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Deep convolutional networks provide state of the art
classifications and regressions results over many high-
dimensional problems. We review their architecture,
which scatters data with a cascade of linear filter
weights and non-linearities. A mathematical framework
is introduced to analyze their properties. Computations
of invariants involve multiscale contractions with
wavelets, the linearization of hierarchical symmetries,
and sparse separations. Applications are discussed.

1. Introduction
Supervised learning is a high-dimensional interpolation
problem. We approximate a function f(x) from q training
samples {xi, f(xi)}i≤q , where x is a data vector of
very high dimension d. This dimension is often larger
than 106, for images or other large size signals. Deep
convolutional neural networks have recently obtained
remarkable experimental results [21]. They give state
of the art performances for image classification with
thousands of complex classes [19], speech recognition
[17], bio-medical applications [22], natural language
understanding [30], and in many other domains. They are
also studied as neuro-physiological models of vision [4].

Multilayer neural networks are computational learning
architectures which propagate the input data across a
sequence of linear operators and simple non-linearities.
The properties of shallow networks, with one hidden
layer, are well understood as decompositions in families
of ridge functions [10]. However, these approaches
do not extend to networks with more layers. Deep
convolutional neural networks, introduced by Le Cun
[20], are implemented with linear convolutions followed
by non-linearities, over typically more than 5 layers.
These complex programmable machines, defined by
potentially billions of filter weights, bring us to a different
mathematical world.
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Many researchers have pointed out that deep convolution networks are computing
progressively more powerful invariants as depth increases [4,21], but relations with networks
weights and non-linearities are complex. This paper aims at clarifying important principles which
govern the properties of such networks, although their architecture and weights may differ
with applications. We show that computations of invariants involve multiscale contractions, the
linearization of hierarchical symmetries, and sparse separations.

Statistical estimation can ultimately be reduced to a bias versus variance problem. In high
dimension, x has a considerable number of parameters and a huge variance, which is a
dimensionality curse. Sampling uniformly a volume of dimension d requires a number of samples
which grows exponentially with d. In most applications, the number q of training samples rather
grows linearly with d. It is possible to approximate f(x) with so few samples, only if f has
some strong regularity properties allowing to ultimately reduce the dimension of the estimation.
Any learning algorithm, including deep convolutional networks, thus relies on an underlying
assumption of regularity, which introduces a small estimation bias if the model is appropriate.

We need to reduce the variance of the input data x∈Ω without sacrificing the ability to
approximate f(x). This can be done by defining a new variable Φ(x) where Φ is a contractive
operator which reduces the variance of x, while separating different values of f : Φ(x) 6=Φ(x′) if
f(x) 6= f(x′). The statistical bias-variance trade-off becomes a separation-contraction trade-off,
which needs to be adjusted in high dimension.

Linearization is a strategy used in machine learning to reduce the dimension with a linear
projector. A linear projection of x separates the values of f if this function remains constant in the
direction of a high-dimensional linear space. This is rarely the case, but one can try to find Φ(x)

which linearizes high-dimensional domains where f(x) remains constant. The dimension is then
reduced by applying a linear projector on Φ(x). Finding such a Φ is the dream of kernel learning
algorithms, explained in Section 2.

Deep neural networks are more conservative. They progressively reduce the variance while
controlling bias. They contract the space and linearize transformations along which f remains
nearly constant, to avoid introducing a bias. Such directions are defined by linear operators
which belong to groups of local symmetries, introduced in Section 3. To understand the difficulty
to linearize the action of high-dimensional groups of operators, we begin with the groups of
translations and diffeomorphisms, which deform signals. They capture essential mathematical
properties that are extended to general deep network symmetries, in Section 7.

To linearize diffeomorphisms and preserve separability, Section 4 shows that we must separate
the variations of x at different scales, with a wavelet transform. This is implemented with
multiscale filter convolutions, which are building blocks of deep convolution filtering. General
deep network architectures are introduced in Section 5. They iterate on linear operators which
filter and linearly combine different channels in each network layer, followed by contractive
non-linearities.

To understand how non-linear contractions interact with linear operators, Section 6 begins
with simpler networks which do not recombine channels in each layer. It defines a non-linear
scattering transform, introduced in [24], where wavelets have a separation and linearization role.
The resulting contraction, linearization and separability properties are reviewed. We shall see that
sparsity is important for separation.

Section 7 extends these ideas to more general deep convolutional networks, while showing that
the same principles are in action. Channel combinations provide the flexibility needed to extend
translations to larger groups of local symmetries adapted to f . The network can be structured by
factorizing groups of symmetries, in which case all linear operators are generalized convolutions.
Computations are ultimately performed on filter weights, which are learned. Their relation with
groups of symmetries is explained. Controlling bias also requires to preserve a separation margin
across classification frontiers. It can be implemented by separating network fibers, which are
progressively more invariant and specialized. This gives rise to invariant grandmother type
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neurons as depth increases. The paper studies architectures as opposed to computational learning
of network weights, which is an outstanding optimization issue [21].

Notations ‖z‖ is a Euclidean norm if z is a vector in a Euclidean space. If z is a function in L2

then ‖z‖2 =
∫
|z(u)|2du. If z = {zk}k is a sequence of vectors or functions then ‖z‖2 =

∑
k ‖zk‖

2.

2. Linearization, Projection and Separability
Supervised learning computes an approximation f̃(x) of a function f(x) from q training samples
{xi, f(xi)}i≤q , for x= (x(1), ..., x(d))∈Ω. The domain Ω is a high dimensional open subset of
Rd, not a low-dimensional manifold. In a regression problem, f(x) takes its values in R, whereas
in classification its values are class indices.

Ideally, we would like to reduce the dimension of x by computing a low dimensional vector
Φ(x) such that one can write f(x) = f0(Φ(x)). It is equivalent to impose that if f(x) 6= f(x′) then
Φ(x) 6=Φ(x′). We then say that Φ separates f . For regression problems, to guarantee that f0 is
regular, we further impose that the separation is Lipschitz:

∃ε > 0 ∀(x, x′)∈Ω2 , ‖Φ(x)− Φ(x′)‖ ≥ ε |f(x)− f(x′)| . (2.1)

It implies that f0 is Lipschitz continuous: |f0(z)− f0(z′)| ≤ ε−1|z − z′|, for (z, z′)∈Φ(Ω)2. In a
classification problem, f(x) 6= f(x′) means that x and x′ are not in the same class. The Lipschitz
separation condition (2.1) becomes a margin condition specifying a minimum distance across
classes:

∃ε > 0 ∀(x, x′)∈Ω2 , ‖Φ(x)− Φ(x′)‖ ≥ ε if f(x) 6= f(x′) . (2.2)

We can try to find a linear projection of x in some space V of lower dimension k, which separates
f . It requires that f(x) = f(x+ z) for all z ∈V⊥, where V⊥ is the orthogonal complement of V
in Rd, of dimension d− k. In most cases, the final dimension k can not be much smaller than d.

An alternative strategy is to linearize the variations of f with a first change of variable Φ(x) =

{φk(x)}k≤d′ of dimension d′ potentially much larger than the dimension d of x. We can then
optimize a low-dimensional linear projection along directions where f is constant. We say that Φ
separates f linearly if f(x) is well approximated by a one-dimensional projection:

f̃(x) = 〈Φ(x) , w〉=
d′∑

k=1

wk φk(x) . (2.3)

The regression vector w is optimized by minimizing a loss on the training data, which needs to
be regularized if d′ > q, for example by an lp norm of w with a regularization constant λ:

q∑
i=1

loss(f(xi)− f̃(xi)) + λ

d′∑
k=1

|wk|p . (2.4)

Sparse regressions are obtained with p≤ 1, whereas p= 2 defines kernel regressions [16].
Classification problems are addressed similarly, by approximating the frontiers between

classes. For example, a classification with Q classes can be reduced to Q− 1 “one versus all”
binary classifications. Each binary classification is specified by an f(x) equal to 1 or −1 in each
class. We approximate f(x) by f̃(x) = sign(〈Φ(x), w〉), where w minimizes the training error (2.4).

3. Invariants, Symmetries and Diffeomorphisms
We now study strategies to compute a change of variables Φ which linearizes f . Deep
convolutional networks operate layer per layer and linearize f progressively, as depth increases.
Classification and regression problems are addressed similarly by considering the level sets of f ,
defined by Ωt = {x : f(x) = t} if f is continuous. For classification, each level set is a particular
class. Linear separability means that one can find w such that f(x)≈ 〈Φ(x), w〉. It implies that
Φ(Ωt) linearizes all level sets in hyperplanes orthogonal to some w.
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To linearize level sets, we need to find directions along which f(x) does not vary locally,
and then linearize these directions in order to map them in a linear space. It is tempting to
try to do this with some local data analysis along x. This is not possible because the training
set includes few close neighbors in high dimension. We thus consider simultaneously all points
x∈Ω and look for common directions along which f(x) does not vary. This is where groups of
symmetries come in. Translations and diffeomorphisms will illustrate the difficulty to linearize
high dimensional symmetries, and provide a first mathematical ground to analyze convolution
networks architectures.

We look for invertible operators which preserve the value of f . The action of an operator g on
x is written g.x. A global symmetry is an invertible and often non-linear operator g from Ω to
Ω, such that f(g.x) = f(x) for all x∈Ω. If g1 and g2 are global symmetries then g1.g2 is also a
global symmetry, so products define groups of symmetries. Global symmetries are usually hard
to find. We shall first concentrate on local symmetries. We suppose that there is a metric |g|G
which measures the distance between g ∈G and the identity. A function f is locally invariant to
the action of G if

∀x∈Ω , ∃Cx > 0 , ∀g ∈G with |g|G <Cx , f(g.x) = f(x) . (3.1)

We then say that G is a group of local symmetries of f . The constant Cx is the local range
of symmetries which preserve f . Since Ω is a continuous subset of Rd, we consider groups of
operators which transport vectors in Ω with a continuous parameter. They are called Lie groups
if the group has a differential structure.

Let us interpolate the d samples of x and define x(u) for all u∈Rn, with n= 1, 2, 3 respectively
for time-series, images and volumetric data. The translation group G= Rn is an example of Lie
group. The action of g ∈G= Rn over x∈Ω is g.x(u) = x(u− g). The distance |g|G between g and
the identity is the Euclidean norm of g ∈Rn. The function f is locally invariant to translations
if sufficiently small translations of x do not change f(x). Deep convolutional networks compute
convolutions, because they assume that translations are local symmetries of f . The dimension of
a group G is the number of generators which define all group elements by products. For G= Rn

it is equal to n.
Translations are not powerful symmetries because they are defined by only n variables,

and n= 2 for images. Many image classification problems are also locally invariant to small
deformations, which provide much stronger constraints. It means that f is locally invariant to
diffeomorphisms G= Diff(Rn), which transform x(u) with a differential warping of u∈Rn. We
do not know in advance what is the local range of diffeomorphism symmetries. For example, to
classify images x of hand-written digits, certain deformations of x will preserve a digit class but
modify the class of another digit. We shall linearize small diffeomorphims g. In a space where
local symmetries are linearized, we can find global symmetries by optimizing linear projectors
which preserve the values of f(x), and thus reduce dimensionality.

Local symmetries are linearized by finding a change of variable Φ(x) which locally linearizes
the action of g ∈G. We say that Φ is Lipschitz continuous if

∃C > 0 , ∀(x, g)∈Ω ×G , ‖Φ(g.x)− Φ(x)‖ ≤C |g|G ‖x‖ . (3.2)

The norm ‖x‖ is just a normalization factor often set to 1. The Radon-Nikodim property proves
that the map that transforms g into Φ(g.x) is almost everywhere differentiable in the sense of
Gateaux. If |g|G is small then Φ(x)− Φ(g.x) is closely approximated by a bounded linear operator
of g, which is the Gâteaux derivative. Locally, it thus nearly remains in a linear space.

Lipschitz continuity over diffeomorphisms is defined relatively to a metric, which is now
defined. A small diffeomorphism acting on x(u) can be written as a translation of u by a g(u):

g.x(u) = x(u− g(u)) with g ∈C1(Rn) . (3.3)

This diffeomorphism translates points by at most ‖g‖∞ = supu∈Rn |g(u)|. Let |∇g(u)| be the
matrix norm of the Jacobian matrix of g at u. Small diffeomorphisms correspond to ‖∇g‖∞ =
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Figure 1. Wavelet transform of an image x(u), computed with a cascade of convolutions with filters over J = 4 scales

and K = 4 orientations. The low-pass and K = 4 band-pass filters are shown on the first arrows.

supu |∇g(u)|< 1. Applying a diffeomorphism g transforms two points (u1, u2) into (u1 −
g(u1), u2 − g(u2)). Their distance is thus multiplied by a scale factor, which is bounded above
and below by 1± ‖∇g‖∞. The distance of this diffeomorphism to the identity is defined by:

|g|Diff = 2−J ‖g‖∞ + ‖∇g‖∞ . (3.4)

The factor 2J is a local translation invariance scale. It gives the range of translations over which
small diffeomorphisms are linearized. For J =∞ the metric is globally invariant to translations.

4. Contractions and Scale Separation with Wavelets
Deep convolutional networks can linearize the action of very complex non-linear transformations
in high dimensions, such as inserting glasses in images of faces [28]. A transformation of x∈Ω
is a transport of x in Ω. To understand how to linearize any such transport, we shall begin
with translations and diffeomorphisms. Deep network architectures are covariant to translations,
because all linear operators are implemented with convolutions. To compute invariants to
translations and linearize diffeomorphisms, we need to separate scales and apply a non-linearity.
This is implemented with a cascade of filters computing a wavelet transform, and a pointwise
contractive non-linearity. Section 7 extends these tools to general group actions.

To linearize the action of the translation group G with a linear operator, we must average
x along the orbit {g.x}g∈G, which are translations of x. This is done with a convolution by an
averaging kernel φJ (u) = 2−nJφ(2−Ju) of size 2J , with

∫
φ(u) du= 1:

ΦJx(u) = x ? φJ (u) . (4.1)

One can verify [24] that this averaging is Lipschitz continuous to diffeomorphisms for all
x∈L2(Rn), over a translation range 2J . However, it eliminates the variations of x above the
frequency 2−J . If J =∞ then Φ∞x=

∫
x(u) du, which eliminates nearly all information.

A diffeomorphism acts as a local translation and scaling of the variable u. If we let aside
translations for now, to linearize small diffeomorphism actions we must linearize this scaling
action. This is done by separating the variations of x at different scales with wavelets. We
define K wavelets ψk(u) for u∈Rn. They are regular functions with a fast decay and a zero
average

∫
ψk(u) du= 0. These K wavelets are dilated by 2j : ψj,k(u) = 2−jnψk(2−ju). A wavelet

transform computes the local average of x at a scale 2J , and variations at scales 2j ≥ 2J with
wavelet convolutions:

Wx= {x ? φJ (u) , x ? ψj,k(u)}j≤J,1≤k≤K . (4.2)

The parameter u is sampled on a grid such that intermediate sample values can be recovered
by linear interpolations. The wavelets ψk are chosen so that W is a contractive and invertible
operator, and in order to obtain a sparse representation. This means that x ? ψj,k(u) is mostly
zero besides few high amplitude coefficients corresponding to variations of x(u) which “match”
ψk at the scale 2j . This sparsity plays an important role in non-linear contractions.

For audio signals, n= 1, sparse representations are usually obtained with at least K = 12

intermediate frequencies within each octave 2j , which are similar to half-tone musical notes.
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This is done by choosing a wavelet ψ(u) having a frequency bandwidth of less than 1/12

octave and ψk(u) = 2k/Kψ(2−k/Ku) for 1≤ k≤K. For images, n= 2, we must discriminate
image variations along different spatial orientation. It is obtained by separating angles πk/K,
with an oriented wavelet which is rotated ψk(u) =ψ(r−1

k u). Intermediate rotated wavelets are
approximated by linear interpolations of theseK wavelets. Figure 1 shows the wavelet transform
of an image, with J = 4 scales and K = 4 angles, where x ? ψj,k(u) is subsampled at intervals 2j .
It has few large amplitude coefficients shown in white.

Wavelet transforms can be computed with a fast multiscale cascade of filters, which is at the
core of deep network architectures. At each scale 2j , we define a low-pass filter wj,0 which
increases the averaging scale from 2j−1 to 2j , and band-pass filters wj,k which compute each
wavelet:

φj =wj,0 ? φj−1 and ψj,k =wj,k ? φj−1 . (4.3)

Let us write xj(u, 0) = x ? φj(u) and xj(u, k) = x ? ψj,k(u) for k 6= 0. It results from (4.3) that for
0< j ≤ J and all 1≤ k≤K:

xj(u, k) = xj−1(·, 0) ? wj,k(u) . (4.4)

These convolutions may be subsampled by 2 along u, in which case xj(u, k) is sampled at
intervals 2j along u.

Wavelet coefficients xj(u, k) = x ? ψj,k(u) oscillate at a scale 2j . Translations of x smaller than
2j modifies the complex phase of xj(u, k) if the wavelet is complex or its sign if it is real. Because
of these oscillations, averaging xj with φJ outputs a zero signal. It is necessary to apply a non-
linearity which removes oscillations. A modulus ρ(α) = |α| computes such a positive envelop.
Averaging ρ(x ? ψj,k(u)) by φJ outputs non-zero coefficients which are locally invariant at a scale
2J :

ΦJx(u, j, k) = ρ(x ? ψj,k) ? φJ (u) . (4.5)

Replacing the modulus by a rectifier ρ(α) = max(0, α) gives nearly the same result, up to
a factor 2. One can prove [24] that this representation is Lipschitz continuous to actions of
diffeomorphisms over x∈L2(Rn), and thus satisfies (3.2) for the metric (3.4). Indeed, the wavelet
coefficients of x deformed by g can be written as the wavelet coefficients of x with deformed
wavelets. Small deformations produce small modifications of wavelets in L2(Rn), because they
are localized and regular. The resulting modifications of wavelet coefficients is of the order of the
diffeomorphism metric |g|Diff .

A modulus and a rectifier are contractive non-linear pointwise operators:

|ρ(α)− ρ(α′)| ≤ |α− α′|. (4.6)

However, if α= 0 or α′ = 0 then this inequality is an equality. Replacing α and α′ by x ? ψj,k(u)

and x′ ? ψj,k(u) shows that distances are much less reduced if x ? ψj,k(u) is sparse. Such
contractions do not reduce as much the distance between sparse signals and other signals. This is
illustrated by reconstruction examples in Section 6.

The local multiscale invariants in (4.5) have dominated pattern classification applications for
music, speech and images, until 2010. It is called Mel-spectrum for audio [25] and SIFT type feature
vectors [23] in images. Their limitations comes from the loss of information produced by the
averaging by φJ in (4.5). To reduce this loss, they are computed at short time scales 2J ≤ 50ms

in audio signals, or over small image patches 22J = 162 pixels. As a consequence, they do not
capture large scale structures, which are important for classification and regression problems. To
build a rich set of local invariants at a large scale 2J , it is not sufficient to separate scales with
wavelets, we must also capture scale interactions.

A similar issue appears in physics to characterize the interactions of complex systems.
Multiscale separations are used to reduce the parametrization of classical many body systems, for
example with multipole methods [11]. However, it does not apply to complex interactions, as in
quantum systems. Interactions across scales, between small and larger structures, must be taken
into account. Capturing these interactions with low-dimensional models is a major challenge.
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Figure 2. A convolution network iteratively computes each layer xj by transforming the previous layer xj−1, with a linear

operator Wj and a pointwise non-linearity ρ.

We shall see that deep neural networks and scattering transforms provide high order coefficients
which partly characterize multiscale interactions.

5. Deep Convolutional Neural Network Architectures
Deep convolutional networks are computational architectures introduced by Le Cun [20],
providing remarkable regression and classification results in high dimension [17,19,21]. We
describe these architectures illustrated by Figure 2. They iterate over linear operators Wj

including convolutions, and predefined pointwise non-linearities.
A convolutional network takes in input a signal x(u), which is here an image. An internal

network layer xj(u, kj) at a depth j is indexed by the same translation variable u, usually
subsampled, and a channel index kj . A layer xj is computed from xj−1 by applying a linear
operator Wj followed by a pointwise non-linearity ρ:

xj = ρWjxj−1 .

The non-linearity ρ transforms each coefficientα of the arrayWjxj−1, and satisfies the contraction
condition (4.6). A usual choice is the rectifier ρ(α) = max(α, 0) for α∈R, but it can also be a
sigmoid, or a modulus ρ(α) = |α|where α may be complex.

Since most classification and regression functions f(x) are invariant or covariant to
translations, the architecture imposes thatWj is covariant to translations. The output is translated
if the input is translated. Since Wj is linear, it can thus be written as a sum of convolutions:

xj(u, kj) =
∑
k

∑
v

xj−1(v, k)wj,kj
(u− v, k) =

∑
k

(
xj−1(·, k) ? wj,kj

(·, k)
)

(u) . (5.1)

The variable u is usually subsampled. For a fixed j, all filters wj,kj
(u, k) have the same support

width along u, typically smaller than 10.
The operators ρWj propagates the input signal x0 = x until the last layer xJ . This cascade of

spatial convolutions defines translation covariant operators of progressively wider supports as
the depth j increases. Each xj(u, kj) is a non-linear function of x(v), for v in a square centered at
u, whose width ∆j does not depend upon kj . The width ∆j is the spatial scale of a layer j. It is
equal to 2j ∆ if all filters wj,kj

have a width ∆ and the convolutions (5.1) are subsampled by 2.
Neural networks include many side tricks. They sometimes normalize the amplitude of

xj(v, k), by dividing it by the norm of all coefficients xj(v, k) for v in a neighborhood of u. This
eliminates multiplicative amplitude variabilities. Instead of subsampling (5.1) on a regular grid,
a max pooling may select the largest coefficients over each sampling cell. Coefficients may also
be modified by subtracting a constant adapted to each coefficient. When applying a rectifier ρ,
this constant acts as a soft threshold, which increases sparsity. It is usually observed that inside
network coefficients xj(u, kj) have a sparse activation.

The deep network output xJ =ΦJ (x) is provided to a classifier, usually composed of fully
connected neural network layers [21]. Supervised deep learning algorithms optimize the filter
values wj,kj

(u, k) in order to minimize the average classification or regression error on the
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training samples {xi , f(xi)}i≤q . There can be more than 108 variables in a network [21].
The filter update is done with a back-propagation algorithm, which may be computed with
a stochastic gradient descent, with regularization procedures such as dropout. This high-
dimensional optimization is non-convex, but despite the presence of many local minima, the
regularized stochastic gradient descent converges to a local minimum providing good accuracy
on test examples [12]. The rectifier non-linearity ρ is usually preferred because the resulting
optimization has a better convergence. It however requires a large number of training examples.
Several hundreds of examples per class are usually needed to reach a good performance.

Instabilities have been observed in some network architectures [31], where additions of small
perturbations on x can produce large variations of xJ . It happens when the norms of the
matrices Wj are larger than 1, and hence amplified when cascaded. However, deep network also
have a strong form of stability illustrated by transfer learning [21]. A deep network layer xJ
optimized on particular training databasis, can approximate different classification functions, if
the final classification layers are trained on a new databasis. This means that it has learned stable
structures, which can be transferred across similar learning problems.

6. Scattering on the Translation Group
A deep network alternates linear operators Wj and contractive non-linearities ρ. To analyze the
properties of this cascade, we begin with a simpler architecture, where Wj does not combine
multiple convolutions across channels in each layer. We show that such network coefficients are
obtained through convolutions with a reduced number of equivalent wavelet filters. It defines a
scattering transform [24] whose contraction and linearization properties are reviewed. Variance
reduction and loss of information are studied with reconstructions of stationary processes.

Suppose that xj(u, kj) is computed by convolving a single channel xj−1(u, kj−1) along u:

xj(u, kj) = ρ
(
xj−1(·, kj−1) ? wj,h(u)

)
with kj = (kj−1, h) . (6.1)

It corresponds to a deep network filtering (5.1), where filters do not combine several channels.
Iterating on j defines a convolution tree, as opposed to a full network. It results from (6.1) that

xJ (u, kJ ) = ρ(ρ(ρ(ρ(x ? w1,h1
) ? ...) ? wJ−1,hJ−1

) ? wJ,hJ
) . (6.2)

If ρ is a rectifier ρ(α) = max(α, 0) or a modulus ρ(α) = |α| then ρ(α) = α if α≥ 0. We can thus
remove this non-linearity at the output of an averaging filter wj,h. Indeed this averaging filter
is applied to positive coefficients and thus computes positive coefficients, which are not affected
by ρ. On the contrary, if wj,h is a band-pass filter then the convolution with xj−1(·, kj−1) has
alternating signs or a complex phase which varies. The non-linearity ρ removes the sign or the
phase, which has a strong contraction effect.

Suppose that there are m band-pass filters {wjn,hjn
}1≤n≤m in the convolution cascade (6.2),

and that all others are low-pass filters. If we remove ρ after each low-pass filter, we get m
equivalent band-pass filters:

ψjn,kn
(u) =wjn−1+1,hjn−1+1

? ... ? wjn,hjn
(u) . (6.3)

The cascade of J convolutions (6.2) is reduced to m convolutions with these equivalent filters

xJ (u, kJ ) = ρ(ρ(...ρ(ρ(x ? ψj1,k1
) ? ψj2,k2

)... ? ψjm−1,km−1
) ? ψJ,kJ

(u)) , (6.4)

with 0< j1 < j2 < ... < jm−1 <J . If the final filter wJ,hJ
at the depth J is a low-pass filter then

ψJ,kJ
= φJ is an equivalent low-pass filter. In this case, the last non-linearity ρ can also be

removed, which gives

xJ (u, kJ ) = ρ(ρ(...ρ(ρ(x ? ψj1,k1
) ? ψj2,k2

)... ? ψjm−1,km−1
) ? φJ (u) . (6.5)

The operator ΦJx= xJ is a wavelet scattering transform, introduced in [24]. Changing the
network filters wj,h modifies the equivalent band-pass filters ψj,k. As in the fast wavelet
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transform algorithm (4.4), if wj,h is a rotation of a dilated filter wj then ψj,h is a dilation and
rotation of a single mother wavelet ψ.

The order m= 1 coefficients xJ (u, kJ ) = ρ(x ? ψj1,k1
) ? φJ (u) are the wavelet coefficient

computed in (4.5). The loss of information due to averaging is now compensated by higher order
coefficient. Form= 2, ρ(ρ(x ? ψj1,k1

) ? ψj2,k2
) ? φJ are complementary invariants. They measure

interactions between variations of x at a scale 2j1 , within a distance 2j2 , and along orientation or
frequency bands defined by k1 and k2. These are scale interaction coefficients, missing from first
order coefficients. Because ρ is strongly contracting, orderm coefficients have an amplitude which
decrease quickly as m increases [24,32]. For images and audio signals, the energy of scattering
coefficients becomes negligible for m≥ 3. Let us emphasize that the convolution network depth
is J , whereas m is the number of effective non-linearity of an output coefficient.

Section 4 explains that a wavelet transform defines representations which are Lipschitz
continuous to actions of diffeomorphisms. Scattering coefficients up to the order m are computed
by applying m wavelet transforms. One can prove [24] that it thus defines a representation which
is Lipschitz continuous to the the action of diffeomorphisms. There exists C > 0 such that

∀(g, x)∈Diff(Rn)× L2(Rn) , ‖ΦJ (g.x)− ΦJx‖ ≤Cm
(

2−J‖g‖∞ + ‖∇g‖∞
)
‖x‖ ,

plus a Hessian term which is neglected. This result is proved in [24] for ρ(α) = |α|, but it remains
valid for any contractive pointwise operator such as rectifiers ρ(α) = max(α, 0). It relies on
commutation properties of wavelet transforms and diffeomorphisms. It shows that the action
of small diffeomorphisms is linearized over scattering coefficients.

Scattering vectors are restricted to coefficients of order m≤ 2, because their amplitude is
negligible beyond. A translation scattering ΦJx is well adapted to classification problems where
the main source of intra-class variability are due to translations, to small deformations, or to
ergodic stationary processes. For example, intra-class variabilities of hand-written digit images
are essentially due to translations and deformations. On the MNIST digit data basis [6], applying
a linear classifier to scattering coefficients ΦJx gives state of the art classification errors. Music or
speech classification over short time intervals of 100ms can be modeled by ergodic stationary
processes. Good music and speech classification results are then obtained with a scattering
transform [2]. Image texture classification are also problems where intra class variability can be
modeled by ergodic stationary processes. Scattering transforms give state of the art results over
a wide range of image texture databases [6,29], compared to other descriptors including power
spectrum moments.

To analyze the information loss, we now study the reconstruction of x from its scattering
coefficients, in a stochastic framework where x is a stationary process. This will raise variance
and separation issues, where sparsity plays a role. It also demonstrates the importance of second
order scale interaction terms, to capture non-Gaussian geometric properties of ergodic stationary
processes. Let us consider scattering coefficients of order m

ΦJx(u, k) = ρ(...ρ(ρ(x ? ψj1,k1
) ? ψj2,k2

)... ? ψjm,km
) ? φJ (u) , (6.6)

with
∫
φJ (u)du= 1. If x is a stationary process then ρ(...ρ(x ? ψj1,k1

)... ? ψjm,km
) remains

stationary because convolutions and pointwise operators preserve stationarity. The spatial
averaging by φJ provides a non-biased estimator of the expected value of ΦJx(u, k), which is
a scattering moment:

E(ΦJx(u, k)) = E
(
ρ(...ρ(ρ(x ? ψj1,k1

) ? ψj2,k2
)... ? ψjm,km

)
)
. (6.7)

If x is a slow mixing process, which is a weak ergodicity assumption, then the estimation
variance σ2

J = ‖ΦJx− E(ΦJx)‖2 converges to zero [8] when J goes to ∞. Indeed, ΦJ is
computed by iterating on contractive operators, which average an ergodic stationary process x
over progressively larger scales. One can prove that scattering moments characterize complex
multiscale properties of fractals and multifractal processes, such as Brownian motions, Levi
processes or Mandelbrot cascades [7].
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Figure 3. First row: original images. Second row: realization of a Gaussian process with same second covariance

moments. Third row: reconstructions from first and second order scattering coefficients.

Scattering transforms are generally not invertible but givenΦJ (x) one can can compute vectors
x̃ such that ‖ΦJ (x)− ΦJ (x̃)‖ ≤ σJ . We initialize x̃0 as a Gaussian white noise realization, and
iteratively update x̃n by reducing ‖ΦJ (x)− ΦJ (x̃n)‖ with a gradient descent method, until it
reaches σJ [8]. Since ΦJ (x) is not convex, there is no guaranteed convergence, but numerical
reconstructions converge up to a sufficient precision. The recovered x̃ is a stationary process
having nearly the same scattering moments as x, whose properties are similar to a maximum
entropy process for fixed scattering moments [8].

Figure 3 shows several examples of images x with N2 pixels. The first three images are
realizations of ergodic stationary textures. The second row gives realizations of stationary
Gaussian processes having the same N2 second order covariance moments as the top textures.
The third column shows the vorticity field of a two-dimensional turbulent fluid. The Gaussian
realization is thus a Kolmogorov type model, which does not restore the filament geometry.
The third row gives reconstructions from scattering coefficients, limited to order m≤ 2. The
scattering vector is computed at the maximum scale 2J =N , with wavelets havingK = 8 different
orientations. It is thus completely invariant to translations. The dimension of ΦJx is about
(K log2N)2/2�N2. Scattering moments restore better texture geometries than the Gaussian
models obtained withN2 covariance moments. This geometry is mostly captured by second order
scattering coefficients, providing scale interaction terms. Indeed, first order scattering moments
can only reconstruct images which are similar to realizations of Gaussian processes. First and
second order scattering moments also provide good models of ergodic audio textures [8].

The fourth image has very sparse wavelet coefficients. In this case the image is nearly perfectly
restored by its scattering coefficients, up to a random translation. The reconstruction is centered
for comparison. Section 4 explains that if wavelet coefficients are sparse then a rectifier or an
absolute value contractions ρ does not contract as much distances with other signals. Indeed,
|ρ(α)− ρ(α′)|= |α− α′| if α= 0 or α′ = 0. Inverting a scattering transform is a non-linear inverse
problem, which requires to recover a lost phase information. Sparsity has an important role on
such phase recovery problems [32]. Translating randomly the last motorcycle image defines a
non-ergodic stationary process, whose wavelet coefficients are not as sparse. As a result, the
reconstruction from a random initialization is very different, and does not preserve patterns
which are important for most classification tasks. This is not surprising since there is much
less scattering coefficients than image pixels. If we reduce 2J so that the number of scattering
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coefficients reaches the number of pixels then the reconstruction is of good quality, but there is
little variance reduction.

Concentrating on the translation group is not so effective to reduce variance when the process
is not translation ergodic. Applying wavelet filters can destroy important structures which are
not sparse over wavelets. Next section addresses both issues. Impressive texture synthesis results
have been obtained with deep convolutional networks trained on image data bases [14], but
with much more output coefficients. Numerical reconstructions [13] also show that one can also
recover complex patterns, such as birds, airplanes, cars, dogs, ships, if the network is trained
to recognize the corresponding image classes. The network keeps some form of memory of
important classification patterns.

7. Multiscale Hierarchical Convolution Networks
Scattering transforms on the translation group are restricted deep convolutional network
architectures, which can suffer from variance and bias issues. We analyze a general class
of convolutional network architectures with channels combinations, by extending the tools
previously introduced. Contractions and invariants to translations are replaced by contractions
along groups of local symmetries adapted to f , which are defined by parallel transports in
each network layer. To regularize the network, we impose that groups of local symmetries are
progressively growing as depth increases. It implies that all linear operators can be written as
generalized convolutions across channels. The classification margin is preserved by replacing
wavelets by adapted filter weights, which separate discriminative patterns in multiple network
fibers.

Network layers xj = ρWjxj−1 are computed with operators ρWj which contract and separate
components of xj , to control bias and variance. We shall see that Wj also needs to prepare xj for
the next transformation Wj+1, so consecutive operators Wj and Wj+1 are strongly dependant.
Each Wj is a contractive linear operator, ‖Wjz‖ ≤ ‖z‖ to reduce variance, and avoid instabilities
when cascading such operators [31]. A layer xj−1 must separate f so that we can write f(x) =

fj−1(xj−1) for some function fj−1(z). To simplify explanations, we concentrate on classification,
where separation is an ε > 0 margin condition:

∀(x, x′)∈Ω2 , ‖xj−1 − x′j−1‖ ≥ ε if f(x) 6= f(x′) . (7.1)

The next layer xj = ρWjxj−1 has a smaller variance than xj−1, but it must also satisfy

∀(x, x′)∈Ω2 , ‖ρWjxj−1 − ρWjx
′
j−1‖ ≥ ε if f(x) 6= f(x′) . (7.2)

The operator Wj computes a linear projection which preserves this margin condition, but the
resulting dimension reduction is limited. We can further contract the space non-linearly with ρ.
To preserve the margin, it must reduce distances along non-linear displacements which transform
any xj−1 into an x′j−1 which is in the same class. Such displacements are defined by local
symmetries (3.1), which are non-linear transformations ḡ such that fj−1(xj−1) = fj−1(ḡ.xj−1).

To define a local invariant to a group of transformations G, we must process the orbit
{ḡ.xj−1}g∈G. However, Wj is applied to xj−1 not on the non-linear transformations ḡ.xj−1 of
xj−1. The key idea is that a deep network can proceed in two steps. Let us write xj(u, kj) = xj(v)

with v ∈ Pj . First, ρWj computes an approximate mapping of such an orbit {ḡ.xj−1}ḡ∈G into
a parallel transport in Pj , which moves coefficients of xj . Then Wj+1 applied to xj is filtering
the orbits of this parallel transport. A parallel transport is defined by operators g ∈Gj acting on
v ∈ Pj , and we write

∀(g, v)∈Gj × Pj , g.xj(v) = xj(g.v) .

The operator Wj is defined so that Gj is a group of local symmetries: fj(g.xj) = fj(xj) for small
|g|Gj

. This is obtained if transports by g ∈Gj correspond approximatively to local symmetries ḡ of
fj−1. Indeed, if g.xj = g.[ρWjxj−1]≈ ρWj [ḡ.xj−1] then fj(g.xj) = fj−1(ḡ.xj−1) = fj−1(xj−1) =

f(xj).
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Figure 4. A multiscale hierarchical networks computes convolutions along the fibers of a parallel transport. It is defined

by a group Gj of symmetries acting on the index set Pj of a layer xj . Filter weights are transported along fibers.

The index space Pj is called a Gj -principal fiber bundle in differential geometry [26],
illustrated by Figure 4. The orbits of Gj in Pj are fibers, indexed by the equivalence classes
Bj = Pj/Gj . They are globally invariant to the action ofGj , and play an important role to separate
f . Each fiber is indexing a continuous Lie group, but it is sampled along Gj at intervals such that
values of xj can be interpolated in between. As in the translation case, these sampling intervals
depend upon the local invariance of xj , which increases with j.

In a hierarchical convolution network, we further impose that local symmetry groups are
growing with depth, and can be factorized:

∀j ≥ 0 , Gj =Gj−1 oHj . (7.3)

The hierarchy begins for j = 0 by the translation group G0 = Rn, which acts on x(u) through the
spatial variable u∈Rn. The condition (7.3) is not necessarily satisfied by general deep networks,
besides j = 0 for translations. It is used by joint scattering transforms [3,29] and has been proposed
for unsupervised convolution network learning [9]. Proposition 7.1 proves that this hierarchical
embedding implies that each Wj is a convolution on Gj−1.

Proposition 7.1. The group embedding (7.3) implies that xj can be indexed by (g, h, b)∈Gj−1 ×Hj ×
Bj and there exists wj,h.b ∈CPj−1 such that

xj(g, h, b) = ρ
( ∑

v′∈Pj−1

xj−1(v′)wj,h.b(g
−1.v′)

)
= ρ
(
xj−1 ?

j−1 wj,h.b(g)
)
, (7.4)

where h.b transports b∈Bj by h∈Hj in Pj .

Proof. We write xj = ρWjxj−1 as inner products with row vectors:

∀v ∈ Pj , xj(v) = ρ
( ∑

v′∈Pj−1

xj−1(v′)wj,v(v′)
)

= ρ
(
〈xj−1 , wj,v〉

)
. (7.5)

If ḡ ∈Gj then ḡ.xj(v) = xj(ḡ.v) = ρ(〈xj−1 , wj,ḡ.v〉. One can write wj,v =wj,ḡ.b with ḡ ∈Gj and
b∈Bj = Pj/Gj . If Gj =Gj−1 oHj then ḡ ∈Gj can be decomposed into ḡ= (g, h)∈Gj−1 oHj ,
where g.xj = ρ(〈g.xj−1, wj,b〉). But g.xj−1(v′) = xj−1(g.v′) so with a change of variable we get
wj,g.b(v

′) =wj,b(g
−1.v′). Hence wj,ḡ.b(v

′) =wj,(g,l).b(v) = h.wj,h.b(g
−1.v′). Inserting this filter

expression in (7.5) proves (7.4).

This proposition proves that Wj is a convolution along the fibers of Gj−1 in Pj−1. Each wj,h.b

is a transformation of an elementary filter wj,b by a group of local symmetries h∈Hj so that
fj(xj(g, h, b)) remains constant when xj is locally transported along h. We give below several
examples of groups Hj and filters wj,h.b. However, learning algorithms compute filters directly,
with no prior knowledge on the group Hj . The filters wj,h.b can be optimized so that variations
of xj(g, h, b) along h captures a large variance of xj−1 within each class. Indeed, this variance is
then reduced by the next ρWj+1. The generators of Hj can be interpreted as principal symmetry
generators, by analogy with the principal directions of a PCA.
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The scattering convolution along translations (6.1) is replaced in (7.4) by a convolution
along Gj−1, which combines different layer channels. Results for translations can essentially be
extended to the general case. If wj,h.b is an averaging filter then it computes positive coefficients,
so the non-linearity ρ can be removed. If each filterwj,h.b has a support in a single fiber indexed by
b, as in Figure 4, then Bj−1 ⊂Bj . It defines a generalized scattering transform, which is a structured
multiscale hierarchical convolutional network such thatGj−1 oHj =Gj andBj−1 ⊂Bj . If j = 0

then G0 = P0 = Rn so B0 is reduced to 1 fiber.
As in the translation case, we need to linearize small deformations in Diff(Gj−1),

which include much more local symmetries than the low-dimensional group Gj−1. A small
diffeomorphism g ∈Diff(Gj−1) is a non-parallel transport along the fibers ofGj−1 inPj−1, which
is a perturbation of a parallel transport. It modifies distances between pairs of points in Pj−1 by
scaling factors. To linearize such diffeomorphisms, we must use localized filters whose supports
have different scales. Scale parameters are typically different along the different generators of
Gj−1 = Rn oH1 o ...oHj−1. Filters can be constructed with wavelets dilated at different scales,
along the generators of each group Hk for 1≤ k≤ j. Linear dimension reduction mostly results
from this filtering. Variations at fine scales may be eliminated, so that xj(g, h, b) can be coarsely
sampled along g.

For small j, the local symmetry groups Hj may be associated to linear or non-linear physical
phenomena such as rotations, scaling, colored illuminations or pitch frequency shifts. Let SO(n)

be the group of rotations. Rigid movements SE(n) = Rn o SO(n) is a non-commutative group,
which often includes local symmetries. For images, n= 2, this group becomes a transport in
P1 with H1 = SO(n) which rotates a wavelet filter w1,h(u) =w1(r−1

h u). Such filters are often
observed in the first layer of deep convolutional networks [13]. They map the action of ḡ=

(v, rk)∈ SE(n) on x to a parallel transport of (u, h)∈ P1 defined for g ∈G1 = R2 × SO(n) by
g.(u, h) = (v + rku, h+ k). Small diffeomorphisms in Diff(Gj) correspond to deformations along
translations and rotations, which are sources of local symmetries. A roto-translation scattering
[27,29] linearizes them with wavelet filters along translations and rotations, with Gj = SE(n)

for all j > 1. This roto-translation scattering can efficiently regress physical functionals which
are often invariant to rigid movements, and Lipschitz continuous to deformations. For example,
quantum molecular energies f(x) are well estimated by sparse regressions over such scattering
representations [18].

Pitch frequency shift is a more complex example of a non-linear symmetry for audio signals.
Two different musical notes of a same instrument have a pitch shift. Their harmonic frequencies
are multiplied by a factor 2h, but it is not a dilation because the note duration is not changed.
With narrow band-pass filters w1,h(u) =w1(2−hu), a pitch shift is approximatively mapped to a
translation along h∈H1 = R of ρ(x ? w1,h(u)), with no modification along the time u. The action
of g= (v, k)∈G1 = R× R = R2 over (u, h)∈ P1 is thus a two-dimensional translation g.(u, h) =

(u+ v, h+ k). A pitch shift also comes with deformations along time and log-frequencies,
which define a much larger class of symmetries in Diff(G1). Two-dimensional wavelets along
(u, h) can linearize these small time and log-frequency deformations. These define a joint time-
frequency scattering applied to speech and music classifications [3]. Such transformations were
first proposed as neurophysiological models of audition [25].

The group Hj is associated to complex transformations when j increases. It needs to capture
large transformations between different patterns in a same class, for example chairs of different
styles. Let us consider training samples {xi}i of a same class. The iterated network contractions
transforms them into vectors {xij−1}i which are much closer. Their distances define weighted
graphs which sample underlying continuous manifolds in the space. Such manifolds clearly
appear in [5], for high-level patterns such as chairs or cars, together with poses and colors. As
opposed to manifold learning, deep network filters result from a global optimization which can be
computed in high dimension. The principal symmetry generators of Hj is associated to common
transformations over all manifolds of examples xij−1, which preserve the class while capturing
large intra-class variance. They are approximatively mapped to a parallel transport in xj by
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the filters wj,h.b. The diffeomorphisms in Diff(Gj) are non-parallel transports corresponding to
high-dimensional displacements on the manifolds of xj−1. Linearizing Diff(Gj) is equivalent
to partially flatten simultaneously all these manifolds, which may explain why manifolds are
progressively more regular as the network depth increases [5], but it involves open mathematical
questions.

We have up to now been concentrated on variance reduction through contractions. The bias
can be controled, thanks to the existence of multiple fibers Bj in Pj , by adapting filters instead of
using standard wavelets. The fibers indexed by b∈Bj are separation instruments, which increase
dimensionality to avoid reducing the classification margin. They prevent from collapsing vectors
in different classes, which have a distance ‖xj−1 − x′j−1‖ close to the minimum margin ε. These
vectors are close to classification frontiers. They are called multiscale support vectors, by analogy
with support vector machines. To avoid further contracting their distance, they can be separated
along different fibers indexed by b. The separation is achieved by filters wj,h.b, which transform
xj−1 and x′j−1 into xj(g, h, b) and x′j(g, h, b) having sparse supports on different fibers b. The next
contraction ρWj+1 reduces distances along fibers indexed by (g, h)∈Gj , but not across b∈Bj ,
which preserves distances. The contraction increases with j so the number of support vectors
close to frontiers also increases, which implies that more fibers are needed to separate them.

When j increases, the size of xj is a balance between the dimension reduction along fibers,
by subsampling g ∈Gj , and an increasing number of fibers Bj which encode progressively
more support vectors. Coefficients in these fibers become more specialized and invariants, as the
grandmother neurons observed in deep layers of convolutional networks [1]. They have a strong
response to particular patterns and are invariant to a large class of transformations. In this model,
the choice of filters wj,h.b are adapted to produce sparse representations of multiscale support
vectors. They provide a sparse distributed code, defining invariant pattern memorisation. This
memorisation is numerically observed in deep network reconstructions [13], which can restore
complex patterns within each class. Let us emphasize that groups and fibers are mathematical
ghost behind filters, which are never computed. The learning optimization is directly performed
on filters, which carry the trade-off between contractions to reduce variance and separation to
preserve margin and thus to control bias.

8. Conclusion
This paper provides a mathematical framework to analyze the bias and variance properties of
deep convolutional networks. In this model, network filters are guiding non-linear contractions,
to reduce the variance in directions of local symmetries. The bias is controlled by progressive
separations, which define an increasing number of network fibers. These fibers combine
invariances along groups of symmetries and distributed pattern representations, which could
be sufficiently stable to explain transfer learning of deep networks [21]. However, we need
complexity measures, approximation theorems in spaces of high-dimensional functions, and
guaranteed convergence of filter optimization, to fully understand the mathematics of these
convolution networks.

Besides learning, there are striking similarities between these multiscale mathematical tools
and the treatment of symmetries in particle and statistical physics [15]. One can expect a rich
cross fertilization between high-dimensional learning and physics, through the development of a
common mathematical language.
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