification

A bagged Haar scattering transform Φx = {S(t)
J x}T

t=1 aggregates T Haar scatterings S(t)
J , computed with

different pairing sequences {π (t)
j }0!j!J−1 for 1 ! t ! T . It may be calculated with the free pairing opti-

mization of Section 2.4 or with the graph pairing of Section 3.1. The classification algorithm reduces
the dimensionality ofΦx with a supervised feature selection, and it computes a supervised classification
by applying a Gaussian SVM to this reduced representation.

The supervised feature selection is computed with an orthogonal least square (OLS) forward selec-
tion [9]. It selects K coefficients in Φx to discriminate each class c from all other classes, and de-
correlates these features. Discriminating a class c from all other classes amounts to approximating the
indicator function

fc(x) =
{

1 if x belongs to class c
0 otherwise.

An orthogonal least square linearly approximates fc(x) with a K-scattering coefficients {φpk }k!K ,
which are selected one at a time. To avoid correlations between selected features, it includes a
Gram-Schmidt orthogonalization, which de-correlates the scattering dictionary relatively to previously

http://www.zib.de/en/services/web-services/mathprog/matching.html
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selected features. We denote by Φkx = {φ̃k
px}p the scattering dictionary, which was orthogonalized, and

hence de-correlated relatively to the first k selected scattering features. For k = 0, we haveΦ0x =Φx. At
the k + 1 iteration, we select φk

pk
x ∈Φkx, which minimizes the mean-square error over training samples:

∑

i

(
fc(xi) −

k∑

ℓ=0

αℓφ
ℓ
pℓxi

)2

. (2.12)

Because of the orthonormalization step, the linear regression coefficients are

αℓ =
∑

i

fc(xi)φ
ℓ
pℓxi,

and
∑

i

(
fc(xi) −

k∑

ℓ=0

αℓφ
ℓ
pℓxi

)2

=
∑

i

|fc(xi)|2 −
k∑

ℓ=0

α2
ℓ .

The error (2.12) is thus minimized by choosing φk
pk+1

x having a maximum correlation:

αk =
∑

i

fc(xi)φ
k
pk

xi = arg max
p

(
∑

i

fc(xi)φ
k
pxi

)
.

The scattering dictionary is then updated by orthogonalizing each of its element relatively to the selected
scattering feature φk

pkx:

φk+1
p x = φk

px −
(
∑

i

φk
pxiφ

k
pk

xi

)
φk

pk
x.

This orthogonal least square regression greedily selects the K de-correlated scattering features
{φk

pk
x}0!k<K for each class c. For a total of C classes, the union of all these features defines a dictionary

of size M = KC. They are linear combinations of the original Haar scattering coefficients {φpx}p. In the
context of a deep neural network, this dimension reduction can be interpreted as a last fully connected
network layer, which takes in input the bagged scattering coefficients and outputs a vector of size M .
The parameter M optimizes the bias versus variance trade-off. It may be set a priori or adjusted by cross
validation in order to yield a minimum classification error, at the output of the Gaussian kernel SVM
classifier.

A Gaussian kernel SVM classifier is applied to the M -dimensional orthogonalized scattering feature
vectors. The Euclidean norm of this vector is normalized to 1. In all applications of Section 4, M is set
to 103, and hence remains large. Since the feature vectors lie on a high-dimensional unit sphere, the
standard deviation σ of the Gaussian kernel SVM must be of the order of 1. Indeed, a Gaussian kernel
SVM performs its classification by fitting a separating hyperplane over different balls of radius of radius
σ . If σ ≪ 1, then the number of balls covering the unit sphere grow like σ−M . Since M is large, σ must
remain in the order of 1 to insure that there are enough training samples to fit a hyperplane in each ball.

3. Haar scattering on graphs

When data samples lie on a graph, we introduce a pairing optimization with constraints imposed by
graph structures. The resulting graph Haar scattering is a particular case of orthogonal Haar scattering.
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This Haar pairing learns the graph connectivity from data variability. The consistency of this inference
is studied. The decay of scattering coefficients is characterized as a function of their nonlinearity order.

3.1 Unsupervised optimization of pairings on graphs

The free pairing introduced in Section 2.4 associates any two elements of an internal network layer Sjx.
In contrast, graph Haar scattering is constructed by pairing elements according to their position in the
graph. Section 2.4 introduces two criteria to optimize the pairing πj. We concentrate on the l1-norm
minimization, which has a simpler expression.

We denote by V the set of d vertices of this graph, and assume that d is a power of 2. The input
network layer is S0x(n, 0) = x(n) as before. The pairing of π0 is optimized as in the free pairing. The
resulting S1x(n, q) is an array of size d/2 × 2. The index n ∈ {1, . . . , d/2} specifies each pair of nodes
paired by π0, and q ∈ {0, 1} indicates if the coefficient is computed with an addition or a subtraction and
an absolute value. The next π1 is pairing d/2 pairs, namely

π1 = {(π1(2n),π1(2n + 1))}0!n<d/4,

and is optimized by minimizing

N∑

i=1

d/4∑

n=0

∑

q=0or1

|S1xi(π1(2n), q) − S1xi(π1(2n + 1), q)|.

Coefficients {S1x(n, q)}n are thus paired for a fixed q = 0 or q = 1, and the pairing is the same for q = 0
and q = 1.

We show recursively that Sjx is an array Sjx(n, q) of size 2−jd × 2j. For each j " 0, the row
index n ∈ {1, . . . , 2−jd} is a ‘spatial’ index of a set of Vj,n of 2j graph vertices. The column index
q ∈ {0, . . . , 2j − 1} indicates different Haar scattering coefficients computed from the values of x in
Vj,n. As j increases from 0 to J ! log2(d), the family {Vj,n}1!n!2−jd is a hierarchical dyadic partition of
the graph. Each Sj+1x is computed by calculating a pairing πj of the 2−jd rows of Sjx, by minimizing

N∑

i=1

d2−(j+1)∑

n=0

2j−1∑

q=0

|Sjxi(πj(2n), q) − Sjxi(πj(2n + 1), q)|. (3.1)

The row pairing
πj = {(πj(2n),πj(2n + 1))}0!n<2−(j+1)d , (3.2)

is pairing each (πj(2n), q) with (πj(2n + 1), q) for 0 ! q < 2j. Applying (2.2) to each pair gives

Sj+1x(n, 2q) = Sjx(πj(2n), q) + Sjx(πj(2n + 1), q) (3.3)

and
Sj+1x(n, 2q + 1) = |Sjx(πj(2n), q) − Sjx(πj(2n + 1), q)|. (3.4)

The graph pairing strategy gives a Haar scattering network illustrated in Fig. 2. Equation (3.1) means
that the optimal pairing regroups vertex sets Vj,πj(2n) and Vj,πj(2n+1), whose scattering coefficients have a
minimum total variation.
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Fig. 2. A graph Haar scattering computes Sj+1x by pairing the rows of the previous layer Sjx. Each row corresponds to a neigh-
borhood having 2j nodes in the graph, resulting from graph pairings at previous layers. For each pair of rows, the sum and the
absolute value of their difference is stored twice in a bigger row.

Let V0,n = {n} for n ∈ V . For any j " 0 and n ∈ {1, . . . , 2−j−1d}, we define

Vj+1,n = Vj,πj(2n) ∪ Vj,πj(2n+1). (3.5)

We verify by induction on j that for each j, V = ∪nVj,n defines a partition, and each Vj,n is a set of 2j

vertices. We say that two non-overlapping subsets V1 and V2 of V are connected if at least one element
of V1 is connected to one element of V2. The induction (3.5) defines sets Vj,n with connected nodes in the
graph if for all j and n, each pair (πj(2n),πj(2n + 1)) regroups two sets Vj,πj(2n) and Vj,πj(2n+1) which are
connected. There are many possible connected dyadic partitions of any given graph. Fig. 3(a,b) shows
two different examples of connected graph partitions.

When the graph is known in advance, one can use the graph connectivity to define a sequence of
graph pairings by only pairing connected neighborhoods of nodes on the graph. There exist many graph
pairings which satisfy such a condition. For example, in images sampled on a square grid, a pixel is
connected with eight neighboring pixels. A graph Haar scattering can be computed by pairing neighbor
image pixels, alternatively along rows and columns as the depth j increases. When j is even, each Vj,n

is then a square group of 2j pixels, as illustrated in Fig. 3(c). Shifting such a partition defines a new
partition. Neighbor pixels can also be grouped in the diagonal direction, which amounts to rotate the
sets Vj,n by π/4 to define a new dyadic partition. Each of these partitions defines a different graph Haar
scattering. Section 4 compares a Haar scattering computed on a known graph with pairings obtained
by unsupervised learning, for image classification. Section 3.4 studies conditions so that pairings com-
puted from data samples, with no graph knowledge, define a connected partition in the underlying
graph.

3.2 Scattering order

The order m of a scattering coefficient is the number of subtractions involved in its computation, fol-
lowed by absolute values. Subtractions compute coefficients which may be positive or negative. Their
range of variation is contracted by the absolute value. As a consequence, we show that the amplitude
of a scattering coefficient of order m has a fast decay as m increases. Classifications are thus computed
from low-order scattering coefficients. The following proposition relates the column index q to the order
m of a scattering coefficient Sjx(n, q).
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(a)

(b)

(c)

Fig. 3. Two different examples of hierarchical partitions of a graph into connected sets Vj,n of size 2j, for j = 1 (green), j = 2
(purple) and j = 3 (red). (c) Hierarchical partitions on a square image grid.

Proposition 3.1 If q = 0, then Sjx(n, q) is a coefficient of order 0. Otherwise, Sjx(n, q) is a coefficient
of order m ! j if there exists 0 ! j1 < · · · < jm < j such that

q =
m∑

k=1

2j−jk . (3.6)

There are ( j
m )2−jd coefficients of order m in Sjx.

Proof. This proposition is proved by induction on j. For j = 0 all coefficients are of order 0 since
S0x(n, 0) = x(n). If Sjx(n, q) is of order m, then (3.3) and (3.4) imply that Sj+1x(n, 2q) is of order m and
Sj+1x(n, 2q + 1) is of order m + 1. It results that (3.6) is valid for j + 1 if is valid for j.
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Table 1 σ 2
m,J is the normalized variance of all order m coefficients in SJ x, computed for a Gaussian

white noise x with J = 5. It decays approximately like (1 − 2
π
)m ·

( j
m

)

m 1 2 3 4 5

σ 2
m,J 1.8 1.4 5.8 × 10−1 1.2 × 10−1 1.2 × 10−2

(1 − 2
π
)m · ( j

m ) 1.8 1.3 4.8 × 10−1 8.7 × 10−2 6.3 × 10−3

The number of coefficients Sjx(n, q) of order m corresponds to the number of choices for q, and
hence for 0 ! j1 < · · · < jm < j, which is ( j

m ). This must be multiplied by the number of indices n,
which is 2−jd. #

The amplitude of scattering coefficients typically decreases exponentially when the scattering order
m increases, because of the contraction produced by the absolute value. High-order scattering coef-
ficients can thus be neglected. This is illustrated by considering a vector x of independent Gaussian
random variables of variance 1. The value of Sjx(n, q) only depends upon the values of x in Vj,n. Since
Vj,n does not intersect with Vj,n′ if n |= n′, we derive that Sj(n, q) and Sj(n′, q) are independent. They
have same mean and same variance because x is identically distributed. Scattering coefficients are iter-
atively computed by adding pairs of such coefficients, or by computing the absolute value of their
difference. Adding two independent random variables multiplies their variance by 2. Subtracting two
independent random variables of same mean and variance yields a new random variable, whose mean
is zero and whose variance is multiplied by 2. Taking the absolute value reduces the variance by a
factor which depends upon its probability distribution. If this distribution is Gaussian, then this fac-
tor is 1 − 2/π . If we suppose that this distribution remains approximately Gaussian, then applying m
absolute values reduces the variance by approximately (1 − 2/π)m. Since there are ( j

m ) coefficients of
order m, their total normalized variance σ 2

m,J is approximated by ( j
m )(1 − 2/π)m. Table 1 shows that

( j
m )(1 − 2/π)m is indeed of the same order of magnitude as the value σ 2

m,J computed numerically. This
variance becomes much smaller for m > 4. This observation remains valid for large classes of signals
x. Scattering coefficients of order m > 4 usually have a negligible energy, and are thus removed in
classification applications.

3.3 Cascades of Haar wavelets on a graph

We now prove that graph Haar scattering coefficients of order m are obtained by cascading m orthogonal
Haar wavelet transforms defined on the graph.

Section 3.1 shows that a graph Haar scattering is constructed over dyadic partitions {Vj,n}n of V ,
which are obtained by progressively aggregating vertices by pairing Vj+1,n = Vj,πj(2n) ∪ Vj,πj(2n+1). We
denote by 1Vj,n(v) the indicator function of Vj,n in V . A Haar wavelet computes the difference between
the sum of signal values over two aggregated sets:

ψj+1,n = 1Vj,πj(2n)
− 1Vj,πj(2n+1)

. (3.7)

Inner products between signals defined on V are written

⟨x, x′⟩ =
∑

v∈V

x(v)x′(v).
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For any 2J < d,
{1VJ ,n}0!n<2−J d ∪ {ψj,n}0!n<2−jd,0!j<J (3.8)

is a family of d orthogonal Haar wavelets which define an orthogonal basis of Rd . The following
theorem proves that order m + 1 coefficients are obtained by computing the orthogonal Haar wavelet
transform of coefficients of order m. The proof is in Appendix A.

Theorem 3.1 Let q =
∑m

k=1 2j−jk with j1 < · · · < jm ! j. If jm+1 > jm, then for each n ! 2−j−1d

Sjx(n, q + 2j−jm+1) =
∑

p
Vjm+1,p⊂Vj,n

|⟨S̄jm x(·, 2jm−jq),ψjm+1,p⟩|, (3.9)

with

S̄jm x(., q′) =
2−jm d−1∑

n=0

Sjm x(n, q′)1Vjm ,n .

If q =
∑m

k=1 2j−jk and jm+1 > jm, then Sjm x(n, 2jm−jq) are coefficients of order m, whereas Sjx(n, q +
2j−jm+1) is a coefficient of order m + 1. Equation (3.9) proves that a coefficient of order m + 1 is obtained
by calculating the wavelet transform of scattering coefficients of order m, and summing their absolute
values. A coefficient of order m + 1 thus measures the averaged variations of the mth order scattering
coefficients on neighborhoods of size 2jm+1 in the graph. For example, if x is constant in a Vj,n then
Sℓx(n, q) = 0 if ℓ! j and q |= 0.

To further compare graph Haar scattering with Haar wavelet transforms, observe that if the absolute
value in (3.4) is removed, these equations iterate linear Haar filters and define an orthogonal Walsh
transform [12]. However, the absolute value operator completely modifies the properties of this trans-
form from a Haar wavelet transform. The following proposition proves that graph Haar scattering is a
transformation on a hierarchical grouping of the graph vertices, derived from the graph pairing (3.2).

Proposition 3.2 The coefficients {SJ x(n, q)}0!q<2j are computed by applying a Hadamard matrix to
the restriction of x to VJ ,n. This Hadamard matrix depends on x, J and n.

Proof. Theorem 2.1 proves that {SJ x(n, q)}0!q<2J is computed by applying an orthogonal transform
to x. To prove that it is a Hadamard matrix, it is sufficient to show that its entries are ±1. We verify
by induction on j ! J that Sjx(n, q) only depends on restriction of x to Vj,n, by applying (3.4) and (3.3)
together with (3.5). We also verify that each x(v) for v ∈ Vj,n appears exactly once in the calculation,
with an addition or a subtraction. Because of the absolute value, the addition or subtraction, which
corresponds to 1 and −1 in the Hadamard matrix, therefore depends upon x, J and n. #

A graph Haar scattering can thus be interpreted as an adaptive Hadamard transform over groups of
vertices, which outputs positive coefficients. Walsh matrices are particular cases of Hadamard matrices.

3.4 Inferring graph connectivity from data

In many applications, the graph connectivity is unknown. The inference of unknown graphs from data
arises in many problems such as social networks, chemical and biological networks, and many others.
It has been shown in [39] that correlation of pixel intensities can be used numerically to reconstruct
an image grid, but recovering connections in an unknown graph is generally an NP-hard problem. For
graph Haar scattering, the learning algorithm amounts to computing dyadic partitions, where scattering
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coefficients have a minimum total variation. As explained in the end of Section 2.4, this optimization
at each network layer has a polynomial complexity, so the overall complexity is polynomial. Indeed,
learning a connected dyadic partition is easier than learning the full connectivity of the graph.

We study the consistency of this pairing algorithm with respect to the underlying graph for data
which are realizations of Gaussian stationary processes. We show that this estimation involves no curse
of dimensionality. Consistency implies that a graph Haar scattering computes an invariant representation
from local multiscale signal variations on the graph.

Suppose that the N training samples xi are independent realizations of a random vector x. To guar-
antee that this pairing finds connected sets, we must insure that the total variation minimization favors
regrouping neighborhood points, which means that x has some form of regularity on the graph. We
also need N to be sufficiently large so that this minimization finds connected sets with high probability,
despite statistical fluctuations. Avoiding the curse of dimensionality means that N does not need to grow
exponentially with the signal dimension d to recover connected sets with high probability.

To attack this problem mathematically, we consider a very particular case, where signals are defined
on a ring graph, and are thus d periodic. Two indices n and n′ are connected if |n − n′| = 1 mod d. We
study the optimization of the first network layer for j = 0, where S0x(n, q) = x(n). The minimization of
(3.1) amounts to computing a pairing π , which minimizes

N∑

i=1

(
d/2−1∑

n=0

|xi(π(2n)) − xi(π(2n + 1))|
)

. (3.10)

This pairing is connected if and only if for all n, |π(2n) − π(2n + 1)| = 1 mod d.
The regularity and statistical fluctuations of x(n) are controlled by supposing that x is a circu-

lar stationary Gaussian process. The stationarity implies that its covariance matrix Cov(x(n), x(m)) =
Σ(n, m) depends on the distance between pointsΣ(n, m) = ρ((n − m) mod d). The average regularity
depends upon the decay of the correlation ρ(u). We denote by ∥Σ∥op the sup operator norm of Σ . The
following theorem proves that the training size N must grow like d log d in order to compute an optimal
pairing with a high probability. The constant is inversely proportional to a normalized ‘correlation gap’,
which depends upon the difference between the correlation of neighborhood points and more far away
points. It is defined by

∆=
(√

1 − maxn"2 ρ(n)

ρ(0)
−

√

1 − ρ(1)

ρ(0)

)2

. (3.11)

Theorem 3.2 Given a circular stationary Gaussian process with ∆> 0, the pairing which minimizes
the empirical total variation (3.10) has probability larger than 1 − ϵ to be connected if

N >
π3∥Σ∥op

2∆
d(3 log d − log ε). (3.12)

The proof is based on the Gaussian concentration inequality for Lipschitz function [33,36], and is
left to Appendix B. Fig. 4 displays numerical results obtained with a Gaussian stationary process of
dimension d, where ρ(1)/ρ(0) = 0.44 and maxn"2 ρ(n)/ρ(0) = 0.06. The gray level image gives the
probability that a pairing is connected when computing this pairing by minimizing the total variation
(3.10), as a function of the dimension d and of the number N of training samples. The black and white
points correspond to probabilities 0 and 1, respectively. In this example, we see that the optimization
gives a connected pairing with probability 1 − ϵ for N increasing almost linearly with d, which is
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Fig. 4. Each image pixel gives the probability that the total variation minimization (3.10) finds pairs which are all connected,
when x is a Gaussian stationary vector. It is computed as a function of the dimension d of the vector (horizontal axis) and of the
number N of training samples (vertical axis). Black and white points are probabilities, respectively, equal to 0 and 1. The blue
dotted line corresponds to a probability 0.8.

illustrated by the nearly straight line of dotted points corresponding to ϵ = 0.2. The theorem gives an
upper bound which grows like d log d, though the constant involved is not tight.

For layer j > 1, Sjx(n, q) is no longer a Gaussian random vector due to the absolute value non-
linearity. However, the result can be extended using a Talagrand-type concentration argument instead
of the Gaussian concentration. Numerical experiments presented in Section 4 show that this approach
does recover the connectivity of high-dimensional images with a probability close to 100% for j ! 3,
and that the probability decreases as j increases. This seems to be due to the fact that the absolute value
contractions reduce the correlation gap∆ between connected coefficients and more far away coefficients
when j increases.

A Haar scattering has some similarities with the work on provable bounds for deep representations
[2], which studies polynomial-time algorithms for learning deep networks. In this model, correlations
among activations of neurons on the same layer are used to recover connections in the neural network,
which is seen as a hidden graph. The optimization of Haar pairings in Haar scattering also uses such
correlations of activations. As has been pointed out in [2], using correlation is ‘a new twist on the old
Hebbian rule that things that fire together wire together’. The algorithm in [2] is computed layer per
layer, starting from the bottom, as in the Haar scattering learning. In [2], the underlying true network is
assumed to be sparse, whereas in a Haar scattering the estimated connectivity is sparse by construction,
with two out-going edges per node. Learning deep neural network is generally NP hard, whereas both
Haar scattering and the algorithm [2] have a polynomial complexity. Both models have very different
settings, but polynomial complexity arises because they are based on sparsely connected deep neural
networks.

4. Numerical experiments

Haar scattering representations are tested on classification problems, over images sampled on a regular
grid or an irregular graph. We consider the cases where the grid or the graph geometry is known a priori,
or inferred by unsupervised learning. The efficiency of free and graph Haar scattering architectures are
compared with state-of-the-art classification results obtained by deep neural networks.
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Fig. 5. MNIST images (left) and images after random pixel permutations (right).

A Haar scattering classification involves few parameters which are reviewed. The scattering scale
2J ! d is the permutation invariance scale. Scattering coefficients are computed up to the maximum
order m, which is set to 4 in all experiments. Indeed, higher order scattering coefficient have a negligi-
ble relative energy, which is below 1%, as explained in Section 3.2. The unsupervised learning algorithm
computes T different Haar scattering transforms by subdividing the training set in T subsets. Increasing
T decreases the classification error, but it increases computations. The error decay becomes negligible
for T " 40. The supervised dimension reduction selects a final set of M orthogonalized scattering coef-
ficients. We set M = 1000 in all numerical experiments.

4.1 Classification of image digits in MNIST

NIST is a data basis with 6 × 104 hand-written digit images of size d ! 210. There are 10 classes (one
per digit) with 5 × 104 images for training and 104 for testing. Examples of MNIST images are shown
in Fig. 5. To test the classification performances of a Haar scattering when the geometry is unknown,
we scramble all image pixels with the same unknown random permutations, as shown in Fig. 5.

When the image geometry is known, i.e. using non-scrambled images, the best MNIST classification
results without data augmentation are given in Table 2(a). Deep convolution networks with supervised
learning reach an error of 0.53% [27], and unsupervised learning with sparse coding gives a slightly
larger error of 0.59% [25]. A wavelet scattering computed with iterated Gabor wavelet transforms yields
an error of 0.46% [6].

For a known image grid geometry, we compute a graph Haar scattering by pairing neighbor image
pixels. It builds hierarchical square subsets Vj,n illustrated in Fig. 3(c). The invariance scale is 2J = 26,
which corresponds to blocks of 8 × 8 pixels. Random shifts and rotations of these pairing define T = 64
different Haar scattering transforms. The supervised classifier of Section 2.5 applied to this graph Haar
scattering yields an error of 0.59%.

MNIST digit classification is a relatively simple problem, where the main source of variability is
due to deformations of hand-written image digits. In this case, supervised convolution networks, sparse
coding, Gabor wavelet scattering and orthogonal Haar scattering have nearly the same classification
performances. The fact that a Haar scattering is only based on additions and subtractions does not affect
its efficiency.

For scrambled images, the connectivity of image pixels is unknown, and needs to be learned from
data. Table 2(b) gives the classification results of different learning algorithms. The smallest error of
0.79% is obtained with a Deep Belief Net optimized with a supervised backpropagation. Unsupervised
learning of T = 50 graph Haar scatterings followed by a feature selection and a supervised SVM classi-
fier produces an error of 0.90%. The variance of the classification accuracy with respect to the random
splitting of training sets when learning the Haar pairing is negligible. Figure 6 gives the classification
error rate as a function of T , for different values of maximum scale J . The error rates decrease slowly
for T > 10, and do not improve beyond T = 50, which is much smaller than 2J .

The unsupervised learning computes connected dyadic partitions Vj,n from scrambled images by
optimizing an l1-norm. At scales 1 ! 2j ! 23, 100% of these partitions are connected in the original
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Table 2 Percentage of errors for the classification of MNIST
images, obtained by different algorithms

(a) Known geometry
Convolutional nets (supervised) [27] 0.53
Sparse coding (unsupervised) [25] 0.59
Gabor scattering [6] 0.43
Graph Haar scattering 0.59

(b) Unknown geometry
Maxout MLP + dropout [17] 0.94
Deep convex net. [45] 0.83
DBM + dropout [22] 0.79
Graph Haar scattering 0.90
The bold values indicate the best performance.

Fig. 6. Unsupervised Haar scattering classification error for MNIST, as a function of the number T of scattering transforms, for
networks of depth J = 8, 9, 10.

image grid, which proves that the geometry is well estimated at these scales. This is only evaluated on
meaningful pixels which do not remain zero on all training images. For j = 4 and j = 5, the percentages
of connected partitions are 85 and 67%, respectively. The percentage of connected partitions decreases
because long-range correlations are weaker.

A free orthogonal Haar scattering does not impose any condition on pairings. It produces a minimum
error of 1% for T = 20 Haar scattering transforms, computed up to the depth J = 7. This error rate is
higher because the supplement of freedom in the pairing choice increases the variance of the estimation.
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Fig. 7. Examples of CIFAR-10 images in the classes of ‘cars’, ‘dogs’ and ‘boats’.

Table 3 Percentage of errors for the classification of CIFAR-10
images, obtained by different algorithms

(a) Known geometry
Convolutional nets (supervised state-of-the-art) [28] 9.8
RFL (unsupervised state-of-the-art) [23] 16.9
Roto-translation scattering [35] 17.8
Graph Haar scattering 21.3

(b) Unknown geometry
Fastfood [26] 37.6
Fastfood FFT [26] 36.9
Random kitchen sinks [26] 37.6
Graph Haar scattering 27.3
The bold values indicate the best performance.

4.2 CIFAR-10 images

CIFAR-10 is a data basis of tiny color images of 32 × 32 pixels. It includes 10 classes, such as ‘dogs’,
‘cars’, ‘ships’ with a total of 5 × 104 training examples and 104 testing examples. There are much
more intra-class variabilities than in MNIST digit images, as shown in Fig. 7. The three color bands
are represented with Y , U , V channels, and scattering coefficients are computed independently in each
channel.

When the image geometry is known, a graph Haar scattering is computed by pairing neighbor
image pixels. The best performance is obtained at the scale 2J = 26, which is below the maximum
scale d = 210. Similarly to MNIST, we compute T = 64 connected dyadic partitions for randomly trans-
lated and rotated grids. After dimension reduction, the classification error is 21.3%. This error is above
state-of-the-art results of unsupervised learning algorithms by ∼20%, but it involves no learning. A
minimum error rate of 16.9% is obtained by Receptive Field Learning [23]. The Haar scattering error
is also above the 17.8% error obtained by a roto-translation invariant wavelet scattering network [35],
which computes wavelet transforms along translation and rotation parameters. Supervised deep convo-
lution networks provide an important improvement over all unsupervised techniques and reach an error
of 9.8%. The study of these supervised networks is however beyond the scope of this paper. Results are
summarized in Table 3(a).

When the image grid geometry is unknown, because of random scrambling, Table 3(a) summarizes
results with different algorithms. For unsupervised learning with graph Haar scattering, the minimum
classification error is reached at the scale 2J = 27, which maintains some localization information on
scattering coefficients. With T = 10 connected dyadic partitions, the error is 27.3%. Table 3(b) shows
that it is 10% below previously reported results on this data basis.

Nearly 100% of the dyadic partitions Vj,n computed from scrambled images are connected in the
original image grid, for 1 ! j ! 4, which shows that the multiscale geometry is well estimated at these
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Table 4 Percentage of errors for the classification of CIFAR-100 images
with known geometry, obtained by different algorithms

Convolutional nets (supervised state-of-the-art) [28] 34.6
NOMP (unsupervised state-of-the-art) [29] 39.2
Gabor scattering [35] 43.7
Graph Haar scattering 47.4
The bold values indicate the best performance.

Table 5 Percentage of errors for the classification of MNIST, CIFAR-10 and CIFAR-100 images with
a graph or a free Haar scattering, for unsupervised computed by minimizing a mixed l1/l2-norm or an
l1-norm

Graph, l1 Graph, l1/l2 Free, l1 Free, l2/l1

MNIST 0.91 0.95 1.09 1.02
CIFAR-10 28.8 27.3 29.2 29.3
CIFAR-100 52.5 53.1 56.3 56.1
The bold values indicate the best performance.

fine scales. For j = 5, 6 and 7, the proportions of connected partitions are 98, 93 and 83%, respectively.
As for MNIST images, the connectivity estimation becomes less precise at large scales. Similarly to
MNIST, a free Haar scattering yields a higher classification error of 29.2%, with T = 20 scattering
transforms up to layer J = 6.

4.3 CIFAR-100 images

CIFAR-100 also contains tiny color images of the same size as CIFAR-10 images. It has 100 classes
containing 600 images each, of which 500 are training images and 100 are for testing. Our tests on
CIFAR-100 follow the same procedures as in Section 4.2. The three color channels are processed inde-
pendently.

When the image grid geometry is known, the results of a graph Haar scattering are summarized in
Table 4. The best performance is obtained with the same parameter combination as in CIFAR-10, which
is T = 64 and 2J = 26. After dimension reduction, the classification error is 47.4%. As in CIFAR-10,
this error is ∼20% larger than state-of-the-art unsupervised methods, such as a Non-negative OMP
(39.2%) [29]. A roto-translation wavelet scattering has an error of 43.7%. Deep convolution networks
with supervised training produce again a lower error of 34.6%.

For scrambled images of unknown geometry, with T = 10 transforms and a depth J = 7, a graph
Haar scattering has an error of 52.7%. A free Haar orthogonal scattering has a higher classification error
of 56.1%, with T = 10 scattering transforms up to layer J = 6. No such result is reported with another
algorithm on this data basis.

On all tested image databases, graph Haar scattering has a consistent 7–10% performance advantage
over ‘free’ Haar scattering, as shown in Table 5. For orthogonal Haar scattering, all reported errors were
calculated with an unsupervised learning which minimizes the l1-norm (2.9) of scattering coefficients,
layer per play. As expected, Table 5 shows that minimizing a mixed l1- and l2-norm (2.8) yields nearly
the same results on all data bases.

Haar scattering obtains comparable results to unsupervised deep learning algorithms when the graph
geometry is unknown. For images on a known grid, Haar scattering produces an error ∼20% larger.
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Fig. 8. Images of digits mapped on a sphere.

Table 6 Percentage of errors for the classification of MNIST images rotated and sampled on a sphere
[7], with a nearest neighbor classifier, a fully connected two layer neural network, a spectral network
[7] and an unsupervised Haar scattering

Nearest Fully Spectral Graph Haar Free Haar
neighbors connect. net. [7] scattering scattering

Small rotations 19 5.6 6 2.2 1.6
Large rotations 80 52 50 47.7 55.8
The bold values indicate the best performance.

The relative loss of accuracy when the graph is known means that the Haar architecture introduces a
significant loss of model capacity, whereas in the unknown-graph case, the error is dominated by the
estimation of the graph topology, where Haar scattering provides competitive results with unsupervised
deep networks.

4.4 Images on a graph over a sphere

A data basis of irregularly sampled images on a sphere is provided in [7]. It is constructed by projecting
the MNIST image digits on d = 4096 points randomly sampled on the 3D sphere, and by randomly
rotating these images on the sphere. The random rotation is either uniformly distributed on the sphere
or restricted with a smaller variance (small rotations) [7]. The digit ‘9’ is removed from the data set
because it cannot be distinguished from a ‘6’ after rotation. Examples of sphere digits are shown in
Fig. 8. This geometry of points on the sphere can be described by a graph which connects points having
a sufficiently small distance on the sphere.

The classification algorithms introduced in [7] take advantage of the known distribution of points
on the sphere, with a representation based on the graph Laplacian. Table 6 gives the results reported in
[7], with a fully connected neural network, and with a spectral graph Laplacian network.

As opposed to these algorithms, the unsupervised graph Haar scattering algorithm does not use this
geometric information and learns the graph information by pairing. Computations are performed on
a scrambled set of signal values. Haar scattering transforms are calculated up to the maximum scale
2J = d = 212. A total of T = 10 connected dyadic partitions are estimated by unsupervised learning,
and the classification is performed from M = 103 selected coefficients. Although the graph geometry is
unknown, the graph Haar scattering reduces the error rate both for small and large 3D random rotations.

In this case, a free orthogonal Haar scattering has a smaller error rate than a graph Haar scattering for
small rotations, but a larger error for large rotations. It illustrates the trade-off between the structural bias
and the feature variance in the choice of the algorithms. For small rotation, the variability within classes
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is smaller, and a free scattering can take advantage of more degrees of freedom. For large rotations, the
variance is too large and dominates the problem.

Two points of the sphere of radius 1 are considered to be connected if their geodesic distance is
smaller than 0.1. With this convention, over the 4096 points, each point has on average 8 connected
neighbors. The unsupervised Haar learning performs a hierarchical pairing of points on the sphere. For
small and large rotations, the percentage of connected sets Vj,n remains above 90% for 1 ! j ! 4. This is
computed over 70% of the points having a non-negligible energy. It shows that the multiscale geometry
on the sphere is well estimated by hierarchical pairings.

5. Conclusion

We introduced an orthogonal Haar scattering, which is computed with a deep cascade of additions,
subtractions and absolute values. The architecture preserves some important properties of unsupervised
deep networks, while providing a simple model for their mathematical analysis. For signals defined on
a graph, a Haar scattering iteratively computes orthogonal Haar wavelet transforms on the graph. It is
invariant to local displacements of signal values on the graph. The unknown geometry of signals is
estimated with an unsupervised learning algorithm. It minimizes the average total signal variation over
dyadic partitions of graph vertices, with a polynomial complexity algorithm. Haar scattering classifica-
tions are numerically tested over image databases defined on uniform grids or irregular graphs, whose
geometries are either known or estimated by unsupervised learning.

Supervised convolutional networks have led to considerable classification improvements compared
with unsupervised convolutional network learning. An open issue is to understand how to optimize Haar
pairings from supervised data, in order to improve results obtained from unsupervised data.
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Appendix A. Proof of Theorem 3.1

Proof of Theorem 3.1. We derive from the definition of a scattering transform in equations (2.4, 2.5) in
the text that

Sj+1x(n, 2q) = Sjx(πj(2n), q) + Sjx(πj(2n + 1), q) = ⟨S̄jx(·, q), 1Vj+1,n⟩,

Sj+1x(n, 2q + 1) = |Sjx(πj(2n), q) − Sjx(πj(2n + 1), q)| = |⟨S̄jx(·, q),ψj+1,n⟩|,

where Vj+1,n = Vj,πj(2n) ∪ Vj,πj(2n+1). Define κ = 2−jq =
∑m

k=1 2−jk . Observe that

2jm+1(κ + 2−jm+1) = 2jm+1κ + 1 = 2(2jm+1−1κ) + 1,

thus Sjm+1 x(n, 2jm+1(κ + 2−jm+1)) is calculated from the coefficients Sjm+1−1x(n, 2jm+1−1κ) of the previous
layer with

Sjm+1 x(n, 2jm+1(κ + 2−jm+1)) = |⟨S̄jm+1−1x(·, 2jm+1−1κ),ψjm+1,n⟩|. (A.1)
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Since 2j+1κ = 2 · 2jκ , the coefficient Sjm+1−1x(n, 2jm+1−1κ) is calculated from Sjm x(n, 2jmκ) by (jm+1 −
1 − jm) times additions, and thus

Sjm+1−1x(n, 2jm+1−1κ) = ⟨Sjm x(·, 2jmκ), 1Vjm+1−1,n⟩. (A.2)

Combining equations (A.2) and (A.1) gives

Sjm+1 x(n, 2jm+1(κ + 2−jm+1)) = |⟨S̄jm x(·, 2jmκ),ψjm+1,n⟩|. (A.3)

We go from the depth jm+1 to the depth j " jm+1 by computing

Sjx(n, 2j(κ + 2−jm+1)) = ⟨S̄jm+1 x(·, 2jm+1(κ + 2−jm+1)), 1Vj,n⟩.

Together with (A.3) it proves equation (3.9) of the proposition. The summation over p, Vjm+1,p ⊂ Vj,n

comes from the inner product ⟨1Vjm+1,p , 1Vj,n⟩. This also proves that κ + 2−jm+1 is the index of a coefficient
of order m + 1. #

Appendix B. Proof of Theorem 3.2

The theorem is proved by analyzing the concentration of the objective function around its expected
value as the sample number N increases. We firstly introduce the Pisier and Maurey’s version of the
Gaussian concentration inequality for Lipschitz functions.

Proposition B.1 (Gaussian concentration for Lipschitz function [33,36]) Let z1, . . . zm be i.i.d. N(0, 1)

random variables, and f = f (z1, . . . , zm) a 1-Lipschitz function, then there exists c0 > 0 so that

Pr[f − Ef > t] < exp{−c0t2} and Pr[f − Ef < −t] < exp{−c0t2}, ∀t > 0.

In the above proposition, the constant c0 = 2/π2 according to [36] and 1
4 in [33].

To prove the theorem, recall that the pairing problem is computed by minimizing the l1-norm (3.10),
which up to a normalization amounts to compute:

π∗ = arg min
π∈Πd

F(π) with F(π) = 1
N

N∑

i=1

∑

(u,v)∈π
|xi(u) − xi(v)|, (B.1)

where π is a pairing of d elements and we denote by Πd the set of all possible such pairings.
The following lemma proves that F(π) is a Lipschitz function of independent Gaussian random vari-

ables, with a Lipschitz constant equal to ∥Σd∥1/2
op , where ∥Σd∥op is the operator norm of the covariance.

We prove it on the normalized function f = N1/2d−1/2F.

Lemma B.1 Let xi =Σ
1/2
d zi with zi = (zi(1), . . . , zi(d))⊤ ∼N (0, Id) i.i.d. Given any pairing π ∈Πd ,

define

f ({(zi(v)}1!i!N ,1!v!d) = 1√
dN

N∑

i=1

∑

(u,v)∈π
|xi(u) − xi(v)|,

then f is a Lipschitz function with constant
√

∥Σd∥op, which does not depend on π .
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Proof. With slight abuse of notation, denote by v = π(u) if two nodes u and v are paired by π , then we
have

∂f
∂zi(v′)

= 1√
dN

∑

(u,v)∈π
Sgn(xi(u) − xi(v))

∂

∂zi(v′)
(xi(u) − xi(v))

= 1√
dN

d∑

u=1

Sgn(xi(u) − xi(π(u)))
∂

∂zi(v′)
xi(u)

= 1√
dN

d∑

u=1

Sgn(xi(u) − xi(π(u)))(Σ
1/2
d )u,v′

= 1√
dN

(Σ
1/2
d Si)(v′),

where Si := (Sgn(xi(u) − xi(π(u))))d
u=1 is a vector of length d whose entries are ±1. Then

∥Σ1/2
d Si∥ !

√
∥Σd∥opd,

and it follows that

∥∇zf ∥2 =
N∑

i=1

d∑

v′=1

∣∣∣∣
∂f

∂zi(v′)

∣∣∣∣
2

=
N∑

i=1

1
dN

∥Σ1/2
d Si∥2 ! ∥Σd∥op.

#

Observe that the eigenvalues of Σd are the discrete Fourier transform coefficients of the periodic
correlation function ρ(u)

ρ̂(k) =
d−1∑

j=0

ρ(j) exp
{

−i2π
jk
d

}
=

d−1∑

j=0

ρ(j) cos
(

2π
jk
d

)
, k = 0, . . . , d − 1.

Observe that
∑d

u=1 Si(u) = 0 for each i, that is, Si is orthogonal to the eigenvector of ρ̂(0). So the
Lipschitz constant

√
∥Σd∥op =

√
maxk |ρ̂(k)| can be slightly improved to be

√
maxk>0 |ρ̂(k)|.

Let us now prove the claim of Theorem 3.2. Since the pairing has a probability larger than 1 − ϵ

to be connected if Pr
[
π∗ /∈Π (0)

d

]
< ϵ, we need to show that under the inequality (3.12) the probability

Pr
[
π∗ /∈Π (0)

d

]
is less than ϵ. Let us denote

αu =
√

2
π

· 2(1 − ρ(u)), and ᾱ2 = min
2!u!d/2

αu, (B.2)

and define

Cρ = c0

∥Σd∥op

(
1
2
(ᾱ2 − α1)

)2

. (B.3)
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Equation (3.12) can be rewritten as

Cρ
N
d

> 3 log d − log ϵ. (B.4)

As a result of Proposition B.1 and Lemma B.1, if C = c0/∥Σd∥op · N/d then ∀π ∈Πd ,

Pr[F(π) − EF(π) > δ] < exp{−Cδ2} and Pr[F(π) − EF(π) < −δ] < exp{−Cδ2}, ∀δ > 0.

Observe that

Πd =
d/2⋃

m=0

Π
(m)
d ,

where Π (m)
d are the set of pairings which have m non-neighbor pairs. Π (0)

d is the set of pairings which
only pair connected nodes in the graph, and for the ring graphΠ (0)

d = {π (0)
0 ,π (0)

1 }, two of which interlace.
For any π ∈Π (m)

d , suppose that there are ml pairs in π so that the distance between the two paired nodes
is l, m1 = d/2 − m, m2 + · · · + md/2 = m.

Recalling the definition of αk in Equation (B.2), we verify that

EF(π) = α1

(
d
2

− m
)

+ α2m2 + · · · + αd/2md/2 " α1

(
d
2

− m
)

+ ᾱ2m

when m " 1, and

EF(π
(0)
0 ) = EF(π

(0)
1 ) = α1

d
2

.

Thus when m " 1,

EF(π) − EF(π
(0)
0 ) " (ᾱ2 − α1)m ∀π ∈Π (m)

d .

Define

δm = 1
2 (ᾱ2 − α1)m, m = 1, . . . , d/2,

and we have that

Pr[π∗ /∈Π (0)
d ] = Pr

[
∃π ∈

d/2⋃

m=1

Π
(m)
d , F(π) < min{F(π

(0)
0 ), F(π

(0)
1 )}

]

! Pr
[
F(π

(0)
0 ) > EF(π

(0)
0 ) + δ1

]

+ Pr

[
F(π

(0)
0 ) < EF(π

(0)
0 ) + δ1, ∃π ∈

d/2⋃

m=1

Π
(m)
d , F(π) < F(π

(0)
0 )

]
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! Pr[F(π
(0)
0 ) > EF(π

(0)
0 ) + δ1]

+ Pr

[
∃π ∈

d/2⋃

m=1

Π
(m)
d , F(π) < EF(π) − δm

]
(by that (ᾱ2 − α1)m − δ1 " δm)

! exp{−Cδ2
1} +

d/2∑

m=1

|Π (m)
d | exp{−Cδ2

m}

= exp
{

−Cρ
N
d

}
+

d/2∑

m=1

|Π (m)
d | exp

{
−Cρ

N
d

m2
}

, (B.5)

where Cρ is as in Equation (B.3).
One can verify the following upper bound for the cardinal number of Π (m)

d :

|Π (m)
d | ! d2m

(2m)!
.

With the crude bound (2m)! " 1, the above inequality inserted in (B.5) gives

Pr[π∗ /∈Π (0)
d ] ! exp

{
−Cρ

N
d

}
+

d/2∑

m=1

d2m exp
{

−Cρ
N
d

m2
}

. (B.6)

If we keep the factor (2m)!, the upper bound for the summation over m can be improved to be

d2 exp{−CρN/d}
d/2∑

m=1

((2m)!)−1 ! c · d2 exp{−CρN/d},

where c = (e − 1)/2 is an absolute constant. By applying this in the final bound in the theorem, the
constant in front of log d is 2 instead of 3. The constant of the theorem is not tight, while the O(d log d)

is believed to be the tight order as d increases.
To proceed, define the function

g(x) = −Cρ
N
d

· x2 + (2 log d) · x, 1 ! x ! d
2

,

and observe that max1!x!d/2 g(x) = g(1) whenever

log d
CρN/d

< 1,

which holds as long as Equation (B.4) is satisfied. Thus we have

d/2∑

m=1

d2m exp
{

−Cρ
N
d

m2
}

!
d/2∑

m=1

d2 exp
{

−Cρ
N
d

}
= d3

2
exp

{
−Cρ

N
d

}
,



HAAR SCATTERING 29 of 29

then the inequality (B.6) becomes

Pr[π∗ /∈Π (0)
d ] !

(
d3

2
+ 1
)

exp
{

−Cρ
N
d

}
! exp

{
−Cρ

N
d

+ 3 log d
}

.

To have Pr[π∗ /∈Π (0)
d ] < ϵ, a sufficient condition is therefore

exp
{

−Cρ
N
d

+ 3 log d
}

< ϵ, (B.7)

which is reduced to Equation (B.4) and equivalently Equation (3.12).


