
IX

Approximations in Bases

It is time to wonder why are we constructing so many different orthonormal bases. In signal
processing, orthogonal bases are of interest because they can provide sparse representations of
certain types of signals with few vectors. Compression and denoising are applications studied in
Chapters 10 and 11.

Approximation theory studies the error produced by different approximation schemes. Classical
sampling theorems are linear approximations that project the analog signal over low-frequency
vectors chosen a priori in a basis. The discrete signal representation may be further reduced with
a linear projection over the first few vectors of an orthonormal basis. However, better non-linear
approximations are obtained by choosing the approximation vectors depending upon the signal.
In a wavelet basis, these non-linear approximations adjust locally the approximation resolution to
the signal regularity.

Approximation errors depend upon the signal regularity. For uniformly regular signals, linear
and non-linear approximations perform similarly, wether in a wavelet or in a Fourier basis. When
the signal regularity is not uniform, non-linear approximations in a wavelet basis can considerably
reduce the error of linear approximations. This is the case for piecewise regular signals or bounded
variation signals and images. Geometric approximations of piecewise regular images with regular
edge curves are studied with adaptive triangulations and curvelets.

9.1 Linear Approximations

Analog signals are discretized in Section 3.1.3 with inner products in a basis. The next sections
compute the resulting linear approximation error in wavelet and Fourier bases, which depends
upon the uniform signal regularity. For signals modeled as realizations of a random vector, Section
9.1.4 proves that the optimal basis is the Karhunen-Loève basis (principal components), which
diagonalizes the covariance matrix.

9.1.1 Sampling and Approximation Error

Approximation errors of linear sampling processes are related to the error of linear approximations
in an orthogonal basis. These errors are computed from the decay of signal coefficients in this
basis.

An analog signal f(t) is discretized with a low-pass filter φ̄s(t) and a uniform sampling interval
s:

f " φ̄s(ns) =

∫ +∞

−∞
f(u) φ̄s(ns− u) du = 〈f(t),φs(t− ns)〉, (9.1)

with φ̄s(t) = φs(−t). Let us consider an analog signal of compact support, normalized to [0, 1].
At a resolution N corresponding to s = N−1, the discretization is performed over N functions
{φn(t) = φs(t−ns)}0!n<N which are modified at the boundaries to maintain their support in [0, 1].
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318 Chapter 9. Approximations in Bases

They define a Riesz basis of an approximation space UN ⊂ L2[0, 1]. The best linear approximation
of f in UN is the orthogonal projection fN of f in UN , recovered with the biorthogonal basis
{φ̃n(t)}1!n!N :

fN (t) =
N−1∑

n=0

〈f,φn〉 φ̃n(t). (9.2)

To compute the approximation error ‖f−fN‖, we introduce an orthonormal basis B = {gm}m∈N

of L2[0, 1], whose first N vectors {gm}0!m<N define an orthogonal basis of the same approximation
space UN . Fourier and wavelet bases provide such bases for many classical approximation spaces.
The orthogonal projection fN of f in UN can be decomposed on the first N vectors of this basis:

fN =
N−1∑

m=0

〈f, gm〉 gm.

Since B is an orthonormal basis of L2[0, 1], f =
∑+∞

m=0 〈f, gm〉 gm, so

f − fN =
+∞∑

m=N

〈f, gm〉 gm,

and the resulting approximation error is

εl(N, f) = ‖f − fN‖2 =
+∞∑

m=N

|〈f, gm〉|2. (9.3)

The fact that ‖f‖2 =
∑+∞

m=0 |〈f, gm〉|2 < +∞ implies that the error decays to zero:

lim
N→+∞

εl(N, f) = 0.

However, the decay rate of εl(N, f) as N increases depends on the decay of |〈f, gm〉| as m increases.
The following theorem gives equivalent conditions on the decay of εl(N, f) and |〈f, gm〉|.

Theorem 9.1. For any s > 1/2, there exists A,B > 0 such that if
∑+∞

m=0 |m|2s |〈f, gm〉|2 < +∞
then

A
+∞∑

m=0

m2s |〈f, gm〉|2 !

+∞∑

N=0

N2s−1 εl(N, f) ! B
+∞∑

m=0

m2s |〈f, gm〉|2 (9.4)

and hence εl(N, f) = o(N−2s).

Proof. By inserting (9.3), we compute

+∞X

N=0

N2s−1 εl(N, f) =
+∞X

N=0

+∞X

m=N

N2s−1 |〈f, gm〉|2 =
+∞X

m=0

|〈f, gm〉|2
mX

N=0

N2s−1.

For any s > 1/2 Z m

0

x2s−1 dx !

mX

N=0

N2s−1
!

Z m+1

1

x2s−1 dx

which implies that
Pm

N=0 N2s−1 ∼ m2s and hence proves (9.4).

To verify that εl(N, f) = o(N−2s), observe that εl(m, f) " εl(N, f) for m ! N , so

εl(N, f)
N−1X

m=N/2

m2s−1
!

N−1X

m=N/2

m2s−1 εl(m, f) !

+∞X

m=N/2

m2s−1 εl(m, f). (9.5)

Since
P+∞

m=1 m2s−1εl(m, f) < +∞ it follows that

lim
N→+∞

+∞X

m=N/2

m2s−1 εl(m, f) = 0.

Moreover, there exists C > 0 such that
PN−1

m=N/2 m2s−1
" C N2s, so (9.5) implies that

limN→+∞ εl(N, f) N2s = 0.
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This theorem proves that the linear approximation error of f in the basis B decays faster than
N−2s if f belongs to the space

WB,s =

{

f ∈ H :
+∞∑

m=0

m2s |〈f, gm〉|2 < +∞

}

.

One can also prove that this linear approximation is asymptotically optimal over this space [19].
Indeed, there exists no linear or non-linear approximation scheme whose error decays at least like
N−α, with α > 2s, for all f ∈WB,s.

The next sections prove that if B is a Fourier or wavelet basis, then WB,s is a Sobolev space, and
hence that linear approximations of Sobolev functions are optimal in Fourier and wavelet bases.
However, we shall also see that for more complex functions, the linear approximation of f from the
first N vectors of B is not always precise because these vectors are not necessarily the best ones to
approximate f . Non-linear approximations calculated with vectors chosen adaptively depending
upon f are studied in Section 9.2.

9.1.2 Linear Fourier Approximations

The Shannon-Whittaker sampling theorem performs a perfect low-pass filter that keeps the signal
low-frequencies. It is thus equivalent to a linear approximation over the lower frequencies of a
Fourier basis. Linear Fourier approximation are asymptotically optimal for uniformly regular
signals. The approximation error is related to the Sobolev differentiability. It is also calculated for
non-uniformly regular signals, such as discontinuous signals having a bounded total variation.

Theorem 3.6 proves (modulo a change of variable) that {ei2πmt}m∈Z is an orthonormal basis of
L2[0, 1]. We can thus decompose f ∈ L2[0, 1] in the Fourier series

f(t) =
+∞∑

m=−∞
〈f(u), ei2πmu〉 ei2πmt (9.6)

with

〈f(u), ei2πmu〉 =

∫ 1

0
f(u) e−i2πmu du.

The decomposition (9.6) defines a periodic extension of f for all t ∈ R. The decay of the Fourier
coefficients |〈f(u), ei2πmu〉| as m increases depends on the regularity of this periodic extension.

The linear approximation of f ∈ L2[0, 1] by the N sinusöıds of lower frequencies is obtained by
a linear filtering that sets to zero all higher frequencies:

fN (t) =
∑

|m|!N/2

〈f(u), ei2πmu〉 ei2πmt.

It projects f in the space UN of functions having Fourier coefficients that are zero above the
frequency Nπ.

Error Decay versus Sobolev Differentiability The decay of the linear Fourier approximation error
depends upon the Sobolev differentiability. The regularity of f can be measured by the number
of times it is differentiable. Sobolev differentiability extends derivatives to non-integers, with a
Fourier decay condition. We first consider functions f(t) defined for all t ∈ R, to avoid boundary
issues.

Recall that the Fourier transform of the derivative f ′(t) is iωf̂(ω). The Plancherel formula
proves that f ′ ∈ L2(R) if

∫ +∞

−∞
|ω|2 |f̂(ω)|2 dω = 2π

∫ +∞

−∞
|f ′(t)|2 dt < +∞.

This suggests replacing the usual pointwise definition of the derivative by a definition based on the
Fourier transform. We say that f ∈ L2(R) is differentiable in the sense of Sobolev if

∫ +∞

−∞
|ω|2 |f̂(ω)|2 dω < +∞. (9.7)
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This integral imposes that |f̂(ω)| has a sufficiently fast decay when the frequency ω goes to +∞. As
in Section 2.3.1, the regularity of f is measured from the asymptotic decay of its Fourier transform.

This definition is generalized for any s > 0. The space Ws(R) of s times differentiable Sobolev
functions is the space of functions f ∈ L2(R) whose Fourier transforms satisfy [65]

∫ +∞

−∞
|ω|2s |f̂(ω)|2 dω < +∞. (9.8)

If s > n + 1/2, then one can verify (Exercise 9.7) that f is n times continuously differentiable.
Let Ws[0, 1] be the space of functions in L2[0, 1] that can be extended outside [0, 1] into a

function f ∈Ws(R). To avoid border problems at t = 0 or at t = 1, let us consider functions f
whose support is strictly included in (0, 1). A simple regular extension on R is obtained by setting
its value to 0 outside [0, 1], and f ∈Ws[0, 1] if this extension is in Ws(R). In this case, one can
prove (not trivial) that the Sobolev integral condition (9.8) reduces to a discrete sum, meaning
that f ∈Ws[0, 1] if and only if

+∞∑

m=−∞
|m|2s |〈f(u), ei2πmu〉|2 < +∞. (9.9)

For such differentiable functions in the sense of Sobolev, the following theorem computes the
approximation error

εl(N, f) = ‖f − fN‖2 =

∫ 1

0
|f(t)− fN (t)|2 dt =

∑

|m|>N/2

|〈f(u), ei2πmu〉|2 . (9.10)

Theorem 9.2. Let f ∈ L2[0, 1] be a function whose support is included in (0, 1). Then f ∈Ws[0, 1]
if and only if

+∞∑

N=1

N2s εl(N, f)

N
< +∞, (9.11)

which implies εl(N, f) = o(N−2s).

The proof relies on the fact that functions in Ws[0, 1] with a support in (0, 1) are characterized
by (9.9). This theorem is therefore a consequence of Theorem 9.1. The linear Fourier approximation
thus decays quickly if and only if f has a large regularity exponent s in the sense of Sobolev.

Discontinuities and Bounded Variation If f is discontinuous, then f ∈/ Ws[0, 1] for any s > 1/2.
Theorem 9.2 thus proves that εl(N, f) can decay like N−α only if α ! 1. For bounded variation
functions, which are introduced in Section 2.3.3, the following theorem proves that εl(N, f) =
O(N−1). A function has a bounded variation if

‖f‖V =

∫ 1

0
|f ′(t)| dt < +∞ .

The derivative must be taken in the sense of distributions because f may be discontinuous. If
f = 1[0,1/2] then ‖f‖V = 2. Recall that a[N ] ∼ b[N ] if a[N ] = O(b[N ]) and b[N ] = O(a[N ]).

Theorem 9.3. • If ‖f‖V < +∞ then εl(N, f) = O(‖f‖2V N−1).

• If f = C 1[0,1/2] then εl(N, f) ∼ ‖f‖2V N−1.

Proof. If ‖f‖V < +∞ then

|〈f(u), exp(i2mπu)〉| =

˛̨
˛̨
Z 1

0

f(u) exp(−i2mπu) du

˛̨
˛̨

=

˛̨
˛̨
Z 1

0

f ′(u)
exp(−i2mπu)

−i2mπ
dt

˛̨
˛̨ !

‖f‖V

2|m|π .
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Hence

εl(N, f) =
X

|m|>N/2

|〈f(u), exp(i2mπu)〉|2 !
‖f‖2

V

4π2

X

|m|>N/2

1
m2

= O(‖f‖2
V N−1).

If f = C 1[0,1/2] then ‖f‖V = 2C and

|〈f(u), exp(i2mπu)〉| =


0 if m '= 0 is even
C/(π |m|) if m is odd,

so εl(N, f) ∼ C2 N−1.

This theorem shows that when f is discontinuous with bounded variations, then εl(N, f) decays
typically like N−1. Figure 9.1(b) shows a bounded variation signal approximated by Fourier
coefficients of lower frequencies. The approximation error is concentrated in the neighborhood
of discontinuities where the removal of high frequencies creates Gibbs oscillations (see Section
2.3.1).
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Figure 9.1: Top: Original signal f . Middle: Signal fN approximated from N = 128 lower frequency
Fourier coefficients, with ‖f − fN‖/‖f‖ = 8.63 10−2. Bottom: Signal fN approximated from larger
scale Daubechies 4 wavelet coefficients, with N = 128 and ‖f − fN‖/‖f‖ = 8.58 10−2.

Localized Approximations To localize Fourier series approximations over intervals, we multiply
f by smooth windows that cover each of these intervals. The Balian-Low Theorem 5.20 proves
that one cannot build local Fourier bases with smooth windows of compact support. However,
Section 8.4.2 constructs orthonormal bases by replacing complex exponentials by cosine functions.
For appropriate windows gp of compact support [ap− ηp, ap+1 + ηp+1], Corollary 8.1 constructs an
orthonormal basis of L2(R):

{

gp,k(t) = gp(t)

√
2

lp
cos

[
π
(
k +

1

2

) t− ap

lp

]}

k∈N,p∈Z

.

Writing f in this local cosine basis is equivalent to segmenting it into several windowed compo-
nents fp(t) = f(t) gp(t), which are decomposed in a cosine IV basis. If gp is C∞, the regularity of
gp(t) f(t) is the same as the regularity of f over [ap − ηp, ap+1 + ηp+1]. Section 8.3.2 relates cosine
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IV coefficients to Fourier series coefficients. It follows from Theorem 9.2 that if fp ∈Ws(R), then
the approximation

fp,N =
N−1∑

k=0

〈f, gp,k〉 gp,k

yields an error
εl(N, fp) = ‖fp − fp,N‖2 = o(N−2s).

The approximation error in a local cosine basis thus depends on the local regularity of f over each
window support.

9.1.3 Multiresolution Approximation Errors with Wavelets

Wavelets are constructed as bases of orthogonal complements of multiresolution approximation
spaces. The projection error on multiresolution approximation spaces thus depends upon the
decay of wavelet coefficients. Linear approximations with wavelets behave essentially like Fourier
approximations, with a better treatment of boundaries. They are thus also asymptotically optimal
for uniformly regular signals. The linear error decay is computed for Sobolev differentiable functions
and for uniformly Lipschitz α functions.

Uniform Approximation Grid Section 7.5 constructs multiresolution approximation spaces UN =
VL of L2[0, 1], with their orthonormal basis of N = 2−L scaling functions {φL,n(t)}0!n<2−l . These
scaling functions φL,n(t) = φL(t− 2Ln) with φL(t) = 2−L/2φ(2−Lt) are finite elements translated
over a uniform grid, modified near 0 and 1 so that their support remains in [0, 1]. The resulting
projection of f in such a space is:

fN = PVLf =
2−L−1∑

n=0

〈f,φL,n〉φL,n. (9.12)

and

〈f,φL,n〉 =

∫
f(t)φL(t− 2Ln) dt = f " φ̄L(ns) with φ̄L(t) = φL(−t) .

A different orthogonal basis of VL is obtained from wavelets at scales 2j > 2L and scaling
functions at a large scale 2J :

[
{φJ,n}0!n<2−J , {ψj,n}l<j!J , 0!n<2−j

]
. (9.13)

The approximation (9.12) can thus also be written as a wavelet approximation

fN = PVLf =
J∑

j=L+1

2−j−1∑

n=0

〈f,ψj,n〉ψj,n +
2−J−1∑

n=0

〈f,φJ,n〉φJ,n. (9.14)

Since wavelets define an orthonormal basis of L2[0, 1]

[
{φJ,n}0!n<2−J , {ψj,n}−∞<j!J , 0!n<2−j

]
, (9.15)

the approximation error is the energy of wavelet coefficients at scales smaller than 2L:

εl(N, f) = ‖f − fN‖2 =
L∑

j=−∞

2−j−1∑

n=0

|〈f,ψj,n〉|2. (9.16)

In the following we suppose that wavelets ψj,n are Cq (q times differentiable) and have q van-
ishing moments. The treatment of boundaries is the key difference with Fourier approximations.
Fourier approximations consider that the signal is periodic and if f(0) )= f(1), then the approxi-
mation of f behaves as if f was discontinuous. The periodic orthogonal wavelet bases in Section
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7.5.1 do essentially the same. To improve this result, wavelets at the boundaries must keep their
q vanishing moments, which requires to modify them near the boundaries so that their supports
remain in [0, 1]. Section 7.5.3 constructs such wavelet bases. They take advantage of the regularity
of f over [0, 1], with no condition on f(0) and f(1). For mathematical analysis, we only use these
wavelets, without explicitly writing their shape modifications at the boundaries, to simplify nota-
tions. In numerical experiments, the folding boundary solution of Section 7.5.2 is more often used,
because it has a simpler algorithmic implementation. Folded wavelets have 1 vanishing moment at
the boundary, which is often sufficient in applications.

Approximation Error versus Sobolev Regularity Like a Fourier basis, a wavelet basis provides an
efficient approximation of uniformly regular signals. The decay of wavelet linear approximation
errors is first related to the differentiability in the sense of Sobolev. Let Ws[0, 1] be the Sobolev
space of functions that are restrictions over [0, 1] of s times differentiable Sobolev function Ws(R)
defined over R. If ψ has q vanishing moments then (6.11) proves that the wavelet transform is a
multiscale differential operator of order at least q. To test the differentiability of f up to order s,
we thus need q > s. The following theorem gives a necessary and sufficient condition on wavelet
coefficients so that f ∈Ws[0, 1].

Theorem 9.4. Let 0 < s < q be a Sobolev exponent. A function f ∈ L2[0, 1] is in Ws[0, 1] if and
only if

J∑

j=−∞

2−j−1∑

n=0

2−2sj |〈f,ψj,n〉|2 < +∞. (9.17)

Proof. We give an intuitive justification but not a proof of this result. To simplify, we suppose that
the support of f is included in (0, 1). If we extend f by zeros outside [0, 1] then f ∈ W

s(R), which
means that Z +∞

−∞
|ω|2s |f̂(ω)|2 dω < +∞. (9.18)

The low frequency part of this integral always remains finite because f ∈ L
2(R):

Z

|ω|!2−Jπ

|ω|2s |f̂(ω)|2 dω ! 2−2sJ π2s
Z

|ω|!π
|f̂(ω)|2 dω ! 2−2sJ π2s ‖f‖2.

The energy of ψ̂j,n is essentially concentrated in the intervals [−2−j2π,−2−jπ] ∪ [2−jπ, 2−j2π]. As a
consequence

2−j−1X

n=0

|〈f,ψj,n〉|2 ∼
Z

2−jπ!|ω|!2−j+1π

|f̂(ω)|2 dω.

Over this interval |ω| ∼ 2−j , so

2−j−1X

n=0

2−2sj |〈f,ψj,n〉|2 ∼
Z

2−jπ!|ω|!2−j+1π

|ω|2s |f̂(ω)|2 dω.

It follows that
JX

j=−∞

2−j−1X

n=0

2−2sj |〈f,ψj,n〉|2 ∼
Z

|ω|"2−Jπ

|ω|2s |f̂(ω)|2 dω,

which explains why (9.18) is equivalent to (9.17).

This theorem proves that the Sobolev regularity of f is equivalent to a fast decay of the wavelet
coefficients |〈f,ψj,n〉| when the scale 2j decreases. If ψ has q vanishing moments but is not q
times continuously differentiable, then f ∈ Ws[0, 1] implies (9.17), but the opposite implication
is not true. The following theorem uses the decay condition (9.17) to characterize the linear
approximation error with N wavelets.
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Theorem 9.5. Let 0 < s < q be a Sobolev exponent. A function f ∈ L2[0, 1] is in Ws[0, 1] if and
only if

+∞∑

N=1

N2s εl(N, f)

N
< +∞ , (9.19)

which implies εl(N, f) = o(N−2s).

Proof. Let us write the wavelets ψj,n = gm with m = 2−j + n. One can verify that the Sobolev
condition (9.17) is equivalent to

+∞X

m=0

|m|2s |〈f, gm〉|2 < +∞.

The proof ends by applying Theorem 9.1.

If the wavelet has q vanishing moments but is not q times continuously differentiable, then f ∈
Ws[0, 1] implies (9.19) but the opposite implication is false. Theorem 9.5 proves that f ∈Ws[0, 1]
if and only if the approximation error εl(N, f) decays slightly faster than N−2s. The wavelet
approximation error is of the same order as the Fourier approximation error calculated in (9.11).
However, Fourier approximations impose that the support of f is strictly included in [0, 1] where
as wavelet approximation does not impose this condition or any other boundary condition, because
of the finer wavelet treatment of boundaries previously explained.

Lipschitz Regularity A different measure of uniform regularity is provided by Lipschitz exponents,
which compute the error of a local polynomial approximation. A function f is uniformly Lipschitz
α over [0, 1] if there exists K > 0, such that for any v ∈ [0, 1] one can find a polynomial pv of
degree *α+ such that

∀t ∈ [0, 1] , |f(t)− pv(t)| ! K |t− v|α. (9.20)

The infimum of the K which satisfy (9.20) is the homogeneous Hölder α norm ‖f‖C̃α . The Hölder
α norm of f also imposes that f is bounded:

‖f‖Cα = ‖f‖C̃α + ‖f‖∞ . (9.21)

The space Cα[0, 1] of functions f such that ‖f‖Cα < +∞ is called a Hölder space. The following
theorem characterizes the decay of wavelet coefficients.

Theorem 9.6. There exists B " A > 0 such that

A ‖f‖C̃α ! sup
j"J,0!n<2−j

2−j(α+1/2) |〈f,ψj,n〉| ! B ‖f‖C̃α . (9.22)

Proof. The proof of the equivalence between uniform Lipschitz regularity and the coefficient decay of a
continuous wavelet transform is given in Theorem 6.3. This theorem gives a nearly equivalent result in
the context of orthonormal wavelet coefficients, that correspond to a sampling of a continuous wavelet
transform computed with the same mother wavelet. The theorem proof is thus an adaptation of the
proof Theorem 6.3. This is illustrated by proving the right inequality of (9.22)

If f is uniformly Lipschitz α on the support of ψj,n, since ψj,n is orthogonal the polynomial p2jn,
approximating f at v = 2jn yields

|〈f,ψj,n〉| = |〈f − p2jn,ψj,n〉| ! ‖f‖C̃α

Z
2−j/2 |ψ(2−j(t − 2jn))| |t − 2jn|α dt . (9.23)

With a change of variable, we get

|〈f,ψj,n〉| ! ‖f‖C̃α 2j(α+1/2)
Z

|ψ(t)| |t|α dt,

which proves the right inequality of (9.22). Observe that we do not use the wavelet regularity in this
proof.

The left inequality of (9.22) is proved by following the steps of continuous wavelet tranfsorm The-
orem 6.3, and replacing integrals by discrete sums over the position and scale of orthogonal wavelets.
The regularity of wavelets plays an important role as shown by the proof Theorem 6.3. In this case
there is no boundary issue because wavelets are adatped to the interval [0, 1] and keep their vanishing
moments at the boundaries.
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Similarly to Theorem 9.4 for Sobolev differentiability, this theorem proves that uniform Lips-
chitz regularity is characterized by the decay of orthogonal wavelet coefficients when the scale 2j

decreases. Hölder and Sobolev spaces belong to the larger class of Besov spaces, defined in Section
9.2.3.

If ψ has q vanishing moments but is not q times continuously differentiable, then the proof of
Theorem 9.6 shows that the right inequality of (9.22) is valid. The following theorem derives the
decay of linear approximation errors, for wavelets having q vanishing moments but which are not
necessarily Cq.

Theorem 9.7. If f is uniformly Lipschitz 0 < α ! q over [0, 1] then εl(N, f) = O(‖f‖2
C̃α N−2α).

Proof. Theorem 9.6 proves that

|〈f,ψj,n〉| ! B ‖f‖C̃α 2j(α+1/2) . (9.24)

There are 2−j wavelet coefficients at a scale 2j , so there are 2−k wavelet coefficients at scales
2j > 2k. The right inequality (9.22) implies that

εl(2
−k, f) =

kX

j=−∞

2−j−1X

n=0

|〈f,ψj,n〉|2 ! B2
kX

j=−∞

2−j 2j(2α+1) =
B2 ‖f‖2

C̃α 22αk

1 − 2−2α
.

For k = −*log2 N+, we derive that εl(N, f) = O(‖f‖2
C̃α 22αk) = O(‖f‖2

C̃α N−2α).

Discontinuity and Bounded Variation If f is not uniformly regular then linear wavelet approxima-
tions perform poorly. If f has a discontinuity in (0, 1) then f ∈/ Ws[0, 1] for s > 1/2 so Theorem
9.5 proves that we cannot have εl(N, f) = O(N−α) for α > 1.

If f has a bounded total variation norm ‖f‖V then Theorem 9.14 will prove that wavelet
approximation error satisfy εl(N, f) = O(‖f‖2V N−1). The same Fourier approximation result was
obtained in Theorem 9.3. If f = C 1[0,1/2] then one can verify that wavelet approximation gives
εl(N, f) ∼ ‖f‖2V N−1 (Exercise 9.5).

Figure 9.1 gives an example of discontinuous signal with bounded variation, which is approx-
imated by its larger scale wavelet coefficients. The largest amplitude errors are in the neigh-
borhood of singularities, where the scale should be refined. The relative approximation error
‖f − fN‖/‖f‖ = 8.56 10−2 is almost the same as in a Fourier basis.

9.1.4 Karhunen-Loève Approximations

Suppose that signals are modeled as realizations of a random process F . We prove that the basis
which minimizes the average linear approximation error is the Karhunen-Loève basis which diago-
nalizes the covariance operator of F . To avoid the subtleties of diagonalizing infinite dimensional
operator, we consider signals of finite dimension P , which means that F [n] is a random vector of
size P .

Appendix A.6 reviews the covariance properties of random vectors. If F [n] does not have a
zero mean, we subtract the expected value E{F [n]} from F [n] to get a zero mean. The random
vector F can be decomposed in an orthogonal basis {gm}0!m<P :

F =
P−1∑

m=0

〈F, gm〉 gm .

Each coefficient

〈F, gm〉 =
P−1∑

n=0

F [n] g∗m[n]

is a random variable (see Appendix A.6). The approximation from the first N vectors of the basis
is the orthogonal projection on the space UN generated by these vectors:

FN =
N−1∑

m=0

〈F, gm〉 gm.
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The resulting mean-square error is

E{εl(N,F )} = E

{
‖F − FN‖2

}
=

P−1∑

m=N

E

{
|〈F, gm〉|2

}
.

The error is related to the covariance of F defined by

RF [n,m] = E{F [n]F ∗[m]}.

Let KF be the covariance operator represented by this matrix. It is symmetric and positive and is
thus diagonalized in an orthogonal basis called a Karhunen-Loève basis. This basis is not unique if
several eigenvalues are equal. The following theorem proves that a Karhunen-Loève basis is optimal
for linear approximations.

Theorem 9.8. For all N " 1, the expected approximation error

E{εl(N,F )} = E{‖F − FN‖2} =
P−1∑

m=N

E{|〈F, gm〉|2}

is minimum if and only if {gm}0!m<P is a Karhunen-Loève basis which diagonalizes the covariance
KF of F , with vectors indexed in decreasing eigenvalue order:

〈KF gm, gm〉 " 〈KF gm+1, gm+1〉 for 0 ! m < P − 1.

Proof. Let us first observe that

E{εl(F, N)} =
P−1X

m=N

〈KF gm, gm〉 (9.25)

because for any vector z[n],

E

n
|〈F, z〉|2

o
= E

(
P−1X

n=0

P−1X

m=0

F [n] F [m] z[n] z∗[m]

)

=
P−1X

n=0

P−1X

m=0

RF [n, m] z[n] z∗[m]

= 〈KF z, z〉.

We now prove that (9.25) is minimum if the basis diagonalizes KF . Let us consider an arbitrary
orthonormal basis {hm}0!m<P . The trace tr(KF ) of KF is independent of the basis:

tr(KF ) =
P−1X

m=0

〈KF hm, hm〉.

The basis that minimizes
PP−1

m=N 〈KF hm, hm〉 thus maximizes
PN−1

m=0 〈KF hm, hm〉.
Let {gm}0!m<P be a basis that diagonalizes KF :

KF gm = σ2
m gm with σ2

m " σ2
m+1 for 0 ! m < P − 1.

The theorem is proved by verifying that for all N " 0,

N−1X

m=0

〈KF hm, hm〉 !

N−1X

m=0

〈KF gm, gm〉 =
N−1X

m=0

σ2
m.

To relate 〈KF hm, hm〉 to the eigenvalues {σ2
i }0!i<P , we expand hm in the basis {gi}0!i<P :

〈KF hm, hm〉 =
P−1X

i=0

|〈hm, gi〉|2 σ2
i . (9.26)
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Hence
N−1X

m=0

〈KF hm, hm〉 =
N−1X

m=0

P−1X

i=0

|〈hm, gi〉|2 σ2
i =

P−1X

i=0

qi σ
2
i

with

0 ! qi =
N−1X

m=0

|〈hm, gi〉|2 ! 1 and
P−1X

i=0

qi = N.

We evaluate

N−1X

m=0

〈KF hm, hm〉 −
N−1X

i=0

σ2
i =

P−1X

i=0

qi σ
2
i −

N−1X

i=0

σ2
i

=
P−1X

i=0

qi σ
2
i −

N−1X

i=0

σ2
i + σ2

N−1

“
N −

P−1X

i=0

qi

”

=
N−1X

i=0

(σ2
i − σ2

N−1) (qi − 1) +
P−1X

i=N

qi (σ2
i − σ2

N−1).

Since the eigenvalues are listed in order of decreasing amplitude, it follows that

N−1X

m=0

〈KF hm, hm〉 −
N−1X

m=0

σ2
m ! 0.

Suppose that this last inequality is an equality. We finish the proof by showing that {hm}0!m<P

must be a Karhunen-Loève basis. If i < N , then σ2
i '= σ2

N−1 implies qi = 1. If i " N , then σ2
i '= σ2

N−1

implies qi = 0. This is valid for all N " 0 if 〈hm, gi〉 '= 0 only when σ2
i = σ2

m. This means that the
change of basis is performed inside each eigenspace of KF so {hm}0!m<P also diagonalizes KF .

The eigenvectors gm of the covariance matrix are called the signal principal components. Theorem
9.8 proves that a Karhunen-Loève basis yields the smallest expected linear error when approximat-
ing a class of signals by their projection on N orthogonal vectors.

Theorem 9.8 has a simple geometrical interpretation. The realizations of F define a cloud of
points in CP . The density of this cloud specifies the probability distribution of F . The vectors gm

of the Karhunen-Loève basis give the directions of the principal axes of the cloud. Large eigenvalues
σ2

m correspond to directions gm along which the cloud is highly elongated. Theorem 9.8 proves that
projecting the realizations of F on these principal components yields the smallest average error. If
F is a Gaussian random vector, the probability density is uniform along ellipsoids whose axes are
proportional to σm in the direction of gm. These principal directions are thus truly the preferred
directions of the process.

Random Shift Processes If the process is not Gaussian, its probability distribution can have a
complex geometry, and a linear approximation along the principal axes may not be efficient. As
an example, we consider a random vector F [n] of size P that is a random shift modulo P of a

deterministic signal f [n] of zero mean,
∑P−1

n=0 f [n] = 0:

F [n] = f [(n−Q)mod P ]. (9.27)

The shift Q is an integer random variable whose probability distribution is uniform on [0, P − 1]:

Pr(Q = p) =
1

P
for 0 ! p < P .

This process has a zero mean:

E{F [n]} =
1

P

P−1∑

p=0

f [(n− p)mod P ] = 0,
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and its covariance is

RF [n, k] = E{F [n]F [k]} =
1

P

P−1∑

p=0

f [(n− p)mod P ] f [(k − p)mod P ]

=
1

P
f -" f̄ [n− k] with f̄ [n] = f [−n] . (9.28)

Hence RF [n, k] = RF [n− k] with

RF [k] =
1

P
f -" f̄ [k].

Since RF is P periodic, F is a circular stationary random vector, as defined in Appendix A.6.
The covariance operator KF is a circular convolution with RF , and is therefore diagonalized in the
discrete Fourier Karhunen-Loève basis { 1√

P
exp

(
i2πmn

P

)
}0!m<P . The eigenvalues are given by the

Fourier transform of RF :

σ2
m = R̂F [m] =

1

P
|f̂ [m]|2. (9.29)

Theorem 9.8 proves that a linear approximation yields a minimum error in this Fourier basis. To
better understand this result, let us consider an extreme case where f [n] = δ[n]−δ[n−1]. Theorem
9.8 guarantees that the Fourier Karhunen-Loève basis produces a smaller expected approximation
error than does a canonical basis of Diracs {gm[n] = δ[n−m]}0!m<P . Indeed, we do not know a
priori the abscissa of the non-zero coefficients of F , so there is no particular Dirac that is better
adapted to perform the approximation. Since the Fourier vectors cover the whole support of F ,
they always absorb part of the signal energy:

E

{∣∣∣∣

〈
F [n],

1√
P

exp

(
i2πmn

P

)〉∣∣∣∣
2
}

= R̂F [m] =
4

P
sin2

(
πk

P

)
.

Selecting N higher frequency Fourier coefficients thus yields a better mean-square approximation
than choosing a priori N Dirac vectors to perform the approximation.

The linear approximation of F in a Fourier basis is not efficient because all the eigenvalues R̂F [m]
have the same order of magnitude. A simple non-linear algorithm can improve this approximation.
In a Dirac basis, F is exactly reproduced by selecting the two Diracs corresponding to the largest
amplitude coefficients, whose positions Q and Q− 1 depend on each realization of F . A non-linear
algorithm that selects the largest amplitude coefficient for each realization of F is not efficient
in a Fourier basis. Indeed, the realizations of F do not have their energy concentrated over a
few large amplitude Fourier coefficients. This example shows that when F is not a Gaussian
process, a non-linear approximation may be much more precise than a linear approximation, and
the Karhunen-Loève basis is no longer optimal.

9.2 Non-Linear Approximations

Digital images or sounds are signals discretized over spaces of large dimension N , because linear
approximation error have a slow decay. Digital camera images have N " 106 pixels where as 1
second of a CD recording has N = 40 103 samples. Sparse signal representations are obtained by
projecting such signals over less vectors selected adaptively in an orthonormal basis of discrete
signals in CN . This is equivalent to perform a non-linear approximation of the input analog signal
in a basis of L2[0, 1].

Th next section analyzes the properties of the resulting non-linear approximation error. Sections
9.2.2 and 9.2.3 proves that non-linear wavelet approximations are equivalent to adaptive grids, and
can provide sparse representations of signals including singularities. Approximations of functions
in Besov spaces and with bounded variations are studied in Section 9.2.3.
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9.2.1 Non-Linear Approximation Error

The discretization of an input analog signal f computes N sample values {〈f,φn〉}0!n<N that
specify the projection fN of f over an approximation space UN of dimension N . A non-linear
approximation further approximates this projection over a basis providing a sparse representation.

Let B = {gm}m∈N be an orthonormal basis of L2[0, 1] or L2[0, 1]2, whose first N vectors is a
basis of UN . The orthogonal projection in UN can be written

fN (x) =
N−1∑

m=0

〈f, gm〉 gm(x),

and the linear approximation error is

‖f − fN‖2 =
+∞∑

n=N

|〈f, gm〉|2.

Let us re-project fN over over a subset of M < N vectors {gm}m∈Λ with Λ ⊂ [0, N − 1]:

fΛ(x) =
∑

m∈Λ

〈f, gm〉 gm(x).

The approximation error is the sum of the remaining coefficients:

‖fN − fΛ‖2 =
∑

m/∈Λ

|〈f, gm〉|2. (9.30)

The approximation set which minimizes this error is the set ΛT of M vectors corresponding to the
largest inner product amplitude |〈f, gm〉|, and thus above a threshold T that depends on M :

ΛT = {m : 0 ! m < N , |〈f, gm〉| " T} with |ΛT | = M . (9.31)

The minimum approximation error is the energy of coefficients below T

εn(M,f) = ‖fN − fΛT ‖2 =
∑

m/∈ΛT

|〈f, gm〉|2.

In the following we often write fM = fΛT this best M -term approximation.
The overall error is the sum of the linear error when projecting f on UN and the non-linear

approximation error:

εn(M,f) = ‖f − fM‖2 = ‖f − fN‖2 + ‖fN − fM‖2. (9.32)

If N is large enough so that all coefficients above T are in the first N :

T " max
|m|"N

|〈f, gm〉| and hence N > arg max
m

{|〈f, gm〉| " T} (9.33)

then the M largest signal coefficients are among the first N and the non-linear error (9.32) is the
minimum error obtained from M coefficients chosen anywhere in the infinite basis B = {gm}m∈N.
In this case, the linear approximation space UN and fN do not play any explicit role in the error
εn(M,f). If |〈f, gm〉| ! C m−β for some β > 0, then we can choose N " Cβ T β . In the following,
this condition condition is supposed to be satisfied.

Discrete Numerical Computations The linear approximation space UN is important for discrete
computations. A non-linear approximation fΛT is computed by calculating the non-linear approx-
imation of the discretized signal a[n] = 〈f,φn〉 for 0 ! n < N , and performing a discrete to analog
conversion.

Since the discretization family {φn}0!n<N and the approximation basis {gm}0!n<N are both
orthonormal bases of UN , {hm[n] = 〈gm,φn〉}0!m<N is an orthonormal basis of CN . Analog signal
inner products in L2[0, 1] and their discretization in CN are then equal

〈a[n], hm[n]〉 = 〈f(x), gm(x)〉 for 0 ! m < N . (9.34)
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The non-linear approximation of the signal a[n] in the basis {hm}0!m<N of CN is

aΛT [n] =
∑

m∈ΛT

〈a, hm〉hm[n] with ΛT = {m : |〈a, hm〉| " T} .

It results from (9.34) that the analog conversion of this discrete signal is the non-linear analog
approximation:

fΛT (x) =
N−1∑

n=0

aΛT [n]φn(x) =
N−1∑

n=0

aΛT [n]φn(x) =
∑

m∈ΛT

〈f, gm〉 gm(x) .

The number of operations to compute aΛT is dominated by the number of operations to compute
the N signal coefficients {〈a, hm〉}0!n<N which takes O(N log2 N) operations in a discrete Fourier
basis, and O(N) in a discrete wavelet basis. Reducing N thus decreases the number of operations
and does not affect the non-linear approximation error, as long as (9.33) is satisfied. Given this
equivalence between discrete and analog non-linear approximations, we now concentrate on analog
functions to relate this error to their regularity.

Approximation Error To evaluate the non-linear approximation error εn(M,f), the coefficients
{|〈f, gm〉|}m∈N are sorted in decreasing order. Let fr

B[k] = 〈f, gmk〉 be the coefficient of rank k:

|fr
B[k]| " |fr

B[k + 1]| with k > 0.

The best M -term non-linear approximation computed from the M largest coefficients is:

fM =
M∑

k=1

fr
B[k] gmk . (9.35)

The resulting error is

εn(M,f) = ‖f − fM‖2 =
+∞∑

k=M+1

|fr
B[k]|2.

The following theorem relates the decay of this approximation error as M increases to the decay
of |fr

B[k]| as k increases.

Theorem 9.9. Let s > 1/2. If there exists C > 0 such that |fr
B[k]| ! C k−s then

εn(M,f) !
C2

2s− 1
M1−2s. (9.36)

Conversely, if εn(M,f) satisfies (9.36) then

|fr
B[k]| !

(
1−

1

2s

)−s

C k−s . (9.37)

Proof. Since

εn(M, f) =
+∞X

k=M+1

|fr
B[k]|2 ! C2

+∞X

k=M+1

k−2s,

and
+∞X

k=M+1

k−2s
!

Z +∞

M

x−2s dx =
M1−2s

2s − 1
(9.38)

we derive (9.36).

Conversely, let α < 1,

εn(αM, f) "

MX

k=αM+1

|fr
B[k]|2 " (1 − α) M |fr

B[M ]|2 .

So if (9.36) is satisfied

|fr
B[M ]|2 !

εn(αM, f)
1 − α

M−1
!

C2

2s − 1
α1−2s

1 − α
M−2s.

For α = 1 − 1/2s we get (9.37) for k = M .



9.2. Non-Linear Approximation in Bases 331

l
p spaces The following theorem relates the decay of sorted inner products to their !

p norm

‖f‖B,p =

(
+∞∑

m=0

|〈f, gm〉|p
)1/p

.

It derives a decay of the error εn(M,f) to

Theorem 9.10. Let p < 2. If ‖f‖B,p < +∞ then

|fr
B[k]| ! ‖f‖B,p k−1/p (9.39)

and εn(M,f) = o(M1−2/p).

Proof. We prove (9.39) by observing that

‖f‖p
B,p =

+∞X

n=1

|fr
B[n]|p "

kX

n=1

|fr
B[n]|p " k |fr

B[k]|p.

To show that εn(M, f) = o(M1−2/p), we set

S[k] =
2k−1X

n=k

|fr
B[n]|p " k |fr

B[2k]|p.

Hence

εn(M, f) =
+∞X

k=M+1

|fr
B[k]|2 !

+∞X

k=M+1

S[k/2]2/p (k/2)−2/p

! sup
k>M/2

|S[k]|2/p
+∞X

k=M+1

(k/2)−2/p .

Since ‖f‖p
B,p =

P+∞
n=1 |f

r
B[n]|p < +∞, it follows that limk→+∞ supk>M/2 |S[k]| = 0. We thus derive

from (9.38) that εn(M, f) = o(M1−2/p).

This theorem specifies spaces of functions that are well approximated by a few vectors of an
orthogonal basis B. We denote

BB,p =
{

f ∈ H : ‖f‖B,p < +∞
}

. (9.40)

If f ∈ BB,p then Theorem 9.10 proves that εn(M,f) = o(M1−2/p). This is called a Jackson
inequality [19]. Conversely, if εn(M,f) = O(M1−2/p) then the Bernstein inequality (9.37) for
s = 1/p shows that f ∈ BB,q for any q > p. Section 9.2.3 studies the properties of the spaces
BB,p for wavelet bases.

9.2.2 Wavelet Adaptive Grids

A non-linear approximation in a wavelet orthonormal basis keeps the largest amplitude coefficients.
We saw in Section 6.1.3 that these coefficients occur near singularities. A wavelet non-linear approx-
imation thus defines an adaptive grid that refines the approximation scale in the neighborhood of
the signal sharp transitions. Such approximations are particularly well adapted to piecewise regular
signals. The precision of non-linear wavelet approximation is also studied for bounded variation
functions and more general Besov space functions. [208]

We consider a wavelet basis adapted to L2[0, 1], constructed in Section 7.5.3 with compactly
supported wavelets that are Cq with q vanishing moments:

B =
[
{φJ,n}0!n<2−J , {ψj,n}−∞<j!J , 0!n<2−j

]
.

To simplify notation we write φJ,n = ψJ+1,n.
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If the analog signal f ∈ L2[0, 1] is approximated at the scale 2L with N = 2−L samples
{〈f,φL,n〉}0!n<2−L then the corresponding N wavelet coefficients {〈f,ψj,n}n,j>L are computed
with O(N) operations with the fast wavelet transform algorithm of Section 7.3.1. The best non-
linear approximation of f ∈ L2[0, 1] from M wavelet coefficients above T at scales 2j > 2L is

fM =
∑

(j,n)∈ΛT

〈f,ψj,n〉ψj,n with ΛT = {(j, n) : j > L , |〈f,ψj,n〉| " T} .

The approximation error is εn(M,f) =
∑

(j,n)/∈ΛT
|〈f,ψj,n〉|2. The following theorem proves that

if f is bounded, then for a N sufficiently large the approximation support ΛT corresponds to all
possible wavelet coefficients above T .

Theorem 9.11. If f is bounded then all wavelets producing coefficients above T are in an approx-
imation space VL of dimension N = 2−L = O(‖f‖2∞ T−2).

Proof. If f is bounded then

|〈f,ψj,n〉| =
˛̨
˛
Z 1

0

f(t) 2−j/2ψ(2−jt − n) dt
˛̨
˛ ! 2j/2 sup

t
|f(t)|

Z 1

0

|ψ(t)| dt = 2j/2 ‖f‖∞ ‖ψ‖1. (9.41)

So |〈f,ψj,n〉| " T implies that 2j
" T 2 ‖f‖−2

∞ ‖ψ‖−2
1 , which proves the theorem for 2L =

T 2 ‖f‖−2
∞ ‖ψ‖−2

1 .

This theorem shows that for bounded signals, if the discretization 2L is sufficiently small then the
non-linear approximation error computed from the first N = 2−L wavelet coefficients is equal to
the approximation error obtained by selecting the M largest wavelet coefficients in the infinite
dimensional wavelet basis. In the following, we suppose that this condition is satisfied, and thus
do not have to worry about the discretization scale.

Piecewise Regular Signals Piecewise regular signal define a first simple model where non-linear
wavelet approximations considerably outperform linear approximations. We consider signals with a
finite number of singularities and which are uniformly regular between singularities. The following
theorem characterize the linear and non-linear wavelet approximation error decay for such signals.

Theorem 9.12. If f has a K discontinuities on [0, 1] and is uniformly Lipschitz α between these
discontinuities, with 1/2 < α < q, then

εl(M,f) = O(K ‖f‖2Cα M−1) and εn(M,f) = O(‖f‖2Cα M−2α) . (9.42)

Proof. We distinguish type I wavelets ψj,n for n ∈ Ij , whose supports include an abscissa where f is
discontinuous, from type II wavelets for n ∈ IIj , whose supports are included in a domain where f is
uniformly Lipschitz α.

Let C be the support size of ψ. At a scale 2j , each wavelet ψj,n has a support of size C2j , translated
by 2jn. There are thus at most |Ij | ! C K type I wavelets ψj,n whose support includes at least one of
the K discontinuities of f . Since ‖f‖∞ ! ‖f‖Cα , (9.41) shows for α = 0 that there exists B0 such that
|〈f,ψj,n〉| ! B0 ‖f‖Cα 2j/2.

At fine scales 2j , there are much more type II wavelets n ∈ IIj , but this number |IIj | is smaller
than the total number 2−j of wavelets at this scale. Since f is uniformly Lipschitz α on the support of
ψj,n, the right inequality of (9.22) proves that there exists B such that

|〈f,ψj,n〉| ! B ‖f‖Cα 2j(α+1/2) . (9.43)

This linear approximation error from M = 2−k wavelets satisfies

εl(M, f) =
X

j!k

0

@
X

n∈Ij

|〈f,ψj,n〉|2 +
X

n∈IIj

|〈f,ψj,n〉|2
1

A

!
X

j!k

“
C K B2

0 ‖f‖2
Cα 2j + 2−j B2 ‖f‖2

Cα 2(2α+1)j
”

! ‖f‖2
Cα 2 C K B2

0 2k + ‖f‖2
Cα (1 − 2−2α)−1 B2 22αk .
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This inequality proves that for α > 1/2 the error term of type I wavelets dominates, and εl(M, f) =
O(‖f‖2

Cα K M−1).

To compute the non-linear approximaton error ε(M, f), we evaluate the decay of ordered wavelet
coefficients. Let fr

B[k] = 〈f,ψjk,nk 〉 be the coefficient of rank k: |fr
B[k]| " |fr

B[k + 1]| for k " 1. Let
fr
B,1[k] and fr

B,II [k] be the values of the wavelet coefficient of rank k among type I and type II wavelets.

For l > 0 there are at most l K C type I coefficients at scales 2j > 2−l and type I wavelet coefficients
satisfy |〈f,ψj,n〉| ! B0‖f‖Cα2−l/2 at scales 2j

! 2−l. It results that

fr
B,I [lKC] ! B0 ‖f‖Cα 2−l/2 ,

so fr
B,I [k] = O(‖f‖Cα 2−k/(2KC)) has an exponential decay.

For l " 0, there are at most 2l type II wavelet coefficients at scales 2j > 2−l, and type II wavelet
coefficients satisfy |〈f,ψj,n〉| ! B‖f‖Cα2−l(α+1/2) at scales 2j

! 2−l. It results that

fr
B,II [2

−l] ! B‖f‖Cα 2−l(α+1/2) .

It follows that fr
B,II [k] = O(‖f‖Cα k−α−1/2), for all k > 0.

Since type I coefficients have a much faster decay than type II coefficients, putting them together
gives fr

B[k] = O(‖f‖Cα k−α−1/2). From the inequality (9.36) of Theorem 9.9 it results that εn(M, f) =
O(‖f‖2

Cα M−2α).

Although there are few large wavelet coefficients created by the potential K discontinuities, the
theorem proof shows that the linear approximation error is dominated by these discontinuities. On
the contrary, these few wavelet coefficients have a negligible impact on the non-linear approximation
error. It thus decays as if there was no such discontinuities and f was uniformly Lipschitz α over
its whole support.

Adaptive Grids The approximation fM calculated from the M largest amplitude wavelet coef-
ficients can be interpreted as an adaptive grid approximation, where the approximation scale is
refined in the neighborhood of singularities.

A non-linear approximation keeps all coefficients above a threshold |〈f,ψj,n〉| " T . In a region
where f is uniformly Lipschitz α, since |〈f,ψj,n〉| ∼ A 2j(α+1/2) the coefficients above T are typically
at scales

2j > 2l =

(
T

A

)2/(2α+1)

.

Setting to zero all wavelet coefficients below the scale 2l is equivalent to computing a local approxi-
mation of f at the scale 2l. The smaller the local Lipschitz regularity α, the finer the approximation
scale 2l.

Figure 9.2 shows the non-linear wavelet approximation of a piecewise regular signal. Up and
down Diracs correspond to positive and negative wavelet coefficients whose amplitude are above
T . The largest amplitude wavelet coefficients are in the cone of influence of each singularity.
The scale-space approximation support ΛT specifies the geometry of the signal sharp transitions.
Since the approximation scale is refined in the neighborhood of each singularity, they are much
better restored than in the fixed scale linear approximation shown in Figure 9.1. The non-linear
approximation error in this case is 17 times smaller than the linear approximation error.

Non-linear wavelet approximations are nearly optimal compared to adaptive spline approxima-
tions. A spline approximation f̃M is calculated by choosing K nodes t1 < t2 < · · · < tK inside
[0, 1]. Over each interval [tk, tk+1], f is approximated by the closest polynomial of degree r. This
polynomial spline f̃M is specified by M = K(r + 2) parameters, which are the node locations
{tk}1!k!K plus the K(r + 1) parameters of the K polynomials of degree r. To reduce ‖f − f̃M‖,
the nodes must be closely spaced when f is irregular and farther apart when f is smooth. However,
finding the M parameters that minimize ‖f − f̃M‖ is a difficult non-linear optimization.

A spline wavelet basis of Battle-Lemarié gives non-linear approximations that are also splines
functions, but the nodes tk are restricted to dyadic locations 2jn, with a scale 2j that is locally
adapted to the signal regularity. It is computed with O(N) operations by projecting the signal
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Figure 9.2: (a): Original signal f . (b): Each Dirac corresponds to one of the largest M = 0.15N
wavelet coefficients, calculated with a Symmlet 4. (c): Non-linear approximation fM recovered
from the M largest wavelet coefficients shown above, ‖f − fM‖/‖f‖ = 5.1 10−3.
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in an approximation space of dimension N = O(T 2). For large classes of signals, including balls
of Besov spaces, the maximum approximation errors with wavelets or with optimized splines have
the same decay rate when M increases [209]. The computational overhead of an optimized spline
approximation is therefore not worth it.

9.2.3 Approximations in Besov and Bounded Variation Spaces

Studying the performance of non-linear wavelet approximations more precisely requires introducing
new spaces. As previously, we write the coarse scale scaling functions φJ,n = ψJ+1,n. The Besov
space Bs

β,γ [0, 1] is the set of functions f ∈ L2[0, 1] such that

‖f‖s,β,γ =






J+1∑

j=−∞




2−j(s+1/2−1/β)




2−j−1∑

n=0

|〈f,ψj,n〉|β




1/β





γ




1/γ

< +∞ . (9.44)

Frazier, Jawerth [259] and Meyer [374] proved that Bs
β,γ [0, 1] does not depend on the particular

choice of wavelet basis, as long as the wavelets in the basis have q > s vanishing moments and are
in Cq. The space Bs

β,γ [0, 1] corresponds typically to functions that have a “derivative of order s”

that is in Lβ [0, 1]. The index γ is a fine tuning parameter, which is less important. We need q > s
because a wavelet with q vanishing moments can test the differentiability of a signal only up to the
order q. When removing from (9.44) the coarsest scale scaling functions φJ,n = ψJ+1,n the norm
‖f‖s,β,γ is called a homogeneous Besov norm that we shall write ‖f‖∗s,β,γ and the corresponding

homogeneous Besov space is B̃s
β,γ [0, 1].

If β " 2, then functions in Bs
β,γ [0, 1] have a uniform regularity of order s. For β = γ = 2,

Theorem 9.4 proves that Bs
2,2[0, 1] = Ws[0, 1] is the space of s times differentiable functions in

the sense of Sobolev. Theorem 9.5 proves that this space is characterized by the decay of the
linear approximation error εl(N, f) and that εl(N, f) = o(N−2s). Since εn(M,f) ! εl(M,f)
clearly εn(M,f) = o(M−2s). One can verify (Exercise 9.11) that non-linear approximation do not
improve linear approximations over Sobolev spaces. For β = γ =∞, Theorem 9.6 proves that the
homogeneous Besov norm is a homogeneous Hölder norm

‖f‖∗s,∞,∞ = sup
j"J,n

2−j(α+1/2)|〈f,ψj,n〉| ∼ ‖f‖C̃s (9.45)

and the corresponding space B̃s
∞,∞[0, 1] is the homogeneous Hölder space of functions that are

uniformly Lipschitz s on [0, 1].
For β < 2, functions in Bs

β,γ [0, 1] are not necessarily uniformly regular. The adaptivity of
non-linear approximations then improves significantly the decay rate of the error. In particular, if
p = β = γ and s = 1/2 + 1/p, then the Besov norm is a simple !

p norm:

‖f‖s,β,γ =




J+1∑

j=−∞

2−j−1∑

n=0

|〈f,ψj,n〉|p




1/p

.

Theorem 9.10 proves that if f ∈ Bs
β,γ [0, 1], then εn(M,f) = o(M1−2/p). The smaller p, the faster

the error decay. The proof of Theorem 9.12 shows that although f may be discontinuous, if the
number of discontinuities is finite and if f is uniformly Lipschitz α between these discontinuities,
then its sorted wavelet coefficients satisfy |fr

B[k]| = O(k−α−1/2), so f ∈ Bs
β,γ [0, 1] for 1/p < α+1/2.

This shows that these spaces include functions that are not s times differentiable at all points. The
linear approximation error εl(M,f) for f ∈ Bs

β,γ [0, 1] can decrease arbitrarily slowly because the
M wavelet coefficients at the largest scales may be arbitrarily small. A non-linear approximation
is much more efficient in these spaces.

Bounded Variation Bounded variation functions are important examples of signals for which a
non-linear approximation yields a much smaller error than a linear approximation. The total
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variation norm is defined in (2.57) by

‖f‖V =

∫ 1

0
|f ′(t)| dt .

The derivative f ′ must be understood in the sense of distributions, in order to include discontinuous
functions. To compute the linear and non-linear wavelet approximation error for bounded variation
signals, the following theorem computes an upper and a lower bound of ‖f‖V from the modulus of
wavelet coefficients.

Theorem 9.13. Consider a wavelet basis constructed with ψ such that ‖ψ‖V < +∞. There exist
A,B > 0 such that for all f ∈ L2[0, 1]

‖f‖V ! B
J+1∑

j=−∞

2−j−1∑

n=0

2−j/2 |〈f,ψj,n〉| = B ‖f‖1,1,1 , (9.46)

and

‖f‖V " A sup
j!J




2−j−1∑

n=0

2−j/2 |〈f,ψj,n〉|



 = A ‖f‖∗1,1,∞ . (9.47)

Proof. By decomposing f in the wavelet basis

f =
JX

j=−∞

2−j−1X

n=0

〈f,ψj,n〉ψj,n +
2−J−1X

n=0

〈f,φJ,n〉φJ,n,

we get

‖f‖V !

JX

j=−∞

2−j−1X

n=0

|〈f,ψj,n〉| ‖ψj,n‖V +
2−J−1X

n=0

|〈f,φJ,n〉| ‖φJ,n‖V . (9.48)

The wavelet basis includes wavelets whose support are inside (0, 1) and border wavelets, which are
obtained by dilating and translating a finite number of mother wavelets. To simplify notations we
write the basis as if there were a single mother wavelet: ψj,n(t) = 2−j/2ψ(2−jt − n). Hence, we verify
with a change of variable that

‖ψj,n‖V =

Z 1

0

2−j/2 2−j |ψ′(2−jt − n)| dt = 2−j/2 ‖ψ‖V .

Since φJ,n(t) = 2−J/2φ(2−J t − n) we also prove that ‖φJ,n‖V = 2−J/2 ‖φ‖V . The inequality (9.46) is
thus derived from (9.48).

Since ψ has at least one vanishing moment, its primitive θ is a function with the same support,
which we suppose included in [−K/2, K/2]. To prove (9.47), for j ! J we make an integration by
parts:

2−j−1X

n=0

|〈f,ψj,n〉| =
2−j−1X

n=0

˛̨
˛̨
Z 1

0

f(t) 2−j/2ψ(2−jt − n) dt

˛̨
˛̨

=
2−j−1X

n=0

˛̨
˛̨
Z 1

0

f ′(t) 2j/2θ(2−jt − n) dt

˛̨
˛̨

! 2j/2
2−j−1X

n=0

Z 1

0

|f ′(t)| |θ(2−jt − n)| dt .

Since θ has a support in [−K/2, K/2],

2−j−1X

n=0

|〈f,ψj,n〉| ! 2j/2 K sup
t∈R

|θ(t)|
Z 1

0

|f ′(t)| dt ! A−12j/2‖f‖V . (9.49)

This inequality proves (9.47).
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This theorem shows that the total variation norm is bounded by two Besov norms:

A ‖f‖∗1,1,∞ ! ‖f‖V ! B ‖f‖1,1,1 .

The lower-bound is a homogeneous norm because the addition of a constant to f does not modify
‖f‖V . The space BV[0, 1] of bounded variation functions is therefore embedded in the correspond-
ing Besov spaces:

B1
1,1[0, 1] ⊂ BV[0, 1] ⊂ B̃1

1,∞[0, 1] .

The following theorem derives linear and non-linear wavelet approximation errors for bounded
variation signals.

Theorem 9.14. For all f ∈ BV[0, 1] and M > 2q

εl(M,f) = O(‖f‖2V M−1) , (9.50)

and
εn(M,f) = O(‖f‖2V M−2) . (9.51)

Proof. Section 7.5.3 shows a wavelet basis of L
2[0, 1] with boundary wavelets keeping their q vanishing

moments has 2q different boundary wavelets and scaling functions, so the largest wavelet scale can be
2J = (2q)−1 but not smaller.

There are 2−j wavelet coefficients at a scale 2j , so for any L ! J , there are 2−L wavelet and scaling
coefficients at scales 2j > 2L. The resulting linear wavelet approximation error is

εl(2
−L, f) =

LX

j=−∞

2−j−1X

n=0

|〈f,ψj,n〉|2. (9.52)

We showed in (9.47) that
2−j−1X

n=0

|〈f,ψj,n〉| ! A−1 2j/2 ‖f‖V

and hence that
2−j−1X

n=0

|〈f,ψj,n〉|2 ! A−2 2j ‖f‖2
V .

It results from (9.52) that
εl(2

−L, f) ! 2A−2 2L ‖f‖2
V .

Setting M = 2−L, we derive (9.50).

Let us now prove the non-linear approximation error bound (9.51). Let fr
B[k] be the wavelet

coefficient of rank k, excluding all the scaling coefficients 〈f,φJ,n〉, since we cannot control their value
with ‖f‖V . We first show that there exists B0 such that for all f ∈ BV[0, 1]

|fr
B[k]| ! B0 ‖f‖V k−3/2. (9.53)

To take into account the fact that (9.53) does not apply to the 2J scaling coefficients 〈f,φJ,n〉, an upper
bound of εn(M, f) is obtained by selecting the 2J scaling coefficients plus the M − 2J biggest wavelet
coefficients and hence

εn(M, f) !

+∞X

k=M−2J+1

|fr
B[k]|2 . (9.54)

For M > 2q = 2−J , inserting (9.53) in (9.54) proves (9.51).

The upper bound (9.53) is proved by computing an upper bound of the number of coefficients
larger than an arbitrary threshold T . At scale 2j , we denote by fr

B[j, k] the coefficient of rank k among
{〈f,ψj,n〉}0!n!2−j . The inequality (9.49) proves that for all j ! J

2−j−1X

n=0

|〈f,ψj,n〉| ! A−1 2j/2 ‖f‖V .

It thus follows from (9.39) that

|fr
B[j, k]| ! A−1 2j/2 ‖f‖V k−1 = C 2j/2 k−1 .
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At a scale 2j , the number kj of coefficients larger than T thus satisfies

kj ! min(2−j , 2j/2 C T−1) .

The total number k of coefficients larger than T is

k =
JX

j=−∞

kj !
X

2j"(C−1T )2/3

2−j +
X

2j>(C−1T )2/3

2j/2CT−1

! 6 (CT−1)2/3.

By choosing T = |fr
B[k]|, since C = A−1 ‖f‖V , we get

|fr
B[k]| ! 63/2 A−1 ‖f‖V k−3/2 ,

which proves (9.53).

The asymptotic decay rate of linear and non-linear approximation errors in Theorem 9.14 can not
be improved. If f ∈ BV[0, 1] has discontinuities, then εl(M,f) decays like M−1 and εn(M,f)
decays like M−2. One can also prove [206] that this error decay rate for all bounded variation
functions cannot be improved by any type of non-linear approximation scheme. In this sense,
wavelets are optimal for approximating bounded variation functions.

9.3 Sparse Image Representations

Approximation of images is more complex than one-dimensional signals, because singularities of-
ten belong to geometrical structures such as edges or textures. Non-linear wavelet approximation
define adaptive approximations grids which are numerically highly effective. These approximations
are optimal for bounded variation images, but not for images having edges that are geometrically
regular. Section 9.3.2 introduces a piecewise regular image model with regular edges, and studies
adaptive triangulation approximations. Section 9.3.3 proves that curvelet frames yield asymptoti-
cally optimal approximation errors for such piecewise C2 regular images.

9.3.1 Wavelet Image Approximations

Linear and non-linear approximations of functions in L2[0, 1]d can be calculated in separable wavelet
bases. We concentrate on the two-dimensional case for image processing, and compute approxima-
tion errors for bounded variation images.

Section 7.7.4 constructs a separable wavelet basis of L2[0, 1]2 from a wavelet basis of L2[0, 1],
with separable products of wavelets and scaling functions. We suppose that all wavelets of the
basis of L2[0, 1] are Cq with q vanishing moments. The wavelet basis of L2[0, 1]2 includes three
mother wavelets {ψl}1!l!3 that are dilated by 2j and translated over a square grid of interval 2j

in [0, 1]2. Modulo modifications near the borders, these wavelets can be written

ψl
j,n(x) =

1

2j
ψl

(
x1 − 2jn1

2j
,

x2 − 2jn2

2j

)
. (9.55)

They have q vanishing moments in the sense that they are orthogonal to two-dimensional polyno-
mials of degree strictly smaller than q. If we limit the scales to 2j ! 2J , we must complete the
wavelet family with two-dimensional scaling functions

φ2
J,n(x) =

1

2J
φ2

(
x1 − 2Jn1

2J
,

x2 − 2Jn2

2J

)

to obtain orthonormal basis of L2[0, 1]2

B =
(
{φ2

J,n}2Jn∈[0,1)2 ∪ {ψl
j,n}j!J , 2jn∈[0,1)2 , 1!l!3

)
.
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Linear Image Approximation The linear discretization of an analog image in L2[0, 1]2 can be
defined by N = 2−2L samples {〈f,φ2

L,n〉}2Ln∈[0,1]2 , which characterize the orthogonal projection of
f in the approximation space VL. The precision of such linear approximations depends upon the
uniform image regularity.

Local image regularity can be measured with Lipschitz exponents. A function f is uniformly
Lipschitz α over a domain Ω ⊂ R2 if there exists K > 0, such that for any v ∈ Ω one can find a
polynomial pv of degree *α+ such that

∀x ∈ Ω , |f(x)− pv(x)| ! K |x− v|α . (9.56)

The infimum of the K which satisfy (9.56) is the homogeneous Hölder α norm ‖f‖C̃α . The Hölder
α norm of f also imposes that f is bounded: ‖f‖Cα = ‖f‖C̃α + ‖f‖∞. We write Cα[0, 1]2 the
Hölder space of functions for which ‖f‖Cα < +∞. Similarly to Theorem 9.15 in one dimension,
the following theorem computes the linear approximation error decay of such functions, with Cq

wavelets having q vanishing moments.

Theorem 9.15. There exists B " A > 0 such that

A ‖f‖C̃α ! sup
1!l!3,j"J,0!n<2−j

2−j(α+1) |〈f,ψl
j,n〉| ! B ‖f‖C̃α . (9.57)

Proof. The proof is essentially the same as the proof of Theorem 9.15 in one dimension. We shall only
prove the right inequality. If f is uniformly Lipschitz α on the support of ψl

j,n, since ψl
j,n is orthogonal

the polynomial p2jn approximating f at v = 2jn, we get

|〈f,ψl
j,n〉| = |〈f − p2jn,ψl

j,n〉| ! ‖f‖C̃α

Z Z
2−j |ψl(2−j(x − 2jn))| |x − 2jn|α dx

! ‖f‖C̃α 2(α+1)j
Z Z

|ψl(x)| |x|α dx ,

which proves the right inequality of (9.57). The wavelet regularity is not used to prove this inequality.
The left inequality requires that the wavelets are C

q.

The following theorem computes the linear wavelet approximation error decay for images that
are uniformly Lipschitz α. It requires that wavelets have q vanishing moments, but no regularity
condition is needed.

Theorem 9.16. If f is uniformly Lipschitz 0 < α ! q over [0, 1]2 then εl(N, f) = O(‖f‖2
C̃α N−α).

Proof. There are 3 2−2j wavelet coefficients at a scale 2j and 2−2k wavelet coefficients and scaling
coefficients at scales 2j > 2k. The right inequality of (9.57) proves that

|〈f,ψl
j,n〉| ! B ‖f‖C̃α 2(α+1)j .

As a result

εl(2
−2k, f) =

kX

j=−∞

3X

l=1

X

2jn∈[0,1]2

|〈f,ψj,n〉|2 ! 3B2 ‖f‖2
C̃α

kX

j=−∞

2−2j 2j(2α+2) =
3B2 ‖f‖2

C̃α 22αk

1 − 2−2α
.

For 2k = −*log2 N+, we derive that εl(N, f) = O(‖f‖2
C̃α 22αk) = O(‖f‖2

C̃α N−α).

One can prove that this decay rate is optimal in the sense that no approximation scheme can
improve the decay rate N−α over all uniformly Lipschitz α functions [19].

Non-Linear Approximation of Piecewise Regular Images If an image has singularities, then linear
wavelet approximations introduce large errors. In one dimension, an isolated discontinuity creates
a constant number of large wavelet coefficients at each scales. As a result, non-linear wavelet
approximations are marginally influenced by a finite number of isolated singularities. Theorem 9.12
proves that if f is uniformly Lipschitz α between these singularities, then the asymptotic error decay
behaves as if there was no singularity. In two dimensions, if f is uniformly Lipschitz α then Theorem
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9.16 proves that the linear approximation error from M wavelets satisfies εl(M,f) = O(M−α). We
can thus hope that piece-wise regular images yield a non-linear approximation error having the
same asymptotic decay. Regretfully, this is wrong.

A piecewise regular image has discontinuities along curves of dimension 1, which create a non-
negligible number of high amplitude wavelet coefficients. As a result even though the function may
be infinitely differentiable between discontinuities, the non-linear approximation error εn(M,f)
decays only like M−1. This is illustrated on an example.

Ω

(a) (b)

Figure 9.3: (a): Image f = 1Ω. (b): At the scale 2j , the wavelets ψl
j,n have a square support of

width proportional to 2j . This support is translated on a grid of interval 2j , which is indicated by
the smaller dots. The darker dots correspond to wavelets whose support intersects the frontier of
Ω, for which 〈f,ψl

j,n〉 )= 0.

Suppose that f = C 1Ω is the indicator function of a set Ω whose border ∂Ω has a finite length,
as shown in Figure 9.3. If the support of ψl

j,n does not intersect the border ∂Ω, then 〈f,ψl
j,n〉 = 0

because f is constant over the support of ψl
j,n. The wavelets ψl

j,n have a square support of size
proportional to 2j , which is translated on a grid of interval 2j . Since ∂Ω has a finite length L,
there are on the order of L 2−j wavelets whose support intersects ∂Ω. Figure 9.3(b) illustrates the
position of these coefficients.

Since f is bounded, is result from (9.57) (for α = 0) that |〈f,ψl
j,n〉| = O(C 2j). Along the border,

wavelet coefficients typically have an amplitude |〈f,ψl
j,n〉| ∼ C 2j . The M largest coefficients are

thus typically at scales 2j " L/M . Selecting these M largest coefficients yields an error

εn(M,f) ∼
log2(L/M)−1∑

j=−∞

L2−j C2 22j = (C L)2 M−1 . (9.58)

The large number of wavelet coefficients produced by the edges of f thus limit the error decay to
M−1.

Two questions then arise. Is the class of image having a wavelet approximation error that decays
like M−1 sufficiently large to incorporate interesting image models ? The next paragraphs proves
that this class includes all bounded variation images. The second question is to understand whether
it is possible to find sparse signal representations, that are better than wavelets to approximate
images having regular edges. This second question is addressed in Section 9.3.2.

Bounded Variation Images Bounded variation functions provide good models for large class of
images which do not have irregular textures. The total variation of f is defined in Section 2.3.3 by

‖f‖V =

∫ 1

0

∫ 1

0
|.∇f(x)| dx . (9.59)
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The partial derivatives of .∇f must be taken in the general sense of distributions in order to include
discontinuous functions. Let ∂Ωt be the level set defined as the boundary of

Ωt = {x ∈ R2 : f(x) > t} .

Theorem 2.9 proves that the total variation depends on the length H1(∂Ωt) of level sets:

∫ 1

0

∫ 1

0
|.∇f(x)| dx =

∫ +∞

−∞
H1(∂Ωt) dt. (9.60)

It results that if f = C 1Ω then ‖f‖V = C L, where L is the length of the boundary of Ω. Indicator
function of sets thus have a bounded total variation, which is proportional to the length of their
“edges”.

Linear and non-linear approximation errors of bounded variation images are computed by eval-
uating the decay of their wavelet coefficients across scales. We denote by fr

B[k] the rank k wavelet
coefficient of f , without including the 22J scaling coefficients 〈f,φ2

J,n〉. The following theorem
gives upper and lower bounds on ‖f‖V from wavelet coefficients. Wavelets are supposed to have a
compact support and need only 1 vanishing moment.

Theorem 9.17 (Cohen, DeVore, Pertrushev, Xu). There exist A,B1, B2 > 0 such that if ‖f‖V <
+∞ then

J∑

j=−∞

3∑

l=1

∑

2jn∈[0,1]2

|〈f,ψl
j,n〉| +

∑

2Jn∈[0,1]2

|〈f,φ2
J,n〉| " A ‖f‖V , (9.61)

sup
−∞<j!J

1!l!3




∑

2jn∈[0,1]2

|〈f,ψl
j,n〉|



 ! B1 ‖f‖V (9.62)

and
|fr

B[k]| ! B2 ‖f‖V k−1 . (9.63)

Proof. In 2D, a wavelet total variation does not depend upon scale and position. Indeed, with a change
of variable x′ = 2−jx − n, we get

‖ψl
j,n‖V =

Z Z
|)∇ψl

j,n(x)| dx =

Z Z
|)∇ψl(x′)| dx′ = ‖ψl‖V .

Similarly ‖φ2
J,n‖V = ‖φ2‖V . The inequalities (9.61) and (9.62) are proved with the same derivation

steps as in Theorem 9.13 for one-dimensional bounded variation functions.

The proof of (9.63) is technical and can be found in [174]. The inequality (9.62) proves that wavelet
coefficients have a bounded l

1 norm at each scale 2j . It results from (9.39) in Theorem 9.10 that ranked
wavelet coefficients at each scale 2j have a decay bounded by B1 ‖f‖V k−1. The inequality (9.63) is
finer since it applies to the ranking of wavelet coefficients at all scales.

Lena is an example of finite resolution approximation of a bounded variation image. Figure 9.4
shows that its sorted wavelet coefficients log2 |fr

B[k]| decays with a slope that reaches −1 as log2 k
increases, which verifies that |fr

B[k]| = O(k−1). In contrast, the Mandrill image shown in Figure 10.7
does not have a bounded total variation because of the fur texture. As a consequence, log2 |fr

B[k]|
decays more slowly, in this case with a slope that reaches −0.65.

A function with finite total variation does not necessarily have a bounded amplitude, but images
do have a bounded amplitude. The following theorem incorporates this hypothesis to compute
linear approximation errors.

Theorem 9.18. If ‖f‖V < +∞ and ‖f‖∞ < +∞ then

εl(M,f) = O(‖f‖V ‖f‖∞ M−1/2) (9.64)

and
εn(M,f) = O(‖f‖2V M−1) . (9.65)
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Figure 9.4: Sorted wavelet coefficients log2 |fr
B[k]| as a function of log2 k for two images. (a): Lena

image shown in Figure 9.5(a). (b): Mandrill image shown in Figure 10.7.

(a) (b)

(c) (d)

Figure 9.5: (a): Lena image f of N = 2562 pixels. (b): Linear approximations fM calculated
from the M = N/16 Symmlet 4 wavelet coefficients at the largest scales: ‖f − fM‖/‖f‖ = 0.036.
(c): The support of the M = N/16 largest amplitude wavelet coefficients are shown in black.
(d): Non-linear approximation fM calculated from the M largest amplitude wavelet coefficients:
‖f − fM‖/‖f‖ = 0.011.
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Proof. The linear approximation error from M = 2−2m wavelets is

εl(2
−2m, f) =

mX

j=−∞

3X

l=1

X

2jn∈[0,1]2

|〈f,ψl
j,n〉|2 . (9.66)

We shall verify that there exists B > 0 such that for all j and l
X

2jn∈[0,1]2

|〈f,ψl
j,n〉|2 ! B ‖f‖V ‖f‖∞ 2j . (9.67)

Applying this upper bound to the sum (9.66) proves that

εl(2
−2m, f) ! 6 B1 ‖f‖V ‖f‖∞ 2m ,

from which (9.64) is derived

The upper bound (9.67) is calculated with (9.62), which shows that there exists B2 > 0 such that
for all j and l X

2jn∈[0,1]2

|〈f,ψl
j,n〉| ! B2 ‖f‖V . (9.68)

The amplitude of a wavelet coefficient can also be bounded:

|〈f,ψl
j,n〉| ! ‖f‖∞ ‖ψl

j,n‖1 = ‖f‖∞ 2j ‖ψl‖1 ,

where ‖ψl‖1 is the L
1[0, 1]2 norm of ψl. If B3 = max1!l!3 ‖ψl‖1 this yields

|〈f,ψl
j,n〉| ! B3 2j ‖f‖∞ . (9.69)

Since
P

n |an|2 ! supn |an|
P

n |an|, we get (9.67) from (9.68) and (9.69).

The non-linear approximation error is a direct consequence of the sorted coefficient decay (9.63).
It results from (9.63) and (9.36) that εn(M, f) = O(‖f‖2

V M−1).

This theorem shows that non-linear wavelet approximations of bounded variation images can yield
much smaller errors than linear approximations. The decay bounds of this theorem are tight in the
sense that one can find functions, for which εl(M,f) and εn(M,f) decay respectively like M−1/2

and M−1. This is typically the case for bounded variation images including discontinuities along
edges, for example f = C 1Ω. Lena in Figure 9.5(a) is another example.

Figure 9.5(b) is a linear approximation calculated with the M = N/16 largest scale wavelet
coefficients. This approximation produces a uniform blur and creates Gibbs oscillations in the
neighborhood of contours. Figure 9.5(c) gives the non-linear approximation support ΛT of the M =
N/16 largest wavelet coefficients. Large amplitude coefficients are located where the image intensity
varies sharply, in particular along the edges. The resulting non-linear approximation is shown in
Figure 9.5(d). The non-linear approximation error is much smaller than the linear approximation
error: εn(M,f) ! εl(M,f)/10, and the image quality is indeed better. As in one dimension, this
non-linear wavelet approximation can be interpreted as an adaptive grid approximation, which
refines the approximation resolution near edges and textures by keeping wavelet coefficients at
smaller scales.

9.3.2 Geometric Image Models and Adaptive Triangulations

Bounded variation image models correspond to images whose level sets have a finite average length,
but it does not imply any geometrical regularity of these level sets. The level sets and “edges” of
many images such as Lena are often piecewise regular curves. This geometric regularity can be
used to improve the sparsity of image representations.

When an image is uniformly Lipschitz α, Theorem 9.16 proves that wavelet non-linear approx-
imations have an error εl(M,f) = O(M−α), which is optimal. However, as soon as the image is
discontinuous along an edge, then the error decay rate drops to εn(M,f) = O(M−1), because edges
create a number of large wavelet coefficients that is proportional to their length. This decay rate is
improved by representations taking advantage of edge geometric regularities. We introduce a piece-
wise regular image model which incorporates the geometric regularity of edges. Approximations of
piecewise regular images are studied with adaptive triangulations.
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Piecewise C
α Image Models Piecewise regular image models include edges that are also piecewise

regular. These edges are typically occlusion contours of objects in images. The regularity is
measured in the sense of uniform Lipschitz regularity, with Hölder norms ‖f‖Cα , defined in (9.20)
and (9.56) for one and two-dimensional functions. Edges are supposed to be a finite union of curves
ek that are uniformly Lipschitz α in [0, 1]2. Between edges, the image is supposed to be uniformly
Lipschitz α. To model the blur introduced by the optics or by diffraction phenomena, the image
model incorporates a convolution by an unknown regular kernel hs, whose scale s is a parameter.

Definition 9.1. A function f ∈ L2[0, 1]2 is said to be a piecewise Cα with a blurring scale s " 0
if f = f̄ " hs where f̄ is uniformly Lipschitz α on Ω = [0, 1]2 − {ek}1!k<K . If s > 0 then
hs(x) = s−2h(s−1x) where h is a uniformly Lipschitz α kernel with a support in [−1, 1], and if
s = 0 then h0 = δ. The curves ek are uniformly Lipschitz α and do not intersect tangentially.

When the blurring scale s = 0 then f = f̄ " h0 = f̄ is typically discontinuous along the edges.
When s > 0 then f̄ " hs is blurred and discontinuities along edges are diffused on a neighborhood
of size s, as shown in Figure 9.6.

Approximations with Adapted Triangulations Wavelet approximations are inefficient to recover
regular edges because it takes many wavelet to cover the edge at each scale, as shown by Figure
9.3. To improve this approximation, it is necessary to use elongated approximation elements. For
C2 piecewise regular images, it is proved that piecewise linear approximations over M adapted
triangles can reach the optimal O(M−2) error decay, as if the image had no singularities.

For the solution of partial differential equations, the local optimization of anisotropic triangles
was introduced by Babuška and A. K. Aziz [88]. Adaptive triangulations are indeed useful in nu-
merical analysis, where shocks or boundary layers require anisotropic refinements of finite elements
[75, 409, 433]. A planar triangulation (V, T ) of [0, 1]2 is composed of vertices V = {xi}0!i<p and
disjoint triangular faces T = {Tk}0!k<M that cover the image domain

M−1⋃

k=0

Tk = [0, 1]2 .

Let M be the number of triangles. We consider an image approximation f̃M obtained a with linear
interpolations of the image values at the vertices. For each xi ∈ V, f̃M (xi) = f(xi), and f̃M (x) is
linear on each triangular face Tk. A function f is well approximated with M triangles if the shapes
of these triangles are optimized to capture the regularity of f .

f ∗ hf

Figure 9.6: Adaptive triangulations for piecewise linear approximations of a piecewise C2 image,
without and with a blurring kernel.

The following theorem proves that adapted triangulations for piecewise C2 images leads to the
optimal decay rate O(M−2), by sketching the construction of a well adapted triangulation.

Theorem 9.19. If f is a piecewise C2 image, then there exists C such that for any M one can
construct a triangulation (V, T ) with M triangles over which the piecewise-linear interpolation f̃M

satisfies

‖f − f̃M‖2 ! C M−2. (9.70)
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Proof. A sketch of the proof is given. Let us first consider the case where the blurring scale is s = 0.
Each edge curve ek is C

2 and can be covered by a band βk of width ε2. This band is is a union of
straight tubes of width ε2 and of length ε/C where C is the maximum curvature of the edge curves.
Each tube is decomposed in two elongated triangles as illustrated in Figure 9.6. The number of such
triangles is 2CLkε

−1 where Lk is length of ek. Triangle vertices should also be appropriately adjusted
at junctions or corners. Let L =

P
k Lk be the total length of edges and β = ∪kβk be the band

covering all edges. This band is divided in 2CLε−1 triangles. Since f is bounded, ‖f − f̃M‖2
L2(β) !

area(β) ‖f‖2
∞ ! L ε2‖f‖2

∞.

The complementary βc = [0, 1]2−β is covered at the center by nearly equilateral triangles of surface
of the order of ε, as shown in Figure 9.6. There are O(ε−1) such triangles. Performing this packing
requires to use a boundary layer of triangles which connect the large nearly isotropic triangles of width
ε1/2 to the anisotropic triangles of size ∼ ε2 × ε, along edges. One can verify that such a boundary
layer can be constructed with O(LCε−1) triangles. Since f is C

2 on Ω− β, the approximation error of
a linear interpolation f̃ over this triangulation is ‖f − f̃M‖L∞(βc) = O(‖f‖2

C2(βc)ε
2). The total error

thus satisfies
‖f − f̃M‖2 = O(L‖f‖2

∞ ε2 + ‖f‖2
C2 ε2)

with a number of triangles M = O((C L + 1) ε−1), which verifies (9.70) for s = 0.

Suppose now that s > 0. According to Definition 9.1, f = f̄ + hs so edges are diffused into sharp
transitions along a tube of width s. Since h is C

2, within this tube f is C
2 but has large amplitude

derivatives if s is small. This defines an overall band β of surface L s where the derivatives of f are
potentially large. The triangulation of the domain [0, 1]2 −β can be treated similarly to the case s = 0.
We thus concentrate on the triangulation of the band β and show that one can find a triangulation
with O(ε−1) triangles which yields an error in O(ε2) over the band.

The band β has a surface Ls and can thus be covered by L ε−1 triangles of surface εs. Let
us compute the aspect ratio of these triangles to minimize the resulting error. A blurred piecewise
C

2 image f = f̄ + hs has an anisotropic regularity at a point x close to an edge curve ek where f̄ is
discontinuous. Let τ1(x) the unit vector which is tangent to ek at point x, and τ2(x) be the perpendicular
vector. In the system of coordinates (τ1, τ2), for any u = u1, τ1 + u2 τ2 in the neighborhood of x, one
can prove that [341, 364] ˛̨

˛̨ ∂
i1+i2f

∂ui1
1 ∂ui2

2

(u)

˛̨
˛̨ = O(s−i1/2−i2) . (9.71)

For s small the derivatives are thus much larger along τ2 then along τ1. The error of local linear
approximation can be computed with a Taylor decomposition

f(x + ∆) = f(x) + 〈∇xf, h〉 +
1
2
〈Hx(f) ∆, ∆〉 + O(‖∆‖2).

where Hx(f) ∈ R2×2 is the symmetric Hessian tensor of second derivatives. Let us decompose ∆ =
∆1τ1 + ∆2τ2:

|f(x + ∆) − (f(x) + 〈∇xf, ∆〉)| = O(s−1|∆1|2 + s−2|∆2|2 + s−3/2|∆1| |∆2|) . (9.72)

For a triangle of width and length ∆1 and ∆2, we want to minimize the error for a given surface
sε ∼ ∆1 ∆2, which is obtained with ∆2/∆1 =

√
s. It results that ∆1 ∼ s1/3ε1/2 and ∆2 ∼ s3/4ε1/2,

which yields a linear approximation error (9.72) on this triangle:

|f(x + ∆) − (f(x) + 〈∇xf, ∆〉)| = O(s−1/2ε) .

This gives
‖f − f̃M‖2

L2(β) ! area(β) ‖f − f̃M‖2
∞ = O(Lε2) .

It proves that the O(ε−1) triangles produce an error of O(ε2) on the band β. Since the same result is
valid on [0, 1]2 − β, it yields (9.70).

This theorem proves that an adaptive triangulation can yield an optimal decay rate O(M−2) for
piecewise C2 image. The decay rate of the error is independent from the burring scale s, which
may be zero or not. However, the triangulation depends upon s and on the edge geometry.

Wherever f is uniformly C2, it is approximated over large nearly isotropic triangles, of size
O(M1/2). In the neighborhood of edges, to introduce an error O(M−2), triangles must be narrow
in the direction of the discontinuity and as long as possible to cover the discontinuity with a
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M−1

M−2

M−1

M−α

Figure 9.7: Adapted triangle and finite element to approximate a discontinuous function around a
singularity curve.

minimum number of triangles. Since edges are C2, they can be covered with triangles of width
and length proportional to M−2 and M−1, as illustrated by Figure 9.7.

If the image is blurred at a scale s then the discontinuities are diffused neighborhood of size
s where the image has sharp transitions. Theorem 9.19 shows that the tube of width s around
each edge should be covered with triangles of width and length proportional to s3/4 M−1/2 and
s1/4 M−1/2, as illustrated by Figure 9.8.

s1/4M−1/2

s3/4M−1/2

Figure 9.8: Aspect ratio of triangles for the approximation of a blurred contour.

Algorithms to Design Adapted Triangulations It is difficult to adapt the triangulation according
to Theorem 9.19 because the geometry of edges and the blurring scale s are unknown. There is
currently no adaptive triangulation algorithm that guarantees finding an approximation with an
error decay of O(M−2) for all piecewise C2 images. Most algorithms use greedy strategies that
iteratively construct a triangulation by progressively reducing the approximation error. Some algo-
rithms progressively increase the number of triangles, while others decimate a dense triangulation.

Delaunay refinement algorithms, introduced by Ruppert [420] and Chew [159], proceed by
iteratively inserting points to improve the triangulation precision. Each point is added at a cir-
cumcenter of one triangle, and is chosen to reduce as much as possible the approximation error.
These algorithms control the shape of triangles and are used to compute isotropic triangulations
of images where the size of the triangles varies to match the local image regularity. Extensions of
these vertex insertion methods capture anisotropic regularity by locally modifying the notion of
circumcenter [336] or with a local optimization of the vertex location [75].

Triangulation thinning algorithms start with a dense triangulation of the domain and progres-
sively remove either a vertex, an edge or a face to increase as slowly as possible the approximation
error until M triangles remain [237, 304, 267]. These methods do not control the shape of the
resulting triangles, but can create effective anisotropic approximation meshes. They have been
used for image compression [204, 238].

These adaptive triangulation are most often used to to mesh the interior of a 2D or a 3D domain
having a complex boundary, or to mesh a 2D surface embedded in 3D space.

Approximation of Piecewise C
α Images Adaptive triangulations could be generalized to higher

order approximations of piecewise Cα images, to obtain an error in O(M−α) with M finite elements,
for α > 2. This would require computing polynomial approximations of order p = 1α2 − 1 on each
finite elements, and the support of these finite element should also approximate the geometry of
edges at an p. To produce an error ‖f − fM‖2 = O(M−α), it is indeed necessary to cover edge
curves with O(M) finite elements of width O(M−α), as illustrated in Figure 9.7. However, this
gets extremely complicated and has never been implemented numerically. Section 12.2.4 introduce
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bandlet approximations, which reach the O(M−α) error decay for piecewise Cα images, by choosing
a best basis amount a dictionary of orthonormal bases.

9.3.3 Curvelet Approximations

Candès and Donoho [134] showed that a simple thresholding of curvelet coefficients yields nearly
optimal approximations of piecewise C2 images, as opposed to a complex triangulation optimiza-
tion.

Section 5.5.2 introduces curvelets, defined with a translation, rotation and anisotropic stretching

cθ2j ,u(x1, x2) = c2j (Rθ(x− u)) where c2j (x1, x2) ≈ 2−3j/4 c(2−j/2x1, 2
−jx2), (9.73)

where Rθ is the planar rotation of angle θ. A curvelet cθj,m is elongated in the direction θ, with
a width proportional to its length2. This parabolic scaling corresponds to the scaling of triangles
used by Theorem 9.19 to approximate a discontinuous image along C2 edges.

A tight frame D = {cθj,m}j,m,θ of curvelets cθj,m(x) = cθ2j (x− u(j,θ)
m ), is obtained with 2−(j/2)+2

equispaced angles θ at each scale 2j , and a translation grid defined by

∀m = (m1,m2) ∈ Z2 , u(j,θ)
m = Rθ(2

j/2m1, 2
jm2) . (9.74)

This construction yields a tight frame of L2[0, 1]2, with periodic boundary conditions [134].
An M -term thresholding curvelet approximation is defined by

fM =
∑

(θ,j,m)∈ΛT

〈f, cθj,m〉 cθj,m with ΛT =
{
(j, θ,m) : |〈f, cθj,m〉| > T

}

where M = |ΛT | is the number of approximation curvelets. Since curvelets define a tight frames
with a frame bound A > 0

‖f − fM‖2 ! A−1
∑

(θ,j,m)/∈ΛT

|〈f, cθj,m〉|2 . (9.75)

Although the frame is tight, this is not an equality because the thresholded curvelet coefficients
of f are not the curvelet coefficients of fM , due to the frame redundancy. The following theorem
shows that a thresholding curvelets approximation of a piecewise C2 image has an error whose
asymptotic decay is nearly optimal.

Theorem 9.20 (Candès, Donoho). Let f be a piecewise C2 image. An M -term curvelet approxi-
mation satisfies

‖f − fM‖2 = O(M−2(log M)3). (9.76)

Proof. The detailed proof can be found in [134]. We give the main ideas by analyzing how curvelets
atoms interact with regular parts and with edges in a piecewise regular image. The burring f = f̄ ∗hs

is nearly equivalent to translating curvelet coefficients from a scale 2j to a scale 2j + s, and thus does
not introduce any difficulty in the approximation. In the following, we suppose that s = 0.

The approximation error (9.76) is computed with an upper bound on the energy of curvelet co-
efficients (9.75). This sum is divided in three sets of curvelet coefficients. Type I curvelets have a
support mostly concentrated where the image is uniformly C

2. These coefficients are small. Type II
curvelets are in a neighborhood of an edge, and are elongated along the direction of the tangent to
the edge. These coefficients are large. Type III curvelets are in a neighborhood of an edge, with an
angle different from the tangent angle. These coefficients get quickly small as the difference of angle
increases. An upper bound of the error is computed by selecting the largest M/3 curvelet coefficients
for each type of curvelet coefficient and by computing the energy of the left over curvelet coefficients
for each type of coefficient.

A type I curvelet is located at a position u(j,θ)
m at a distance larger than K 2j/2 from edges. Since

curvelets have vanishing moments, keeping type I curvelets at scales larger than 2j is equivalent to
implementing a linear wavelet approximation at a scale 2j . Theorem 9.16 shows that for linear wavelet
approximations of C

2 images, keeping M/3 larger scale coefficients yields an error that decreases like
O(M−2).
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For type II curvelets in the neighborhood of an edge, whose angles θ are aligned with the local
direction of the tangent to the edge, the sampling interval in this direction is also 2j/2. There are thus
O(L2−j/2) type II curvelets along the edge curves of length L in the image. These curvelet coefficient
are bounded:

|〈f, cθj,m〉| ! ‖f‖∞‖c2j‖1 = ‖f‖∞O(23j/4)

because c2j (x1, x2) ≈ 2−3j/4 c(2−jx1, 2
−j/2x2). If we keep the M/3 larger scales type II curvelets,

since there are O(L2−j/2) such curvelets at each scale, it amounts to keep them at scales above
2l = O(L2 M−2). The left over type II curvelet have an energy O(L 2−l/2) ‖f‖2

∞O(23l/2) = O(M−2).

Type III curvelet coefficients |〈f, cθj,m〉| are located in the neighborhood of an edge with an angle θ
that deviate from the local orientation θ0 of edge tangent. The coefficients have a fast decay as |θ−θ0|
increases. This is shown in the Fourier domain, by verifying that the Fourier domain where the energy
of the localized edge patch is concentrated becomes increasingly disjoint from the Fourier support of
ĉθj,m as |θ − θ0| increases. The error analysis of these curvelet coefficients is the most technical aspect
of the proof. One can prove that selecting the M/3 type III largest curvelets yield a an error among
type III curvelets that is O(M−2(log2 M)3) [134]. This error dominates the overall approximation
error and yields (9.76).

The curvelet approximation rate is optimal up to a (log2 M)3 factor. The beauty of this result
comes from its simplicity. Unlike an optimal triangulation that must adapt the geometry of each
element, curvelets define a fixed frame whose coefficients are selected by a simple thresholding.
However, this simplicity has a downside. Curvelets approximation are optimal for piecewise Cα

images for α = 2, but they are not optimal if α > 2 or if α < 1. In particular, curvelets are not
optimal for bounded variation functions and their non-linear approximation error does not have the
M−1 decay of wavelets. Irregular geometric structures and isolated singularities are approximated
with more curvelets than wavelets. Section 12.2.4 studies approximations in bandlet dictionaries,
which are adapted to the unknown geometric image regularity.

In most images, curvelet frame approximations are not as effective as wavelet orthonormal bases
because they have a redundancy factor A which is at least 5, and because most images include
some structures that are more irregular than just piecewise C2 elements. Section 11.3.2 describes
curvelet applications to noise removal.

9.4 Exercises

9.1. 2 Suppose that {gm}m∈Z and {g̃m}m∈Z are two dual frames of L
2[0, 1].

(a) Let fN =
PN−1

m=0 〈f, gm〉 g̃m. Prove that the result (9.4) of Theorem 9.1 remains valid.
(b) Let 〈f, gmk 〉 be the coefficient of rank k: |〈f, gmk〉| " |〈f, gmk+1〉|. Prove that if |〈f, gmk 〉| =

O(k−s) with s > 1/2 then the best approximation fM of f with M frame vectors satisfies
‖f − fM‖2 = O(M1−2s).

9.2. 1 Color images A color pixel is represented by red, green and blue components (r, g, b), which
are considered as orthogonal coordinates in a three dimensional color space. The red r[n1, n2],
green g[n1, n2] and blue b[n1, n2] image pixels are modeled as values taken by respectively three
random variables R, G and B, that are the three coordinates of a color vector. Estimate
numerically the 3 by 3 covariance matrix of this color random vector from several images and
compute the Karhunen-Loève basis that diagonalizes it. Compare the color images reconstructed
from the two Karhunen-Loève color channels of highest variance with a reconstruction from the
red and green channels.

9.3. 2 Suppose B = {gm}m∈Z and B̃ = {g̃m}m∈Z be two dual frames of L
2[0, 1]. Let fN =PN−1

m=0 〈f, gm〉 g̃m. Prove that the result (9.4) of Theorem 9.1 remains valid eventhough B is
not an orthonormal basis.

9.4. 2 Let )f = (fk)0!k<K be a multichannel signals where each fk is a signal of size N . We write

‖)f‖2
F =

PK−1
k=0 ‖fk‖2. Let )fM = (fk,M )0!k<K be the multichannel signal obtained by projecting

all fk on the same M vectors of an orthonormal basis B = {gm}0!m<N . Prove that the best

M -term approximation )fM which minimizes ‖)f − )fM‖2
F , is obtained by selecting the M vectors

gm ∈ B which maximize
PK−1

k=0 |〈fk, gm〉|2.
9.5. 1 Verify that for f = C 1[0,1/2], a linear approximation with the N largest scale wavelets over

[0, 1] produces an error which satisfies εl(N, f) ∼ ‖f‖2
V N−1.


