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LOCALIZED TIGHT FRAMES ON SPHERES∗

F. J. NARCOWICH† , P. PETRUSHEV‡ , AND J. D. WARD†

Abstract. In this paper we wish to present a new class of tight frames on the sphere. These
frames have excellent pointwise localization and approximation properties. These properties are
based on pointwise localization of kernels arising in the spectral calculus for certain self-adjoint
operators, and on a positive-weight quadrature formula for the sphere that the authors have recently
developed. Improved bounds on the weights in this formula are another by-product of our analysis.
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1. Introduction. Frames were introduced in the 1950s by Duffin and Schaeffer
[4] to represent functions via over-complete sets. Let H be a Hilbert space with norm
‖ · ‖ and inner product 〈·, ·〉. In that case, a set {ψj}j∈J is a frame if there are
constants c, C > 0 such that for all f ∈ H

c‖f‖2 ≤
∑
j∈J

|〈f, ψj〉|2 ≤ C‖f‖2.

The smallest C and largest c are called upper and lower frame bounds. If C = c, we
say the frame is tight. If C = c = 1, then the frame is normalized, and if in addition
‖ψj‖ = 1 for all j, then the frame is an orthonormal basis.

Frames, including tight ones, arise naturally in wavelet analysis on Rn when
continuous wavelet transforms are discretized. They provide a redundancy that helps
reduce the effect of noise in data, and they have been constructed, studied, and
employed extensively in both theoretical and applied problems [1, 2, 6, 7, 10, 12].

Tight frames are similar in many respects to orthonormal wavelet bases; decom-
posing and synthesizing a signal or image from known data are tasks carried out with
the same set of functions, the ones in the frame or in the basis. A feature that makes
one frame preferable to another is simultaneous localization of the frame functions in
both space and frequency. Frames with this feature have been successfully developed
in Rn [1, 2].

On Sn, the n-dimensional unit sphere in Rn+1, various types of both wavelets and
frames have been constructed and used; see [8, 13, 16, 21] for references and more
discussion. Tight, well-localized frames are another matter.

The purpose of this paper is to construct and study a class of well-localized, com-
putationally implementable, tight frames on Sn. Central to this construction is a key
result of this paper, Theorem 3.5. This result concerns pointwise localization for a
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LOCALIZED TIGHT FRAMES ON SPHERES 575

family of kernels for certain operators on Sn; the family depends on a parameter and
localization increases as the parameter becomes small. The frame functions, which
are compactly supported in the frequency domain, are constructed from such ker-
nels. This construction has an interesting connection to wavelet masks, which we will
point out below. Another application of our localization result, one that is essential to
turning the frame functions into a tight frame—that is, a hierarchical, multiresolution
setting—is an improved positive-weight quadrature formula for Sn, where the weights
have known bounds. This quadrature formula is used for discretization purposes. In
addition to Theorem 3.5, the main results of this paper are Proposition 5.1, Theo-
rem 5.2, and Corollary 5.3. The first of these concerns the approximation power of
the frames, the second shows that the frames are tight, and the third shows that the
frame functions have excellent spatial localization.

The frame functions and quadrature formula are of interest in their own right. In
particular, they can be used in the construction and characterization of many of the
classical Banach spaces, including Lp(Sn), Besov spaces, and Triebel–Lizorkin spaces
[18]. We mention also that the operator-theoretic approach that we use here may
provide a foundation for extending our results to other Riemannian manifolds.

Strategy. The best way to view our method for constructing frames is to take
an operator-theoretic approach. Let Eλ be the (right-continuous) spectral family for
an unbounded, nonnegative, self-adjoint operator L defined on a Hilbert space H.
Thus, L =

∫∞
0− λdEλ. On the sphere Sn, this will be related to the square root of

the Laplace–Beltrami operator shifted by a constant. For now, that connection isn’t
required.

We wish to decompose the spectral family in a way reminiscent of the decompo-
sition of frequency space used by Meyer [10, 12] in connection with the construction
of his wavelets. For this, we need a function a ∈ C(R), with support in [12 , 2], and
satisfying |a(t)|2 + |a(2t)|2 ≡ 1 on [12 , 1]. Such a function can be easily constructed
out of an orthogonal wavelet mask m0 [2, section 8.3]. In fact, if m0(ξ) ∈ Ck+1, then
a(t) := m0(π log2(t)) on [12 , 2], and 0 otherwise, is a Ck function that satisfies the
appropriate criteria.

Define b ∈ C(R) by

b(t) :=

{
1, t ≤ 1,

a(t)ã(t), t > 1.
(1)

Using the properties of a we see that
∑J

j=−∞ |a(t/2j)|2 = b(t/2J) if t > 0 and is 0 if
t ≤ 0. Integrating both sides above with respect to dEλ and using the spectral calculus
for L, we obtain

∑J
j=−∞ a(L/2j)a(L/2j)∗ = b(L/2J) − E0. Define the operators,

Aj = a(L/2j),(2)

BJ := b(L/2J),(3)

and note that the relationship derived above becomes
∑J

j=−∞ AjA
∗
j = BJ − E0. Fi-

nally, it is easy to show that the strong limit of BJ as J → ∞ is I, the identity. Taking
limits above then yields

∑∞
j=−∞ AjA

∗
j = I − E0.

We now can use this identity to define decomposition and reconstruction operators
for f ∈ H, which are, respectively,

f → wj = A∗
jf and f = E0f +

∞∑
j=−∞

Ajwj .
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576 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

Proposition 1.1. For any a ∈ C(R) satisfying the conditions above, the operator
frame that we have constructed is tight in the sense that

‖f‖2 = ‖E0f‖2 +

∞∑
j=−∞

‖A∗
jf‖2.

In addition, we have that 〈wj , wj′〉 = 0 for |j − j′| ≥ 2, where wj = A∗
jf .

Proof. This follows immediately from the decomposition and reconstruction for-
mulas above, the properties of a and of the spectral family.

Note that the decomposition arrived at above is nearly orthogonal. The level j
decomposition wj is not orthogonal to wj±1, but it is orthogonal to the decomposition
at all other levels.

As we pointed out above, when we deal with the sphere Sn, we will take L
proportional to Ln :=

√
λ2
n − ΔSn , where λn := n−1

2 . Notation and background
pertinent to this operator, spherical harmonics, and related topics can be found in
section 2.1.

In section 2.2, we show that with this choice of L the decomposition operator A∗
j

is given in terms of a kernel Aj(ξ ·η), ξ, η ∈ Sn, which is a polynomial in ξ ·η. Using the
addition theorem for spherical harmonics, one can see that the level j decomposition
wj(η) = 〈f(ξ), Aj(ξ · η)〉Sn is a finite sum of spherical harmonics.

In the reconstruction phase, we need to find Ajwj(ω) = 〈wj(η), Aj(ω · η)〉Sn . The
integrand in this inner product is also a finite sum of spherical harmonics. At this
point, the order of the spherical harmonics is such that we can compute the integral
exactly using a quadrature formula introduced in [14, 15] and, in section 4, developed
into the tool we need here. The point is that the frame functions have the form
ψj,ξ(η) =

√
cj,ξAj(η · ξ), where the cj,ξ and ξ ∈ Xj are weights and nodes for the

quadrature formula appropriate to level j. The details are given in section 5.
What makes these frame functions special is that they have excellent pointwise

localization properties. These properties follow from the results on pointwise local-
ization of certain kernels, given in section 3.

2. Near-orthogonal spectral decomposition for Sn.

2.1. Background and notation for Sn.
Centers and decompositions of Sn. Let X be a finite set of distinct points in

Sn; we will call these the centers. There are several important quantities associated
with this set: the mesh norm, hX = supy∈Sn infξ∈X d(ξ, y), where d(·, ·) is the geodesic

distance between points on the sphere; the separation radius, qX = 1
2 minξ �=ξ′ d(ξ, ξ

′) ;
and the mesh ratio, ρX := hX/qX ≥ 1.

For ρ ≥ 1, let Fρ = Fρ(S
n) be the family of all sets of centers X with ρX ≤ ρ ;

we will say that the family Fρ is ρ-uniform. Unless confusion would arise, we will not
indicate Sn, and just use Fρ to designate a family. The specific sphere Sn will be clear
from the context. We will also say that a set of centers X is ρ-uniform if X ∈ Fρ.
It is possible to show that for every ρ ≥ 2 there exist nonempty ρ-uniform families
for any Sn and that they contain sets of centers X for which hX becomes arbitrarily
small. The result is stated below. For a proof of the facts mentioned here as well as
further discussion, see [19, section 2].

Proposition 2.1 (see [19, Proposition 2.1]). Let ρ ≥ 2 and let Fρ be the
corresponding ρ-uniform family. Then, there exists a sequence of sets Xk ∈ Fρ,
k = 0, 1, . . . , such that the sequence is nested, Xk ⊂ Xk+1, and such that at each step
the mesh norms satisfy 1

4hXk
< hXk+1

≤ 1
2hXk

.
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LOCALIZED TIGHT FRAMES ON SPHERES 577

We will need to consider a decomposition of Sn into a finite number of nonover-
lapping, connected regions Rξ, each containing an interior point ξ that will serve for
function evaluations as well as labeling. For example, if X is the Voronoi tessellation
for a set of centers X, then we may take Rξ to be the region associated with ξ ∈ X. In
any case, we will let X be the set of the ξ’s used for labels and X = {Rξ ⊂ Sn | ξ ∈ X}.
In addition, let ‖X‖ = maxξ∈X{diam(Rξ)}. Du, Gunzburger, and Ju [3] construct a
very interesting Voronoi tessellation in which ξ ∈ X is the centroid of Rξ ∈ X .

Spherical harmonics. We turn to the situation in which the underlying Hilbert
space is H = L2(Sn), with dμ being the usual measure on the n-sphere. Throughout
the paper, we will let λn := n−1

2 and {Y�,m : 	 = 0, 1, . . . ,m = 1 . . . dn� } be the usual
orthonormal set of spherical harmonics [17, 24] associated with Sn, where for n ≥ 2,

dn� =
	 + λn

λn

(
	 + n− 2

	

)
�→∞∼ 	n−1

λn(n− 2)!
.(4)

Denote by H� the span of the spherical harmonics with fixed order 	, and let ΠL =⊕L
�=0 H� be the span of all spherical harmonics of order at most L. The orthogonal

projection P� onto H� is given by

P�f =

dn
�∑

m=1

〈f, Y�,m〉Y�,m.(5)

Using the addition formula for spherical harmonics, one can write the kernel for this
projection as

P�(ξ, η) =

dn
�∑

m=1

Y�,m(ξ)Y�,m(η) =
	 + λn

λnωn
P

(λn)
� (ξ · η),(6)

where λn = n−1
2 and P

(λn)
� is the ultraspherical polynomial of order λn and degree 	.

We regard Sn as being the unit sphere in Rn+1, and we let the quantity ξ · η denote
the usual “dot” product for Rn+1.

On the sphere, an operator K with a kernel of the form K(ξ · η) can be written
as a convolution on Sn; that is, Kf = K ∗ f , where

K ∗ f(ξ) =

∫
Sn

K(ξ · η)f(η)dμ(η).

Because of the form of the convolution, these operators commute with rotations.
Depending on the properties of the kernel, one may (and will!) apply these operators
to spaces other than L2(Sn).

The spherical harmonic Y�,m is an eigenfunction corresponding to the eigenvalue
−	(	 + n− 1) = λ2

n − (	 + λn)2 for Laplace–Beltrami operator ΔSn on Sn. It follows
that 	 + λn is an eigenvalue corresponding to the eigenfunctions Y�,m ,m = 1 . . . dn� ,
of the pseudodifferential operator

Ln :=
√

λ2
n − ΔSn =

∞∑
�=0

(	 + λn)P�.(7)

2.2. Operator frames and their kernels on Sn. We now turn to the oper-
ators Aj defined in (2), when the underlying Hilbert space is H = L2(Sn) and L is
proportional to the self-adjoint operator Ln given by (7). It is convenient to normalize
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578 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

the Ln’s when n ≥ 2 so that the lowest eigenvalue in the spectrum is in the interval
[1, 2). To do that, let jn = log2�λn� for n ≥ 2 and let j1 = 0. We will work with
L → 2−jnLn. Thus, Aj = a(2−j−jnLn), where the properties of a ∈ C(R) are discussed
in section 1. The spectral measure for 2−jnLn is dEλ =

∑∞
�=0 P�δ

(
λ− 2−jn(	 + λn)

)
,

where the P�’s are the projections defined in (5) and have kernels given in (6). We
can write the Aj ’s in kernel form:

Aj(ξ · η) =

{ 1
π

∑∞
�=1 a(2

−j	) cos(	θ), n = 1, ξ · η = cos θ,∑∞
�=0 a

(
�+λn

2j+jn

)
�+λn

λnωn
P

(λn)
� (ξ · η), n ≥ 2, jn = �log2(λn)�.

(8)

The operator BJ = b(2−J−jnLn), with b defined in (1), has the kernel

BJ(ξ · η) =

{ 1
2π b(0) + 1

π

∑∞
�=1 b(2

−J	) cos(	θ), n = 1, ξ · η = cos θ∑∞
�=0 b

(
�+λn

2J+jn

)
�+λn

λnωn
P

(λn)
� (ξ · η), n ≥ 2, jn = �log2(λn)�.

(9)

Taking into account the support of a, when n ≥ 2 in these operators it is easy to see
that BJ =

∑J
j=0 AjA

∗
j . For n = 1, the projection P0 enters and BJ = P0+

∑J
j=0 AjA

∗
j .

We will study and establish various properties of operator kernels similar to these
in section 3. In section 5 we will discuss how these give rise to tight frames on Sn and
discuss approximation properties of these frames.

3. Localization of kernels on Sn. We want to study the localization properties
of operator kernels related to the Laplace–Beltrami operator ΔSn on the sphere. As
we did earlier, let Ln :=

√
λ2
n − ΔSn and let κ(t) ∈ Ck(R), with k ≥ max{2, n − 1},

be even and satisfy

|κ(r)(t)| ≤ Cκ(1 + |t|)r−α for all t ∈ R, r = 0, . . . , k,(10)

where α > n + k and Cκ > 0 are fixed constants. We remark that all compactly
supported, even Ck functions satisfy (10), as do even functions in the Schwartz class
S. Even functions in S satisfy (10) for arbitrarily large k and α. Define the family of
operators

Kε,n := κ(εLn) =

∞∑
�=0

κ(ε(	 + λn))P�, 0 < ε ≤ 1,

along with the associated family of kernels

Kε,n(ξ · η︸︷︷︸
cos θ

) :=

{ 1
2πκ(0) + 1

π

∑∞
�=1 κ(ε	) cos 	θ, n = 1,∑∞

�=0 κ(ε(	 + λn)) �+λn

λnωn
P

(λn)
� (cos θ), n ≥ 2,

(11)

where cos θ = ξ · η and 0 < ε ≤ 1.
Our aim in this section is to obtain uniform bounds on the kernel Kε(ξ · η) for

small ε, with the bounds being explicitly dependent on ε.
The simple estimates given below in section 3.1 on the terms in the series used to

define the kernels Kε,n confirm that, under mild conditions, these series are uniformly
convergent. Let n ≥ 2. Consider the ultraspherical identity [25, (4.7.14)] with λ = λn,
d
dxP

(λn)
� (x) = 2λnP

(λn+1)
�−1 (x). Since λn + 1 = λn+2 and ωn = λn+2ωn+2/π, we have,

for 	 ≥ 1,

d

dx

{(
	 + λn

λnωn

)
P

(λn)
� (x)

}
= 2π

(
	− 1 + λn+2

λn+2ωn+2

)
P

(λn+2)
�−1 (x).
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LOCALIZED TIGHT FRAMES ON SPHERES 579

Multiply both sides by κ(ε(	+λn)) and sum on 	 from 1 to ∞. Adjust the summation

index on the right side and on the left use d
dxP

(λn)
0 (x) = 0 to arrive at the identity

below, which holds even when n = 1:

d

dx
Kε,n(x) = 2πKε,n+2(x).(12)

3.1. Convergence issues and an L∞ estimate on Kε,n. The series defining
the kernels are uniformly and absolutely convergent, by the M -test. This is easy to
see for n = 1. For n ≥ 2, start with the bound [25, (4.7.3) and (7.33.1)]

|P (λn)
� (cos θ)| ≤

(
	 + n− 2

	

)
= P

(λn)
� (1),(13)

and note that

	 + λn

λn

(
	 + n− 2

	

)
≤ 2

(
	 + n− 1

	

)
≤ 2(1 + 	)n−1.

From this and the assumptions on κ(t), the terms in the series satisfy the bound

|κ(ε(	 + λn))|	 + λn

λnωn

∣∣P (λn)
� (cos θ)

∣∣ ≤ 2Cκ(1 + 	)n−1

ωn(1 + ε(	 + λn))α
≤ 2Cκε

−(n−1)

ωn(1 + ε	)α−n+1
,

which suffices for the M -test, since α > n + k ≥ n + 2 implies the series on the right
above is convergent. Note that the estimate holds even when n = 1, provided the
terms on the right are properly adjusted.

It is easy to take this a step further and obtain an estimate on ‖Kε,n‖∞, which
we will need later on anyway.

Proposition 3.1. If κ satisfies (10), then

‖Kε,n‖∞ ≤ 3Cκ

ωn
ε−n.(14)

Proof. From the series definition of the kernel and the estimate on each term, we
get this chain of inequalities:

‖Kε,n‖∞ ≤
∞∑
�=0

2Cκε
−(n−1)

ωn(1 + ε	)α−n+1

≤ 2Cκε
−(n−1)

ωn
+

∫ ∞

0

2Cκε
−(n−1)du

ωn(1 + εu)α−n+1

≤ 2Cκε
−n

ωn

(
ε +

1

α− n

)
Using ε ≤ 1 and α− n > k ≥ 2 in the previous inequality and simplifying, we obtain
(14).

3.2. Integral representations. We now wish to obtain integral representations
for the kernels Kε(cos θ). We begin with the Dirichlet–Mehler integral representation
for the Gegenbauer polynomials [5, p. 177],

P
(λ)
� (cos θ) =

2λΓ(λ + 1
2 )Γ(	 + 2λ)√

π	!Γ(λ)Γ(2λ)(sin θ)2λ−1

∫ π

θ

cos
(
(	 + λ)ϕ− λπ

)
(cos θ − cosϕ)1−λ

dϕ,
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580 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

which holds for any real λ > 0. We will take λ = λn = n−1
2 , with n ≥ 2 throughout

this section. Multiply both sides of the previous equation by �+λn

λnωn
and then simplify

to get

	 + λn

λnωn
P

(λn)
� (cos θ) =

γn(	 + λn)(	 + n− 2)!

	!(sin θ)n−2

∫ π

θ

cos
(
(	 + λn)ϕ− λnπ

)
(cos θ − cosϕ)1−λn

dϕ,(15)

where

γn :=
2λnΓ(λn + 1

2 )√
πλnωnΓ(λn)Γ(2λn)

.(16)

Using the expression on the right in (15) in the series definition of Kε,n, we get this
representation:

Kε,n(cos θ) =
γn

(sin θ)n−2

∫ π

θ

Cε,n(ϕ)

(cos θ − cosϕ)1−λn
dϕ,(17)

where Cε,n is given by the series

Cε,n(ϕ)

:=

∞∑
�=0

κ(ε(	 + λn))
(	 + λn)(	 + n− 2)!

	!

{
sin(λnπ) sin(	 + λn)ϕ, n even,
cos(λnπ) cos(	 + λn)ϕ, n odd.

(18)

We want to put this series in a more convenient form. To begin, the factor
(�+λn)(�+n−2)!

�! is the product (	 + λn)(	 + n − 2)(	 + n − 3) · · · (	 + 1), which can be
rewritten as

(	 + λn)(	 + n− 2)!

	!
=

	n−1
2 
∏

r=1

(
(	 + λn)2 − (λn − r)2

)
×
{

	 + λn, even,
1, odd.

From this, we see that if we define the degree n− 1 polynomial

Qn−1(z) :=

	n−1
2 
∏

r=1

(
z2 − (λn − r)2

)
×
{

z sin(λnπ), n even,
cos(λnπ), n odd,

(19)

then we have that

Cε,n(ϕ) =

∞∑
�=0

κ(ε(	 + λn))Qn−1(	 + λn)

{
sin(	 + λn)ϕ, n even,
cos(	 + λn)ϕ, n odd.

(20)

We want to make a few observations about the polynomial Qn−1. First, by direct
calculation we have that Qn−1(−z) = (−1)n−1Qn−1(z), so that Qn−1 is an even
function for odd n and an odd function for even n. Second, the zeros of Qn−1 are
located at ±(λn − r) for r = 1, . . . , �n−1

2 �. This means that the function

g(t) := κ(εt)Qn−1(t)

{
sin(tϕ), n even,
cos(tϕ), n odd,

is even in t and has its zeros at t = ±(λn − r) for r = 1 . . . , �λn�. In addition, we
have defined g above so that from (20) we have Cε,n(ϕ) =

∑∞
�=0 g(	 + λn).
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LOCALIZED TIGHT FRAMES ON SPHERES 581

We want to apply the Poisson summation formula (PSF),∑
μ∈Z

f(μ) =
∑
ν∈Z

f̂(2πν), f̂(ω) =

∫
R

f(t)e−iωtdt,

which holds for “nice” f , to f(t) = g(t + λn). Using the evenness of g and what we
said about its zeros, we see that the left side of the PSF becomes

∑
μ∈Z

g(μ + λn) = 2

∞∑
�=0

g(	 + λn) = 2Cε,n(ϕ).

Employing elementary properties of the Fourier transform, we can show that

f̂(ω) = eiλnω ĝ(ω) = ε−1eiλnωQn−1(i
d
dω )κ̂(ϕ+ω

ε ),

and so the right side of the PSF is∑
ν∈Z

f̂(2πν) = ε−1
∑
ν∈Z

e2πνiλnQn−1(i
d
dω )κ̂(ϕ+ω

ε )|ω=2πν

= ε−1
∑
ν∈Z

(−1)(n−1)νQn−1(i
d
dϕ )κ̂(ϕ+2πν

ε ).

Equating the two sides of the PSF and dividing by 2, we arrive at the following result.
Proposition 3.2. If κ satisfies (10), then for n ≥ 2 (17) holds with Cε,n given

by

Cε,n(ϕ) = (2ε)−1
∑
ν∈Z

(−1)(n−1)νQn−1(i
d
dϕ )κ̂(ϕ+2πν

ε ).(21)

In addition, for the n = 1 case we have

Kε,1(cos θ) = (2πε)−1
∑
ν∈Z

κ̂( θ+2πν
ε ).(22)

3.3. Estimates on Cε,n. We need to obtain bounds on the kernels Cε,n from
the previous section. The key to obtaining these bounds is this result.

Lemma 3.3. Let κ satisfy (10). If 0 ≤ j ≤ n−1 and 0 ≤ r ≤ k are integers, then
dr

dtr {tjκ} ∈ L1 and |ω|r|κ̂(j)(ω)| ≤ ‖ dr

dtr

{
tjκ

}
‖L1 .

Proof. Since κ ∈ Ck, the derivative dr

dtr

{
tjκ

}
is a linear combination of terms of

the form tpκ(q), each of which is bounded by a multiple of (1+ |t|)p+q−α. This is in L1

because α− p− q > α− (n− 1)− k > 1. This allows us to apply standard properties

of the Fourier transform to obtain the formula (−i)r+jωrκ̂(j)(ω) = ̂dr

dtr {tjκ}, which
immediately implies the inequality.

Consider the function
(
ϕ+ω
ε

)r
Qn−1(i

d
dϕ )κ̂(ϕ+ω

ε )=
∑n−1

j=0 ε−jqj,n
(
ϕ+ω
ε

)r
κ̂(j)(ϕ+ω

ε ),

where Qn−1(z) =
∑n−1

j=0 qj,nz
j is defined in (19). From Lemma 3.3, we have that∣∣∣(ϕ+ω

ε

)r
Qn−1(i

d
dϕ )κ̂(ϕ+ω

ε )
∣∣∣ ≤

∑n−1
j=0 ε−j |qj,n| ‖ dr

dtr

{
tjκ

}
‖L1

≤ Bn,k,κε
−(n−1),
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582 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

where

Bn,k,κ :=

⎛⎝n−1∑
j=0

|qn,j |

⎞⎠ max
j<n, r≤k

‖ dr

dtr

{
tjκ

}
‖L1 .(23)

Adding the inequalities for r = 0 and r = k and manipulating the result, we get that∣∣∣Qn−1(i
d
dϕ )κ̂(ϕ+ω

ε )
∣∣∣ ≤ 2Bn,k,κε

−(n−1)

1 +
∣∣ϕ+ω

ε

∣∣k .

We can use this inequality in conjunction with the series for Cε,n in (21) to arrive at
the bound

|Cε,n(ϕ)| ≤ (2ε)−1
∑
ν∈Z

2Bn,k,κε
−(n−1)

1 +
∣∣ϕ+2πν

ε

∣∣k =
∑
ν∈Z

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ,(24)

which holds for all ϕ ∈ R and 0 < ε ≤ 1. If we restrict ϕ to be in the interval [0, π],
then the dominant term in the series on the right comes from ν = 0. The other
terms are each bounded above by Bn,k,κε

k−n((2|ν| − 1)π)−k. Summing them and
then estimating the resulting series by an integral gives us∑

ν∈Z,ν �=0

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ≤ Bn,k,κε
k−nπ−k 2k − 1

k − 1
.

Multiply top and bottom on the left above by 1 +
(
ϕ
ε

)k
and use 0 ≤ ϕ ≤ π and k ≥ 2

to get ∑
ν∈Z,ν �=0

Bn,k,κε
−n

1 +
∣∣ϕ+2πν

ε

∣∣k ≤ 6Bn,k,κε
−n

1 +
(
ϕ
ε

)k .

Combining this bound with that from (24) yields the result below.
Proposition 3.4. Let κ satisfy (10), with k ≥ 2 and n ≥ 2. If 0 ≤ ϕ ≤ π, then

the kernel Cε,n defined in (18) satisfies the bound

|Cε,n(ϕ)| ≤ 7Bn,k,κε
−n

1 +
(
ϕ
ε

)k .(25)

In addition, for the case n = 1, we have

|Kε,1(cos θ)| ≤ 7B1,k,κε
−1

1 +
(
θ
ε

)k .(26)

Proof. Only the second inequality requires comment. The proof we gave works
for the n = 1 case because it has the form given in (22), which is essentially the same
as that for the Cε,n’s.

3.4. Estimates on Kε,n. We now turn to obtaining explicit bounds on the
ΨDO kernels Kε,n similar to the bound on Kε,1 in (26). From the integral represen-
tation in (17) and the bound on Cε,n, we have that

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ)n−2

∫ π

θ

(cos θ − cosϕ)
n−3

2 dϕ

1 +
(
ϕ
ε

)k .(27)
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LOCALIZED TIGHT FRAMES ON SPHERES 583

The two values of θ that present difficulties are θ = 0 and θ = π. The form of the
inequality above is adequate for the θ = 0 case, but needs to be reformulated for the
θ = π case. To do that, we begin by denoting the angle supplementary to an angle
α by α̃, so throughout this section we will let θ̃ = π − θ and ϕ̃ = π − ϕ. Changing
variables in the integral on the right above and using sin α̃ = sinα and cos α̃ = − cosα,
we have the following reformulation of (27):

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ̃)n−2

∫ θ̃

0

(cos ϕ̃− cos θ̃)
n−3

2 dϕ̃

1 +
(

π−ϕ̃
ε

)k .(28)

The next step is to bound both of these integrals. Recall the sum-to-product
identity, cosα − cosβ ≡ 2 sin α+β

2 sin β−α
2 , which holds for all α and β. Assuming

that π ≥ β > α ≥ π/2 and using the fact that sin t
t is decreasing for 0 ≤ t ≤ π, we

have that

6 < 8
sin(3π/4)

3π/4

sin(π/4)

π/4
≤ cosα− cosβ

β2 − α2
= 8

sin α+β
2

α+β
2

sin β−α
2

β−α
2

≤ 8,

and so (
cosα− cosβ

β2 − α2

)n−3
2

≤ 2
3(n−3)

2 ×
{ 2√

3
, n = 2,

1, n ≥ 3
≤ 2 · 2

3(n−3)
2 .(29)

Assume that ε ≤ θ ≤ π/2, and apply (29) to (27) to get the following chain of
inequalities:

|Kε,n(cos θ)| ≤ 14 · 2 3(n−3)
2 Bn,k,κγnε

−n

(sin θ)n−2

∫ π

θ

(θ2 − ϕ2)
n−3

2 dϕ

1 +
(
ϕ
ε

)k
≤ 14 · 2

3(n−3)
2 Bn,k,κγnε

−n

(
θ

sin θ

)n−2 ∫ π/θ

1

(t2 − 1)
n−3

2 dt

1 + (θ/ε)ktk

≤ 14 · 2 3(n−3)
2 Bn,k,κγnε

−n(π/2)n−2

( θε )k

∫ ∞

1

(t2 − 1)
n−3

2 dt

tk
.

Use 2(θ/ε)k ≥ 1+ (θ/ε)k, change variables of integration from t → 1/t, and note that
because k ≥ max{2, n − 1} ≥ n − 1, the resulting integral on the right is bounded

above by
∫ 1

0
(1 − t2)

n−3
2 dt = 2n−3Γ(λn)2/Γ(2λn) [26, p. 255]. After simplifying, we

arrive at this estimate:

|Kε,n(cos θ)| ≤ 14 · 2 3(n−3)
2 πn−2Bn,k,κγnΓ(λn)2/Γ(2λn)

1 + ( θε )k
ε−n.

The messy quantity in the numerator can be simplified considerably. This requires
employing the definition of γn in (16), the formula for ωn, the familiar properties of the
Γ-function, along with the less familiar duplication formula [26, p. 240],

√
πΓ(2z) =

22z−1Γ(z)Γ(z + 1
2 ), and manipulating the expressions involved. The result is that

2
3(n−3)

2 πn−2γnΓ(λn)2/Γ(2λn) =
ωn−1

4
√
π

, ωn−1 =
2π

n
2

Γ(n2 )
.
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584 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

Thus we can rewrite the previous inequality, which holds for ε ≤ θ ≤ π/2, as

|Kε,n(cos θ)| ≤ 7ωn−1Bn,k,κ

2
√
π(1 + ( θε )k)

ε−n.

If we now apply (29) to (28), with 0 ≤ θ̃ ≤ π/2 (or, equivalently, π/2 ≤ θ ≤ π),
then

|Kε,n(cos θ)| ≤ 7Bn,k,κγnε
−n

(sin θ̃)n−2

∫ θ̃

0

(θ̃2 − ϕ̃2)
n−3

2 dϕ̃

1 +
(

π−ϕ̃
ε

)k
≤ 14 · 2 3(n−3)

2 Bn,k,κγnε
−n

(1 +
(
θ
ε

)k
)(sin θ̃)n−2

∫ θ̃

0

(θ̃2 − ϕ̃2)
n−3

2 dϕ̃.

Carrying out manipulations analogous to those for the previous case, we obtain

|Kε,n(cos θ)| ≤ 7ωn−1Bn,k,κ

4
√
π(1 + ( θε )k)

ε−n.

The final case concerns 0 ≤ θ ≤ ε. For such θ, we have, from the L∞ bound in
(14), that

|Kε,n(cos θ)| ≤ 3Cκ

ωn
ε−n ≤ 3Cκ

ωn

(
1 + ( θε )k

1 + ( θε )k

)
ε−n ≤ 6Cκ

ωn(1 + ( θε )k)
ε−n,

which, when combined with (22) for n = 1, gives us the main result of this section.
Theorem 3.5. Let κ satisfy (10), with k ≥ max{2, n − 1}. If 0 ≤ θ ≤ π, then

the kernel Kε,n satisfies the bound

|Kε,n(cos θ)| ≤ βn,k,κ

1 + ( θε )k
ε−n,(30)

where

βn,k,κ :=

{
7B1,k,κ if n = 1,

max
{

6Cκ

ωn
,

7ωn−1Bn,k,κ

2
√
π

}
if n ≥ 2.

(31)

We conclude this section with an application of this theorem to obtaining a bound
on the L1 norm of Kε,n(ξ ·η), with η fixed. By the Funk–Hecke formula [17, Theorem
6], this norm is given by∫

Sn

|Kε,n(ξ · η)|dμ(ξ) = ωn−1

∫ π

0

|Kε,n(cos θ)| sinn−1 θ dθ,

which is of course independent of η. For that reason we will drop any reference to η
and denote the norm by ‖Kε,n‖1. Here is the bound we want.

Corollary 3.6. Let n ≥ 1. If κ satisfies (10), with k > max{2, n}, then

‖Kε,n‖1 ≤ 2ωn−1βn,k,κ.
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LOCALIZED TIGHT FRAMES ON SPHERES 585

Proof. By Theorem 3.5 and the remarks above, we have

‖Kε,n‖1 ≤ ωn−1

∫ π

0

|Kε,n(cos θ)| sinn−1 θ dθ ≤ βn,k,κωn−1ε
−n

∫ π

0

sinn−1 θ dθ

1 + ( θε )k
.

The integral on the right side above can be estimated this way:∫ π

0

sinn−1 θ dθ

1 + ( θε )k
< εn

∫ π/ε

0

tn−1dt

1 + tk

< εn
{∫ 1

0

tn−1dt +

∫ ∞

1

dt

tk+1−n

}
< 2εn.

The corollary then follows immediately from the estimate.

3.5. Operator properties of Kε,n. We now turn to the operator properties of
Kε,n. Our first result is calculating the norm of the map of Kε,n : Lp → Lq. After
that we will prove a lemma showing that for certain κ the operator Kε,n will be a
reproducing kernel on ΠL. We will close the section with a result showing that for
such κ and ε ≤ (L+ λn)−1 the norm of f −Kε,nf is comparable to the distance from
f to ΠL in appropriate norms.

Theorem 3.7. If κ satisfies (10), with k > max{2, n}, then, for all 1 ≤ p ≤ ∞
and 1 ≤ q ≤ ∞, the operator Kε,n : Lp(Sn) → Lq(Sn) is bounded and its norm satisfies

‖Kε,n‖p,q ≤ 2ωn−1βn,k,κ(4ωn−1ε
n)−( 1

p−
1
q )+ ,

where βn,k,κ is defined in (31) and (x)+ = x for x > 0 and (x)+ = 0 otherwise.
Proof. The operators are all of the form Kε,n ∗ f and so, for the (p, q) pairs (1, 1),

(∞,∞), (∞, 1), all satisfy ‖Kε,n ∗ f‖q ≤ ‖Kε,n‖1‖f‖p. By the Riesz–Thorin theorem
[28, p. 95] and Corollary 3.6, we then have for 1 ≤ q ≤ p ≤ ∞

‖Kε,n‖p,q ≤ ‖Kε,n‖1 ≤ 2ωn−1βn,k,κ.

For the pair (1,∞), we have ‖Kε,n ∗ f‖∞ ≤ ‖Kε,n‖∞‖f‖1. By (14) and (31), we have
‖Kε,n‖∞ ≤ 1

2βn,k,κε
−n, and so ‖Kε,n ∗ f‖∞ ≤ 1

2βn,k,κε
−n‖f‖1. Apply the Riesz–

Thorin theorem to the pairs (p, q), where 1
p = (1 − t)α + t and 1

q = (1 − t)α, where

0 < t < 1 and 0 < α < 1, ( 1
α ,

1
α ) and (1,∞) to get

‖Kε,n‖p,q ≤ (2βn,k,κωn−1)
1−t

(
1

2
βn,k,κε

−n

)t

= 2ωn−1βn,k,κ(4ωn−1ε
n)−t.

Since 1
p = (1 − t)α + t = 1

q + t, t = 1
p − 1

q . Thus, for q > p, we have

‖Kε,n‖p,q ≤ 2ωn−1βn,k,κ(4ωn−1ε
n)−( 1

p−
1
q ).

Putting the last inequality together with that for q ≤ p yields the result.
The following lemma is obvious.
Lemma 3.8. Let L > 0 be an integer and let 0 < ε ≤ (L + λn)−1. If κ satisfies

(10), with k ≥ max{2, n−1}, and if κ(t) ≡ 1 on [0, 1], then Kε,n(ξ ·η) is a reproducing
kernel on ΠL, the space of spherical harmonics having degree at most L.

Remark 3.9. Let L > 0 be an integer. If we choose ε so that L = �ε−1 − λn�,
then by combining the previous theorem and lemma we get a familiar result about

harmonic polynomials: If S ∈ ΠL, then ‖S‖q ≤ CnL
n( 1

p−
1
q )+‖S‖p.
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586 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

We let EL(f)p denote the distance of f ∈ Lp(Sn) to ΠL, i.e.,

EL(f)p := inf
S∈ΠL

‖f − S‖p.(32)

Corollary 3.10. Let κ satisfy (10), with k > max{2, n}, and in addition
suppose κ(t) ≡ 1 on [0, 1]. If f ∈ Lp(Sn), 1 ≤ p ≤ ∞, and ε ≤ (L + λn)−1,
then

‖f −Kε,n ∗ f‖p ≤ (1 + 2ωn−1βn,k,κ)EL(f)p.(33)

Also, for 1 ≤ p < ∞ or, if p = ∞, for f ∈ C(Sn), we have limε↓0 Kε,n ∗ f = f.
Proof. By Lemma 3.8, then Kε,n ∗ S = S if S ∈ ΠL. It follows that f −

Kε,n ∗ f = (I + Kε)(f − S). From this and Theorem 3.7, we have that ‖f − Kε,n ∗
f‖p ≤ (1 + 2ωn−1βn,k,κ)‖f − S‖p . Taking the infimum over all S ∈ ΠL yields (33).
That limε↓0 Kε,n ∗ f = f follows from (33) together with the fact that the spherical
harmonics are dense in Lp for 1 ≤ p < ∞ and in C(Sn) in the usual L∞ norm [24,
section IV.2].

The estimate in (33) is useful for obtaining rates of approximation, simply because
rates of approximation by spherical harmonics are well known for many classes of
functions; see, for example, Rustamov [23]. For further discussion, see the remarks
following Proposition 5.1.

4. Quadrature on Sn. To do the discretizations required to construct tight
spherical frames in section 5, we need a strengthened version of the quadrature formula
given in [14, 15]. There are two reasons for this. First, the earlier quadrature formula
applies to a partition of Sn that is restricted. Second, it utilizes a set of centers that
is not a general set of scattered points, but rather a set that has been “culled” from
one. Our aim is to use the results obtained in section 3 to produce an improved
positive-weight quadrature formula that avoids these restrictions. Indeed, out of this
will also come strengthened versions of the inequalities derived in [14].

4.1. Marcinkiewicz–Zygmund inequalities. In this section we wish to give
Marcinkiewicz–Zygmund type inequalities. These inequalities provide equivalences
between norms defined through integrals and discrete norms stemming from sampled
points and certain weights. Here, instead of polynomials, we will work with functions
of the form Kε,n ∗ f for f ∈ L1(Sn).

The place to start is with a decomposition of the sphere into a finite number of
nonoverlapping, connected regions Rξ, each containing an interior point ξ that will
serve for function evaluations as well as labeling. For example, given a set of centers
X, one can form the corresponding Voronoi tessellation, and then take Rξ to be the
region associated with ξ ∈ X. In any case, we will let X be the set of the ξ’s used for
labels and X = {Rξ ⊂ Sn | ξ ∈ X}. In addition, let ‖X‖ = maxξ∈X{diam(Rξ)}.

The quantity that we wish to estimate first is the magnitude of the difference
between the continuous and discrete norms for g = Kε,n ∗ f ,

EX :=
∣∣‖g‖1 −

∑
ξ∈X

|g(ξ)|μ(Rξ)
∣∣,

where we assume that f ∈ L1(Sn). It is straightforward to show that

EX ≤
∑
ξ∈X

∫
Rξ

|g(η) − g(ξ)|dμ(η) ≤ sup
ζ∈Sn

Fε,X (ζ)‖f‖1 ,
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LOCALIZED TIGHT FRAMES ON SPHERES 587

where Fε,X (ζ) :=
∑

ξ∈X

∫
Rξ

∣∣Kε,n(η · ζ)−Kε,n(ξ · ζ)
∣∣dμ(η), which is the quantity we

need to estimate.
Choose ζ to be the north pole of Sn and let θ be the colatitude in spherical

coordinates; set θη = cos−1(η · ζ) and θξ = cos−1(ξ · ζ). Denote by θ+
ξ and θ−ξ ,

respectively, the high and low values for θ over Rξ. Using (12) for the derivative of
Kε,n, we can write Fε,X (ζ) as

Fε,X (ζ) = 2π
∑
ξ∈X

∫
Rξ

∣∣∣∣ ∫ θη

θζ

Kε,n+2(cos t) sin tdt

∣∣∣∣dμ(η)

≤ 2π
∑
ξ∈X

μ(Rξ)

∫ θ+
ξ

θ−
ξ

|Kε,n+2(cos t)| sin t dt.

Divide Sn into M = �π/‖X‖� equal bands in which (m − 1)π/M ≤ θ ≤ mπ/M ,
m = 1, . . . ,M . To avoid trivial situations and simplify later inequalities, we will
assume that M ≥ 3. Call these bands B1, . . . , BM . Each Rξ can have nontrivial
intersection with at most two adjacent bands, because diam(Rξ) ≤ ‖X‖ ≤ π/M . So
if Rξ ⊂ Bm ∪ Bm+1, then (m − 1)π/M ≤ θ−ξ ≤ θ+

ξ ≤ (m + 1)π/M . In addition, the
sum of the contributions from all Rξ ⊂ Bm ∪Bm+1 is bounded above by the quantity

Im := 2πμ(Bm ∪Bm+1)

∫ m+1
M π

m−1
M π

|Kε,n+2(cos t)| sin t dt,

where μ(Bm ∪Bm+1) = ωn−1

∫ m+1
M π

m−1
M π

sinn−1 t dt. It follows that Fε,X (ζ) ≤
∑M−1

m=1 Im.

From Theorem 3.5, if we assume k ≥ n + 2 > max{2, n + 1} and if we use various
linear approximations to the sine, we have

Im ≤ 2πωn−1βn+2,k,κε
−n−2

∫ m+1
M π

m−1
M π

tn−1dt

∫ m+1
M π

m−1
M π

t

1 + ( t
ε )

k
dt.(34)

For 2 ≤ m ≤ M − 1, we can bound the first integral by 2π
M

(
m+1
M π

)n−1
. In the second

integral, we divide and multiply the integrand by tn−1, and replace the tn−1 in the
denominator by its lowest value. The result is that∫ m+1

M π

m−1
M π

t

1 + ( t
ε )

k
dt ≤

(
M

(m− 1)π

)n−1 ∫ m+1
M π

m−1
M π

tn

1 + ( t
ε )

k
dt.

Putting these two bounds together yields

Im ≤ 4π2

M
ωn−1βn+2,k,κε

−n−2

(
m + 1

m− 1

)n−1

︸ ︷︷ ︸
≤3n−1

∫ m+1
M π

m−1
M π

tn

1 + ( t
ε )

k
dt.

Summing both sides from m = 2 to M−1, taking account of intervals appearing twice
in the sum, and doing some obvious manipulations, we obtain

M−1∑
m=2

Im <
8π23n−1ωn−1

Mε
βn+2,k,κ

∫ π
ε

π
Mε

tn

1 + tk
dt

<
8π23n−1ωn−1

Mε
βn+2,k,κ

∫ ∞

0

tn

1 + tk
dt︸ ︷︷ ︸

≤3/2

<
4π23nωn−1

Mε
βn+2,k,κ.D
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588 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

We now need to estimate I1. From (34) we have

I1 ≤ n−1ωn−1(2π/M)n
∫ 2π

M

0

βn+2,k,κε
−n−2

1 + ( t
ε )

k
tdt <

ωn−1

2n

(
2π

Mε

)n+2

βn+2,k,κ.

We arrive at the estimate

Fε,X (ζ) ≤ 2πωn−1βn+2,k,κ
2π

Mε

{
1

2n

(
2π

Mε

)n+1

+ 3n

}
.

To finish up, we want to put our inequalities in terms of the ratio ‖X‖/ε. Since we
have assumed that M ≥ 3, we have that π/M ≤ 4

3‖X‖. Using this in the previous
inequality and simplifying, we arrive at

Fε,X (ζ) < 16π · 3n−1ωn−1βn+2,k,κ
‖X‖
ε

{
1 +

3

2n

(
8‖X‖

9ε

)n+1
}
.

We remark that if ‖X‖ ≤ ε ≤ 1, then the assumption that M ≥ 3 is automatically
fulfilled. In addition, the right side of the inequality above is independent of ζ, so it
holds for the left replaced by supζ∈Sn Fε,X (ζ). Finally, the inequality itself simplifies
considerably. We collect all these observations in the result below.

Proposition 4.1. Let κ satisfy (10) with k ≥ n + 2, and for f ∈ L1(Sn) let
g = Kε,n ∗ f . If X is the decomposition of Sn described above and if ‖X‖ ≤ ε ≤ 1,
then ∣∣∣∣‖g‖1 −

∑
ξ∈X

|g(ξ)|μ(Rξ)

∣∣∣∣ ≤ 16π · 3nωn−1βn+2,k,κ
‖X‖
ε

‖f‖1.(35)

This result leads immediately to a version of the Marcinkiewicz–Zygmund in-
equalities for Sn. This result extends an earlier result proved in [14, Theorem 3.1]. As
we noted at the start of the section, the earlier result held only for restricted classes
of decompositions.

Theorem 4.2. Let L > 0 be an integer and let δ ∈ (0, 1). If X is the decompo-
sition of Sn described above and S ∈ ΠL, then there exists a constant sn ≥ 1, which
depends only on n, such that

(1 − δ)‖S‖1 ≤
∑
ξ∈X

|S(ξ)|μ(Rξ) ≤ (1 + δ)‖S‖1(36)

holds whenever ‖X‖ ≤ δs−1
n (L + λn)−1.

Proof. Let κ satisfy (10), with k ≥ n + 2. In addition, require κ(t) ≡ 1 for
t ∈ [0, 1]. Choose ε = (L + λn)−1. By Lemma 3.8, S = Kε,n ∗ S, and so if we take
f = S and ‖X‖ ≤ ε = (L + λn)−1 ≤ 1 in Proposition 4.1, then g = Kε,n ∗ S = S
there. Manipulating the resulting expression in (35) then gives us

s̃n := sup

∣∣‖S‖1 −
∑

ξ∈X |S(ξ)|μ(Rξ)
∣∣

(L + λn)‖X‖‖S‖1
≤ 16π · 3nωn−1βn+2,k,κ ,

where the supremum is over all X and L > 0 such that ‖X‖ ≤ (L+λn)−1 and clearly
depends only on n. Now, let

sn := max{1, s̃n} ≤ max{1, 16π · 3nωn−1βn+2,k,κ}.(37)

If we further restrict ‖X‖ so that ‖X‖ ≤ δs−1
n (L + λn)−1, then (36) follows.
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LOCALIZED TIGHT FRAMES ON SPHERES 589

4.2. Positive-weight quadrature for Sn. Our aim is to extend the quadrature
formula in [14, Theorem 4.1] to more general sets of centers and decompositions than
the restricted class covered there. Even more important for us here is obtaining
upper and lower bounds on the positive weights. For the restricted case covered in
[14], upper bounds were given in [15], but nothing was said about lower bounds, which
we need for constructing tight-frames on Sn.

There is an important map associated with ΠL and the decomposition X and the
corresponding finite set X. Let |X| be the cardinality of X. We define the sampling
map, TX : ΠL → R|X|, by TXS := (S(ξ))ξ∈X . From Theorem 4.2, it follows that if
‖X‖ ≤ δs−1

n (L + λn)−1 holds and if TXS = 0, we have that ‖S‖1 = 0 and, hence,
S ≡ 0. The sampling map, which is linear, is therefore injective. Moreover, if we let
the subspace VL = TXΠL ⊂ R|X|, then the inverse map T−1

X : VL → ΠL is of course
linear. Also, we will let SX = (S(ξ))ξ∈X .

Since our interest here is in weights for quadrature, we start with the linear
functional Φ : ΠL → R given by

Φ(S) :=

∫
Sn

S(η)dμ(η), S ∈ ΠL.

Let ΦX(SX) = Φ(T−1
X (SX)) = Φ(S). If SX ≥ 0, then |S(ξ)| = S(ξ) for ξ ∈ X, and so

from (36) we have that

∣∣Φ(S) −
∑
ξ∈X

S(ξ)μ(Rξ)
∣∣ ≤ ∣∣‖S‖1 −

∑
ξ∈X

S(ξ)μ(Rξ)
∣∣ ≤ δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ),

provided only that ‖X‖ ≤ δs−1
n (L + λn)−1. For any δ < 1

2 , this implies that

1 − 2δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ) ≤ Φ(S) ≤ 1

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ).

From this, we see that the linear functional

ΨX(SX) := ΦX(SX) − 1 − 2δ

1 − δ

∑
ξ∈X

S(ξ)μ(Rξ)(38)

is positive on the cone 0 ≤ SX ∈ VL, which itself is contained in the positive cone of
R|X|.

There are two facts we will take account of. The first is that the positive cone of
VL is contained in the positive cone of R|X|. The second is that the vector (1)ξ∈X ,
which is in both cones, is an interior point of the positive cone of R|X|. By the Krein–
Rutman theorem [9], there exists a positive linear functional Ψ̃X that extends ΨX to

all R|X|. Consequently, there exist weights αξ ≥ 0 such that Ψ̃X(x) =
∑

ξ∈X αξxξ.
Using this and ΦX(SX) = Φ(S) in (38), we obtain

Φ(S) =
∑
ξ∈X

cξS(ξ), cξ := aξ +
1 − 2δ

1 − δ
μ(Rξ), aξ ≥ 0.(39)

This is of course a positive-weight quadrature formula on Sn, with weights bounded
below by 1−2δ

1−δ μ(Rξ).
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590 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

We want to get upper bounds as well. To do that, we let L′ = �L
2 � and fix ξ0 ∈ X.

If S ∈ ΠL′ , then S2 is in ΠL. The quadrature formula (39) then implies that

‖S‖2
2 = Φ(S2) =

∑
ξ∈X

cξ(S(ξ))2 ≥ cξ0(S(ξ0))
2.

Choose S(η) =
∑L′

�=0

∑dn
�

m=1 Y�,m(η)Y�,m(ξ0) =
∑L′

�=0
�+λn

ωnλn
P

(λn)
� (ξ0 · η), which is real

valued. Using the orthogonality of the Y�,m’s, one can show that ‖S‖2
2 = S(ξ0) =∑L′

�=0
�+λn

ωnλn

(
�+n−2

�

)
. From the previous inequality, (13) and (4), and the fact that

dim ΠL′ = dn+1
L′ [17, p. 4], we get cξ0 ≤ ωn/d

n+1
L′ , where L′ := �L/2�. We summarize

these results below.
Theorem 4.3. Adopt the notation of Theorem 4.2. In particular, sn is given

by (37) and depends only on n. For any 0 < δ < 1
2 and any integer L > 0, if

‖X‖ ≤ δs−1
n (L + λn)−1, then there exist positive weights cξ, ξ ∈ X, such that the

quadrature formula ∫
Sn

f(η)dμ(η)
.
=
∑
ξ∈X

cξf(ξ)(40)

is exact for spherical harmonics in ΠL. Also, the weights satisfy the bounds

1 − 2δ

1 − δ
μ(Rξ) ≤ cξ ≤ ωn

dn+1
L′

, L′ = �L/2�.(41)

The theorem just proved starts with L and puts conditions on the decomposition
X . The centers in X play a secondary role, serving as labels for regions in X and as
evaluation points in the quadrature formula.

It’s useful to turn this around and have the centers X play the primary role. To
do that, we need to make the assumption that we are considering only ρ-uniform
X; that is, for some fixed ρ we assume that the mesh ratio hX/qX = ρX ≤ ρ. We
will take the X = XV to be the Voronoi decomposition associated with X. For this
decomposition, we have hX ≤ ‖XV ‖. Also, since the smallest distance between two
points in X is 2qX , every Rξ ∈ XV contains a spherical cap with center ξ and radius
qX ≥ hX/ρ ; hence, μ(Rξ) ≥ ωn−1(2/π)n−1ρ−nhn

X/n. Applying Theorem 4.3, we
arrive at this result.

Corollary 4.4. Adopt the notation of Theorem 4.3 and let X be a ρ-uniform
set of centers. If hX ≤ δs−1

n (L + λn)−1, then the quadrature formula (40) holds with
weights satisfying

ωn−1(2/π)n−1

(
1 − 2δ

1 − δ

)
ρ−nhn

X ≤ cξ ≤ ωn

dn+1
L′

, L′ = �L/2�.(42)

Set δ = 1/4. To get a better idea of how the weights are bounded in terms of

h = hX or L, note that by (4) we have dn+1
L′ ∼ (L/2)n

λn+1(n−1)! . In addition, if we take L as

large as possible, but still consistent with the condition that hX ≤ δs−1
n (L + λn)−1,

then L ∼ h−1. In that case, we see that

cξ = O{hn} = O{L−n},(43)

where the constants hidden by O are dependent only on the dimension n.
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LOCALIZED TIGHT FRAMES ON SPHERES 591

So far we have only addressed the existence of positive weights, along with bounds
on them. In fact, the existence of such weights implies the feasibility of solving a
quadratic programming problem that produces weights minimizing

∑
ξ∈X c2ξ , subject

to constraints. Thus it is possible to numerically compute the weights. For more
details, see [14, section 4.3].

5. Tight frames on Sn. In this section, we discuss three important features of
the operator frames on Sn introduced earlier in section 2.2. The first is the approx-
imation power of these frames in various spaces. The second is how to turn them
into tight frames for Sn. This requires discretizing them using the quadrature results
from the previous section. The third and final feature is their excellent localization
properties.

We will turn to discussing the approximation power of these operator frames,
after a brief word about notation. Throughout this section, the operators Aj and BJ

are their kernels Aj and BJ , which are defined in section 2.2. The function b(t) is
defined in (1). We assume that the function a(t), whose properties are discussed in
section 1, is in Ck(R).

Proposition 5.1. Let k > max{n, 2}, and let b be defined by (1), with a ∈ Ck(R).
If f ∈ Lp(Sn), 1 ≤ p ≤ ∞, and if L > 0 is an integer such that 2−J−jn ≤ (L+λn)−1,
then

‖f − BJf‖p ≤ Cb,k,nEL(f)p, EL(f)p := distLp(f,ΠL).(44)

Also, for 1 ≤ p < ∞ or, if p = ∞, for f ∈ C(Sn), we have limJ→∞ BJf = f .
Proof. Apply Corollary 3.10 with κ = b, k as above, and ε = 2−J−jn .
The proposition implies that BJf approximates f to within an error comparable

to EL(f)p, which is that for the best approximation to f from ΠL in Lp. Much work
[11, 20, 22, 23, 27] has been done on estimating this error for various smoothness
classes and spaces. This work allows us to obtain rates of approximation when f has
additional smoothness requirements. A typical result [11] is this: If f ∈ Lp(Sn), with
‖f‖p = 1, belongs to a smoothness class Wα

p (Sn), which is analogous to a Sobolev

space, then EL(f)p ∼ L−α. Choosing f similarly and taking L ∼ 2J , we get a
corresponding result for our case: ‖f − BJf‖p ∼ 2−αJ .

We now turn to constructing tight frames on Sn. The quadrature formulas from
section 4.2 will play a pivotal role in their construction; we will also require a se-
quence of sets of centers to use in conjunction with them. Let ρ ≥ 2 be fixed. By
Proposition 2.1, we can find a sequence of sets of centers {Xj ∈ Fρ}∞j=0 such that Xj

is nested and such that the mesh norm hj := hXj halves going from j to j + 1; that
is, hj+1 ≤ hj/2. In what follows, assume that the Xj ’s form such a sequence.

Recall that on Sn, the frame transform f → wj = Ã∗
jf takes the form wj(η) =

A∗
jf(η) = 〈f(ζ), Aj(ζ · η)〉L2(Sn). Because Aj(ζ · η) is a spherical polynomial with

degree less than 2j+jn+1, the function wj(η) is a spherical polynomial of degree less
than 2j+jn+1. In the reconstruction formula this then contributes the term

Ajwj(ω) =

∫
Sn

Aj(ω · η)wj(η)dμ(η).

The product Aj(ω ·η)wj(η) is a spherical polynomial having degree less than 2j+jn+1+
2j+jn+1 = 2j+jn+2.

We can integrate this exactly using the quadrature formula (40), with L =
2j+jn+2. First of all, the condition on the mesh norm h in both Theorem 4.3
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592 F. J. NARCOWICH, P. PETRUSHEV, AND J. D. WARD

and Corollary 4.4 is that h ≤ δs−1
n (L + λn)−1, where δ ∈ (0, 1/2) is arbitrary.

Choose δ = 1/4 to be definite. For n = 1 (the circle), we have λ1 = 0 and
j1 = 0, and the condition is h ≤ δs−1

1 2−j−2 = s−1
1 2−j−4. For n ≥ 2, note that

2j+jn+2 + λn ≤ 2j+2�λn� + λn < 2j+3λn. The condition for n ≥ 2 is then fulfilled if
h ≤ δ(λnsn)−12−j−3 = (λnsn)−12−j−5. It is clear that these conditions can be met
by using the sets Xj .

Let the quadrature weight corresponding to the center ξ ∈ Xj be denoted by cj,ξ,
so that

Ajwj(ω) =
∑
ξ∈Xj

cj,ξAj(ξ · ω)wj(ω) =
∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ,(45)

where

ψj,ξ(η) :=
√
cj,ξAj(η · ξ), ξ ∈ Xj ,(46)

is the analysis frame function at level j. The frame function ψj,ξ is computable:
Aj is known and, as we noted at the end of section 4.2, the weights can be found
numerically. We can now prove this result.

Theorem 5.2. Let k > max{n, 2}, and let Aj be the kernel in (8), with a ∈
Ck(R). If f ∈ C(Sn) or, for 1 ≤ p < ∞, if f ∈ Lp(Sn), then

f =

∞∑
j=0

∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ,

with convergence being in the appropriate space. In addition, if f ∈ L2(Sn), the frame
{ψj,ξ}j∈Z+,ξ∈Xj is tight:

‖f‖2 =

{
1
2π |〈f, 1〉|2 +

∑∞
j=0

∑
ξ∈Xj

|〈f, ψj,ξ〉|2, n = 1,∑∞
j=0

∑
ξ∈Xj

|〈f, ψj,ξ〉|2, n ≥ 2.

Finally, the frame functions have vanishing moments that increase with j, and are
orthogonal on nonadjacent levels.

Proof. From (9) and (45), for n ≥ 2 we get BJf =
∑J

j=0

∑
ξ∈Xj

〈f, ψj,ξ〉ψj,ξ.
By Proposition 5.1 this converges to f in all of the spaces mentioned. To prove
that the frame is tight, just observe that for f ∈ L2(Sn), we have 〈BJf, f〉 =∑J

j=0

∑
ξ∈Xj

∣∣〈f, ψj,ξ〉
∣∣2. Taking the limit as J → ∞ then yields the equation for

‖f‖2. The statement concerning vanishing moments follows from the structure of the
Aj ’s, and the orthogonality between nonadjacent levels is proved in Proposition 1.1.
The n = 1 case has a projection P0 in BJ , where P0 projects onto the constants. The
effect of this is to add a term to the series for ‖f‖2.

Our last result concerns the localization properties of the frame function defined
by (46).

Corollary 5.3. Let k > max{n, 2} and let ψj,ξ be given by (46). If θ :=
cos−1(η · ξ), then for all θ ∈ [0, π] there are constants C and C ′, which depend on k,
n, and a, such that these hold:

|ψj,ξ(η)| ≤
2n(j+jn)/2 C

1 + (2j+jn θ)k
and |BJ(η · ξ)| ≤ 2n(J+jn) C ′

1 + (2J+jn θ)k
.
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LOCALIZED TIGHT FRAMES ON SPHERES 593

Proof. Use Theorem 3.5, with κ = b and ε = 2−J−jn , to bound BJ(ξ · η), and
again, with κ = a and ε = 2−j−jn , to bound Aj(η · ξ). Next, use L = 2j+jn+2 in (43)
to see that cξ = O{2−(j+jn)n}, where the constants depend only on n. To bound ψj,ξ,
use the bounds on Aj and cξ in (46).
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