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•Dream: recover high-resolution data from low-
resolution noisy measurements: 
– Medical imaging
– Satellite imaging
– Seismic exploration
– High Definition Television or Camera Phones

•Can we improve the signal resolution ?

•Sparsity as a tool to incorporate prior information.

     Super-Resolution with Sparsity



             Inverse Problems

•Measure a noisy and low resolution signal:

• Inverse problems: compute an estimation

and minimize the risk:

•Super-resolution estimation:      is computed in a space 
of dimension              Is it possible, how ?   

Y = Uf + W

with f ∈ CN and dim(ImU) = Q < N .

F̃ = D Y

r(D, f) = E{‖F̃ − f‖2}

F̃

 ! "#



Deconvolution:                          withUf = f ∗ h

Ũ−1f = f ∗ h̃−1 with

ĥ(ω)

ω
h̃−1(ω)

ω

      Regularized Inversion

ImU
U

Ũ−1
(NullU)⊥

Pseudo inverse: Ũ−1Uf = f if f ∈ (NullU)⊥

Ũ−1g = 0 if g ∈ (ImU)⊥

To estimate  f  from                           invert U !Y = Uf + W



F̃ = R(Ũ−1Y ) ∈ V

Regularized inversion includes a noise reduction with a projection 

in a space     

Optimizing R requires prior information. 

No super-resolution :                               

V :

dim(V) ≤ Q.

      Regularization and Denoising

Ũ−1Y = Ũ−1Uf + Ũ−1W

‖Ũ−1W‖ is huge if Ũ−1 is not bounded.

Problems: Ũ−1Uf ∈ (NullU)⊥ no super-resolution



 Singular Value Decompositions

•Basis of singular vectors                    diagonalizes         :

•Diagonal denoising over the singular basis:

U∗U{ek}1≤k≤N

U∗Uek = λ2
k ek

Since 〈Ũ−1Y, ek〉 = λ−2
k 〈Y, Uek〉

R(Ũ−1Y ) = Ũ−1Y ∗ r

Linear filtering of deconvolution: 

r̂(ω)

h̃−1(ω)

ω

F̃ = R(Ũ−1Y ) =
N−1∑

k=0

rk 〈Ũ−1Y, ek〉 ek .

rk =
1

1 + σ2 λ−2
k

yields F̃ =
N−1∑

k=0

〈Y,Uek〉
λ2

k + σ2
ek .





Thresholding for Inverse Problems

•Remove noise from                                
with a thresholding estimator.

•Optimal in a basis                  providing a sparse 
representation of  f  and which decorrelates the noise 
coefficients                   .

•The dictionary vectors      must be almost eigenvectors 
of           , they must have a narrow spectrum:

〈Ũ−1W,φp〉

φp

U∗U

{φp}p∈Γ

Ũ−1Y = Ũ−1Uf + Ũ−1W

φp =
∑

k∈Sp

〈φp, ek〉 ek with λ2
k ∼ λ̃2

p for k ∈ Sp



    Satellite Image Deconvolution

Original           Smoothed          Linear Wiener        Thresholding



Super-resolution inversion by detection of the sparse support
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u[n] û(ω)

f

Y = f ∗ u + W with f [n] =
∑

p∈Λ

a[p] δ[p− n]

Y [q] =
∑

p∈Λ

a[p]u[q − n] + W [q]

Y F̃

    Sparse Spike Deconvolution

Seismic data: 



• Prior information:  f  has a sparse approximation in a normalized 
dictionary                             of at least N vectors 

       Sparse Super-Resolution

D = {φp}p∈Γ

with a small error 

It results that  

has a sparse approximation in the redundant dictionary

 in the space ImU of dimension Q ≤ N

f =
∑

p∈Λ

a[p]φp + εΛ

‖εΛ‖.

Y = Uf + W =
∑

p∈Λ

a[p]Uφp + (UεΛ + W )

DU = {Uφp}p∈Γ



• A sparse approximation of  Y  is computed in

     Sparse Super-Resolution

• It yields a signal estimator 

DU = {Uφp}p∈Γ

YΛ̃ =
∑

p∈Λ̃

ã[p]Uφp

F̃ =
∑

p∈Λ̃

ã[p]φp

 using prior information which recovers        from each           .  φp Uφp

with a pursuit algorithm. A basis pursuit minimizes the Lagrangian:

‖Y −
∑

p∈Γ

ã[p]Uφp‖2 + λ
∑

p∈Γ

|ã[p]|

and Λ̃ is the support of ã.



      Error and Exact Recovery

 since

• Small error if      includes      and if                       is a Riesz basis.

• Exact recovery in the redundant dictionary

• Super-resolution: if      is not restricted to a space of dimension Q.

f =
∑

p∈Λ

a[p]φp + εΛ

‖f − F̃‖ ≤
∥∥∥

∑

p∈Λ̃

ã[p]φp −
∑

p∈Λ

a[p]φp

∥∥∥ + ‖εΛ‖ .

Λ̃ Λ {Uφp}p∈Λ̃

YΛ̃ =
∑

p∈Λ̃

ã[p]Uφp

• From the sparse decomposition of Y = f + W

DU = {Uφp}p∈Γ

Λ



−150 −100 −50 0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−150 −100 −50 0 50 100 150
0

0.05

0.1

0.15

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

200 400 600 800 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

u[n] û(ω)
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  Sparse Spike Deconvolution
Seismic data: Y = f ∗ u + W with f [n] =

∑

p∈Λ

a[p] δ[p− n]

φp[n] = δ[p− n] , Uφp[q] = u[q − n] , F̃ [n] =
∑

p∈Λ̃

ã[p] δ[n− n]

Y [q] F̃ [n]



   Comparison of Pursuits
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    Conditions for Super-resolution

•Stability:                  must be a Riesz basis
                                should not be too smal.

•Hence the        must have a “spread spectrum” relatively 
to           

•Support recovery: the dictionary                            must 
be as incoherent as possible.

•Exact recovery criteria: 

DU = {Uφp}p∈Γ

{Uφp}p∈Λ

‖Uφp‖
φp

U∗U.

Λ• The signal approximation support     should small.   

ERC(Λ) < 1.



Uf [q] = f [q] for q ∈ Ω with |Ω| = Q < N

Ω

         Image Inpainting

Super-resolution in a wavelet dictionary DU = {Uφp}p∈Γ

Original Support of Super-resolution 



Uf [q] = f [q] for q ∈ Ω with |Ω| = Q < N

Y = Uf + W Linear estimation Super-resolution

         Image Inpainting

                 Wavelet  and local cosinedictionary DU = {Uφp}p∈Γ



            Tomography

U  is a Radon transform which integrates along straight lines.
Original Radon Fourier Support

Linear Back Prop. Haar super-resol.



Size increase:

60 images of 720 x 576 pixels = 320 Mega bit/s

PAL/NTSC

HD LCD screens

  

                                      
 

> Vidéo processor in the TV : 

                                       

120 images of 1080 x 1920 pixels = 7.5 Giga bit/s

x 20

        Super-Resolution Zooming

• Need to increase numerically acquired image resolution:
– Conversion to HDTV of SDTV, Internet and Mobile videos...

• Spatial deinterlacing and up-scaling
• up to 8 times more pixels

• Frame rate conversion
• twice more images for LCD screens



          Image and Video Zooming

• Image subsampling :                         is a linear projector.
• Linear inversion without noise: linear interpolation 

Uf = f [n/s]

f̃ [p] =
∑

n

Uf [n] θ(p− ns)

• Prior information: geometric regularity.
• Super-resolution by interpolations in the directions of regularity
• Sparse super-resolution marginally improves linear interpolations. 



High
Resolution
Image

Low
Resolution
Image

Contourlet
SuperResolution
  28.59 db

Cubic spline
Interpolation
28.47 db



        Aliased Interpolation

−pi 0 pi

−pi

0

pi −pi 0 pi

−pi

0

pi

Original               Subsampled         Linear Interp.      Direct. Interp.

Super-resolution is not possible for horizontal and vertical edges.



Adaptive Directional Interpolations

• Linear Tikhonov estimation: 

• Adaptive directional interpolation adapt locally     by testing 
locally the directional regularity with gradient operators.

• General class of mixing linear operators in a frame

• Problem: how to optimize the              ?  

F̃θ = IθY

minimizes ‖RθIθY ‖ subject to UIθY = Y

where Rθ is a linear directional regularity operator.

θ

{φp}p∈Γ

F̃ =
∑

θ∈Θ

Iθ




∑

p∈Γ

a(θ, p) 〈Y, φp〉φp





a(θ, p)



 Wavelet Block Interpolation

〈f, ψk
j,n〉 =

∫
f(x) 2−j ψk(2−j(x − n)) dx

k = 1 k = 2

k = 3

2j = 2

Wavelet transform on 1 scale,  j = 1

Low frequencies are linearly interpolated (no aliasing).
Adaptive directional interpolation of fine scale wavelets.



    Wavelet Block Interpolation

• Dictionary of blocks

• To a wavelet block decomposition

we associate an interpolation estimation

•How to optimize the               ?

{Bθ,q}θ,q

F̃ =
∑

θ

Iθ

(
∑

q

ε(θ, q) Yq,θ

)
+ Ir(Yr)

ε(θ, q)

Y =
∑

θ

∑

q

ε(θ, q) PBθ,qY + Yr

with PBθ,qY =
∑

(n,k)∈Bθ,q

〈Y, ψk
1,n〉ψk

1,n



Adaptive Tikhonov Estimation

• To compute

where             is sparse and                     if                            is 
small: Lagrangian minimization

•Standard     minimization. Can be solved with a greedy pursuit.
•If there is only one                     then       is minimized by

ε(θ, q)

Y =
∑

θ

∑

q

ε(θ, q) PBθ,qY + Yr

‖RθIθPBθ,qY ‖

ε(θ, q) != 0 L

L = ‖Y ‖2 − e(θ, q) with e(θ, q) =
‖PBθ,qY ‖2 ε(θ, q)2

2
.

ε(θ, q) = max
(

1− λ
‖RθIθPBθ,qY ‖2

‖PBθ,qY ‖2
, 0

)
and

l1

L = ‖Y −
∑

θ,q

ε(θ, q) PBθ,qY ‖2 + λ
∑

θ,q

|ε(θ, q)| ‖RθIθPBθ,qY ‖2

ε(θ, q) ≈ 1



      Wavelet Block Spaces

Blocks of oriented bars

Wavelet 
transform

Block projection
 pursuit



Super-Resolution Block Interpolation 

I:wavelet
transform II:block space

pursuit

III:block inverse transforms
directional interpolations

IV: inverse wavelet
transform



   Comparison with Cubic Splines

Block pursuit
on wavelet coefficients

Cubic spline interpolationsBlock Interpolations
over wavelet coefficients



   Comparison with Cubic Splines

Block pursuit
on wavelet coefficients

Cubic spline interpolationsBlock Interpolations
over wavelet coefficients

 SNR = 28.58 db SNR = 29.24 db



        Examples of Zooming

Original Image
Cubic Spline
Interpolation

 Bandlet
Super-Resolution

 SNR = 24.14 db SNR = 22.35 db



        Super-Resolution Zooming

• Need to increase numerically acquired image resolution:
– Conversion to HDTV of SDTV, Internet and Mobile videos...

• Spatial deinterlacing and up-scaling
• up to 8 times more pixels

• Frame rate conversion
• twice more images for LCD screens



     3rd. Concluion

• Super-resolution is possible for signals that are sparse in a 
dictionary                             which has a spread spectrum and 
which is transformed in an incoherent dictionary 

• Super-resolution is typically not possible for any class of signals

• Need to incoporate as much prior informaiton as possible: use of 
structured sparse representations.

• What if it was possible to choose the operator  U  ? 
compressed sensing...

DU = {Uφp}p∈Γ

D = {φp}p∈Γ


