
V

Frames

A signal representation may provide “analysis” coefficients which are inner products with a family
of vectors, or “synthesis” coefficients that compute an approximation by recombining these vectors.
Frames are families of vectors where these representations are stable, and computed with a dual
frame. Frames are potentially redundant and thus more general than bases, with a redundancy
measured by frame bounds. They provide the flexibility needed to build signal representations
with unstructured families of vectors.

Complete and stable wavelet and windowed Fourier transforms are constructed with frames
of wavelets and windowed Fourier atoms. In two dimensions, frames of directional wavelets and
curvelets are introduced to analyze and process multiscale image structures.

5.1 Frames and Riesz Bases

5.1.1 Stable Analysis and Synthesis Operators

The frame theory was originally developed by Duffin and Schaeffer [234] to reconstruct band-limited
signals from irregularly spaced samples. They established general conditions to recover a vector f
in a Hilbert space H from its inner products with a family of vectors {φn}n∈Γ. The index set Γ
might be finite or infinite. The following frame definition gives an energy equivalence to invert the
operator Φ defined by

∀n ∈ Γ , Φf [n] = 〈f, φn〉. (5.1)

Definition 5.1 (Frame and Riesz Basis). The sequence {φn}n∈Γ is a frame of H if there exist two
constants B ! A > 0 such that

∀f ∈ H , A ‖f‖2 "
∑

n∈Γ

|〈f, φn〉|2 " B ‖f‖2. (5.2)

When A = B the frame is said to be tight. If the {φn}n∈Γ are linearly independant then the frame
is not redundant and is called a Riesz basis.

If the frame condition is satisfied then Φ is called a frame analysis operator. Section 5.1.2 proves
that (5.2) is a necessary and sufficient condition guaranteeing that Φ is invertible on its image space,
with a bounded inverse. A frame thus defines a complete and stable signal representation, which
may also be redundant.

Frame Synthesis Let us consider the space of finite energy coefficients

!
2(Γ) = {a : ‖a‖2 =

∑

n∈Γ

|a[n]|2 < +∞} .
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The adjoint Φ∗ of Φ is defined over !
2(Γ) and satisfies for any f ∈ H and a ∈ !

2(Γ)

〈Φ∗a, f〉 = 〈a,Φf〉 =
∑

n∈Γ

a[n] 〈f, φn〉∗.

It is therefore the synthesis operator

Φ∗a =
∑

n∈Γ

a[n]φn . (5.3)

The frame condition (5.2) can be rewritten

∀f ∈ H , A ‖f‖2 " ‖Φf‖2 = 〈Φ∗Φf, f〉 " B ‖f‖2, (5.4)

with

Φ∗Φf =
∑

m∈Γ

〈f, φn〉φn .

It results that A and B are the infimum and supremum values of the spectrum of the symmetric
operator Φ∗Φ, which correspond to the smallest and largest eigenvalues in finite dimension. The
eigenvalues are also called singular values of Φ or singular spectrum. The following theorem derives
that the frame synthesis operator is also stable.

Theorem 5.1. The family {φn}n∈Γ is a frame with bounds 0 < A " B if and only if

∀a ∈ ImΦ , A ‖a‖2 " ‖
∑

n∈Γ

a[n]φn‖2 " B ‖a‖2 . (5.5)

Proof. Since Φ∗a =
P

n∈Γ a[n]φn, it results that

‖
X

n∈Γ

a[n]φn‖2 = 〈ΦΦ∗a, a〉 .

The operator Φ is a frame if and only if the spectrum of Φ∗Φ is bound by A and B. The inequality
(5.5) states that the the spectrum of ΦΦ∗ over ImΦ is also bounded by A and B. Both statements are
proved to be equivalent by verifying that sup and inf of the spectrum of Φ∗Φ is equal to the sup and
inf of the spectrum of Φ∗Φ.

In finite dimension, if λ is an eigenvalue of Φ∗Φ with eigenvector f then λ is also an eigenvalue of
Φ∗Φ with eigenvector Φf . Indeed, Φ∗Φf = λf so ΦΦ∗(Φf) = λΦf and Φf $= 0 because the left frame
inequality (5.2) implies that ‖Φf‖2

" A ‖f‖2. It results that the maximum and minimum eigenvectors
of Φ∗Φ and ΦΦ∗ on ImΦ are identical.

In a Hilbert space of infinite dimension, we prove that the sup and inf of the spectrum of both
operators remain identical by growing the space dimension, and computing the limit of the largest and
smallest eigenvalues when the space dimension tends to infinity.

This theorem proves that linear combination of frame vectors define a stable signal representation.
Section 5.1.2 proves that synthesis coefficients are computed with a dual frame. The operator ΦΦ∗

is the Gram matrix, whose coefficients are {〈φn, φp〉}(m,p)∈!2(Γ):

ΦΦ∗a[p] =
∑

m∈Γ

a[m] 〈φn, φp〉 . (5.6)

One must be careful because (5.5) is only valid for a ∈ ImΦ. If it is valid for all a ∈ !
2(Γ) with

A > 0 then the family is linearly independant and is thus a Riesz basis.
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Redundancy When the frame vectors are normalized ‖φn‖ = 1, the following theorem shows that
the frame redundancy is measured by the frame bounds A and B.

Theorem 5.2. In a space of finite dimension N , a frame of P ! N normalized vectors has frame
bounds A and B which satisfy

A "
P

N
" B. (5.7)

For a tight frame A = B = P/N .

Proof. It results from (5.4) that all eigenvalues of Φ∗Φ are between A and B. The trace of Φ∗Φ thus
satisfies

A N " tr(Φ∗Φ) " B N .

But since the trace is not modified by commuting matrices (Exercise 5.4), and ‖φn‖ = 1

A N " tr(Φ∗Φ) = tr(ΦΦ∗) =
PX

n=1

|〈φn, φn〉|2 = P " B N ,

which implies (5.7).

If {φn}n∈Γ is a normalized Riesz basis and is therefore linearly independent then (5.7) proves
that A " 1 " B. This result remains valid in infinite dimension. Inserting f = φn in the frame
inequality (5.2) proves that the frame is orthonormal if and only if B = 1 in which case A = 1.

Example 5.1. Let {g1, g2} be an orthonormal basis of an N = 2 two-dimensional plane H. The
P = 3 normalized vectors

φ1 = g1 , φ2 = −
g1

2
+

√
3

2
g2 , φ3 = −

g1

2
−

√
3

2
g2

have equal angles of 2π/3 between each other. For any f ∈ H

3∑

n=1

|〈f, φn〉|2 =
3

2
‖f‖2.

These three vectors thus define a tight frame with A = B = 3/2.

Example 5.2. For any 0 " k < K, suppose that {φk,n}n∈Γ is an orthonormal basis of H. The
union of these K orthonormal bases {φk,n}n∈Γ,0!k<K is a tight frame with A = B = K. Indeed,
the energy conservation in an orthonormal basis implies that for any f ∈ H,

∑

n∈Z

|〈f, φk,n〉|2 = ‖f‖2,

hence
K−1∑

k=0

∑

n∈Z

|〈f, φk,n〉|2 = K ‖f‖2.

One can verify (Exercice 5.3) that a finite set of N vectors {φn}1!n!N is always a frame of the
space V generated by linear combinations of these vectors. When N increases, the frame bounds
A and B may go respectively to 0 and +∞. This illustrates the fact that in infinite dimensional
spaces, a family of vectors may be complete and not yield a stable signal representation.
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Irregular Sampling Let Us be the space of L2(R) functions whose Fourier transforms have a
support included in [−π/s, π/s]. For a uniform sampling, tn = ns, Theorem 3.5 proves that if
φs(t) = s1/2 sin(πs−1t)/(πt) then {φs(t−ns)}n∈Z is an orthonormal basis of Us. The reconstruction
of f from its samples is then given by the sampling Theorem 3.2.

The irregular sampling conditions of Duffin and Schaeffer [234] for constructing a frame were
later refined by several researchers [100, 500, 79]. Grochenig proved [284] that if lim

n→+∞
tn = +∞

and lim
n→−∞

tn = −∞, and if the maximum sampling distance δ satisfies

δ = sup
n∈Z

|tn+1 − tn| < s , (5.8)

then

{λn φs(t − tn)}n∈Z
with λn =

√
tn+1 − tn−1

2s

is a frame with frame bounds A ! (1 − δ/s)2 and B " (1 + δ/s)2. The amplitude factor λn

compensates for the increase of sample density relatively to s. The reconstruction of f requires
inverting the frame operator Φf [n] = 〈f(u), λn, φs(u − tn)〉.

5.1.2 Dual Frame and Pseudo Inverse

The reconstruction of f from its frame coefficients Φf [n] is calculated with a pseudo inverse also
called Moore-Penrose pseudo-inverse. This pseudo inverse is a bounded operator that is implements
a dual frame reconstruction. For Riesz bases, this dual frame is a biorthogonal basis.

For any operator U , we denote by ImU the image space of all Uf and by NullU the null space
of all h such that Uh = 0.

Theorem 5.3. If {φn}n∈Γ is a frame but not a Riesz basis then Φ admits an infinite number of
left inverses.

Proof. We know that NullΦ∗ = (ImΦ)⊥ is the orthogonal complement of ImΦ in !
2(Γ) (Exercice 5.7).

If Φ is a frame and not a Riesz basis then {φn}n∈Γ is linearly dependent so there exists a ∈ NullΦ∗ =
(ImΦ)⊥ with a $= 0.

A frame operator Φ is injective (one to one). Indeed, the frame inequality (5.2) guarantees that
Φf = 0 implies f = 0. Its restriction to ImΦ is thus invertible, which means that Φ admits a left inverse.
There is an infinite number of left inverses since the restriction of a left inverse to (ImΦ)⊥ $= {0} may
be any arbitrary linear operator.

The more redundant the frame {φn}n∈Γ, the larger the orthogonal complement (ImΦ)⊥ of ImΦ in
!
2(Γ). The pseudo inverse, that we write Φ+, is defined as the left inverse that is zero on (ImΦ)⊥:

∀f ∈ H , Φ+Φf = f and ∀a ∈ (ImΦ)⊥ , Φ+a = 0. (5.9)

The following theorem computes this pseudo-inverse.

Theorem 5.4 (Pseudo inverse). If Φ is a frame operator then Φ∗Φ is invertible and the pseudo
inverse satisfies

Φ+ = (Φ∗Φ)−1Φ∗. (5.10)

Proof. The frame condition in (5.4) is rewritten

∀f ∈ H , A ‖f‖2
" 〈Φ∗Φf, f〉 " B ‖f‖2.

It result that Φ∗Φ is an injective self-adoint opeator: Φ∗Φf = 0 if and only if f = 0. It is therefore
invertible. For all f ∈ H

Φ+Φf = (Φ∗Φ)−1Φ∗Φf = f ,

so Φ+ is a left inverse. Since (ImΦ)⊥ = NullΦ∗ it results that Φ+a = 0 for any a ∈ (ImΦ)⊥ = NullΦ∗.
Since this left inverse vanishes on (ImΦ)⊥, it is the pseudo-inverse.
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Dual Frame The pseudo inverse of a frame operator implements a reconstruction with a dual
frame, which is specified by the following theorem.

Theorem 5.5. Let {φn}n∈Γ be a frame with bounds 0 < A " B. The dual operator defined by

∀n ∈ Γ , Φ̃f [n] = 〈f, φ̃n〉 with φ̃n = (Φ∗Φ)−1φn (5.11)

satisfies Φ̃∗ = Φ+ and hence

f =
∑

n∈Γ

〈f, φn〉 φ̃n =
∑

n∈Γ

〈f, φ̃n〉φn. (5.12)

It defines a dual frame

∀f ∈ H ,
1

B
‖f‖2 "

∑

n∈Γ

|〈f, φ̃n〉|2 "
1

A
‖f‖2 . (5.13)

If the frame is tight (i.e., A = B), then φ̃n = A−1 φn.

Proof. The dual operator can be written Φ̃ = Φ(Φ∗Φ)−1. Indeed,

Φ̃f [n] = 〈f, φ̃n〉 = 〈f, (Φ∗Φ)−1φn〉 = 〈(Φ∗Φ)−1f, φn〉 = Φ(Φ∗Φ)−1f.

We thus derive from (5.10) that its adjoint is the pseudo-inverse of Φ:

Φ̃∗ = (Φ∗Φ)−1Φ∗ = Φ+

It results that Φ+ Φ = Φ̃∗Φ = Id and hence that Φ∗Φ̃ = Id, which proves (5.12).

Let us now prove the frame bounds (5.13). Frame conditions are rewritten in (5.4):

∀f ∈ H , A ‖f‖2
" 〈Φ∗Φf, f〉 " B ‖f‖2. (5.14)

The following lemma applied to L = Φ∗Φ proves that

∀f ∈ H , B−1 ‖f‖2
" 〈(Φ∗Φ)−1f, f〉 " A−1 ‖f‖2. (5.15)

Since for any f ∈ H

‖Φ̃f‖2 = 〈Φ(Φ∗Φ)−1f,Φ(Φ∗Φ)−1f〉 = 〈f, (Φ∗Φ)−1f〉 ,

the dual frame bounds (5.13) are derived from (5.15).

If A = B then 〈Φ∗Φf, f〉 = A ‖f‖2. The spectrum of Φ∗Φ is thus reduced to A and hence
Φ∗Φ = A Id. As a result φ̃n = (Φ∗Φ)−1φn = A−1φn.

Lemma 5.1. If L is a self-adjoint operator such that there exist B ! A > 0 satisfying

∀f ∈ H , A ‖f‖2
" 〈Lf, f〉 " B ‖f‖2 (5.16)

then L is invertible and

∀f ∈ H ,
1
B

‖f‖2
" 〈L−1f, f〉 "

1
A

‖f‖2. (5.17)

In finite dimensions, since L is self-adjoint we know that it is diagonalized in an orthonormal basis.
The inequality (5.16) proves that its eigenvalues are between A and B. It is therefore invertible with
eigenvalues between B−1 and A−1, which proves (5.17). In a Hilbert space of infinite dimension,
we prove that same result on the sup and inf of the spectrum by growing the space dimension, and
computing the limit of the largest and smallest eigenvalues when the space dimension tends to infinity.

This theorem proves that f is reconstructed from frame coefficients Φf [n] = 〈f, φn〉 with the
dual frame {φ̃n}n∈Γ. The synthesis coefficients of f in {φn}n∈Γ are the dual frame coefficients
Φ̃f [n] = 〈f, φn〉. If the frame is tight then both decompositions are identical

f =
1

A

∑

n∈Γ

〈f, φn〉φn. (5.18)
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Biorthogonal Bases A Riesz basis is a frame of vectors that are linearly independent, which implies
that ImΦ = !

2(Γ), then its dual frame is also linearly independent. Inserting f = φp in (5.12)
yields

φp =
∑

n∈Γ

〈φp, φ̃n〉φn,

and the linear independence implies that

〈φp, φ̃n〉 = δ[p − n].

Dual Riesz bases are thus biorthogonal families of vectors. If the basis is normalized (i.e., ‖φn‖ = 1),
then

A " 1 " B. (5.19)

This is proved by inserting f = φp in the frame inequality (5.13):

1

B
‖φp‖2 "

∑

n∈Γ

|〈φp, φ̃n〉|2 = 1 "
1

A
‖φp‖2.

5.1.3 Dual Frame Analysis and Synthesis Computations

Suppose that {φn}n∈Γ is a frame of a subspace V of the whole signal space. The best linear
approximation of f in V is the orthogonal projection of f in V. The following theorem shows that
this orthogonal projection is computed with the dual frame. Two iterative numerical algorithms
are described to implement such computations.

Theorem 5.6. Let {φn}n∈Γ be a frame of V and {φ̃n}n∈Γ it’s dual frame in V. The orthogonal
projection of f ∈ H in V is

PVf =
∑

n∈Γ

〈f, φn〉 φ̃n =
∑

n∈Γ

〈f, φ̃n〉φn . (5.20)

Proof. Since both frames are dual in V, if f ∈ V then (5.12) proves that the operator PV defined in
(5.20) satisfies PVf = f . To prove that it is an orthogonal projection it is sufficient to verify that for
all f ∈ H 〈f − PVf, φp〉 = 0 for all p ∈ Γ. Indeed,

〈f − PVf, φp〉 = 〈f, φp〉 −
X

n∈Γ

〈f, φn〉 〈φ̃n, φp〉 = 0

because the dual frame property implies that
P

n∈Γ 〈φ̃n, φp〉φn = φp.

If Γ is finite then {φn}n∈Γ is necessarily a frame of the space V it generates, and (5.20) reconstructs
the best linear approximation of f in V. This result is particularly important for approximating
signals from a finite set of vectors.

Since Φ is not a frame of the whole signal space H but of a subspace V then Φ is only invertible
on this subspace and the pseudo inverse definition becomes:

∀f ∈ V , Φ+Φf = f and ∀a ∈ (ImΦ)⊥ , Φ+a = 0. (5.21)

Let ΦV be the restriction of Φ to V. The operator Φ∗ΦV is invertible on V and we write (Φ∗ΦV)−1

its inverse. Similarly to (5.10), we verify that Φ+ = (Φ∗ΦV)−1Φ∗.

Dual Synthesis In a dual synthesis problem, the orthogonal projection is computed from the frame
coefficients {Φf [n] = 〈f, φn〉}n∈Γ with the dual frame synthesis operator:

PVf = Φ̃∗Φf =
∑

n∈Γ

〈f, φn〉 φ̃n . (5.22)
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If the frame {φn}n∈Γ does not depend upon the signal f then the dual frame vectors are
precomputed with (5.11):

∀n ∈ Γ , φ̃n = (Φ∗ΦV)−1φn, (5.23)

and the dual synthesis is solved directly with (5.22). In many applications, the frame vectors
{φn}n∈Γ depend on the signal f , in which case the dual frame vectors φ̃n cannot be computed in
advance, and it is highy inefficient to compute them. This is the case when coefficients {〈f, φn〉}n∈Γ

are selected in a redundant transform, to build a sparse signal representation. For example, the
time-frequency ridge vectors in Sections 4.4.1 and 4.4.2, are selected from the local maxima of f
in highly redundant windowed Fourier or wavelet transforms.

The transform coefficients Φf are known and we must compute

PVf = Φ̃Φf = (Φ∗ΦV)−1Φ∗Φf .

A dual synthesis algorithm computes first

y = Φ∗Φf =
∑

n∈Γ

〈f, φn〉φn ∈ V

and then derives PVf = L−1y = z by applying the inverse of the symmetric operator L = Φ∗ΦV

to y, with

∀h ∈ V , Lh =
∑

n∈Γ

〈h, φn〉φn . (5.24)

The eigenvalues of L are between A and B.

Dual Analysis In a dual analysis, the orthogonal projection PVf is computed from the frame
vectors {φn}n∈Γ with the dual frame analysis operator Φ̃f [n] = 〈f, φ̃n〉:

PVf = Φ∗ Φ̃f =
∑

n∈Γ

〈f, φ̃n〉φn . (5.25)

If {φn}n∈Γ does not depend upon f then {φ̃n}n∈Γ is precomputed with (5.23). The {φn}n∈Γ

may also be selected adaptively from a larger dictionary, to provide a sparse approximation of f .
Computing the orthogonal projection PVf is called a back projection. In Section 12.3, matching
pursuits implement this back projection.

When {φn}n∈Γ depends on f , computing the dual frame is inefficient. The dual coefficient
a[n] = Φ̃f [n] are calculated directly, as well as

PVf = Φ∗a =
∑

n∈Γ

a[n]φn . (5.26)

Since ΦPVf = Φf , we have ΦΦ∗a = Φf . Let Φ∗
ImΦ be the restriction of Φ∗ to ImΦ. Since ΦΦ∗

ImΦ
is invertible on ImΦ

a = (ΦΦ∗
ImΦ)−1Φ f .

The dual analysis algorithm thus computes y = Φf = {〈f, φn〉}n∈Γ and derives the dual coefficients
a = L−1y = z by applying the inverse of the Gram operator L = ΦΦ∗

ImΦ to y, with

Lh[n] =
∑

p∈Γ

h[n] 〈φn, φp〉 . (5.27)

The eigenvalues of L are also between A and B. The orthogonal projection of f is recovered with
(5.26).
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Richardson Inversion of Symmetric Operators The key computational step of a dual analysis or a
dual synthesis problem is to compute z = L−1y, where L is a symmetric operator whose eigenvalues
are between A and B. Theorems 5.7 and 5.8 describe two iterative algorithms with exponential
convergence. The Richardson iteration procedure is simpler but requires knowing the frame bounds
A and B. Conjugate gradient iterations converge more quickly when B/A is large, and do not require
knowing the values of A and B.

Theorem 5.7. To compute z = L−1y, let z0 be an initial value and γ > 0 be a relaxation parameter.
For any k > 0, define

zk = zk−1 + γ (y − Lzk−1). (5.28)

If
δ = max {|1 − γA|, |1 − γB|} < 1, (5.29)

then
‖z − zk‖ " δk ‖z − z0‖, (5.30)

and hence lim
k→+∞

zk = z.

Proof. The induction equation (5.28) can be rewritten

z − zk = z − zk−1 − γ L(z − zk−1).

Let
R = Id − γ L,

z − zk = R(z − zk−1) = Rk(z − z0). (5.31)

Since the eigenvalues of L are between A and B

A ‖z‖2
" 〈Lz, z〉 " B ‖z‖2.

This implies that R = I − γL satisfies

|〈Rz, z〉| " δ ‖z‖2,

where δ is given by (5.29). Since R is symmetric, this inequality proves that ‖R‖ " δ. We thus derive
(5.30) from (5.31). The error ‖z − zk‖ clearly converges to zero if δ < 1.

The convergence is guaranteed for all initial values z0. If an estimation z0 of the solution z is
known then this estimation can be chosen, otherwise z0 is often set to 0. For frame inversion, the
Richardson iteration algorithm is sometimes called the frame algorithm [18]. The convergence rate
is maximized when δ is minimum:

δ =
B − A

B + A
=

1 − A/B

1 + A/B
,

which corresponds to the relaxation parameter

γ =
2

A + B
. (5.32)

The algorithm converges quickly if A/B is close to 1. If A/B is small then

δ ≈ 1 − 2
A

B
. (5.33)

The inequality (5.30) proves that we obtain an error smaller than ε for a number n of iterations,
which satisfies:

‖z − zk‖
‖z − z0‖

" δk = ε.

Inserting (5.33) gives

k ≈
loge ε

loge(1 − 2A/B)
≈

−B

2A
loge ε. (5.34)
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The number of iterations thus increases proportionally to the frame bound ratio B/A.
The exact values of A and B are often not known, and A is generally more difficult to compute.

The upper frame bound is B = ‖ΦΦ∗‖S = ‖Φ∗ Φ‖S . If we choose

γ < 2 ‖ΦΦ∗‖−1
S (5.35)

then (5.29) shows that the algorithm is guaranteed to converge, but the convergence rate depends
on A. Since 0 < A " B, the optimal relaxation parameter γ in (5.32) is in the range: ‖ΦΦ∗‖−1

S "

γ < 2 ‖ΦΦ∗‖−1
S .

Conjugate-Gradient Inversion The conjugate gradient algorithm computes z = L−1y with a gra-
dient descent along orthogonal directions with respect to the norm induced by the symmetric
operator L:

‖z‖2
L = ‖Lz‖2. (5.36)

This L norm is used to estimate the error. Grochenig’s [286] implementation of the conjugate
gradient algorithm is given by the following theorem.

Theorem 5.8 (Conjugate gradient). To compute z = L−1y, we initialize

z0 = 0 , r0 = p0 = y , p−1 = 0. (5.37)

For any k ! 0, we define by induction

λk =
〈rk, pk〉
〈pk, Lpk〉

(5.38)

zk+1 = zk + λk pk (5.39)

rk+1 = rk − λk Lpk (5.40)

pk+1 = Lpk −
〈Lpk, Lpk〉
〈pk, Lpk〉

pk −
〈Lpk, Lpk−1〉
〈pk−1, Lpk−1〉

pk−1. (5.41)

If σ =
√

B−
√

A√
B+

√
A

then

‖z − zk‖L "
2σk

1 + σ2k
‖z‖L, (5.42)

and hence lim
k→+∞

zk = z.

Proof. We give the main steps of the proof as outlined by Grochenig [286].

Step 1: Let Uk be the subspace generated by {Ljz}1!j!k. By induction on k, we derive from (5.41)
that pj ∈ Uk, for j < k.

Step 2: We prove by induction that {pj}0!j<k is an orthogonal basis of Uk with respect to the
inner product 〈z, h〉L = 〈z, Lh〉. Assuming that 〈pk, Lpj〉 = 0, for j " k − 1, it can be shown that
〈pk+1, Lpj〉 = 0, for j " k.

Step 3: We verify that zk is the orthogonal projection of z onto Uk with respect to 〈., .〉L which
means that

∀g ∈ Uk , ‖z − g‖L ! ‖z − zk‖L.

Since zk ∈ Uk, this requires proving that 〈z − zk, pj〉L = 0, for j < k.

Step 4: We compute the orthogonal projection of z in embedded spaces Uk of dimension k, and
one can verify that limk→+∞ ‖z − zk‖L = 0. The exponential convergence (5.42) is proved in [286].

As opposed to the Richardson alorithm, the initial value z0 must be set to 0. As in the Richardson
iteration algorithm, the convergence is slower when A/B is small. In this case

σ =
1 −

√
A/B

1 +
√

A/B
≈ 1 − 2

√
A

B
.
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The upper bound (5.42) proves that we obtain a relative error

‖z − zk‖L

‖z‖L
" ε

for a number of iterations

k ≈
loge

ε
2

loge σ
≈

−
√

B

2
√

A
loge

ε

2
.

Comparing this result with (5.34) shows that when A/B is small, the conjugate gradient algorithm
needs many fewer iterations than the Richardson iteration algorithm to compute z = L−1y at a
fixed precision.

5.1.4 Frame Projector and Reproducing Kernel

Frame redundancy is useful in reducing noise added to the frame coefficients. The vector computed
with noisy frame coefficients is projected on the image of Φ to reduce the amplitude of the noise.
This technique is used for high precision analog to digital conversion based on oversampling. The
following theorem specifies the orthogonal projector on ImΦ.

Theorem 5.9 (Reproducing kernel). Let {φn}n∈Γ be a frame of H or of a subspace V. The
orthogonal projection from !

2(Γ) onto ImΦ is

Pa[n] = ΦΦ+a[n] =
∑

p∈Γ

a[p] 〈φ̃p, φn〉 . (5.43)

Coefficients a ∈ !
2(Γ) are frame coefficients a ∈ ImΦ if and only if they satisfy the reproducing

kernel equation

a[n] = ΦΦ+a[n] =
∑

p∈Γ

a[p] 〈φ̃p, φn〉 . (5.44)

Proof. If a ∈ ImΦ then a = Φf and

Pa = ΦΦ+Φf = Φf = a.

If a ∈ (ImΦ)⊥ then Pa = 0 because Φ+a = 0. This proves that P is an orthogonal projector on ImΦ.
Since Φf [n] = 〈f, φn〉 and Φ+a =

P
p∈Γ a[p] φ̃p, we derive (5.43).

A vector a ∈ !
2(Γ) belongs to ImΦ if and only if a = Pa, which proves (5.44).

The reproducing kernel equation (5.44) expresses the redundancy of frame coefficients. If the frame
is not redundant and is a Riesz basis then 〈φ̃p, φn〉 = 0, so this equation vanishes.

Noise Reduction Suppose that each frame coefficient Φf [n] is contaminated by an additive noise
W [n], which is a random variable. Applying the projector P gives

P (Φf + W ) = Φf + PW,

with
PW [n] =

∑

p∈Γ

W [p] 〈φ̃p, φn〉.

Since P is an orthogonal projector, ‖PW‖ " ‖W‖. This projector removes the component of W
that is in (ImΦ)⊥. Increasing the redundancy of the frame reduces the size of ImΦ and thus
increases (ImΦ)⊥, so a larger portion of the noise is removed. If W is a white noise, its energy is
uniformly distributed in the space !

2(Γ). The following theorem proves that its energy is reduced
by at least A if the frame vectors are normalized.
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Theorem 5.10. Suppose that ‖φn‖ = C, for all n ∈ Γ. If W is a zero-mean white noise of
variance E{|W [n]|2} = σ2, then

E{|PW [n]|2} "
σ2 C2

A
. (5.45)

If the frame is tight then this inequality is an equality.

Proof. Let us compute

E{|PW [n]|2} = E

( 
X

p∈Γ

W [p] 〈φ̃p, φn〉
! 

X

l∈Γ

W ∗[l] 〈φ̃l, φn〉∗
!)

.

Since W is white,
E{W [p] W ∗[l]} = σ2 δ[p − l],

and therefore

E{|PW [n]|2} = σ2
X

p∈Γ

|〈φ̃p, φn〉|2 "
σ2 ‖φn‖2

A
=

σ2 C2

A
.

The last inequality is an equality if the frame is tight.

Oversampling This noise reduction strategy is used by high precision analog to digital converters.
After a low-pass filter, a band-limited analog signal f(t) is uniformly sampled and quantized. In
hardware, it is often easier to increase the sampling rate rather than the quantization precision.
Increasing the sampling rate introduces a redundancy between the sample values of the band-
limited signal. These samples can thus be interpreted as frame coefficients. For a wide range of
signals, it has been shown that the quantization error is nearly a white noise [276]. It can thus be
significantly reduced by a frame projector, which in this case is a low-pass convolution operator
(Exercise 5.16).

The noise can be further reduced if it is not white and if its energy is better concentrated
in (ImΦ)⊥. This can be done by transforming the quantization noise into a noise whose energy
is mostly concentrated at high frequencies. Sigma-Delta modulators produce such quantization
noises by integrating the signal before its quantization [87]. To compensate for the integration,
the quantized signal is differentiated. This differentiation increases the energy of the quantized
noise at high frequencies and reduces its energy at low frequencies [456].

5.1.5 Translation Invariant Frames

To construct translation invariant signal representations, Section 4.1 introduces translation in-
variant dictionaries obtained by translating a family of generators {φn}n∈Γ. In multiple dimen-
sions for φn ∈ L2(Rd), the resulting dictionary can be written D = {φu,n(x)}n∈Γ,u∈Rd , with
φu,n(x) = λu,n φn(x−u). In a translation invariant wavelet dictionary, the generators are obtained

by dilating a wavelet ψ(t) with scales sn: φn(t) = s−1/2
n ψ(x/sn). In a window Fourier dictionary,

the generators are obtained by modulating a window g(x) at frequencies ξn: φn(x) = eiξnxg(x).
The decomposition coefficients of f in D are convolution products

Φf(u, n) = 〈f, φu,n〉 = λu,n f * φ̄n(u) with φ̄n(x) = φ∗
n(−x) . (5.46)

Suppose that Γ is a countable set. The overall index set Rd × Γ is not countable so the dictionary
D can not strictly speaking be considered as a frame. However, if we consider the overall energy
of dictionary coefficients, calculated with a sum and a multidimensional integral

∑

n∈Γ

‖Φf(u, n)‖2 =
∑

n∈Γ

∫
|Φf(u, n)| du,

and if there exist two constants A > 0 and B > 0 such that for all f ∈ L2(R),

A ‖f‖2 "
∑

n∈Γ

‖Φf(u, n)‖2 " B ‖f‖2 (5.47)
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then the frame theory results of the previous section apply. With an abuse of language, such
translation invariant dictionaries will thus also be called frames. The following theorem proves
that the frame condition (5.47) is equivalent to a condition on the Fourier transform φ̂n(ω) of the
generators.

Theorem 5.11. If there exist two constants B ! A > 0 such that for almost all ω in Rd

A "
∑

n∈Γ

|φ̂n(ω)|2 " B, (5.48)

then the frame inequality (5.47) is valid for all f ∈ L2(Rd). Any {φ̃n}n∈Γ which satisfies for almost
all ω in Rd

∑

n∈Γ

φ̂∗
n(ω) ̂̃φn(ω) = 1, (5.49)

defines a left inverse

f(t) =
∑

n∈Γ

Φf(., n) * φ̃n(t). (5.50)

The pseudo-invese (dual frame) is implemented by

̂̃φn(ω) =
φ̂n(ω)

∑
n∈Γ |φ̂n(ω)|2

. (5.51)

Proof. The frame condition (5.47) means that Φ∗Φ has a spectrum bounded by A and B. It results
from (5.46) that

Φ∗Φf(x) = f & (
X

n∈Γ

φn & φ̄n)(x) . (5.52)

The spectrum of this convolution operator is given by the Fourier transform of
P

n∈Γ φn & φ̄n(x), which

is
P

n∈Γ |φ̂n(ω)|2. The frame inequality (5.47) is thus equivalent to condition (5.48).

Equation (5.50) is proved by taking the Fourier transform on both sides and inserting (5.49).

Theorem 5.5 proves that the dual frame vectors implementing the pseudo-inverse are φ̃n,u =
(Φ∗Φ)−1φn,u. Since Φ∗Φ is the convolution operator (5.52), its inverse is calculated by inverting
its tranfer function, which yields (5.51).

For wavelet or windowed Fourier translation invariant dictionaries, the theorem condition (5.48)
becomes a condition on the Fourier transform of the wavelet ψ̂(ω) or on the Fourier transform of
the window ĝ(ω). As explained in Section 5.3 and 5.4, more conditions are needed to obtain a
frame by discretizing the translation parameter u.

Discrete Translation Invariant Frames For finite dimensional signals f [n] ∈ CN a circular transla-
tion invariant frame is obtained with a periodic shift modulo N of a finite number of generators
{φm[n]}0!m<M :

D = {φm,p[n] = φm[(n − p)modN ]}0!m<M,0!p<N .

Such translation invariant frames appear in Section 11.2.3 to define translation invariant thresh-
olding estimators for noise removal. Similarly to Theorem 5.11, the following theorem gives a
necessary and sufficient condition on the discrete Fourier transform φ̂m[k] =

∑N−1
n=0 φm[n]e−i2πk/N

of the generators φm[n] to obtain a frame.

Theorem 5.12. A circular translation invariant dictionary D = {φm,p[n]}0!m<M,0!n<N is a
frame with frame bounds 0 < A " B if and only if

∀0 " k < N A "

M−1∑

m=0

|φ̂m[k]|2 " B. (5.53)

The proof proceeds essentially like the proof of Theorem 5.11, and is left in Exercise 5.8.
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5.2 Translation Invariant Dyadic Wavelet Transform

The continuous wavelet transform of Section 4.3 decomposes one-dimensional signals f ∈ L2(R)
over a dictionary of translated and dilated wavelets

ψu,s(t) =
1√
s
ψ

(
t − u

s

)
.

Translation invariant wavelet dictionaries are constructed by sampling the scale parameter s along
an exponential sequence {νj}j∈Z, while keeping all translation parameters u. We choose ν = 2 to
simplifiy computer implementations:

D =

{
ψu,2j (t) =

1√
2j

ψ

(
t − u

2j

)}

u∈R,j∈Z

.

The resulting dyadic wavelet transform of f ∈ L2(R) is defined by

Wf(u, 2j) = 〈f, ψu,2j 〉 =

∫ +∞

−∞
f(t)

1√
2j

ψ

(
t − u

2j

)
dt = f * ψ̄2j (u), (5.54)

with

ψ̄2j (t) = ψ2j (−t) =
1

2j
ψ

(
−t

2j

)
.

Translation invariant dyadic wavelet transforms are used in pattern recognition applications and
for denoising with translation invariant wavelet thresholding estimators, as explained in Section
11.3.1. Fast computations with filter banks are presented in the next two sections.

Theorem 5.11 on translation invariant dictionaries can be applied to the multiscale wavelet
generators φn(t) = 2−j/2 ψ2j (t). Since φ̂n(ω) = ψ̂(2jω), the Fourier condition (5.48) means that
there exist two constants A > 0 and B > 0 such that

∀ω ∈ R − {0} , A "

+∞∑

j=−∞

|ψ̂(2jω)|2 " B, (5.55)

and since Φf(u, n) = 2−j/2Wf(u, n), Theorem 5.11 proves the frame inequality

A ‖f‖2 "

+∞∑

j=−∞

1

2j
‖Wf(u, 2j)‖2 " B ‖f‖2. (5.56)

This shows that if the frequency axis is completely covered by dilated dyadic wavelets, as illustrated
by Figure 5.1, then it a dyadic wavelet transform defines a complete and stable representation.

Moreover, if ψ̃ satisfies

∀ω ∈ R − {0} ,
+∞∑

j=−∞

ψ̂∗(2jω) ̂̃ψ(2jω) = 1, (5.57)

then (5.50) applied to φ̃n(t) = 2−jψ̃(2−jt) proves that

f(t) =
+∞∑

j=−∞

1

2j
Wf(., 2j) * ψ̃2j (t). (5.58)

Figure 5.2 gives a dyadic wavelet transform computed over 5 scales with the quadratic spline
wavelet shown in Figure 5.3.
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Figure 5.1: Scaled Fourier transforms |ψ̂(2jω)|2 computed with (5.69), for 1 " j " 5 and ω ∈
[−π, π].

 Signal

 2−7

 2−6

 2−5

 2−4

 2−3

 Approximation

2−3

Figure 5.2: Dyadic wavelet transform Wf(u, 2j) computed at scales 2−7 " 2j " 2−3 with the filter
bank algorithm of Section 5.2.2, for a signal defined over [0, 1]. The bottom curve carries the lower
frequencies corresponding to scales larger than 2−3.



5.2. Dyadic Wavelet Transform 125

5.2.1 Dyadic Wavelet Design

A discrete dyadic wavelet transform can be computed with a fast filter bank algorithm if the wavelet
is appropriately designed. The synthesis of these dyadic wavelets is similar to the construction of
biorthogonal wavelet bases, explained in Section 7.4. All technical issues related to the convergence
of infinite cascades of filters are avoided in this section. Reading Chapter 7 first is necessary for
understanding the main results.

Let h and g be a pair of finite impulse response filters. Suppose that h is a low-pass filter whose
transfer function satisfies ĥ(0) =

√
2. As in the case of orthogonal and biorthogonal wavelet bases,

we construct a scaling function whose Fourier transform is

φ̂(ω) =
+∞∏

p=1

ĥ(2−pω)√
2

=
1√
2

ĥ
(ω

2

)
φ̂

(ω
2

)
. (5.59)

We suppose here that this Fourier transform is a finite energy function so that φ ∈ L2(R). The
corresponding wavelet ψ has a Fourier transform defined by

ψ̂(ω) =
1√
2

ĝ
(ω

2

)
φ̂

(ω
2

)
. (5.60)

Theorem 7.5 proves that both φ and ψ have a compact support because h and g have a finite
number of non-zero coefficients. The number of vanishing moments of ψ is equal to the number of
zeroes of ψ̂(ω) at ω = 0. Since φ̂(0) = 1, (5.60) implies that it is also equal to the number of zeros
of ĝ(ω) at ω = 0.

Reconstructing Wavelets Reconstructing wavelets that satisfy (5.49) are calculated with a pair of
finite impulse response dual filters h̃ and g̃. We suppose that the following Fourier transform has
a finite energy:

̂̃φ(ω) =
+∞∏

p=1

̂̃h(2−pω)√
2

=
1√
2

̂̃h
(ω

2

) ̂̃φ
(ω

2

)
. (5.61)

Let us define
̂̃ψ(ω) =

1√
2

̂̃g
(ω

2

) ̂̃φ
(ω

2

)
. (5.62)

The following theorem gives a sufficient condition to guarantee that ̂̃ψ is the Fourier transform of
a reconstruction wavelet.

Theorem 5.13. If the filters satisfy

∀ω ∈ [−π, π] , ̂̃h(ω) ĥ∗(ω) + ̂̃g(ω) ĝ∗(ω) = 2 (5.63)

then

∀ω ∈ R − {0} ,
+∞∑

j=−∞

ψ̂∗(2jω) ̂̃ψ(2jω) = 1. (5.64)

Proof. The Fourier transform expressions (5.60) and (5.62) prove that

b̃ψ(ω) ψ̂∗(ω) =
1
2
b̃g
“ω

2

”
ĝ∗
“ω

2

” b̃φ
“ω

2

”
φ̂∗
“ω

2

”
.

Equation (5.63) implies

b̃ψ(ω) ψ̂∗(ω) =
1
2

h
2 − b̃h

“ω
2

”
ĥ∗
“ω

2

”i b̃φ
“ω

2

”
φ̂∗
“ω

2

”

= b̃φ
“ω

2

”
φ̂∗
“ω

2

”
− b̃φ(ω) φ̂∗(ω).

Hence
kX

j=−l

b̃ψ(2jω) ψ̂∗(2jω) = φ̂∗(2−lω) b̃φ(2−lω) − φ̂∗(2kω) b̃φ(2kω).
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Since ĝ(0) = 0, (5.63) implies b̃h(0) ĥ∗(0) = 2. We also impose that ĥ(0) =
√

2 so one can derive from

(5.59) and (5.61) that b̃φ(0) = φ̂∗(0) = 1. Since φ and φ̃ belong to L
1(R), φ̂ and b̃φ are continuous, and

the Riemann-Lebesgue lemma (Exercise 2.8) proves that |φ̂(ω)| and |b̃φ(ω)| decrease to zero when ω
goes to ∞. For ω $= 0, letting k and l go to +∞ yields (5.64).

Observe that (5.63) is the same as the unit gain condition (7.117) for biorthogonal wavelets. The
aliasing cancellation condition (7.116) of biorthogonal wavelets is not required because the wavelet
transform is not sampled in time.

Finite Impulse Response Solution Let us shift h and g to obtain causal filters. The resulting
transfer functions ĥ(ω) and ĝ(ω) are polynomials in e−iω. We suppose that these polynomials
have no common zeros. The Bezout Theorem 7.8 on polynomials proves that if P (z) and Q(z)
are two polynomials of degree n and l, with no common zeros, then there exists a unique pair of
polynomials P̃ (z) and Q̃(z) of degree l − 1 and n − 1 such that

P (z) P̃ (z) + Q(z) Q̃(z) = 1. (5.65)

This guarantees the existence of ̂̃h(ω) and ̂̃g(ω) that are polynomials in e−iω and satisfy (5.63).
These are the Fourier transforms of the finite impulse response filters h̃ and g̃. One must however

be careful because the resulting scaling function ̂̃φ in (5.61) does not necessarily have a finite energy.

Spline Dyadic Wavelets A box spline of degree m is a translation of m + 1 convolutions of 1[0,1]

with itself. It is centered at t = 1/2 if m is even and at t = 0 if m is odd. Its Fourier transform is

φ̂(ω) =

(
sin(ω/2)

ω/2

)m+1

exp

(
−iεω

2

)
with ε =

{
1 if m is even
0 if m is odd

, (5.66)

so

ĥ(ω) =
√

2
φ̂(2ω)

φ̂(ω)
=

√
2

(
cos

ω

2

)m+1
exp

(
−iεω

2

)
. (5.67)

We construct a wavelet that has one vanishing moment by choosing ĝ(ω) = O(ω) in the neigh-
borhood of ω = 0. For example

ĝ(ω) = −i
√

2 sin
ω

2
exp

(
−iεω

2

)
. (5.68)

The Fourier transform of the resulting wavelet is

ψ̂(ω) =
1√
2

ĝ
(ω

2

)
φ̂

(ω
2

)
=

−iω

4

(
sin(ω/4)

ω/4

)m+2

exp

(
−iω(1 + ε)

4

)
. (5.69)

It is the first derivative of a box spline of degree m + 1 centered at t = (1 + ε)/4. For m = 2,
Figure 5.3 shows the resulting quadratic splines φ and ψ. The dyadic admissibility condition (5.48)
is verified numerically for A = 0.505 and B = 0.522.

To design dual scaling functions φ̃ and wavelets ψ̃ which are splines, we choose ̂̃h = ĥ. As a
consequence, φ = φ̃ and the reconstruction condition (5.63) implies that

̂̃g(ω) =
2 − |ĥ(ω)|2

ĝ∗(ω)
= −i

√
2 exp

(
−iω

2

)
sin

ω

2

m∑

n=0

(
cos

ω

2

)2n
. (5.70)

Table 5.1 gives the corresponding filters for m = 2.

5.2.2 “Algorithme à Trous”

Suppose that the scaling functions and wavelets φ, ψ, φ̃ and ψ̃ are designed with the filters h, g, h̃
and g̃. A fast dyadic wavelet transform is calculated with a filter bank algorithm called in French
the algorithme à trous, introduced by Holschneider, Kronland-Martinet, Morlet and Tchamitchian
[302]. It is similar to a fast biorthogonal wavelet transform, without subsampling [432, 366].
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ψ(t) φ(t)
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Figure 5.3: Quadratic spline wavelet and scaling function.

n h[n]/
√

2 h̃[n]/
√

2 g[n]/
√

2 g̃[n]/
√

2

−2 −0.03125
−1 0.125 0.125 −0.21875

0 0.375 0.375 −0.5 −0.6875
1 0.375 0.375 0.5 0.6875
2 0.125 0.125 0.21875
3 0.03125

Table 5.1: Coefficients of the filters computed from their transfer functions (5.67, 5.68, 5.70) for
m = 2. These filters generate the quadratic spline scaling functions and wavelets shown in Figure
5.3.

Fast Dyadic Transform The samples a0[n] of the input discrete signal are written as a low-pass
filtering with φ of an analog signal f , in the neighborhood of t = n:

a0[n] = f * φ̄(n) = 〈f(t), φ(t − n)〉 =

∫ +∞

−∞
f(t)φ(t − n) dt.

This is further justified in Section 7.3.1. For any j ! 0, we denote

aj [n] = 〈f(t), φ2j (t − n)〉 with φ2j (t) =
1√
2j
φ
( t

2j

)
.

The dyadic wavelet coefficients are computed for j > 0 over the integer grid

dj [n] = Wf(n, 2j) = 〈f(t), ψ2j (t − n)〉.

For any filter x[n], we denote by xj [n] the filters obtained by inserting 2j −1 zeros between each
sample of x[n]. Its Fourier transform is x̂(2jω). Inserting zeros in the filters creates holes (trous in
French). Let x̄j [n] = xj [−n]. The next theorem gives convolution formulas that are cascaded to
compute a dyadic wavelet transform and its inverse.

Theorem 5.14. For any j ! 0,

aj+1[n] = aj * h̄j [n] , dj+1[n] = aj * ḡj [n] , (5.71)

and

aj [n] =
1

2

(
aj+1 * h̃j [n] + dj+1 * g̃j [n]

)
. (5.72)

Proof. Proof of (5.71). Since

aj+1[n] = f & φ̄2j+1(n) and dj+1[n] = f & ψ̄2j+1(n),

we verify with (3.3) that their Fourier transforms are respectively

âj+1(ω) =
+∞X

k=−∞

f̂(ω + 2kπ) φ̂∗
2j+1(ω + 2kπ)
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and

d̂j+1(ω) =
+∞X

k=−∞

f̂(ω + 2kπ) ψ̂∗
2j+1(ω + 2kπ).

The properties (5.61) and (5.62) imply that

φ̂2j+1(ω) =
√

2j+1 φ̂(2j+1ω) = ĥ(2jω)
√

2j φ̂(2jω),

ψ̂2j+1(ω) =
√

2j+1 ψ̂(2j+1ω) = ĝ(2jω)
√

2j φ̂(2jω).

Since j ! 0, both ĥ(2jω) and ĝ(2jω) are 2π periodic, so

âj+1(ω) = ĥ∗(2jω) âj(ω) and d̂j+1(ω) = ĝ∗(2jω) âj(ω). (5.73)

These two equations are the Fourier transforms of (5.71).

Proof of (5.72). Equations (5.73) imply

âj+1(ω) b̃h(2jω) + d̂j+1(ω) b̃g(2jω) =

âj(ω) ĥ∗(2jω) b̃h(2jω) + âj(ω) ĝ∗(2jω) b̃g(2jω).

Inserting the reconstruction condition (5.63) proves that

âj+1(ω) b̃h(2jω) + d̂j+1(ω) b̃g(2jω) = 2 âj(ω),

which is the Fourier transform of (5.72).

The dyadic wavelet representation of a0 is defined as the set of wavelet coefficients up to a scale
2J plus the remaining low-frequency information aJ :

[
{dj}1!j!J , aJ

]
. (5.74)

It is computed from a0 by cascading the convolutions (5.71) for 0 " j < J , as illustrated in Figure
5.4(a). The dyadic wavelet transform of Figure 5.2 is calculated with this filter bank algorithm.
The original signal a0 is recovered from its wavelet representation (5.74) by iterating (5.72) for
J > j ! 0, as illustrated in Figure 5.4(b).

aja j+2a

dj+2j+1d

j+1
-

-
jg gj+1

-

hj
- hj+1

(a)

a + jaj+1a

j+1d gj

hj

dj+2

1/2 1/2j+2
~

j+1g

j+1h +

~~

~

(b)

Figure 5.4: (a): The dyadic wavelet coefficients are computed by cascading convolutions with
dilated filters h̄j and ḡj . (b): The original signal is reconstructed through convolutions with h̃j

and g̃j . A multiplication by 1/2 is necessary to recover the next finer scale signal aj .

If the input signal a0[n] has a finite size of N samples, the convolutions (5.71) are replaced
by circular convolutions. The maximum scale 2J is then limited to N , and for J = log2 N one
can verify that aJ [n] is constant and equal to N−1/2

∑N−1
n=0 a0[n]. Suppose that h and g have

respectively Kh and Kg non-zero samples. The “dilated” filters hj and gj have the same number
of non-zero coefficients. The number of multiplications needed to compute aj+1 and dj+1 from aj

or the reverse is thus equal to (Kh + Kg)N . For J = log2 N , the dyadic wavelet representation
(5.74) and its inverse are thus calculated with (Kh + Kg)N log2 N multiplications and additions.
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5.3 Subsampled Wavelet Frames

Wavelet frames are constructed by sampling the scale parameter but also the translation parameter
of a wavelet dictionary. A real continuous wavelet transform of f ∈ L2(R) is defined in Section 4.3
by

Wf(u, s) = 〈f, ψu,s〉 with ψu,s(t) =
1√
s
ψ

(
t − u

s

)

where ψ is a real wavelet. Imposing ‖ψ‖ = 1 implies that ‖ψu,s‖ = 1.
Intuitively, to construct a frame we need to cover the time-frequency plane with the Heisenberg

boxes of the corresponding discrete wavelet family. A wavelet ψu,s has an energy in time that is
centered at u over a domain proportional to s. Over positive frequencies, its Fourier transform
ψ̂u,s has a support centered at a frequency η/s, with a spread proportional to 1/s. To obtain a full
cover, we sample s along an exponential sequence {aj}j∈Z, with a sufficiently small dilation step
a > 1. The time translation u is sampled uniformly at intervals proportional to the scale aj , as
illustrated in Figure 5.5. Let us denote

ψj,n(t) =
1√
aj

ψ

(
t − nu0aj

aj

)
.

In the following, we give without proofs some necessary conditions and sufficient conditions on ψ,
a and u0 so that {ψj,n}(j,n)∈Z2 is a frame of L2(R).

Necessary Conditions We suppose that ψ is real, normalized, and satisfies the admissibility con-
dition of Theorem 4.4:

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞. (5.75)

ψnj
aj

aj-1

u  a0
j

0

ω

t

η

jnu  a

η

0

Figure 5.5: The Heisenberg box of a wavelet ψj,n scaled by s = aj has a time and frequency width
proportional respectively to aj and a−j . The time-frequency plane is covered by these boxes if u0

and a are sufficiently small.

Theorem 5.15 (Daubechies). If {ψj,n}(j,n)∈Z2 is a frame of L2(R) then the frame bounds satisfy

A "
Cψ

u0 loge a
" B, (5.76)

∀ω ∈ R − {0} , A "
1

u0

+∞∑

j=−∞

|ψ̂(ajω)|2 " B. (5.77)

This theoroem is proved in [162, 18]. Condition (5.77) is equivalent to the frame condition (5.55)
for a translation invariant dyadic wavelet transform, for which the parameter u is not sampled.
It requires that the Fourier axis is covered by wavelets dilated by {aj}j∈Z. The inequality (5.76),
which relates the sampling density u0 loge a to the frame bounds, is proved in [18]. It shows that
the frame is an orthonormal basis if and only if

A = B =
Cψ

u0 loge a
= 1.

Chapter 7 constructs wavelet orthonormal bases of L2(R) with regular wavelets of compact support.
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Sufficient Conditions The following theorem proved by Daubechies [18] provides a lower and upper
bound for the frame bounds A and B, depending on ψ, u0 and a.

Theorem 5.16 (Daubechies). Let us define

θ(ξ) = sup
1!|ω|!a

+∞∑

j=−∞

|ψ̂(ajω)| |ψ̂(ajω + ξ)| (5.78)

and

∆ =
+∞∑

k=−∞
k #=0

[
θ

(
2πk

u0

)
θ

(
−2πk

u0

)]1/2

.

If u0 and a are such that

A0 =
1

u0



 inf
1!|ω|!a

+∞∑

j=−∞

|ψ̂(ajω)|2 −∆



 > 0, (5.79)

and

B0 =
1

u0



 sup
1!|ω|!a

+∞∑

j=−∞

|ψ̂(ajω)|2 +∆



 < +∞, (5.80)

then {ψj,n}(j,n)∈Z2 is a frame of L2(R). The constants A0 and B0 are respectively lower and upper
bounds of the frame bounds A and B.

The sufficient conditions (5.79) and (5.80) are similar to the necessary condition (5.77). If ∆
is small relative to inf1!|ω|!a

∑+∞
j=−∞ |ψ̂(ajω)|2 then A0 and B0 are close to the optimal frame

bounds A and B. For a fixed dilation step a, the value of ∆ decreases when the time sampling
interval u0 decreases.

Dual Frame Theorem 5.5 gives a general formula for computing the dual wavelet frame vectors

ψ̃j,n = (Φ∗Φ)−1ψj,n. (5.81)

One could reasonably hope that the dual functions ψ̃j,n would be obtained by scaling and trans-
lating a dual wavelet ψ̃. The sad reality is that this is generally not true. In general the operator
Φ∗Φ does not commute with dilations by aj , so (Φ∗Φ)−1 does not commute with these dilations
either. On the other hand, one can prove that (Φ∗Φ)−1 commutes with translations by naju0,
which means that

ψ̃j,n(t) = ψ̃j,0(t − naju0). (5.82)

The dual frame {ψ̃j,n}(j,n)∈Z2 is thus obtained by calculating each elementary function ψ̃j,0 with
(5.81), and translating them with (5.82). The situation is much simpler for tight frames, where
the dual frame is equal to the original wavelet frame.

Mexican Hat Wavelet The normalized second derivative of a Gaussian is

ψ(t) =
2√
3
π−1/4 (t2 − 1) exp

(
−t2

2

)
. (5.83)

Its Fourier transform is

ψ̂(ω) = −
√

8π1/4 ω2

√
3

exp

(
−ω2

2

)
.

The graph of these functions is shown in Figure 4.6.
The dilation step a is generally set to be a = 21/v where v is the number of intermediate scales

(voices) for each octave. Table 5.2 gives the estimated frame bounds A0 and B0 computed by
Daubechies [18] with the formula of Theorem 5.16. For v ! 2 voices per octave, the frame is nearly
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a u0 A0 B0 B0/A0

2 0.2513.09114.183 1.083
2 0.5 6.546 7.092 1.083
2 1.0 3.223 3.596 1.116
2 1.5 0.325 4.221 12.986

2
1
2 0.2527.27327.278 1.0002

2
1
2 0.5 13.67313.639 1.0002

2
1
2 1.0 6.768 6.870 1.015

2
1
2 1.75 0.517 7.27614.061

2
1
4 0.2554.55254.552 1.0000

2
1
4 0.5 27.27627.276 1.0000

2
1
4 1.0 13.58613.690 1.007

2
1
4 1.75 2.92812.659 4.324

Table 5.2: Estimated frame bounds for the Mexican hat wavelet computed with Theorem 5.16 [18].

tight when u0 " 0.5, in which case the dual frame can be approximated by the original wavelet
frame. As expected from (5.76), when A ≈ B

A ≈ B ≈
Cψ

u0 loge a
=

v

u0
Cψ log2 e.

The frame bounds increase proportionally to v/u0. For a = 2, we see that A0 decreases brutally
from u0 = 1 to u0 = 1.5. For u0 = 1.75 the wavelet family is not a frame anymore. For a = 21/2,
the same transition appears for a larger u0.

5.4 Windowed Fourier Frames

Frame theory gives conditions for discretizing the windowed Fourier transform while retaining a
complete and stable representation. The windowed Fourier transform of f ∈ L2(R) is defined in
Section 4.2 by

Sf(u, ξ) = 〈f, gu,ξ〉,

with

gu,ξ(t) = g(t − u) eiξt.

Setting ‖g‖ = 1 implies that ‖gu,ξ‖ = 1. A discrete windowed Fourier transform representation

{Sf(un, ξk) = 〈f, gun,ξk〉}(n,k)∈Z2

is complete and stable if {gu,n,ξk}(n,k)∈Z2 is a frame of L2(R).
Intuitively, one can expect that the discrete windowed Fourier transform is complete if the

Heisenberg boxes of all atoms {gu,n,ξk}(n,k)∈Z2 fully cover the time-frequency plane. Section 4.2
shows that the Heisenberg box of gun,ξk is centered in the time-frequency plane at (un, ξk). Its
size is independent of un and ξk. It depends on the time-frequency spread of the window g. A
complete cover of the plane is thus obtained by translating these boxes over a uniform rectangular
grid, as illustrated in Figure 5.6. The time and frequency parameters (u, ξ) are discretized over a
rectangular grid with time and frequency intervals of size u0 and ξ0. Let us denote

gn,k(t) = g(t − nu0) exp(ikξ0t).

The sampling intervals (u0, ξ0) must be adjusted to the time-frequency spread of g.
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Window Scaling Suppose that {gn,k}(n,k)∈Z2 is a frame of L2(R) with frame bounds A and B. Let

us dilate the window gs(t) = s−1/2g(t/s). It increases by s the time width of the Heisenberg box
of g and reduces by s its frequency width. We thus obtain the same cover of the time-frequency
plane by increasing u0 by s and reducing ξ0 by s. Let

gs,n,k(t) = gs(t − nsu0) exp

(
ik
ξ0
s

t

)
. (5.84)

We prove that {gs,n,k}(n,k)∈Z2 satisfies the same frame inequalities as {gn,k}(n,k)∈Z2 , with the same
frame bounds A and B, by a change of variable t′ = ts in the inner product integrals.

k

ω

ξ

un

u0

ξ0

gun

t0

ξk

Figure 5.6: A windowed Fourier frame is obtained by covering the time-frequency plane with a
regular grid of windowed Fourier atoms, translated by un = nu0 in time and by ξk = k ξ0 in
frequency.

Tight Frames Tight frames are easier to manipulate numerically since the dual frame is equal to
the original frame. Daubechies, Grossmann and Meyer [196] give sufficient conditions for building
a window of compact support that generates a tight frame.

Theorem 5.17 (Daubechies, Grossmann, Meyer). Let g be a window whose support is included in
[−π/ξ0, π/ξ0]. If

∀t ∈ R ,
2π

ξ0

+∞∑

n=−∞
|g(t − nu0)|2 = A > 0 (5.85)

then {gn,k(t) = g(t − nu0) eikξ0t}(n,k)∈Z2 is a tight frame L2(R) with a frame bound equal to A.

Proof. The function g(t − nu0) f(t) has a support in [nu0 − π/ξ0, nu0 + π/ξ0]. Since {eikξ0t}k∈Z is an
orthogonal basis of this space we have

Z +∞

−∞
|g(t− nu0)|2 |f(t)|2dt =

Z nu0+π/ξ0

nu0−π/ξ0

|g(t− nu0)|2 |f(t)|2dt =
ξ0
2π

+∞X

k=−∞

|〈g(u− nu0) f(u), eikξ0u〉|2.

Since gn,k(t) = g(t − nu0) eikξ0t, we get

Z +∞

−∞
|g(t − nu0)|2 |f(t)|2dt =

ξ0
2π

+∞X

k=−∞

|〈f, gn,k〉|2.

Summing over n and inserting (5.85) proves that A ‖f‖2 =
P+∞

k,n=−∞ |〈f, gn,k〉|2 and hence that

{gn,k}(n,k)∈Z2 is a tight frame of L
2(R).

Since g has a support in [−π/ξ0, π/ξ0] the condition (5.85) implies that

2π

u0 ξ0
! 1
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so that there is no whole between consecutive windows g(t − nu0) and g(t − (n + 1)u0). If we
impose that 1 " 2π/(u0ξ0) " 2 then only consecutive windows have supports that overlap. The
square root of a Hanning window

g(t) =

√
ξ0
π

cos

(
ξ0t

2

)
1[−π/ξ0,π/ξ0](t)

is positive normalized window that satisfies (5.85) with u0 = π/ξ0 and a redundancy factor A = 2.
The design of other windows is studied in Section 8.4.2 for local cosine bases.

Discrete Window Fourier Tight Frames To construct a windowed Fourier tight frame of CN ,
the Fourier basis {eikξ0t}k∈Z of L2[−π/ξ0, π/ξ0] is replaced by the discrete Fourier basis
{ei2πkn/K}0!k<K of CK . The following theorem is a discrete equivalent of Theorem 5.17.

Theorem 5.18. Let g[n] be an N periodic discrete window whose support restricted to [−N/2, N/2]
is included in [−K/2,K/2 − 1]. If M divides N and

∀0 " n < N , K

N/M−1∑

m=0

|g[n − mM ]|2 = A > 0 (5.86)

then {gm,k[n] = g[n − mM ] ei2πkn/K}0!k<K,0!m<N/M is a tight frame CN with a frame bound
equal to A.

The proof of this theorem follows the same steps as the proof of Theorem 5.17. It is left in
Exercise 5.10. There are N/M translated windows and hence NK/M windowed Fourier coefficients.
For a fixed window position indexed by m, the discrete windowed Fourier coefficients are the discrete
Fourier coefficients of the windowed signal

Sf [m, k] = 〈f, gm,k〉 =

K/2−1∑

n=K/2

f [n] g[n − mM ] e−i2πkn/K for 0 " k < K.

They are computed with O(K log2 K) operations with an FFT. Over all windows, this requires a
total of O(NK/M log2 K) operations. We generally choose 1 < K/M " 2 so that only consecutive
windows overlap. The square root of a Hanning window g[n] =

√
2/K cos(πn/K) satisfies (5.86)

for M = K/2 and a redundancy factor A = 2. Figure 5.7 shows the log spectrogram log |Sf [m, k]|2
of the windowed Fourier frame coefficients computed with a square root Hanning window for a
musical recording.

Necessary Frame Conditions For general windowed Fourier frames of L2(R2), Daubechies [18]
proved several necessary conditions on g, u0 and ξ0 to guarantee that {gn,k}(n,k)∈Z2 is a frame of
L2(R). We do not reproduce the proofs, but summarize the main results.

Theorem 5.19 (Daubechies). The windowed Fourier family {gn,k}(n,k)∈Z2 is a frame only if

2π

u0 ξ0
! 1. (5.87)

The frame bounds A and B necessarily satisfy

A "
2π

u0 ξ0
" B, (5.88)

∀t ∈ R , A "
2π

ξ0

+∞∑

n=−∞
|g(t − nu0)|2 " B, (5.89)

∀ω ∈ R , A "
1

u0

+∞∑

k=−∞

|ĝ(ω − kξ0)|2 " B. (5.90)
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Figure 5.7: Top: Musical recording. Bottom: Log spectrogram log |Sf [m, k]|2 computed with a
square root Hanning window.

The ratio 2π/(u0ξ0) measures the density of windowed Fourier atoms in the time-frequency
plane. The first condition (5.87) ensures that this density is greater than 1 because the covering
ability of each atom is limited. The inequalities (5.89) and (5.90) are proved in full generality by
Chui and Shi [162]. They show that the uniform time translations of g must completely cover
the time axis, and the frequency translations of its Fourier transform ĝ must similarly cover the
frequency axis.

Since all windowed Fourier vectors are normalized, the frame is an orthogonal basis only if
A = B = 1. The frame bound condition (5.88) shows that this is possible only at the critical
sampling density u0ξ0 = 2π. The Balian-Low Theorem [91] proves that g is then either non-
smooth or has a slow time decay.

Theorem 5.20 (Balian-Low). If {gn,k}(n,k)∈Z2 is a windowed Fourier frame with u0ξ0 = 2π, then

∫ +∞

−∞
t2 |g(t)|2 dt = +∞ or

∫ +∞

−∞
ω2 |ĝ(ω)|2 dω = +∞. (5.91)

This theorem proves that we cannot construct an orthogonal windowed Fourier basis with a dif-
ferentiable window g of compact support. On the other hand, one can verify that the discontinuous
rectangular window

g =
1

√
u0

1[−u0/2,u0/2]

yields an orthogonal windowed Fourier basis for u0ξ0 = 2π. This basis is rarely used because of
the bad frequency localization of ĝ.

Sufficient Conditions The following theorem proved by Daubechies [194] gives sufficient conditions
on u0, ξ0 and g for constructing a windowed Fourier frame.

Theorem 5.21 (Daubechies). Let us define

θ(u) = sup
0!t!u0

+∞∑

n=−∞
|g(t − nu0)| |g(t − nu0 + u)| (5.92)
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and

∆ =
+∞∑

k=−∞
k #=0

[
θ

(
2πk

ξ0

)
θ

(
−2πk

ξ0

)]1/2

. (5.93)

If u0 and ξ0 satisfy

A0 =
2π

ξ0

(∫

0!t!u0

+∞∑

n=−∞
|g(t − nu0)|2 −∆

)

> 0 (5.94)

and

B0 =
2π

ξ0

(

sup
0!t!u0

+∞∑

n=−∞
|g(t − nu0)|2 +∆

)

< +∞, (5.95)

then {gn,k}(n,k)∈Z2 is a frame. The constants A0 and B0 are respectively lower bounds and upper
bounds of the frame bounds A and B.

Observe that the only difference between the sufficient conditions (5.94, 5.95) and the nec-
essary condition (5.89) is the addition and subtraction of ∆. If ∆ is small compared to
inf0!t!u0

∑+∞
n=−∞ |g(t − nu0)|2 then A0 and B0 are close to the optimal frame bounds A and

B.

Dual Frame Theorem 5.5 proves that the dual windowed frame vectors are

g̃n,k = (Φ∗Φ)−1gn,k. (5.96)

The following theorem shows that this dual frame is also a windowed Fourier frame, which means
that its vectors are time and frequency translations of a new window g̃.

Theorem 5.22. Dual windowed Fourier vectors can be rewritten

g̃n,k(t) = g̃(t − nu0) exp(ikξ0t)

where g̃ is the dual window

g̃ = (Φ∗Φ)−1g. (5.97)

Proof. This result is proved by showing first that Φ∗Φ commutes with time and frequency translations
proportional to u0 and ξ0. If φ ∈ L

2(R) and φm,l(t) = φ(t − mu0) exp(ilξ0t) we verify that

Φ∗Φφm,l(t) = exp(ilξ0t)Φ
∗Φh(t − mu0).

Indeed

Φ∗Φφm,l =
X

(n,k)∈Z2

〈φm,l, gn,k〉 gn,k

and a change of variable yields

〈φm,l, gn,k〉 = 〈φ, gn−m,k−l〉.

Consequently

Φ∗Φφm,l(t) =
X

(n,k)∈Z2

〈φ, gn−m,k−l〉 exp(ilξ0t) gn−m,k−l(t − mu0)

= exp(ilξ0t)Φ
∗Φφ(t − mu0).

Since Φ∗Φ commutes with these translations and frequency modulations we verify that (Φ∗Φ)−1 nec-
essarily commutes with the same group operations. Hence

g̃n,k(t) = (Φ∗Φ)−1gn,k = exp(ikξ0) (Φ∗Φ)−1g0,0(t − nu0) = exp(ikξ0) g̃(t − nu0).


