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e High-dimensional x = (z(1),...,z(d)) € R%:

e Classification: estimate a class label f(x)

given n sample values {x;, y; = f(z;) }i<n

Image Classification d = 10° Sons

Anchor Joshua Tree

Beaver Lotus d — 104 / S
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igh Dimensional Learning

. High—dimensional r = (2(1),...,2(d)) € R%:

e Regression: approximate a functional f(x)

given n sample values {x; , y; = f(x;) }i<n

Physics: Many Body Problem
Interaction energy f(x) of a system: x = {positions, values}

Astronomy
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o f(x) can be approximated from examples {x;, f(x;)}; by

local interpolation if f is regular and there are close examples:

e Need e~ ¢ points to cover [0,1]¢ at a Euclidean distance e

= ||l — x;|| is always large
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Data: = € R? Representation

|z — 2'||: non-informative dr e H
o Intelligence .
) @ . b o '0.. L.
”Similarity” metric: A(x,x!) < || @z — D2

Bi-Lipschitz FEuclidean metric embedding:
Ch ||Px — O2'|| < A(z,2") < Cs || Pz — P2’

How to define ¢ 7
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e Representation of z: ®(x) = {¢, ()},

e Regression f(z) of f(z) linear in ®(x):

f(z) = (w,d(2)) = 3w b ()

interpolates: Vi, f(x;) = f(wz) = (w, ®(x;))

regular: min ||w||* = Zwi = W= Zai P(z;)

kernel similarity of x and x;
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Linear Classifiers

Data: x € R? Representation
dr ¢ H

Linear Classifier
sign({(w, ®x) 4+ b)

|x — 2’||: non-informative

How to define & 7
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_Known Euclidean Embeddings

e If the data is in a low-dimensional manitold,

embedding of manifold metrics with a heat kernel:

_ Jlz—a|?

<(I)($)7 (I)(x/» =(C'e 202

e Embedding of Banach metrics over finite set of points {z;};

but problem of generalisation for all . (Bourgain)

Need to embed the full space.

e Can we learn ®(z) from data ?
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e The revival of an old (1950) idea: Y. LeCun

| O X

W1 linear operator : Wavelets !

Oy rTrgrirg
newron ... ] p non-linear scalar: p(u) = |u|
O PTIII11T] or
W 1 p(u) = argtan(u)
2 linear

Q0 non-linear

4
EENEIEEEEENENEN

;

Li Classificat.
|||||g|||||l|||||||||||(I)(;L') hear s Ca»

Optimize the W: over 10” parameters .

Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...
Why does it work so well 7
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Overview

 Embedding geometry: invariance and stability to deformations

* Image classification

» Learning physics: quantum chemistry energy regression
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Image Metrics

e Low-dimensional ”geometric shapes”

z(u) z'(u)

3|3 5 s

Deformation metric: (classic mechanics)
Deformation: D,x(u) = z(u — 7(u))

A(z,z') ~min || Dz — 2'[| + [ V7|l || 2]

|

Invariant to translations diffeomorphism
amplitude
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11 By Image Metrics

e High dimensional textures:
ergodic stationary processes

e What metric on stationary processes 7 (statistical physics)
Bounded by a deformation metric:

A(z,2") < min [[Drz — 2| + ||V o [z

But not equivalent:
A(x',z) =0 if z and 2’

are realisations of same process
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. Euclidean Metric Embedding

e Embedding: find an equivalent FEuclidean metric
|@z — 2’| ~ Az, 2")

with A(z,z') <min||D,x — 2'|| + ||V7||s || ]|

e Fquivalent conditions on P:

- Stable in L2: D, = Id = ||®z — ®2'|| < C ||z — 2|

- Lipschitz stable to diffeomorphisms
v = Dyx = |[®x— D2 < C V7w |

— Invariance to translation
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_Fourier Deformation Instability _.

e Fourier transform #(w) = [ x(t) e dt

The modulus 1s invariant to translations:

ro(t) =x(t —c) = P(x) =r(W)|jw = P(z) -

e Instabilites to small deformations =, (t) = z(t — 7(¢)) :

2, (w)| — |z(w)|]| is big at high frequencies

o

= [ ®(x) = (z7)[| > [[VT|loo |||
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~Eﬂ§s‘ cale separation with Wavelets

e Complex wavelet: ¢(t) = g(t)expi&t , t = (t1,12)
rotated and dilated: ¥x(t) =277 (277 rgt) with \ = (27,0)

real parts imaginary parts

e Wavelet transform: Wax = <

Preserves norm: ||[Wz||* = ||z]|* .
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Scale
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First wavelet transform o(t)  BHairemsletien iRk

Second wayvelet transform modulus

Wl |2 % by, |= ( |a’;*¢>\1 * ¢ou (1) >
A2
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Scattering Transform

T
CU*¢2J ()
Wi
% 1y, | * Pau ()
Wa

H$*¢>\1\*¢>\2(t)‘o O 0 O O O C
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‘ 3‘ momummomuooo00000000000000’"
|2 % x| * U, | * P,
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Scattering at 27:  GX0GG00000000G00C
SJx(Al —Hil?*% ‘* |*¢)\ ‘*¢2J
path va/mable
reL! = lim Syz(A, ... \m) = |||z *x x| % ... x|
J—00

Theorem: The energy of last layer coefficients converge to 0

lim Z 1S52(A1s ooy A2 = O
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Scattering Properties

CU*QbQJ \
’$*¢)\1’ * (Do

Sz = |2 % x| * P, | * Pos = ... |W3| |[Wa| [W1|x
[l % thag [ Uxg | % 1o | P

/ >\17>\27>\37°“

Letaetas || §)D, ||V i DY e DL < €IV 7] o

Theorem: For appropriate wavelets, a scattering 1S

contractive ||Syz — Syy|| < ||z —y|| (L? stability)
preserves norms ||Sjx| = ||z

translations invariance and deformation stability:
if Dyx(u) = x(u—7(u)) then
lim ||S;D7x — Syzf| < Cf|VTlle [|2]

J— 00
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. Digit Classification: MNIST

F e/ 79 b

a |\
578634 %¢
790/ &3S 6
| 20 [ § 8 9 4

Joan Bruna

5 Linear Classifier

Classification Errors

Training size

Conv. Net. Scattering

300
5000
20000
60000

7.2% 4.4%
1.5% 1.0%
0.8% 0.67%
0.5% 0.4%

LeCun et. al.




J. Bruna

CUREt database
61 classes
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FuScattering Moments of Processes

The scattering transform of a stationary process X (t)

/ )( *<$2J \
‘;XT’(Lbkl‘T*‘ﬁQJ
SiX = HX*¢>\1‘*¢>\2‘*¢2J
"‘X*¢A2’*¢>\2’*¢>\3‘*¢2J
\ A1 A2 Aa,..

is a low-variance estimator of the scattering moments of X (%)

E(X)
E(\X*%\l‘)
gX — E(]| X x| % a,|)

E([[]X  thx, | * ¥x, [ * hxs)

A1,A2,A3,...

im S;X = SX in mean-square, if X is ”ergodic” .
J— 00
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J. Bruna

CUREt database
61 classes

X + Srx > Linear Classifier

Classification Errors 27 = image size
Training | Fourier Histogr. Scattering
per class | Spectr. Features

46 1% 1% 0.2 %

e Can characterise non-(Gaussian properties of processes
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Rotation and Scaling Invariance

ENS

Laurent Sifre
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1011 €rTOrs

] lassificati

Ing ¢

Scatter

20 %

Training | Scat. Translation

20
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. Extension to Rigid Mouvements _ .
Laurent Sifre

e Euclidean group of isometries G = {(v,0) € R? x [0, 27)}
action on an image: (v,0).z(u) = z(r, ' (u — v))

(v',0") (v,0) = (V' +rgv, §+60") : non-commutative

(v,0)"r = (—r_gv, —0)

e Action on wavelet coeflicients:

(v, 0 )afn) —of [Wi| |— FaGeapslapcuyf s #:00)9)
}
[ z(u)du
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. Extension to Rigid Mouvements

Laurent S zfre

e To build invariants: second wavelet transform on L?(G):

group convolutions of x;(u, ) with wavelets ¢y, (u, )

27T
T; ® Yy, (u,d) = /RQ/ z; (v

e Scattering on Isometries:

Wavelets on Translations  Wavelets on Isometries Wavelets on Isometries

0") Y, (( 0" (u, 9)) dv’ do’

r(u)— |[Wi| — x(u, 0)—y |Wa

|z ® Yy, (v, 0)|—o [Ws

!

fx(u)du ij(u:ﬁ) dudf /|37j ® Y, (v, 0)|dud
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Rotation and Scaling Invariance

ENS

Laurent Sifre
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1011 €rTOrs

ing classificat

Scatter
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0.6
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Complex Image Classification
CalTech 101 data-basis: Edouard Oyallon

Ancre Metronome Castore Nénuphare Bateau

ENS

Arbre de Joshua

x N Rgf(]ivat. »| Linear Classif. |—— ¥
Classification Accuracy 2J — 95
Data Basis | Deep-Net Scat.-2
CalTech-101 85% 80%
CIFAR-10 90% 80%

Scattering almost linearises these classification problems.
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Inverse Scattering Transform

Joan Bruna

e Compute x such that:

vm ] \V/)\l, 7>\m ] S(]fﬁ()\l, ,)\m) — Sj.il?()\l, 7>\m)

e At the second order for J = oo:
min ||z ||
such that: [z(u)du = [ Z(u)
VAL, [[Z %l = llox x|l
VAL A2, [[[8 %, [ * a1 = [ %, [ * ¥, |

Non convex optimization.
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_Sparse Shape Reconstruction

Joan Bruna

e Numerical recovery from 1st and 2nd order coeflicients:

Original images of N? pixels:
PR ‘!
PR

‘Z PR A +

PR

RN

Reconstruction from {HZUH1 |l * 1y, H1}>\1 : O(log, N) coeft.
LAAALA A AL LA AL
' TTTTTITTIIN

Reconstruction from {||z||1, ||z * ¥x, |1, ||z * x| *x¥r, |1} O(logs N) coeff.

|12 IIHIE'.

LALLM AR AR L)
LAALAALA AL L)
LAALAAARARRL)
LAALARAA AR L)
LAAAAAAA AR L)
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e Ergodic Texture Reconstructions

Orlgmal Textures Joan Bruna
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L UFMultiscale Scattering Reconstructions
S Y8 ) ' - 0 »

Original 8=~
Images il

N? pixels
Scattering

27 =16
1.4 N? coef.

27 — 39
0.5 N2 coeff.

27 = 64
N*/8 coeff.

27 =128 = N| =
N?/32 coeff. 8
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Ved > Representation of Audio Textures _ .

' 8 - 3
e
Joan Bruna

o = € RY realization of a stationary process

Original  Gaussian model  Scattering
Water
Paper
Cocktail Party
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-.Learning Physics: N-Body Problem.

, , , N. Poilvert
e Energy of d interacting bodies: Matthew Hirn

Can we learn the interaction energy f(x) of a system

with x = {positions, values} ?

Astronomy Quantum Chemistry
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11\ F%.  Second Order Interactions

e Energy of d interacting bodies (Coulomb):

d
for point charges x(u) = Z qr 0(u — pr) then
k=1

dr qk’
\Pk — Pk’ \5

potential V(r) = |r|7% : f(z) =

diagonalized in Fourier : f(x) = (2mr)? / (W) ]2V (w) dw
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LU Many Body Interactions

. N. Poilvert
e Energy of d interacting bodies (Coulomb):  Matthew Hurn

Fast multipoles: each particle interacts with O(logd) groups

(Rocklin, Greengard) @

Potential V (u) = |u|~# = @

Theorem: For any € > 0 there exists wavelets with

f@) =) wvrllaxal® (1+¢€)

A
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Quantum Chemistry

Protonic charges of a molecule: z(u) = Zzzl qr 0(u — pi)
Atomic energy f(x) = molecule energy - isolated atoms energy

Density Functional Theory: computes the electronic density p(u

Organic molecules
with
Hydrogne, Carbon

Nitrogen, Oxygen
Sulfur, Chlorine
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¥ Quantum Chemistry

ENS

Atomic energy f is computed from each electronic orbital ¢ (u)
K

p(u) =N |ow(u)l’

F(p(x) = T(p) + / o) V() + = / PP o + Bpo(p)

2 U — v
Kinetic energy electron-nuclei electron-electron Exchange
attraction Coulomb repulsion correlat. energ

e p is computed with a variational problem in O(K?)

e Orbitals have ”sparse” multiscale wavelet decompositions.

e f(x) is invariant by rigid movements and deformation stable
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Quantum Chemistry n. poiiert
Matthew Hirn

e Data bases {x;, f(x;)}; of 2D molecules with up to 20 atoms

e Regression on scattering coefficients:

Fourier modulus coeflicients and squared

Px = {on(T)}n : or

order 2 scattering coefficients and squared

M-term sparse regression with a greedy Partial Least Square

computed on training set:

far(x) =) wi én, (z)
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Quantum Chemistry n. poiiert
Matthew Hirn

e Data bases {z;, f(x;)}; of 2D molecules with up to 20 atoms

far(z) =) Wi én, (z)

log, E| f(x) — far(z)|?: testing

A

A
400 molecules Al 4000 molecules
Fourier modulus
7}
“# s E i
sh\_ e Scattering \sﬂ
l".\.\ - ll'll g v
Y Coulomb — | |
=
Kernel
: i et _sewss
1 - e e M ] 200 200 500 200 1000
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_Quantum Chemistry  ~. Poilvert _,
Matthew Hirn

e Data bases {x;, f(x;)}; of 2D molecules with up to 20 atoms

M
k=1

(X) — fur(X)?)Y? in keal /mol

Fourier Coulomb Scattering
400 atoms 30 15 8 WHY 7
4000 atoms 24 8 3.7

Mean-square error [E(

First terms of scattering expansions:
On, () = | x(u) du: total charge

O (:13‘) = ||z x4y, ||1: where A1 is the main geometric scale
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ENS

e A major challenge of data analysis is to find
Fuclidean embeddings of metrics.

e One can learn physics through data and compute fast

e Multitude of open mathematical problems at interface of:

geometry, harmonic analysis, probability, statistics, PDE.

www.di.ens.fr/data/scattering
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