



Stéphane Mallat

Centre de Mathématiques Appliquées Ecole Polytechnique

### Super-Resolution with Sparsity



- *Dream*: recover high-resolution data from low-resolution noisy measurements:
  - Medical imaging
  - Satellite imaging
  - Seismic exploration
  - High Definition Television or Camera Phones
- Can we improve the signal resolution?
- Sparsity as a tool to incorporate prior information.

#### **Inverse Problems**



• Measure a noisy and low resolution signal:

$$Y = Uf + W$$

with 
$$f \in \mathbf{C}^N$$
 and  $\dim(\mathbf{Im}\mathbf{U}) = Q < N$ .

• Inverse problems: compute an estimation

$$\tilde{F} = DY$$

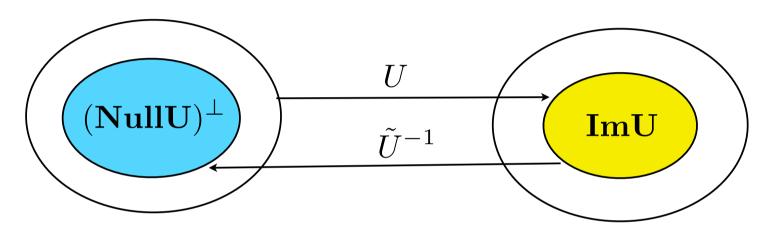
and minimize the risk:  $r(D, f) = E\{\|\tilde{F} - f\|^2\}$ 

• Super-resolution estimation:  $\tilde{F}$  is computed in a space of dimension  $\Box$  Is it possible, how?

#### Regularized Inversion

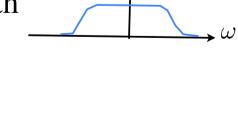


To estimate f from Y = Uf + W invert U!



Pseudo inverse: 
$$\tilde{U}^{-1}Uf = f$$
 if  $f \in (\mathbf{Null}\mathbf{U})^{\perp}$   $\tilde{U}^{-1}g = 0$  if  $g \in (\mathbf{Im}\mathbf{U})^{\perp}$ 

**Deconvolution**: Uf = f \* h with



 $\hat{h}(\omega)$ 

$$\tilde{U}^{-1}f = f * \tilde{h}^{-1} \text{ with}$$

### Regularization and Denoising



$$\tilde{U}^{-1}Y = \tilde{U}^{-1}Uf + \tilde{U}^{-1}W$$

**Problems:**  $\tilde{U}^{-1}Uf \in (\mathbf{Null}\mathbf{U})^{\perp}$  no super-resolution

 $\|\tilde{U}^{-1}W\|$  is huge if  $\tilde{U}^{-1}$  is not bounded.

Regularized inversion includes a noise reduction with a projection in a space  $\mathbf{V}$ :  $\tilde{F} = R(\tilde{U}^{-1}Y) \in \mathbf{V}$ 

Optimizing R requires prior information.

No super-resolution :  $\dim(\mathbf{V}) \leq Q$ .

### Singular Value Decompositions



• Basis of singular vectors  $\{e_k\}_{1 \leq k \leq N}$  diagonalizes  $U^*U$ :

$$U^*Ue_k = \lambda_k^2 e_k$$

• Diagonal denoising over the singular basis:

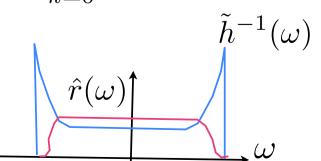
$$\tilde{F} = R(\tilde{U}^{-1}Y) = \sum_{k=0}^{N-1} r_k \langle \tilde{U}^{-1}Y, e_k \rangle e_k$$
.

Since 
$$\langle \tilde{U}^{-1}Y, e_k \rangle = \lambda_k^{-2} \langle Y, Ue_k \rangle$$

Since 
$$\langle U^{-1}Y, e_k \rangle = \lambda_k^{-2} \langle Y, Ue_k \rangle$$
 
$$r_k = \frac{1}{1 + \sigma^2 \lambda_k^{-2}} \quad \text{yields} \quad \tilde{F} = \sum_{k=0}^{N-1} \frac{\langle Y, Ue_k \rangle}{\lambda_k^2 + \sigma^2} \, e_k \; .$$
 **filtering** of deconvolution: 
$$\tilde{h}^{-1}(\omega)$$

**Linear filtering** of deconvolution:

$$R(\tilde{U}^{-1}Y) = \tilde{U}^{-1}Y * r$$

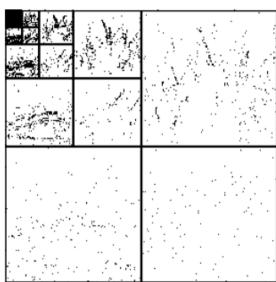


### Denoising by Thresholding



#### Non linear projector adapted to the signal:





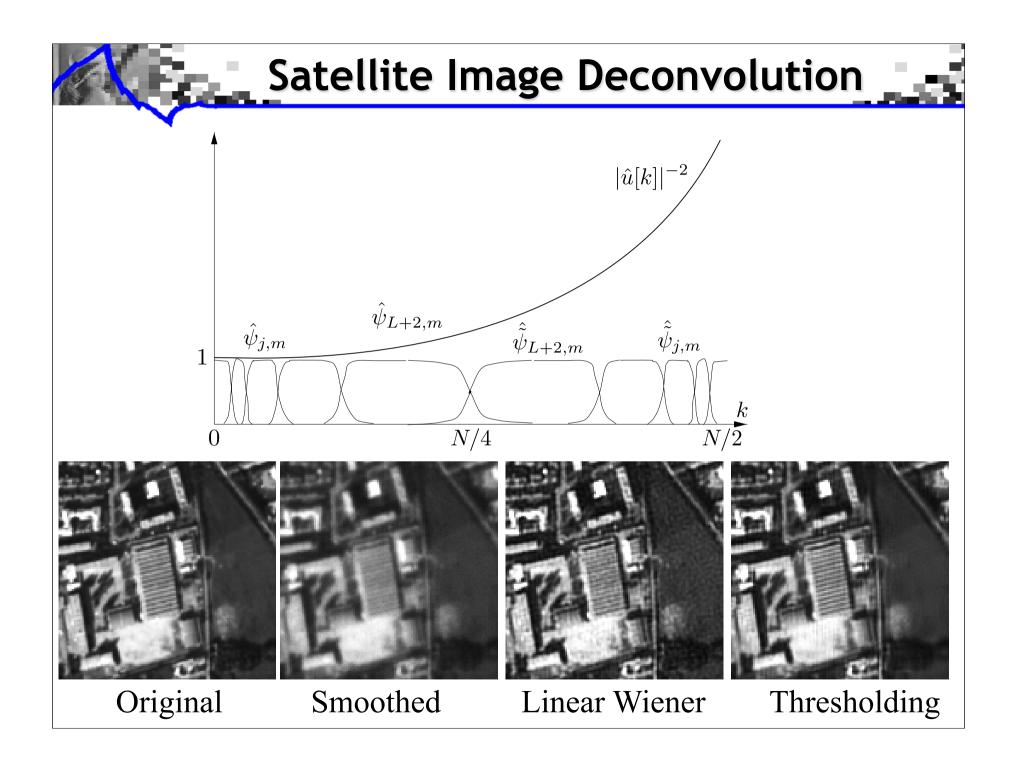


Threshold  $T = 3 \sigma$  where  $\sigma^2$  is the noise variance.

# Thresholding for Inverse Problems -

- Remove noise from  $\tilde{U}^{-1}Y = \tilde{U}^{-1}Uf + \tilde{U}^{-1}W$  with a thresholding estimator.
- Optimal in a basis  $\{\phi_p\}_{p\in\Gamma}$  providing a sparse representation of f and which decorrelates the noise coefficients  $\langle \tilde{U}^{-1}W, \phi_p \rangle$ .
- The dictionary vectors  $\phi_p$  must be almost eigenvectors of  $U^*U$ , they must have a narrow spectrum:

$$\phi_p = \sum_{k \in S_p} \langle \phi_p, e_k \rangle e_k \text{ with } \lambda_k^2 \sim \tilde{\lambda}_p^2 \text{ for } k \in S_p$$

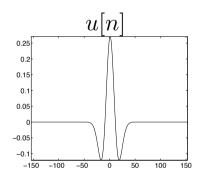


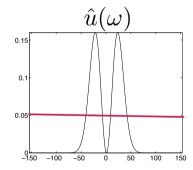
### **Sparse Spike Deconvolution**



Seismic data: 
$$Y = f * u + W$$
 with  $f[n] = \sum_{p \in \Lambda} a[p] \, \delta[p - n]$ 

$$Y[q] = \sum_{p \in \Lambda} a[p] u[q - n] + W[q]$$







Super-resolution inversion by detection of the sparse support

### **Sparse Super-Resolution**



• *Prior information:* f has a sparse approximation in a normalized dictionary  $\mathcal{D} = \{\phi_p\}_{p \in \Gamma}$  of at least N vectors

$$f = \sum_{p \in \Lambda} a[p] \, \phi_p + \epsilon_{\Lambda}$$

with a small error  $\|\epsilon_{\Lambda}\|$ .

It results that

$$Y = Uf + W = \sum_{p \in \Lambda} a[p] U\phi_p + (U\epsilon_{\Lambda} + W)$$

has a sparse approximation in the redundant dictionary

$$\mathcal{D}_U = \left\{ U \phi_p \right\}_{p \in \Gamma}$$

in the space  $\mathbf{Im}\mathbf{U}$  of dimension  $Q \leq N$ 

### Sparse Super-Resolution



• A sparse approximation of Y is computed in  $\mathcal{D}_U = \{U\phi_p\}_{p\in\Gamma}$ 

$$Y_{\tilde{\Lambda}} = \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] U \phi_p$$

with a pursuit algorithm. A basis pursuit minimizes the Lagrangian:

$$||Y - \sum_{p \in \Gamma} \tilde{a}[p] U \phi_p||^2 + \lambda \sum_{p \in \Gamma} |\tilde{a}[p]|$$

and  $\tilde{\Lambda}$  is the support of  $\tilde{a}$ .

• It yields a signal estimator  $\tilde{F} = \sum \tilde{a}[p] \, \phi_p$ 

$$\tilde{F} = \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] \, \phi_p$$

using prior information which recovers  $\phi_p$  from each  $U\phi_p$ .

#### **Error and Exact Recovery**



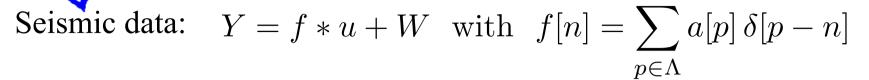
• From the sparse decomposition of Y = f + W

$$Y_{\tilde{\Lambda}} = \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] U \phi_p$$

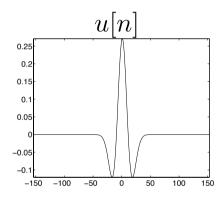
since 
$$f = \sum_{p \in \Lambda} a[p] \, \phi_p + \epsilon_{\Lambda}$$
 
$$\|f - \tilde{F}\| \le \left\| \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] \phi_p - \sum_{p \in \Lambda} a[p] \, \phi_p \right\| + \|\epsilon_{\Lambda}\| \ .$$

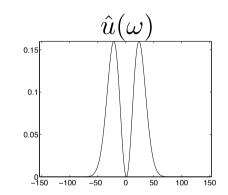
- Small error if  $\tilde{\Lambda}$  includes  $\Lambda$  and if  $\{U\phi_p\}_{p\in\tilde{\Lambda}}$  is a Riesz basis.
- Exact recovery in the redundant dictionary  $\mathcal{D}_U = \{U\phi_p\}_{p\in\Gamma}$
- Super-resolution: if  $\Lambda$  is not restricted to a space of dimension Q.

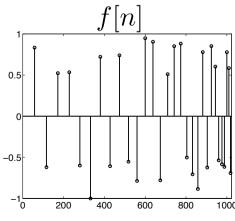
### Sparse Spike Deconvolution

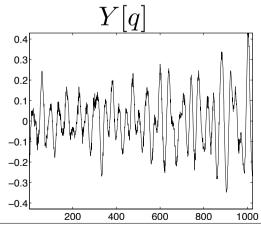


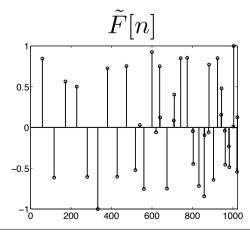
$$\phi_p[n] = \delta[p-n] \ , \ U\phi_p[q] = u[q-n] \ , \ \tilde{F}[n] = \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] \, \delta[n-n]$$







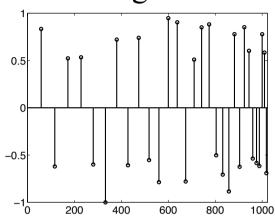




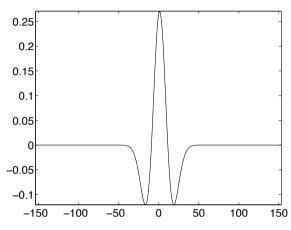
# **Comparison of Pursuits**



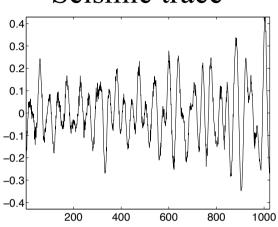




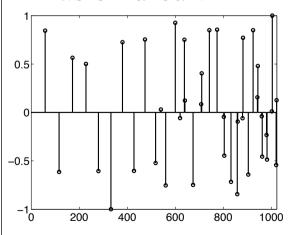
Seismic wavelet



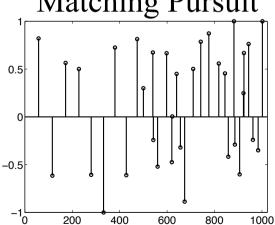
Seismic trace



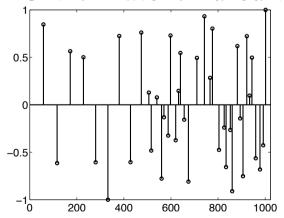
**Basis Pursuit** 



Matching Pursuit



Orth. Match. Pursuit



# Conditions for Super-resolution -

- The signal approximation support  $\Lambda$  should small.
- Stability:  $\{U\phi_p\}_{p\in\Lambda}$  must be a Riesz basis  $\|U\phi_p\|$  should not be too smal.
- Hence the  $\phi_p$  must have a "spread spectrum" relatively to  $U^*U$ .
- Support recovery: the dictionary  $\mathcal{D}_U = \{U\phi_p\}_{p\in\Gamma}$  must be as incoherent as possible.
- Exact recovery criteria:  $ERC(\Lambda) < 1$ .

#### Image Inpainting



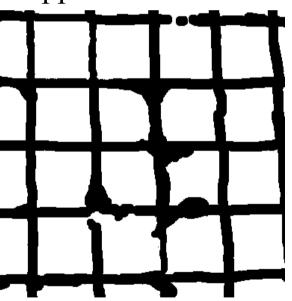
$$Uf[q] = f[q] \text{ for } q \in \Omega \text{ with } |\Omega| = Q < N$$

Super-resolution in a wavelet dictionary  $\mathcal{D}_U = \{U\phi_p\}_{p\in\Gamma}$ 

Original



Support of  $\Omega$ 



Super-resolution



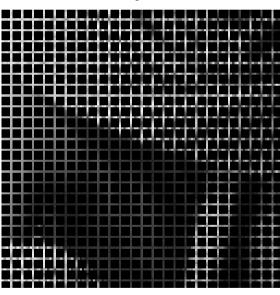
### **Image Inpainting**



$$Uf[q] = f[q] \text{ for } q \in \Omega \text{ with } |\Omega| = Q < N$$

Wavelet and local cosinedictionary  $\mathcal{D}_U = \{U\phi_p\}_{p\in\Gamma}$ 

$$Y = Uf + W$$

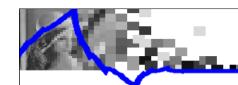


Linear estimation



Super-resolution





#### **Tomography**

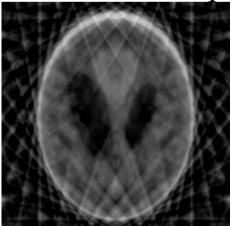


U is a Radon transform which integrates along straight lines.

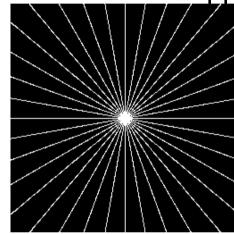
Original



Linear Back Prop.

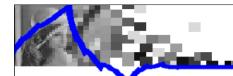


Radon Fourier Support



Haar super-resol.





#### **Super-Resolution Zooming**



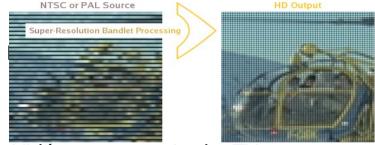
- Need to increase numerically acquired image resolution:
  - Conversion to HDTV of SDTV, Internet and Mobile videos...

#### Size increase:

60 images of 720 x 576 pixels = 320

- Spatial deinterlacing and up-scaling



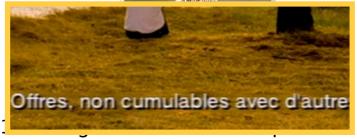


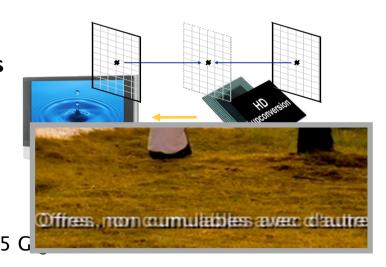
> Vidéo processor in the TV :



• twice more images for LCD screens

**HD LCD screens** 





#### Image and Video Zooming



- Image subsampling : Uf = f[n/s] is a linear projector.
- Linear inversion without noise: linear interpolation

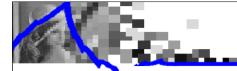
$$\tilde{f}[p] = \sum_{n} Uf[n] \, \theta(p - ns)$$







- Prior information: geometric regularity.
- Super-resolution by interpolations in the directions of regularity
- Sparse super-resolution marginally improves linear interpolations.





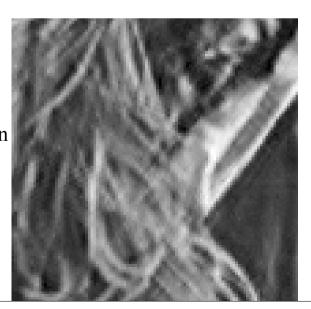
High Resolution Image





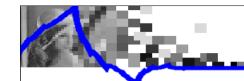
Low Resolution Image

Contourlet SuperResolution 28.59 db

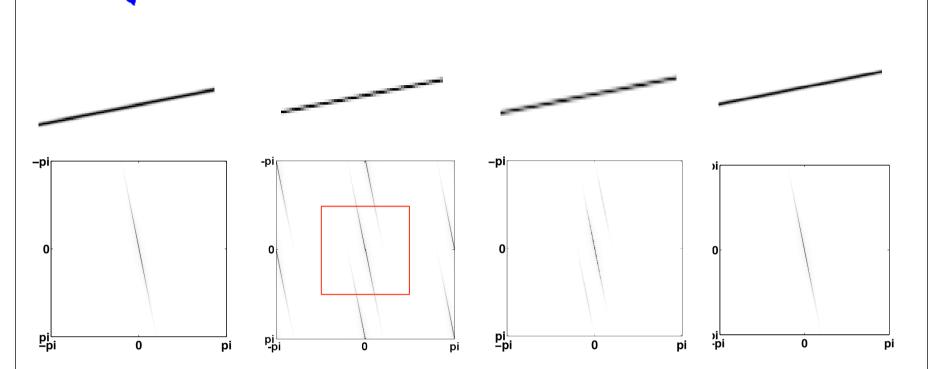




Cubic spline Interpolation 28.47 db



### **Aliased Interpolation**



Original

Subsampled

Linear Interp.

Direct. Interp.

Super-resolution is not possible for horizontal and vertical edges.

# Adaptive Directional Interpolations -

• Linear Tikhonov estimation:  $\tilde{F}_{\theta} = I_{\theta} Y$ 

minimizes  $||R_{\theta}I_{\theta}Y||$  subject to  $UI_{\theta}Y = Y$  where  $R_{\theta}$  is a linear directional regularity operator.

- Adaptive directional interpolation adapt locally  $\theta$  by testing locally the directional regularity with gradient operators.
- General class of mixing linear operators in a frame  $\{\phi_p\}_{p\in\Gamma}$

$$\tilde{F} = \sum_{\theta \in \Theta} I_{\theta} \left( \sum_{p \in \Gamma} a(\theta, p) \langle Y, \phi_p \rangle \phi_p \right)$$

• Problem: how to optimize the  $a(\theta, p)$ ?

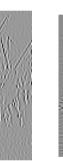
### Wavelet Block Interpolation



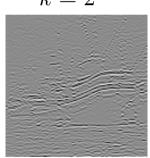
Wavelet transform on 1 scale, j = 1

$$\langle f, \psi_{j,n}^k \rangle = \int f(x) \, 2^{-j} \, \psi^k(2^{-j}(x-n)) \, dx$$





$$k = 2$$



$$2^{j} = 2$$





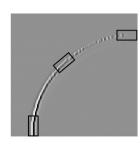
k = 3

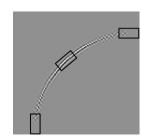
Low frequencies are linearly interpolated (no aliasing). Adaptive directional interpolation of fine scale wavelets.

## **Wavelet Block Interpolation**

• Dictionary of blocks  $\{B_{\theta,q}\}_{\theta,q}$ 







To a wavelet block decomposition

$$Y = \sum_{\theta} \sum_{q} \epsilon(\theta, q) P_{B_{\theta,q}} Y + Y_r$$

with 
$$P_{B_{\theta,q}}Y = \sum_{(n,k)\in B_{\theta,q}} \langle Y, \psi_{1,n}^k \rangle \psi_{1,n}^k$$

we associate an interpolation estimation

$$\tilde{F} = \sum_{\theta} I_{\theta} \left( \sum_{q} \epsilon(\theta, q) Y_{q, \theta} \right) + I_{r}(Y_{r})$$

• How to optimize the  $\epsilon(\theta, q)$  ?

### **Adaptive Tikhonov Estimation**



• To compute

$$Y = \sum_{\theta} \sum_{q} \epsilon(\theta, q) P_{B_{\theta,q}} Y + Y_r$$

where  $\epsilon(\theta, q)$  is sparse and  $\epsilon(\theta, q) \approx 1$  if  $||R_{\theta}I_{\theta}P_{B_{\theta,q}}Y||$  is small: Lagrangian minimization

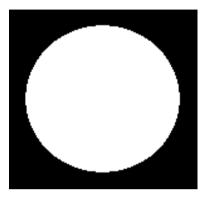
$$\mathcal{L} = \|Y - \sum_{\theta, q} \epsilon(\theta, q) P_{B_{\theta, q}} Y\|^2 + \lambda \sum_{\theta, q} |\epsilon(\theta, q)| \|R_{\theta} I_{\theta} P_{B_{\theta, q}} Y\|^2$$

- Standard 1<sup>1</sup> minimization. Can be solved with a greedy pursuit.
- If there is only one  $\epsilon(\theta, q) \neq 0$  then  $\mathcal{L}$  is minimized by

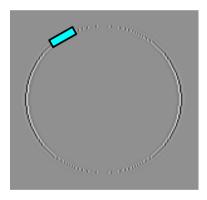
$$\epsilon(\theta, q) = \max\left(1 - \lambda \frac{\|R_{\theta}I_{\theta}P_{B_{\theta,q}}Y\|^2}{\|P_{B_{\theta,q}}Y\|^2}, 0\right) \quad \text{and} \quad$$

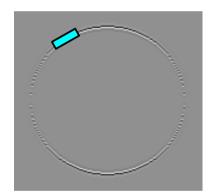
$$\mathcal{L} = ||Y||^2 - e(\theta, q) \text{ with } e(\theta, q) = \frac{||P_{B_{\theta, q}}Y||^2 \epsilon(\theta, q)^2}{2}.$$

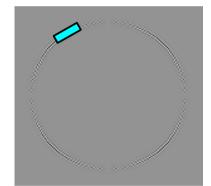
# Wavelet Block Spaces



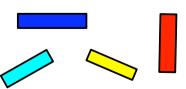
Wavelet transform



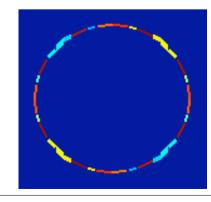


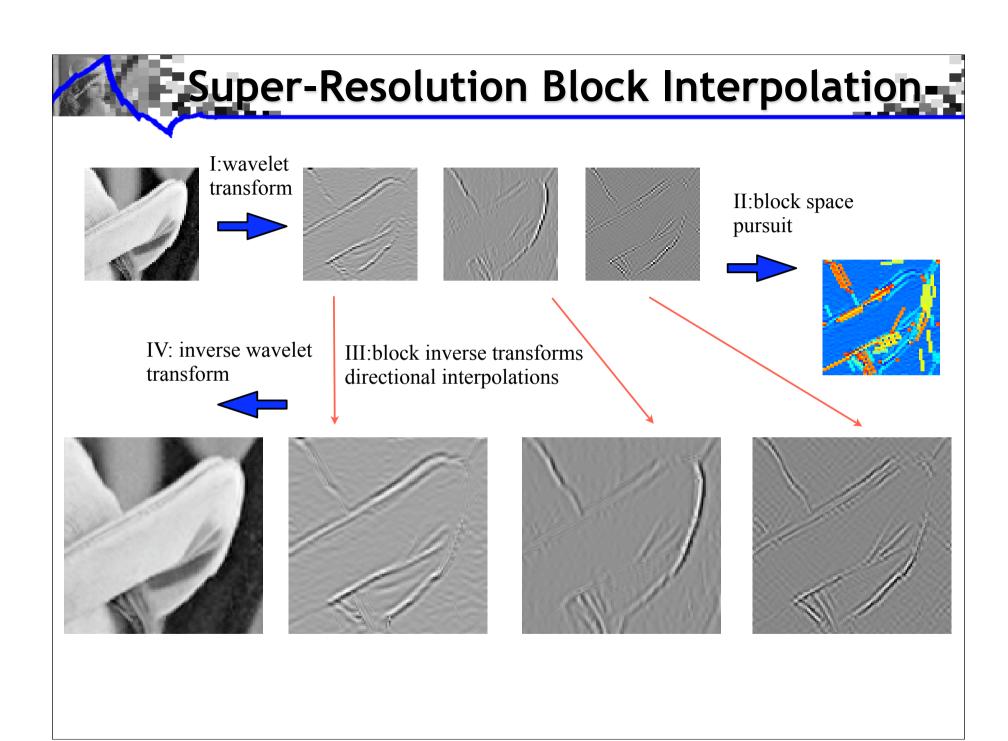


Blocks of oriented bars



Block projection pursuit





## Comparison with Cubic Splines \_\_\_\_

Block pursuit on wavelet coefficients





Block Interpolations over wavelet coefficients

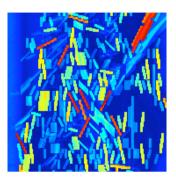


Cubic spline interpolations

# Comparison with Cubic Splines

أوتن

Block pursuit on wavelet coefficients

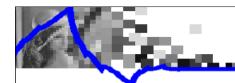




Block Interpolations SNR = 29.24 db over wavelet coefficients



SNR = 28.58 db Cubic spline interpolations



### **Examples of Zooming**



Original Image



Cubic Spline Interpolation

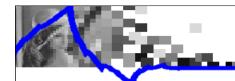


SNR = 22.35 db

Bandlet Super-Resolution



SNR = 24.14 db

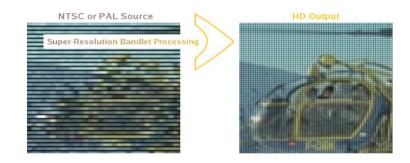


#### **Super-Resolution Zooming**

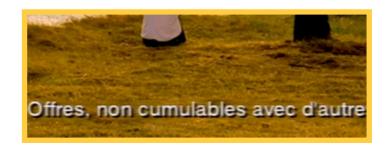


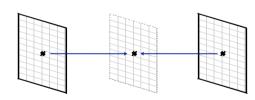
- Need to increase numerically acquired image resolution:
  - Conversion to HDTV of SDTV, Internet and Mobile videos...

- Spatial deinterlacing and up-scaling
  - up to 8 times more pixels



- Frame rate conversion
- twice more images for LCD screens







### 3rd. Concluion



- Super-resolution is possible for signals that are sparse in a dictionary  $\mathcal{D}=\{\phi_p\}_{p\in\Gamma}$  which has a spread spectrum and which is transformed in an incoherent dictionary  $\mathcal{D}_U=\{U\phi_p\}_{p\in\Gamma}$
- Super-resolution is typically not possible for any class of signals
- Need to incoporate as much prior information as possible: use of structured sparse representations.
- What if it was possible to choose the operator U? compressed sensing...