
Appendix A

Mathematical Complements

Important mathematical concepts are reviewed without proof. Sections A.1–A.5 present results of
real and complex analysis, including properties of Hilbert spaces, bases and linear operators [58].
Random vectors and Dirac distributions are covered in the last two sections.

A.1 Functions and Integration

Analog signals are modeled by measurable functions. We first give the main theorems of Lebesgue
integration. A function f is said to be integrable if

∫ +∞
−∞ |f(t)| dt < +∞. The space of integrable

functions is written L1(R). Two functions f1 and f2 are equal in L1(R) if

∫ +∞

−∞
|f1(t)− f2(t)| dt = 0.

This means that f1(t) and f2(t) can differ only on a set of points of measure 0. We say that they
are almost everywhere equal.

The Fatou lemma gives an inequality when taking a limit under the Lebesgue integral of positive
functions.

Lemma A.1 (Fatou). Let {fn}n∈N be a family of positive functions fn(t) ! 0. If limn→+∞ fn(t) =
f(t) almost everywhere then

∫ +∞

−∞
f(t) dt " lim

n→+∞

∫ +∞

−∞
fn(t) dt.

The dominated convergence theorem supposes the existence of an integrable upper bound to
obtain an equality when taking a limit under a Lebesgue integral.

Theorem A.1 (Dominated Convergence). Let {fn}n∈N be a family such that limn→+∞ fn(t) =
f(t) almost everywhere. If

∀n ∈ N |fn(t)| " g(t) and

∫ +∞

−∞
g(t) dt < +∞ (A.1)

then f is integrable and ∫ +∞

−∞
f(t) dt = lim

n→+∞

∫ +∞

−∞
fn(t) dt.

The Fubini theorem gives a sufficient condition for inverting the order of integrals in multidi-
mensional integrations.
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552 Appendix A. Mathematical Complements

Theorem A.2 (Fubini). If
∫ +∞
−∞

(∫ +∞
−∞ |f(x1, x2)|dx1

)
dx2 < +∞ then

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2) dx1 dx2 =

∫ +∞

−∞

(∫ +∞

−∞
f(x1, x2) dx1

)
dx2

=

∫ +∞

−∞

(∫ +∞

−∞
f(x1, x2) dx2

)
dx1 .

Convexity A function f(t) is said to be convex if for all p1, p2 > 0 with p1 + p2 = 1 and all
(t1, t2) ∈ R2,

f(p1t1 + p2t2) " p1 f(t1) + p2 f(t2) .

The function −f satisfies the reverse inequality and is said to be concave. If f is convex then the
Jensen inequality generalizes this property for any pk ! 0 with

∑K
k=1 pk = 1 and any tk ∈ R:

f

(
K∑

k=1

pktk

)

"

K∑

k=1

pk f(tk) . (A.2)

The following theorem relates the convexity to the sign of the second order derivative.

Theorem A.3. If f is twice differentiable, then f is convex if and only if f ′′(t) ! 0 for all t ∈ R.

The notion of convexity also applies to sets Ω ⊂ Rn. This set is convex if for all p1, p2 > 0 with
p1 + p2 = 1 and all (x1, x2) ∈ Ω2, then p1x1 + p2x2 ∈ Ω. If Ω is not convex then its convex hull is
defined as the smallest convex set that includes Ω.

A.2 Banach and Hilbert Spaces

Banach Space Signals are often considered as vectors. To define a distance, we work within a
vector space H that admits a norm. A norm satisfies the following properties:

∀f ∈ H , ‖f‖ ! 0 and ‖f‖ = 0 ⇔ f = 0, (A.3)

∀λ ∈ C ‖λf‖ = |λ| ‖f‖, (A.4)

∀f, g ∈ H , ‖f + g‖ " ‖f‖ + ‖g‖. (A.5)

With such a norm, the convergence of {fn}n∈N to f in H means that

lim
n→+∞

fn = f ⇔ lim
n→+∞

‖fn − f‖ = 0.

To guarantee that we remain in H when taking such limits, we impose a completeness property,
using the notion of Cauchy sequences. A sequence {fn}n∈N is a Cauchy sequence if for any ε > 0, if
n and p are large enough, then ‖fn − fp‖ < ε. The space H is said to be complete if every Cauchy
sequence in H converges to an element of H.

Example A.1. For any integer p ! 1 we define over discrete sequences f [n]

‖f‖p =

(
+∞∑

n=−∞
|f [n]|p

)1/p

.

The space !
p = {f : ‖f‖p < +∞} is a Banach space with the norm ‖f‖p.

Example A.2. The space Lp(R) is composed of the measurable functions f on R for which

‖f‖p =

(∫ +∞

−∞
|f(t)|p dt

)1/p

< +∞.

This integral defines a norm for p ! 1 and Lp(R) is a Banach space, provided one identifies
functions that are equal almost everywhere.
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Hilbert Space Whenever possible, we work in a space that has an inner product to define angles
and orthogonality. A Hilbert space H is a Banach space with an inner product. The inner product
of two vectors 〈f, g〉 is linear with respect to its first argument:

∀λ1,λ2 ∈ C , 〈λ1 f1 + λ2 f2, g〉 = λ1 〈f1, g〉+ λ2 〈f2, g〉. (A.6)

It has an Hermitian symmetry:
〈f, g〉 = 〈g, f〉∗.

Moreover
〈f, f〉 ! 0 and 〈f, f〉 = 0 ⇔ f = 0.

One can verify that ‖f‖ = 〈f, f〉1/2 is a norm. The positivity (A.3) implies the Cauchy-Schwarz
inequality:

|〈f, g〉| " ‖f‖ ‖g‖, (A.7)

which is an equality if and only if f and g are linearly dependent.
We write V⊥ the orthogonal complement of a subspace V of H. All vectors of V are orthogonal

to all vectors of V⊥ and V ⊕V⊥ = H.

Example A.3. An inner product between discrete signals f [n] and g[n] can be defined by

〈f, g〉 =
+∞∑

n=−∞
f [n] g∗[n].

It corresponds to an !
2(Z) norm:

‖f‖2 = 〈f, f〉 =
+∞∑

n=−∞
|f [n]|2.

The space !
2(Z) of finite energy sequences is therefore a Hilbert space. The Cauchy-Schwarz in-

equality (A.7) proves that

∣∣∣∣∣

+∞∑

n=−∞
f [n] g∗[n]

∣∣∣∣∣
"

(
+∞∑

n=−∞
|f [n]|2

)1/2 ( +∞∑

n=−∞
|g[n]|2

)1/2

.

Example A.4. Over analog signals f(t) and g(t), an inner product can be defined by

〈f, g〉 =

∫ +∞

−∞
f(t) g∗(t) dt.

The resulting norm is

‖f‖ =

(∫ +∞

−∞
|f(t)|2 dt

)1/2

.

The space L2(R) of finite energy functions is thus also a Hilbert space. In L2(R), the Cauchy-
Schwarz inequality (A.7) is

∣∣∣∣

∫ +∞

−∞
f(t) g∗(t) dt

∣∣∣∣ "
(∫ +∞

−∞
|f(t)|2 dt

)1/2 (∫ +∞

−∞
|g(t)|2 dt

)1/2

.

Two functions f1 and f2 are equal in L2(R) if

‖f1 − f1‖2 =

∫ +∞

−∞
|f1(t)− f2(t)|2 dt = 0,

which means that f1(t) = f2(t) for almost all t ∈ R.



554 Appendix A. Mathematical Complements

A.3 Bases of Hilbert Spaces

Orthonormal Basis A family {en}n∈N of a Hilbert space H is orthogonal if for n += p

〈en, ep〉 = 0.

If for f ∈ H there exists a sequence a[n] such that

lim
N→+∞

‖f −
N∑

n=0

a[n] en‖ = 0,

then {en}n∈N is said to be an orthogonal basis of H. The orthogonality implies that necessarily
a[n] = 〈f, en〉/‖en‖2 and we write

f =
+∞∑

n=0

〈f, en〉
‖en‖2

en. (A.8)

A Hilbert space that admits an orthogonal basis is said to be separable.
The basis is orthonormal if ‖en‖ = 1 for all n ∈ N. Computing the inner product of g ∈ H with

each side of (A.8) yields a Parseval equation for orthonormal bases:

〈f, g〉 =
+∞∑

n=0

〈f, en〉 〈g, en〉∗. (A.9)

When g = f , we get an energy conservation called the Plancherel formula:

‖f‖2 =
+∞∑

n=0

|〈f, en〉|2. (A.10)

The Hilbert spaces !
2(Z) and L2(R) are separable. For example, the family of translated

Diracs {en[k] = δ[k−n]}n∈Z is an orthonormal basis of !
2(Z). Chapter 7 and Chapter 8 construct

orthonormal bases of L2(R) with wavelets, wavelet packets and local cosine functions.

Riesz Bases In an infinite dimensional space, if we loosen up the orthogonality requirement, we
must still impose a partial energy equivalence to guarantee the stability of the basis. A family
of vectors {en}n∈N is said to be a Riesz basis of H if it is linearly independent and if there exist
B ! A > 0 such that

∀f ∈ H , A ‖f‖2 "

+∞∑

n=0

|〈f, en〉|2 " B ‖f‖2. (A.11)

Section 5.1.2 proves that there exists a unique dual basis {ẽn}n∈N characterized by biorthogonality
relations

∀(n, p) ∈ N2 , 〈en, ẽp〉 = δ[n− p], (A.12)

and which satisfies

∀f ∈ H , f =
+∞∑

n=0

〈f, ẽn〉 en =
+∞∑

n=0

〈f, en〉 ẽn.

A.4 Linear Operators

Classical signal processing algorithms are mostly based on linear operators. An operator U from a
Hilbert space H1 to another Hilbert space H2 is linear if

∀λ1,λ2 ∈ C , ∀f1, f2 ∈ H , U(λ1 f1 + λ2 f2) = λ1 U(f1) + λ2 U(f2).

The null space and image spaces of U are defined by

NullU = {h ∈ H1 : Uh = 0} and ImU = {g ∈ H2 : ∃h ∈ H1 , g = Uh}.



A.4. Linear Operators 555

Sup Norm The sup operator norm of U is defined by

‖U‖S = sup
f∈H1

‖Uf‖
‖f‖

. (A.13)

If this norm is finite, then U is continuous. Indeed, ‖Uf −Ug‖ becomes arbitrarily small if ‖f −g‖
is sufficiently small.

Adjoint The adjoint of U is the operator U∗ from H2 to H1 such that for any f ∈ H1 and g ∈ H2

〈Uf, g〉 = 〈f, U∗g〉.

The null and image spaces of adjoint operators are orthogonal complement:

NullU = (ImU∗)⊥ and ImU = (NullU∗)⊥.

When U is defined from H into itself, it is self-adjoint if U = U∗. It is also said to be symmetric.
A non-zero vector f ∈ H is a called an eigenvector if there exists an eigenvalue λ ∈ C such that

Uf = λ f.

In a finite dimensional Hilbert space (Euclidean space), a self-adjoint operator is always diagonal-
ized by an orthogonal basis {en}0!n<N of eigenvectors

Uen = λn en.

When U is self-adjoint the eigenvalues λn are real. For any f ∈ H,

Uf =
N−1∑

n=0

〈Uf, en〉 en =
N−1∑

n=0

λn 〈f, en〉 en.

For any U , the operators U∗U and UU∗ are self-adjoint and have the same eigenvalues. These
eigenvalues are called singular values of U .

In an infinite dimensional Hilbert space, the eigenvalues of symmetric operators are generalized
by introducing the spectrum of the operator.

Orthogonal Projector Let V be a subspace of H. A projector PV on V is a linear operator that
satisfies

∀f ∈ H , PVf ∈ V and ∀f ∈ V , PVf = f.

The projector PV is orthogonal if

∀f ∈ H , ∀g ∈ V , 〈f−PVf, g〉 = 0.

The following properties are often used.

Theorem A.4. If PV is a projector on V then the following statements are equivalent:

(i) PV is orthogonal.
(ii) PV is self-adjoint.
(iii) ‖PV‖S = 1.
(iv) ∀f ∈ H , ‖f − PVf‖ = ming∈V ‖f − g‖.
(v) If {en}n∈N is an orthogonal basis of V then

PVf =
+∞∑

n=0

〈f, en〉
‖en‖2

en. (A.14)

(vi) If {en}n∈N and {ẽn}n∈N are biorthogonal Riesz bases of V then

PVf =
+∞∑

n=0

〈f, en〉 ẽn =
+∞∑

n=0

〈f, ẽn〉 en . (A.15)



556 Appendix A. Mathematical Complements

Limit and Density Argument Let {Un}n∈N be a sequence of linear operators from H to H. Such a
sequence converges weakly to a linear operator U∞ if

∀f ∈ H , lim
n→+∞

‖Unf − U∞f‖ = 0.

To find the limit of operators it is often preferable to work in a well chosen subspace V ⊂ H
which is dense. A space V is dense in H if for any f ∈ H there exist {fm}m∈N with fm ∈ V such
that

lim
m→+∞

‖f − fm‖ = 0.

The following theorem justifies this approach.

Theorem A.5 (Density). Let V be a dense subspace of H. Suppose that there exists C such that
‖Un‖S " C for all n ∈ N. If

∀f ∈ V , lim
n→+∞

‖Unf − U∞f‖ = 0 ,

then
∀f ∈ H , lim

n→+∞
‖Unf − U∞f‖ = 0.

A.5 Separable Spaces and Bases

Tensor Product Tensor products are used to extend spaces of one-dimensional signals into spaces
of multiple dimensional signals. A tensor product f1 ⊗ f2 between vectors of two Hilbert spaces
H1 and H2 satisfies the following properties:

Linearity
∀λ ∈ C , λ (f1 ⊗ f2) = (λ f1)⊗ f2 = f1 ⊗ (λ f2). (A.16)

Distributivity

(f1 + g1)⊗ (f2 + g2) = (f1 ⊗ f2) + (f1 ⊗ g2) + (g1 ⊗ f2) + (g1 ⊗ g2). (A.17)

This tensor product yields a new Hilbert space H = H1 ⊗H2 that includes all vectors of the form
f1 ⊗ f2 where f1 ∈ H1 and f2 ∈ H2, as well as linear combinations of such vectors. An inner
product in H is derived from inner products in H1 and H2 by

〈f1 ⊗ f2 , g1 ⊗ g2〉H = 〈f1, g1〉H1
〈f2, g2〉H2

. (A.18)

Separable Bases The following theorem proves that orthonormal bases of tensor product spaces
are obtained with separable products of two orthonormal bases. It provides a simple procedure for
transforming bases for one-dimensional signals into separable bases for multidimensional signals.

Theorem A.6. Let H = H1 ⊗H2. If {e1
n}n∈N and {e2

n}n∈N are two Riesz bases respectively of
H1 and H2 then {e1

n ⊗ e2
m}(n,m)∈N2 is a Riesz basis of H. If the two bases are orthonormal then

the tensor product basis is also orthonormal.

Example A.5. A product of functions f ∈ L2(R) and g ∈ L2(R) defines a tensor product:

f(x1) g(x2) = f ⊗ g(x1, x2).

Let L2(R2) be the space of h(x1, x2) such that

∫ +∞

−∞

∫ +∞

−∞
|h(x1, x2)|2 dx1 dx2 < +∞.

One can verify that L2(R2) = L2(R) ⊗ L2(R). Theorem A.6 proves that if {ψn(t)}n∈N is an
orthonormal basis of L2(R), then {ψn1(x1)ψn2(x2)}(n1,n2)∈N2 is an orthonormal basis of L2(R2).



A.6. Random Vectors and Covariance Operators 557

Example A.6. A product of discrete signals f ∈ !
2(Z) and g ∈ !

2(Z) also defines a tensor product:

f [n1] g[n2] = f ⊗ g[n1, n2].

The space !
2(Z2) of images h[n1, n2] such that

+∞∑

n1=−∞

+∞∑

n2=−∞
|h[n1, n2]|2 < +∞

is also decomposed as a tensor product !
2(Z2) = !

2(Z) ⊗ !
2(Z). Orthonormal bases can thus be

constructed with separable products.

A.6 Random Vectors and Covariance Operators

A class of signals can be modeled by a random process (random vector) whose realizations are the
signals in the class. Finite discrete signals f are represented by a random vector Y , where Y [n] is
a random variable for each 0 " n < N . For a review of elementary probability theory for signal
processing, the reader may consult [52, 55].

Covariance Operator If p(x) is the probability density of a random variable X, the expected
value is

E{X} =

∫
x p(x) dx

and the variance is σ2 = E{|X − E{X}|2}. The covariance of two random variables X1 and X2 is

Cov(X1,X2) = E

{(
X1 − E{X1}

)(
X2 − E{X2}

)∗}
. (A.19)

The covariance matrix of a random vector Y is composed of the N2 covariance values

RY [n,m] = Cov
(
Y [n], Y [m]

)
.

It defines the covariance operator KY which transforms any h[n] into

KY h[n] =
N−1∑

m=0

RY [n,m]h[m].

For any h and g

〈Y, h〉 =
N−1∑

n=0

Y [n]h∗[n] and 〈Y, g〉 =
N−1∑

n=0

Y [n] g∗[n]

are random variables and
Cov

(
〈Y, h〉, 〈Y, g〉

)
= 〈KY g, h〉. (A.20)

The covariance operator thus specifies the covariance of linear combinations of the process values.
If E{Y [n]} = 0 for all 0 " n < N then E{〈Y, h〉} = 0 for all h.

Karhunen-Loève Basis The covariance operator KY is self-adjoint because RY [n,m] = R∗
Y [m,n]

and positive because
〈KY h, h〉 = E{|〈Y, h〉 − E{〈Y, h〉}|2} ! 0. (A.21)

This guarantees the existence of an orthogonal basis {ek}0!k<N that diagonalizes KY :

KY ek = σ2
k ek.

This basis is called a Karhunen-Loève basis of Y , and the vectors ek are the principal directions.
The eigenvalues are the variances

σ2
k = 〈KY ek, ek〉 = E{|〈Y, ek〉 − E{〈Y, ek〉}|2}. (A.22)
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Wide-Sense Stationarity We say that Y is wide-sense stationary if

Cov(Y [n], Y [m]) = RY [n,m] = RY [n−m]. (A.23)

The covariance between two points depends only on the distance between these points. The
operator KY is then a convolution whose kernel RY [k] is defined for −N < k < N . A wide-sense
stationary process is circular stationary if RY [n] is N periodic:

RY [n] = RY [N + n] for −N " n " 0. (A.24)

This condition implies that a periodic extension of Y [n] on Z remains wide-sense stationary on
Z. The covariance operator KY of a circular stationary process is a discrete circular convolution.
Section 3.3.1 proves that the eigenvectors of circular convolutions are the discrete Fourier vectors

{
ek[n] =

1√
N

exp

(
i2πkn

N

)}

0!k<N
.

The discrete Fourier basis is therefore the Karhunen-Loève basis of circular stationary processes.
The eigenvalues (A.22) of KY are the discrete Fourier transform of RY and are called the power
spectrum

σ2
k = R̂Y [k] =

N−1∑

n=0

RY [n] exp

(
−i2kπn

N

)
. (A.25)

The following theorem computes the power spectrum after a circular convolution.

Theorem A.7. Let Z be a wide-sense circular stationary random vector. The random vector
Y [n] = Z /' h[n] is also wide-sense circular stationary and its power spectrum is

R̂Y [k] = R̂Z [k] |ĥ[k]|2. (A.26)

A.7 Diracs

Diracs are useful in making the transition from functions of a real variable to discrete sequences.
Symbolic calculations with Diracs simplify computations, without worrying about convergence
issues. This is justified by the theory of distributions [60, 63]. A Dirac δ has a support reduced to
t = 0 and associates to any continuous function φ its value at t = 0

∫ +∞

−∞
δ(t)φ(t) dt = φ(0). (A.27)

Weak Convergence A Dirac can be obtained by squeezing an integrable function g such that∫ +∞
−∞ g(t) dt = 1. Let gs(t) = s−1g(s−1t). For any continuous function φ

lim
s→0

∫ +∞

−∞
gs(t)φ(t) dt = φ(0) =

∫ +∞

−∞
δ(t)φ(t) dt. (A.28)

A Dirac can thus formally be defined as the limit δ = lims→0 gs, which must be understood in the
sense of (A.28). This is called weak convergence. A Dirac is not a function since it is zero at t += 0
although its “integral” is equal to 1. The integral at the right of (A.28) is only a symbolic notation
which means that a Dirac applied to a continuous function φ associates its value at t = 0.

General distributions are defined over the space C∞
0 of test functions which are infinitely con-

tinuously differentiable with a compact support. A distribution d is a linear form that associates
to any φ ∈ C∞

0 a value that is written
∫ +∞
−∞ d(t)φ(t)dt. It must also satisfy some weak continuity

properties [60, 63] that we do not discuss here, and which are satisfied by a Dirac. Two distributions
d1 and d2 are equal if

∀φ ∈ C∞
0 ,

∫ +∞

−∞
d1(t)φ(t) dt =

∫ +∞

−∞
d2(t)φ(t) dt. (A.29)
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Symbolic Calculations The symbolic integral over a Dirac is a useful notation because it has the
same properties as a usual integral, including change of variables and integration by parts. A
translated Dirac δτ (t) = δ(t− τ) has a mass concentrated at τ and

∫ +∞

−∞
φ(t) δ(t− u) dt =

∫ +∞

−∞
φ(t) δ(u− t) dt = φ(u).

This means that φ ' δ(u) = φ(u). Similarly φ ' δτ (u) = φ(u− τ).
A Dirac can also be multiplied by a continuous function φ and since δ(t − τ) is zero outside

t = τ , it follows that
φ(t) δ(t− τ) = φ(τ) δ(t− τ).

The derivative of a Dirac is defined with an integration by parts. If φ is continuously differen-
tiable then ∫ +∞

−∞
φ(t) δ′(t) dt = −

∫ +∞

−∞
φ′(t) δ(t) dt = −φ′(0).

The kth derivative of δ is similarly obtained with k integrations by parts. It is a distribution that
associates to φ ∈ Ck

∫ +∞

−∞
φ(t) δ(k)(t) dt = (−1)k φ(k)(0).

The Fourier transform of δ associates to any e−iωt its value at t = 0:

δ̂(ω) =

∫ +∞

−∞
δ(t) e−iωt dt = 1,

and after translation δ̂τ (ω) = e−iτω. The Fourier transform of the Dirac comb c(t) =
∑+∞

n=−∞ δ(t−
nT ) is therefore ĉ(ω) =

∑+∞
n=−∞ e−inTω. The Poisson formula (2.4) proves that

ĉ(ω) =
2π

T

+∞∑

k=−∞

δ

(
ω −

2πk

T

)
.

This distribution equality must be understood in the sense (A.29).


