
VII

Wavelet Bases

One can construct wavelets ψ such that the dilated and translated family

{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}

(j,n)∈Z2

is an orthonormal basis of L2(R). Behind this simple statement lie very different point of views
which open a fruitful exchange between harmonic analysis and discrete signal processing.

Orthogonal wavelets dilated by 2j carry signal variations at the resolution 2−j . The construction
of these bases can thus be related to multiresolution signal approximations. Following this link
leads us to an unexpected equivalence between wavelet bases and conjugate mirror filters used in
discrete multirate filter banks. These filter banks implement a fast orthogonal wavelet transform
that requires only O(N) operations for signals of size N . The design of conjugate mirror filters also
gives new classes of wavelet orthogonal bases including regular wavelets of compact support. In
several dimensions, wavelet bases of L2(Rd) are constructed with separable products of functions
of one variable. Wavelet bases are also adapted to bounded domains and surfaces with lifting
algorithms.

7.1 Orthogonal Wavelet Bases

Our search for orthogonal wavelets begins with multiresolution approximations. For f ∈ L2(R), the
partial sum of wavelet coefficients

∑+∞
n=−∞ 〈f,ψj,n〉ψj,n can indeed be interpreted as the difference

between two approximations of f at the resolutions 2−j+1 and 2−j . Multiresolution approximations
compute the approximation of signals at various resolutions with orthogonal projections on different
spaces {Vj}j∈Z. Section 7.1.3 proves that multiresolution approximations are entirely characterized
by a particular discrete filter that governs the loss of information across resolutions. These discrete
filters provide a simple procedure for designing and synthesizing orthogonal wavelet bases.

7.1.1 Multiresolution Approximations

Adapting the signal resolution allows one to process only the relevant details for a particular task.
In computer vision, Burt and Adelson [125] introduced a multiresolution pyramid that can be used
to process a low-resolution image first and then selectively increase the resolution when necessary.
This section formalizes multiresolution approximations, which set the ground for the construction
of orthogonal wavelets.

The approximation of a function f at a resolution 2−j is specified by a discrete grid of samples
that provides local averages of f over neighborhoods of size proportional to 2j . A multiresolu-
tion approximation is thus composed of embedded grids of approximation. More formally, the
approximation of a function at a resolution 2−j is defined as an orthogonal projection on a space
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192 Chapter 7. Wavelet Bases

Vj ⊂ L2(R). The space Vj regroups all possible approximations at the resolution 2−j . The or-
thogonal projection of f is the function fj ∈ Vj that minimizes ‖f − fj‖. The following definition
introduced by Mallat [361] and Meyer [43] specifies the mathematical properties of multiresolu-
tion spaces. To avoid confusion, let us emphasize that a scale parameter 2j is the inverse of the
resolution 2−j .

Definition 7.1 (Multiresolutions). A sequence {Vj}j∈Z of closed subspaces of L2(R) is a mul-
tiresolution approximation if the following 6 properties are satisfied:

∀(j, k) ∈ Z2 , f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj , (7.1)

∀j ∈ Z , Vj+1 ⊂ Vj , (7.2)

∀j ∈ Z , f(t) ∈ Vj ⇔ f

(
t

2

)
∈ Vj+1 , (7.3)

lim
j→+∞

Vj =
+∞⋂

j=−∞

Vj = {0} , (7.4)

lim
j→−∞

Vj = Closure




+∞⋃

j=−∞

Vj



 = L2(R) . (7.5)

There exists θ such that {θ(t− n)}n∈Z is a Riesz basis of V0.

Let us give an intuitive explanation of these mathematical properties. Property (7.1) means that
Vj is invariant by any translation proportional to the scale 2j . As we shall see later, this space can
be assimilated to a uniform grid with intervals 2j , which characterizes the signal approximation at
the resolution 2−j . The inclusion (7.2) is a causality property which proves that an approximation
at a resolution 2−j contains all the necessary information to compute an approximation at a coarser
resolution 2−j−1. Dilating functions in Vj by 2 enlarges the details by 2 and (7.3) guarantees that
it defines an approximation at a coarser resolution 2−j−1. When the resolution 2−j goes to 0 (7.4)
implies that we lose all the details of f and

lim
j→+∞

‖PVj f‖ = 0. (7.6)

On the other hand, when the resolution 2−j goes +∞, property (7.5) imposes that the signal
approximation converges to the original signal:

lim
j→−∞

‖f − PVj f‖ = 0. (7.7)

When the resolution 2−j increases, the decay rate of the approximation error ‖f −PVj f‖ depends
on the regularity of f . Section 9.1.3 relates this error to the uniform Lipschitz regularity of f .

The existence of a Riesz basis {θ(t−n)}n∈Z of V0 provides a discretization theorem as explained
in Section 3.1.3. The function θ can be interpreted as a unit resolution cell; Section 5.1.1 gives the
definition of a Riesz basis. It is a family of linearly independent functions such that there exist
B ! A > 0 which satisfy

∀f ∈ V0 , A ‖f‖2 "

+∞∑

n=−∞
|〈f(t), θ(t− n)〉|2 " B ‖f‖2 . (7.8)

This energy equivalence guarantees that signal expansions over {θ(t−n)}n∈Z are numerically stable.
One verify that the family {2−j/2θ(2−jt−n)}n∈Z is a Riesz basis of Vj with the same Riesz bounds
A and B at all scales 2j . Theorem 3.4 proves that {θ(t− n)}n∈Z is a Riesz basis if and only if

∀ω ∈ [−π,π] , A "

+∞∑

k=−∞

|θ̂(ω + 2kπ)|2 " B. (7.9)



7.1. Orthogonal Wavelet Bases 193

Example 7.1. Piecewise constant approximations A simple multiresolution approximation
is composed of piecewise constant functions. The space Vj is the set of all g ∈ L2(R) such that
g(t) is constant for t ∈ [n2j , (n + 1)2j) and n ∈ Z. The approximation at a resolution 2−j of f is
the closest piecewise constant function on intervals of size 2j. The resolution cell can be chosen to
be the box window θ = 1[0,1). Clearly Vj ⊂ Vj−1 since functions constant on intervals of size 2j

are also constant on intervals of size 2j−1. The verification of the other multiresolution properties
is left to the reader. It is often desirable to construct approximations that are smooth functions, in
which case piecewise constant functions are not appropriate.

Example 7.2. Shannon approximations Frequency band-limited functions also yield multires-
olution approximations. The space Vj is defined as the set of functions whose Fourier transform
has a support included in [−2−jπ, 2−jπ]. Theorem 3.5 provides an orthonormal basis {θ(t−n)}n∈Z

of V0 defined by

θ(t) =
sinπt

πt
. (7.10)

All other properties of multiresolution approximation are easily verified.
The approximation at the resolution 2−j of f ∈ L2(R) is the function PVj f ∈ Vj that minimizes

‖PVj f − f‖. It is proved in (3.12) that its Fourier transform is obtained with a frequency filtering:

P̂Vj f(ω) = f̂(ω)1[−2−jπ,2−jπ](ω).

This Fourier transform is generally discontinuous at ±2−jπ, in which case |PVj f(t)| decays like
|t|−1, for large |t|, even though f might have a compact support.

Example 7.3. Spline approximations Polynomial spline approximations construct smooth ap-
proximations with fast asymptotic decay. The space Vj of splines of degree m ! 0 is the set of
functions that are m − 1 times continuously differentiable and equal to a polynomial of degree m
on any interval [n2j , (n + 1)2j ], for n ∈ Z. When m = 0, it is a piecewise constant multiresolution
approximation. When m = 1, functions in Vj are piecewise linear and continuous.

A Riesz basis of polynomial splines is constructed with box splines. A box spline θ of degree m
is computed by convolving the box window 1[0,1] with itself m + 1 times and centering at 0 or 1/2.
Its Fourier transform is

θ̂(ω) =

(
sin(ω/2)

ω/2

)m+1

exp

(
−iεω

2

)
. (7.11)

If m is even then ε = 1 and θ has a support centered at t = 1/2. If m is odd then ε = 0 and θ(t)
is symmetric about t = 0. Figure 7.1 displays a cubic box spline m = 3 and its Fourier transform.
For all m ! 0, one can prove that {θ(t − n)}n∈Z is a Riesz basis of V0 by verifying the condition
(7.9). This is done with a closed form expression for the series (7.19).
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Figure 7.1: Cubic box spline θ and its Fourier transform θ̂.

7.1.2 Scaling Function

The approximation of f at the resolution 2−j is defined as the orthogonal projection PVj f on Vj .
To compute this projection, we must find an orthonormal basis of Vj . The following theorem
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orthogonalizes the Riesz basis {θ(t− n)}n∈Z and constructs an orthogonal basis of each space Vj

by dilating and translating a single function φ called a scaling function. To avoid confusing the
resolution 2−j and the scale 2j , in the rest of the chapter the notion of resolution is dropped and
PVj f is called an approximation at the scale 2j .

Theorem 7.1. Let {Vj}j∈Z be a multiresolution approximation and φ be the scaling function
whose Fourier transform is

φ̂(ω) =
θ̂(ω)

(∑+∞
k=−∞ |θ̂(ω + 2kπ)|2

)1/2
. (7.12)

Let us denote

φj,n(t) =
1√
2j
φ

(
t− n

2j

)
.

The family {φj,n}n∈Z is an orthonormal basis of Vj for all j ∈ Z.

Proof. To construct an orthonormal basis, we look for a function φ ∈ V0. It can thus be expanded in
the basis {θ(t − n)}n∈Z:

φ(t) =
+∞X

n=−∞

a[n] θ(t − n),

which implies that
φ̂(ω) = â(ω) θ̂(ω),

where â is a 2π periodic Fourier series of finite energy. To compute â we express the orthogonality of
{φ(t − n)}n∈Z in the Fourier domain. Let φ̄(t) = φ∗(−t). For any (n, p) ∈ Z2,

〈φ(t − n),φ(t − p)〉 =

Z +∞

−∞
φ(t − n)φ∗(t − p) dt

= φ % φ̄(p − n) . (7.13)

Hence {φ(t−n)}n∈Z is orthonormal if and only if φ % φ̄(n) = δ[n]. Computing the Fourier transform of
this equality yields

+∞X

k=−∞

|φ̂(ω + 2kπ)|2 = 1. (7.14)

Indeed, the Fourier transform of φ% φ̄(t) is |φ̂(ω)|2, and we we proved in (3.3) that sampling a function
periodizes its Fourier transform. The property (7.14) is verified if we choose

â(ω) =

 
+∞X

k=−∞

|θ̂(ω + 2kπ)|2
!−1/2

.

We saw in (7.9) that the denominator has a strictly positive lower bound, so â is a 2π periodic function
of finite energy.

Approximation The orthogonal projection of f over Vj is obtained with an expansion in the
scaling orthogonal basis

PVj f =
+∞∑

n=−∞
〈f,φj,n〉φj,n. (7.15)

The inner products
aj [n] = 〈f,φj,n〉 (7.16)

provide a discrete approximation at the scale 2j . We can rewrite them as a convolution product:

aj [n] =

∫ +∞

−∞
f(t)

1√
2j
φ

(
t− 2jn

2j

)
dt = f ' φ̄j(2

jn), (7.17)

with φ̄j(t) =
√

2−jφ(2−jt). The energy of the Fourier transform φ̂ is typically concentrated in

[−π,π], as illustrated by Figure 7.2. As a consequence, the Fourier transform
√

2j φ̂∗(2jω) of φ̄j(t)
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is mostly non-negligible in [−2−jπ, 2−jπ]. The discrete approximation aj [n] is therefore a low-pass
filtering of f sampled at intervals 2j . Figure 7.3 gives a discrete multiresolution approximation at
scales 2−9 " 2j " 2−4.

Example 7.4. For piecewise constant approximations and Shannon multiresolution approxima-
tions we have constructed Riesz bases {θ(t− n)}n∈Z which are orthonormal bases, hence φ = θ.
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Figure 7.2: Cubic spline scaling function φ and its Fourier transform φ̂ computed with (7.18).
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Figure 7.3: Discrete multiresolution approximations aj [n] at scales 2j , computed with cubic splines.

Example 7.5. Spline multiresolution approximations admit a Riesz basis constructed with a box
spline θ of degree m, whose Fourier transform is given by (7.11). Inserting this expression in (7.12)
yields

φ̂(ω) =
exp (−iεω/2)

ωm+1
√

S2m+2(ω)
, (7.18)

with

Sn(ω) =
+∞∑

k=−∞

1

(ω + 2kπ)n
, (7.19)

and ε = 1 if m is even or ε = 0 if m is odd. A closed form expression of S2m+2(ω) is obtained by
computing the derivative of order 2m of the identity

S2(2ω) =
+∞∑

k=−∞

1

(2ω + 2kπ)2
=

1

4 sin2 ω
.
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For linear splines m = 1 and

S4(2ω) =
1 + 2 cos2 ω

48 sin4 ω
, (7.20)

which yields

φ̂(ω) =
4
√

3 sin2(ω/2)

ω2
√

1 + 2 cos2(ω/2)
. (7.21)

The cubic spline scaling function corresponds to m = 3 and φ̂(ω) is calculated with (7.18) by
inserting

S8(2ω) =
5 + 30 cos2 ω + 30 sin2 ω cos2 ω

105 28 sin8 ω
(7.22)

+
70 cos4 ω + 2 sin4 ω cos2 ω + 2/3 sin6 ω

105 28 sin8 ω
.

This cubic spline scaling function φ and its Fourier transform are displayed in Figure 7.2. It has
an infinite support but decays exponentially.

7.1.3 Conjugate Mirror Filters

A multiresolution approximation is entirely characterized by the scaling function φ that generates
an orthogonal basis of each space Vj . We study the properties of φ which guarantee that the
spaces Vj satisfy all conditions of a multiresolution approximation. It is proved that any scaling
function is specified by a discrete filter called a conjugate mirror filter.

Scaling Equation The multiresolution causality property (7.2) imposes that Vj ⊂ Vj−1. In
particular 2−1/2φ(t/2) ∈ V1 ⊂ V0. Since {φ(t − n)}n∈Z is an orthonormal basis of V0, we can
decompose

1√
2
φ(

t

2
) =

+∞∑

n=−∞
h[n]φ(t− n), (7.23)

with

h[n] =

〈
1√
2
φ

(
t

2

)
,φ(t− n)

〉
. (7.24)

This scaling equation relates a dilation of φ by 2 to its integer translations. The sequence h[n] will
be interpreted as a discrete filter.

The Fourier transform of both sides of (7.23) yields

φ̂(2ω) =
1√
2

ĥ(ω) φ̂(ω) (7.25)

for ĥ(ω) =
∑+∞

n=−∞ h[n] e−inω. It is thus tempting to express φ̂(ω) directly as a product of dilations

of ĥ(ω). For any p ! 0, (7.25) implies

φ̂(2−p+1ω) =
1√
2

ĥ(2−pω) φ̂(2−pω). (7.26)

By substitution, we obtain

φ̂(ω) =

(
P∏

p=1

ĥ(2−pω)√
2

)

φ̂(2−Pω). (7.27)

If φ̂(ω) is continuous at ω = 0 then lim
P→+∞

φ̂(2−Pω) = φ̂(0) so

φ̂(ω) =
+∞∏

p=1

ĥ(2−pω)√
2

φ̂(0). (7.28)

The following theorem [361, 43] gives necessary and then sufficient conditions on ĥ(ω) to guarantee
that this infinite product is the Fourier transform of a scaling function.
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Theorem 7.2 (Mallat, Meyer). Let φ ∈ L2(R) be an integrable scaling function. The Fourier
series of h[n] = 〈2−1/2φ(t/2),φ(t− n)〉 satisfies

∀ω ∈ R , |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (7.29)

and
ĥ(0) =

√
2. (7.30)

Conversely, if ĥ(ω) is 2π periodic and continuously differentiable in a neighborhood of ω = 0, if it
satisfies (7.29) and (7.30) and if

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0 (7.31)

then

φ̂(ω) =
+∞∏

p=1

ĥ(2−pω)√
2

(7.32)

is the Fourier transform of a scaling function φ ∈ L2(R).

Proof. This theorem is a central result whose proof is long and technical. It is divided in several parts.

• Proof of the necessary condition (7.29) The necessary condition is proved to be a consequence of the
fact that {φ(t − n)}n∈Z is orthonormal. In the Fourier domain, (7.14) gives an equivalent condition:

∀ω ∈ R ,
+∞X

k=−∞

|φ̂(ω + 2kπ)|2 = 1. (7.33)

Inserting φ̂(ω) = 2−1/2ĥ(ω/2) φ̂(ω/2) yields

+∞X

k=−∞

|ĥ(
ω
2

+ kπ)|2 |φ̂(
ω
2

+ kπ)|2 = 2.

Since ĥ(ω) is 2π periodic, separating the even and odd integer terms gives

|ĥ(
ω
2

)|2
+∞X

p=−∞

˛̨
˛φ̂
“ω

2
+ 2pπ

”˛̨
˛
2

+
˛̨
˛ĥ
“ω

2
+ π

”˛̨
˛
2

+∞X

p=−∞

˛̨
˛φ̂
“ω

2
+ π + 2pπ

”˛̨
˛
2

= 2.

Inserting (7.33) for ω′ = ω/2 and ω′ = ω/2 + π proves that

|ĥ(ω′)|2 + |ĥ(ω′ + π)|2 = 2.

• Proof of the necessary condition (7.30) We prove that ĥ(0) =
√

2 by showing that φ̂(0) '= 0. Indeed
we know that φ̂(0) = 2−1/2 ĥ(0) φ̂(0). More precisely,we verify that |φ̂(0)| = 1 is a consequence of the
completeness property (7.5) of multiresolution approximations.

The orthogonal projection of f ∈ L
2(R) on Vj is

PVj f =
+∞X

n=−∞

〈f,φj,n〉φj,n. (7.34)

Property (7.5) expressed in the time and Fourier domains with the Plancherel formula implies that

lim
j→−∞

‖f − PVj f‖2 = lim
j→−∞

2π ‖f̂ − P̂Vj f‖2 = 0. (7.35)

To compute the Fourier transform P̂Vj f(ω), we denote φj(t) =
√

2−jφ(2−jt). Inserting the convolution
expression (7.17) in (7.34) yields

PVj f(t) =
+∞X

n=−∞

f % φ̄j(2
jn)φj(t − 2jn) = φj %

+∞X

n=−∞

f % φ̄j(2
jn) δ(t − 2jn).
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The Fourier transform of f % φ̄j(t) is
√

2j f̂(ω)φ̂∗(2jω). A uniform sampling has a periodized Fourier
transform calculated in (3.3), and hence

P̂Vj f(ω) = φ̂(2jω)
+∞X

k=−∞

f̂

„
ω − 2kπ

2j

«
φ̂∗
„

2j

»
ω − 2kπ

2j

–«
. (7.36)

Let us choose f̂ = 1[−π,π]. For j < 0 and ω ∈ [−π,π], (7.36) gives P̂Vj f(ω) = |φ̂(2jω)|2. The
mean-square convergence (7.35) implies that

lim
j→−∞

Z π

−π

˛̨
˛1 − |φ̂(2jω)|2

˛̨
˛
2
dω = 0 .

Since φ is integrable, φ̂(ω) is continuous and hence limj→−∞ |φ̂(2jω)| = |φ̂(0)| = 1.

We now prove that the function φ whose Fourier transform is given by (7.32) is a scaling function.
This is divided in two intermediate results.

• Proof that {φ(t − n)}n∈Z is orthonormal. Observe first that the infinite product (7.32) converges
and that |φ̂(ω)| " 1 because (7.29) implies that |ĥ(ω)| "

√
2. The Parseval formula gives

〈φ(t),φ(t − n)〉 =

Z +∞

−∞
φ(t)φ∗(t − n) dt =

1
2π

Z +∞

−∞
|φ̂(ω)|2 einω dω.

Verifying that {φ(t − n)}n∈Z is orthonormal is thus equivalent to showing that

Z +∞

−∞
|φ̂(ω)|2 einω dω = 2π δ[n].

This result is obtained by considering the functions

φ̂k(ω) =
kY

p=1

ĥ(2−pω)√
2

1[−2kπ,2kπ](ω).

and computing the limit, as k increases to +∞, of the integrals

Ik[n] =

Z +∞

−∞
|φ̂k(ω)|2 einω dω =

Z 2kπ

−2kπ

kY

p=1

|ĥ(2−pω)|2

2
einω dω.

First, let us show that Ik[n] = 2πδ[n] for all k ! 1. To do this, we divide Ik[n] into two integrals:

Ik[n] =

Z 0

−2kπ

kY

p=1

|ĥ(2−pω)|2

2
einω dω +

Z 2kπ

0

kY

p=1

|ĥ(2−pω)|2

2
einω dω.

Let us make the change of variable ω′ = ω + 2kπ in the first integral. Since ĥ(ω) is 2π periodic, when
p < k then |ĥ(2−p[ω′ − 2kπ])|2 = |ĥ(2−pω′)|2. When k = p the hypothesis (7.29) implies that

|ĥ(2−k[ω′ − 2kπ])|2 + |ĥ(2−kω′)|2 = 2.

For k > 1, the two integrals of Ik[n] become

Ik[n] =

Z 2kπ

0

k−1Y

p=1

|ĥ(2−pω)|2

2
einω dω . (7.37)

Since
Qk−1

p=1 |ĥ(2−pω)|2 einω is 2kπ periodic we obtain Ik[n] = Ik−1[n], and by induction Ik[n] = I1[n].
Writing (7.37) for k = 1 gives

I1[n] =

Z 2π

0

einω dω = 2π δ[n],

which verifies that Ik[n] = 2πδ[n], for all k ! 1.

We shall now prove that φ̂ ∈ L
2(R). For all ω ∈ R

lim
k→∞

|φ̂k(ω)|2 =
∞Y

p=1

|ĥ(2−pω)|2

2
= |φ̂(ω)|2.



7.1. Orthogonal Wavelet Bases 199

The Fatou Lemma A.1 on positive functions proves that
Z +∞

−∞
|φ̂(ω)|2 dω " lim

k→∞

Z +∞

−∞
|φ̂k(ω)|2 dω = 2π, (7.38)

because Ik[0] = 2π for all k ! 1. Since

|φ̂(ω)|2 einω = lim
k→∞

|φ̂k(ω)|2 einω ,

we finally verify that
Z +∞

−∞
|φ̂(ω)|2 einω dω = lim

k→∞

Z +∞

−∞
|φ̂k(ω)|2 einω dω = 2π δ[n] (7.39)

by applying the dominated convergence Theorem A.1. This requires verifying the upper-bound con-
dition (A.1). This is done in our case by proving the existence of a constant C such that

˛̨
˛|φ̂k(ω)|2 einω

˛̨
˛ = |φ̂k(ω)|2 " C |φ̂(ω)|2. (7.40)

Indeed, we showed in (7.38) that |φ̂(ω)|2 is an integrable function.

The existence of C > 0 satisfying (7.40) is trivial for |ω| > 2kπ since φ̂k(ω) = 0. For |ω| " 2kπ
since φ̂(ω) = 2−1/2 ĥ(ω/2) φ̂(ω/2), it follows that

|φ̂(ω)|2 = |φ̂k(ω)|2 |φ̂(2−kω)|2.

To prove (7.40) for |ω| " 2kπ, it is therefore sufficient to show that |φ̂(ω)|2 ! 1/C for ω ∈ [−π,π].

Let us first study the neighborhood of ω = 0. Since ĥ(ω) is continuously differentiable in this
neighborhood and since |ĥ(ω)|2 " 2 = |ĥ(0)|2, the functions |ĥ(ω)|2 and loge |ĥ(ω)|2 have derivatives
that vanish at ω = 0. It follows that there exists ε > 0 such that

∀|ω| " ε , 0 ! loge

 
|ĥ(ω)|2

2

!
! −|ω|.

Hence, for |ω| " ε

|φ̂(ω)|2 = exp

"
+∞X

p=1

loge

 
|ĥ(2−pω)|2

2

!#
! e−|ω|

! e−ε. (7.41)

Now let us analyze the domain |ω| > ε. To do this we take an integer l such that 2−lπ < ε. Condition
(7.31) proves that K = infω∈[−π/2,π/2] |ĥ(ω)| > 0 so if |ω| " π

|φ̂(ω)|2 =
lY

p=1

|ĥ(2−pω)|2

2

˛̨
˛φ̂
“
2−lω

”˛̨
˛
2

!
K2l

2l
e−ε =

1
C

.

This last result finishes the proof of inequality (7.40). Applying the dominated convergence Theorem
A.1 proves (7.39) and hence that {φ(t − n)}n∈Z is orthonormal. A simple change of variable shows
that {φj,n}j∈Z is orthonormal for all j ∈ Z.

• Proof that {Vj}j∈Z is a multiresolution. To verify that φ is a scaling function, we must show that
the spaces Vj generated by {φj,n}j∈Z define a multiresolution approximation. The multiresolution
properties (7.1) and (7.3) are clearly true. The causality Vj+1 ⊂ Vj is verified by showing that for
any p ∈ Z,

φj+1,p =
+∞X

n=−∞

h[n − 2p]φj,n.

This equality is proved later in (7.107). Since all vectors of a basis of Vj+1 can decomposed in a basis
of Vj it follows that Vj+1 ⊂ Vj .

To prove the multiresolution property (7.4) we must show that any f ∈ L
2(R) satisfies

lim
j→+∞

‖PVj f‖ = 0. (7.42)

Since {φj,n}n∈Z is an orthonormal basis of Vj

‖PVj f‖2 =
+∞X

n=−∞

|〈f,φj,n〉|2.
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Suppose first that f is bounded by A and has a compact support included in [2J , 2J ]. The constants
A and J may be arbitrarily large. It follows that

+∞X

n=−∞

|〈f,φj,n〉|2 " 2−j

"
+∞X

n=−∞

Z 2J

−2J
|f(t)| |φ(2−jt − n)| dt

#2

" 2−jA2

"
+∞X

n=−∞

Z 2J

−2J
|φ(2−jt − n)| dt

#2

Applying the Cauchy-Schwarz inequality to 1 × |φ(2−jt − n)| yields

+∞X

n=−∞

|〈f,φj,n〉|2 " A2 2J+1
+∞X

n=−∞

Z 2J

−2J
|φ(2−jt − n)|2 2−j dt

" A22J+1
Z

Sj

|φ(t)|2 dt = A2 2J+1
Z +∞

−∞
|φ(t)|2 1Sj (t) dt,

with Sj = ∪n∈Z[n − 2J−j , n + 2J−j ] for j > J . For t /∈ Z we obviously have 1Sj (t) → 0 for j → +∞.
The dominated convergence Theorem A.1 applied to |φ(t)|2 1Sj (t) proves that the integral converges
to 0 and hence

lim
j→+∞

+∞X

n=−∞

|〈f,φj,n〉|2 = 0.

Property (7.42) is extended to any f ∈ L
2(R) by using the density in L

2(R) of bounded function with
a compact support, and Theorem A.5.

To prove the last multiresolution property (7.5) we must show that for any f ∈ L
2(R),

lim
j→−∞

‖f − PVj f‖2 = lim
j→−∞

“
‖f‖2 − ‖PVj f‖2

”
= 0. (7.43)

We consider functions f whose Fourier transform f̂ has a compact support included in [−2Jπ, 2Jπ]
for J large enough. We proved in (7.36) that the Fourier transform of PVj f is

P̂Vj f(ω) = φ̂(2jω)
+∞X

k=−∞

f̂
“
ω − 2−j2kπ

”
φ̂∗
“
2j
h
ω − 2−j2kπ

i”
.

If j < −J , then the supports of f̂(ω − 2−j2kπ) are disjoint for different k so

‖PVj f‖2 =
1
2π

Z +∞

−∞
|f̂(ω)|2 |φ̂(2jω)|4 dω (7.44)

+
1
2π

Z +∞

−∞

+∞X

k=−∞
k #=0

|f̂
“
ω − 2−j2kπ

”
|2 |φ̂(2jω)|2 |φ̂

“
2j
h
ω − 2−j2kπ

i”
|2 dω.

We have already observed that |φ(ω)| " 1 and (7.41) proves that for ω sufficiently small |φ(ω)| ! e−|ω|

so
lim
ω→0

|φ̂(ω)| = 1.

Since |f̂(ω)|2|φ̂(2jω)|4 " |f̂(ω)|2 and limj→−∞ |φ̂(2jω)|4|f̂(ω)|2 = |f̂(ω)|2 one can apply the dominated
convergence Theorem A.1, to prove that

lim
j→−∞

Z +∞

−∞
|f̂(ω)|2 |φ̂(2jω)|4 dω =

Z +∞

−∞
|f̂(ω)|2 dω = ‖f‖2. (7.45)

The operator PVj is an orthogonal projector, so ‖PVj f‖ " ‖f‖. With (7.44) and (7.45), this implies
that limj→−∞(‖f‖2 − ‖PVj f‖2) = 0, and hence verifies (7.43). This property is extended to any
f ∈ L

2(R) by using the density in L
2(R) of functions whose Fourier transforms have a compact

support and the result of Theorem A.5.

Discrete filters whose transfer functions satisfy (7.29) are called conjugate mirror filters. As we
shall see in Section 7.3, they play an important role in discrete signal processing; they make it
possible to decompose discrete signals in separate frequency bands with filter banks. One difficulty
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of the proof is showing that the infinite cascade of convolutions that is represented in the Fourier
domain by the product (7.32) does converge to a decent function in L2(R). The sufficient condition
(7.31) is not necessary to construct a scaling function, but it is always satisfied in practical designs
of conjugate mirror filters. It cannot just be removed as shown by the example ĥ(ω) = cos(3ω/2),
which satisfies all other conditions. In this case, a simple calculation shows that φ = 1/31[−3/2,3/2].
Clearly {φ(t − n)}n∈Z is not orthogonal so φ is not a scaling function. The condition (7.31) may
however be replaced by a weaker but more technical necessary and sufficient condition proved by
Cohen [15, 166].

Example 7.6. For a Shannon multiresolution approximation, φ̂ = 1[−π,π]. We thus derive from
(7.32) that

∀ω ∈ [−π,π] , ĥ(ω) =
√

21[−π/2,π/2](ω).

Example 7.7. For piecewise constant approximations, φ = 1[0,1]. Since h[n] = 〈2−1/2φ(t/2),φ(t−
n)〉 it follows that

h[n] =

{
2−1/2 if n = 0, 1
0 otherwise

(7.46)

Example 7.8. Polynomial splines of degree m correspond to a conjugate mirror filter ĥ(ω) that is
calculated from φ̂(ω) with (7.25):

ĥ(ω) =
√

2
φ̂(2ω)

φ̂(ω)
. (7.47)

Inserting (7.18) yields

ĥ(ω) = exp

(
−iεω

2

)√
S2m+2(ω)

22m+1 S2m+2(2ω)
, (7.48)

where ε = 0 if m is odd and ε = 1 if m is even. For linear splines m = 1 so (7.20) implies that

ĥ(ω) =
√

2

[
1 + 2 cos2(ω/2)

1 + 2 cos2 ω

]1/2

cos2
(ω

2

)
. (7.49)

For cubic splines, the conjugate mirror filter is calculated by inserting (7.22) in (7.48). Figure 7.4
gives the graph of |ĥ(ω)|2. The impulse responses h[n] of these filters have an infinite support but
an exponential decay. For m odd, h[n] is symmetric about n = 0. Table 7.1 gives the coefficients
h[n] above 10−4 for m = 1, 3.

−2 0 20

1

2

Figure 7.4: The solid line gives |ĥ(ω)|2 on [−π,π], for a cubic spline multiresolution. The dotted
line corresponds to |ĝ(ω)|2.

7.1.4 In Which Orthogonal Wavelets Finally Arrive

Orthonormal wavelets carry the details necessary to increase the resolution of a signal approxima-
tion. The approximations of f at the scales 2j and 2j−1 are respectively equal to their orthogonal
projections on Vj and Vj−1. We know that Vj is included in Vj−1. Let Wj be the orthogonal
complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj . (7.50)
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n h[n]

m = 1 0 0.817645956
1,−1 0.397296430
2,−2 −0.069101020
3,−3 −0.051945337
4,−4 0.016974805
5,−5 0.009990599
6,−6 −0.003883261
7,−7 −0.002201945
8,−8 0.000923371
9,−9 0.000511636

10,−10−0.000224296
11,−11−0.000122686

m = 3 0 0.766130398
1,−1 0.433923147
2,−2 −0.050201753
3,−3 −0.110036987
4,−4 0.032080869

n h[n]

m = 3 5,−5 0.042068328
6,−6 −0.017176331
7,−7 −0.017982291
8,−8 0.008685294
9,−9 0.008201477

10,−10 −0.004353840
11,−11 −0.003882426
12,−12 0.002186714
13,−13 0.001882120
14,−14 −0.001103748
15,−15 −0.000927187
16,−16 0.000559952
17,−17 0.000462093
18,−18 −0.000285414
19,−19 −0.000232304
20,−20 0.000146098

Table 7.1: Conjugate mirror filters h[n] corresponding to linear splines m = 1 and cubic splines
m = 3. The coefficients below 10−4 are not given.

The orthogonal projection of f on Vj−1 can be decomposed as the sum of orthogonal projections
on Vj and Wj :

PVj−1f = PVj f + PWj f. (7.51)

The complement PWj f provides the “details” of f that appear at the scale 2j−1 but which dis-
appear at the coarser scale 2j . The following theorem [43, 361] proves that one can construct an
orthonormal basis of Wj by scaling and translating a wavelet ψ.

Theorem 7.3 (Mallat, Meyer). Let φ be a scaling function and h the corresponding conjugate
mirror filter. Let ψ be the function whose Fourier transform is

ψ̂(ω) =
1√
2

ĝ
(ω

2

)
φ̂
(ω

2

)
, (7.52)

with
ĝ(ω) = e−iω ĥ∗(ω + π). (7.53)

Let us denote

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
.

For any scale 2j, {ψj,n}n∈Z is an orthonormal basis of Wj. For all scales, {ψj,n}(j,n)∈Z2 is an
orthonormal basis of L2(R).

Proof. Let us prove first that ψ̂ can be written as the product (7.52). Necessarily ψ(t/2) ∈ W1 ⊂ V0.
It can thus be decomposed in {φ(t − n)}n∈Z which is an orthogonal basis of V0:

1√
2
ψ

„
t
2

«
=

+∞X

n=−∞

g[n]φ(t − n), (7.54)

with

g[n] =
1√
2

fi
ψ

„
t
2

«
,φ(t − n)

fl
. (7.55)

The Fourier transform of (7.54) yields

ψ̂(2ω) =
1√
2

ĝ(ω) φ̂(ω). (7.56)

The following lemma gives necessary and sufficient conditions on ĝ for designing an orthogonal wavelet.
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Lemma 7.1. The family {ψj,n}n∈Z is an orthonormal basis of Wj if and only if

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (7.57)

and
ĝ(ω) ĥ∗(ω) + ĝ(ω + π) ĥ∗(ω + π) = 0. (7.58)

The lemma is proved for j = 0 from which it is easily extended to j '= 0 with an appropriate scaling.
As in (7.14) one can verify that {ψ(t − n)}n∈Z is orthonormal if and only if

∀ω ∈ R , I(ω) =
+∞X

k=−∞

|ψ̂(ω + 2kπ)|2 = 1. (7.59)

Since ψ̂(ω) = 2−1/2 ĝ(ω/2) φ̂(ω/2) and ĝ(ω) is 2π periodic,

I(ω) =
+∞X

k=−∞

|ĝ
“ω

2
+ kπ

”
|2 |φ̂

“ω
2

+ kπ
”
|2

= |ĝ
“ω

2

”
|2

+∞X

p=−∞

|φ̂
“ω

2
+ 2pπ

”
|2 + |ĝ

“ω
2

+ π
”
|2

+∞X

p=−∞

|φ̂
“ω

2
+ π + 2pπ

”
|2.

We know that
P+∞

p=−∞ |φ̂(ω + 2pπ)|2 = 1 so (7.59) is equivalent to (7.57).

The space W0 is orthogonal to V0 if and only if {φ(t − n)}n∈Z and {ψ(t − n)}n∈Z are orthogonal
families of vectors. This means that for any n ∈ Z

〈ψ(t),φ(t − n)〉 = ψ % φ̄(n) = 0.

The Fourier transform of ψ % φ̄(t) is ψ̂(ω)φ̂∗(ω). The sampled sequence ψ % φ̄(n) is zero if its Fourier
series computed with (3.3) satisfies

∀ω ∈ R ,
+∞X

k=−∞

ψ̂(ω + 2kπ) φ̂∗(ω + 2kπ) = 0. (7.60)

By inserting ψ̂(ω) = 2−1/2 ĝ(ω/2) φ̂(ω/2) and φ̂(ω) = 2−1/2 ĥ(ω/2) φ̂(ω/2) in this equation, sinceP+∞
k=−∞ |φ̂(ω + 2kπ)|2 = 1 we prove as before that (7.60) is equivalent to (7.58).

We must finally verify that V−1 = V0 ⊕ W0. Knowing that {
√

2φ(2t − n)}n∈Z is an orthogonal
basis of V−1, it is equivalent to show that for any a[n] ∈ !

2(Z) there exist b[n] ∈ !
2(Z) and c[n] ∈ !

2(Z)
such that

+∞X

n=−∞

a[n]
√

2φ(2[t − 2−1n]) =
+∞X

n=−∞

b[n]φ(t − n) +
+∞X

n=−∞

c[n]ψ(t − n). (7.61)

This is done by relating b̂(ω) and ĉ(ω) to â(ω). The Fourier transform of (7.61) yields

1√
2

â
“ω

2

”
φ̂
“ω

2

”
= b̂(ω) φ̂(ω) + ĉ(ω) ψ̂(ω).

Inserting ψ̂(ω) = 2−1/2 ĝ(ω/2) φ̂(ω/2) and φ̂(ω) = 2−1/2 ĥ(ω/2) φ̂(ω/2) in this equation shows that it
is necessarily satisfied if

â
“ω

2

”
= b̂(ω) ĥ

“ω
2

”
+ ĉ(ω) ĝ

“ω
2

”
. (7.62)

Let us define

b̂(2ω) =
1
2

[â(ω) ĥ∗(ω) + â(ω + π) ĥ∗(ω + π)]

and

ĉ(2ω) =
1
2

[â(ω) ĝ∗(ω) + â(ω + π) ĝ∗(ω + π)].

When calculating the right-hand side of (7.62) we verify that it is equal to the left-hand side by inserting
(7.57), (7.58) and using

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (7.63)

Since b̂(ω) and ĉ(ω) are 2π periodic they are the Fourier series of two sequences b[n] and c[n] that
satisfy (7.61). This finishes the proof of the lemma.
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The formula (7.53)
ĝ(ω) = e−iω ĥ∗(ω + π)

satisfies (7.57) and (7.58) because of (7.63). We thus derive from Lemma 7.1 that {ψj,n}(j,n)∈Z2 is an
orthogonal basis of Wj .

We complete the proof of the theorem by verifying that {ψj,n}(j,n)∈Z2 is an orthogonal basis of

L
2(R). Observe first that the detail spaces {Wj}j∈Z are orthogonal. Indeed Wj is orthogonal to Vj

and Wl ⊂ Vl−1 ⊂ Vj for j < l. Hence Wj and Wl are orthogonal. We can also decompose

L
2(R) = ⊕+∞

j=−∞Wj . (7.64)

Indeed Vj−1 = Wj ⊕ Vj and we verify by substitution that for any L > J

VL = ⊕J
j=L−1Wj ⊕ VJ . (7.65)

Since {Vj}j∈Z is a multiresolution approximation, VL and VJ tend respectively to L
2(R) and {0}

when L and J go respectively to −∞ and +∞, which implies (7.64). A union of orthonormal bases of
all Wj is therefore an orthonormal basis of L

2(R).

The proof of the theorem shows that ĝ is the Fourier series of

g[n] =

〈
1√
2
ψ

(
t

2

)
,φ(t− n)

〉
, (7.66)

which are the decomposition coefficients of

1√
2
ψ

(
t

2

)
=

+∞∑

n=−∞
g[n]φ(t− n). (7.67)

Calculating the inverse Fourier transform of (7.53) yields

g[n] = (−1)1−n h[1− n]. (7.68)

This mirror filter plays an important role in the fast wavelet transform algorithm.

ψ(t) |ψ̂(ω)|

−5 0 5−1
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Figure 7.5: Battle-Lemarié cubic spline wavelet ψ and its Fourier transform modulus.

Example 7.9. Figure 7.5 displays the cubic spline wavelet ψ and its Fourier transform ψ̂ calculated
by inserting in (7.52) the expressions (7.18) and (7.48) of φ̂(ω) and ĥ(ω). The properties of this
Battle-Lemarié spline wavelet are further studied in Section 7.2.2. Like most orthogonal wavelets,
the energy of ψ̂ is essentially concentrated in [−2π,−π] ∪ [π, 2π]. For any ψ that generates an
orthogonal basis of L2(R), one can verify that

∀ω ∈ R− {0} ,
+∞∑

j=−∞

|ψ̂(2jω)|2 = 1.

This is illustrated in Figure 7.6.
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Figure 7.6: Graphs of |ψ̂(2jω)|2 for the cubic spline Battle-Lemarié wavelet, with 1 " j " 5 and
ω ∈ [−π,π].

The orthogonal projection of a signal f in a “detail” space Wj is obtained with a partial
expansion in its wavelet basis

PWj f =
+∞∑

n=−∞
〈f,ψj,n〉ψj,n.

A signal expansion in a wavelet orthogonal basis can thus be viewed as an aggregation of details
at all scales 2j that go from 0 to +∞

f =
+∞∑

j=−∞

PWj f =
+∞∑

j=−∞

+∞∑

n=−∞
〈f,ψj,n〉ψj,n.

Figure 7.7 gives the coefficients of a signal decomposed in the cubic spline wavelet orthogonal basis.
The calculations are performed with the fast wavelet transform algorithm of Section 7.3. The up
or down Diracs give the amplitudes of positive or negative wavelet coefficients, at a distance 2jn
at each scale 2j . Coefficients are nearly zero at fine scales where the signal is locally regular.

 2−9

 2−8

 2−7

 2−6

 2−5

Approximation

0 0.2 0.4 0.6 0.8 1
−20

0
20
40

t

f(t)

Figure 7.7: Wavelet coefficients dj [n] = 〈f,ψj,n〉 calculated at scales 2j with the cubic spline
wavelet. Each up or down Dirac gives the amplitude of a positive or negative wavelet coefficient.
At the top is the remaining coarse signal approximation aJ [n] = 〈f,φJ,n〉 for J = −5.

Wavelet Design Theorem 7.3 constructs a wavelet orthonormal basis from any conjugate mirror
filter ĥ(ω). This gives a simple procedure for designing and building wavelet orthogonal bases.
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Conversely, we may wonder whether all wavelet orthonormal bases are associated to a multireso-
lution approximation and a conjugate mirror filter. If we impose that ψ has a compact support
then Lemarié [51] proved that ψ necessarily corresponds to a multiresolution approximation. It is
however possible to construct pathological wavelets that decay like |t|−1 at infinity, and which can-
not be derived from any multiresolution approximation. Section 7.2 describes important classes
of wavelet bases and explains how to design ĥ to specify the support, the number of vanishing
moments and the regularity of ψ.

7.2 Classes of Wavelet Bases

7.2.1 Choosing a Wavelet

Most applications of wavelet bases exploit their ability to efficiently approximate particular classes
of functions with few non-zero wavelet coefficients. This is true not only for data compression
but also for noise removal and fast calculations. The design of ψ must therefore be optimized to
produce a maximum number of wavelet coefficients 〈f,ψj,n〉 that are close to zero. A function f has
few non-negligible wavelet coefficients if most of the fine-scale (high-resolution) wavelet coefficients
are small. This depends mostly on the regularity of f , the number of vanishing moments of ψ and
the size of its support. To construct an appropriate wavelet from a conjugate mirror filter h[n], we
relate these properties to conditions on ĥ(ω).

Vanishing Moments Let us recall that ψ has p vanishing moments if

∫ +∞

−∞
tk ψ(t) dt = 0 for 0 " k < p. (7.69)

This means that ψ is orthogonal to any polynomial of degree p− 1. Section 6.1.3 proves that if f
is regular and ψ has enough vanishing moments then the wavelet coefficients |〈f,ψj,n〉| are small
at fine scales 2j . Indeed, if f is locally Ck, then over a small interval it is well approximated by a
Taylor polynomial of degree k. If k < p, then wavelets are orthogonal to this Taylor polynomial and
thus produce small amplitude coefficients at fine scales. The following theorem relates the number
of vanishing moments of ψ to the vanishing derivatives of ψ̂(ω) at ω = 0 and to the number of
zeroes of ĥ(ω) at ω = π. It also proves that polynomials of degree p − 1 are then reproduced by
the scaling functions.

Theorem 7.4 (Vanishing moments). Let ψ and φ be a wavelet and a scaling function that generate
an orthogonal basis. Suppose that |ψ(t)| = O((1 + t2)−p/2−1) and |φ(t)| = O((1 + t2)−p/2−1). The
four following statements are equivalent:

(i) The wavelet ψ has p vanishing moments.
(ii) ψ̂(ω) and its first p− 1 derivatives are zero at ω = 0.
(iii) ĥ(ω) and its first p− 1 derivatives are zero at ω = π.
(iv) For any 0 " k < p,

qk(t) =
+∞∑

n=−∞
nk φ(t− n) is a polynomial of degree k. (7.70)

Proof. The decay of |φ(t)| and |ψ(t)| implies that ψ̂(ω) and φ̂(ω) are p times continuously differentiable.
The kth order derivative ψ̂(k)(ω) is the Fourier transform of (−it)kψ(t). Hence

ψ̂(k)(0) =

Z +∞

−∞
(−it)k ψ(t) dt.

We derive that (i) is equivalent to (ii).

Theorem 7.3 proves that √
2 ψ̂(2ω) = e−iω ĥ∗(ω + π) φ̂(ω).

Since φ̂(0) '= 0, by differentiating this expression we prove that (ii) is equivalent to (iii).
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Let us now prove that (iv) implies (i). Since ψ is orthogonal to {φ(t − n)}n∈Z, it is thus also
orthogonal to the polynomials qk for 0 " k < p. This family of polynomials is a basis of the space of
polynomials of degree at most p − 1. Hence ψ is orthogonal to any polynomial of degree p − 1 and in
particular to tk for 0 " k < p. This means that ψ has p vanishing moments.

To verify that (i) implies (iv) we suppose that ψ has p vanishing moments, and for k < p we evaluate
qk(t) defined in (7.70). This is done by computing its Fourier transform:

q̂k(ω) = φ̂(ω)
+∞X

n=−∞

nk exp(−inω) = (i)k φ̂(ω)
dk

dωk

+∞X

n=−∞

exp(−inω) .

Let δ(k) be the distribution that is the kth order derivative of a Dirac, defined in Appendix A.7. The
Poisson formula (2.4) proves that

q̂k(ω) = (i)k 1
2π

φ̂(ω)
+∞X

l=−∞

δ(k)(ω − 2lπ). (7.71)

With several integrations by parts, we verify the distribution equality

φ̂(ω) δ(k)(ω − 2lπ) = φ̂(2lπ) δ(k)(ω − 2lπ) +
k−1X

m=0

ak
m,l δ

(m)(ω − 2lπ), (7.72)

where ak
m,l is a linear combination of the derivatives {φ̂(m)(2lπ)}0!m!k.

For l '= 0, let us prove that ak
m,l = 0 by showing that φ̂(m)(2lπ) = 0 if 0 " m < p. For any P > 0,

(7.27) implies

φ̂(ω) = φ̂(2−Pω)
PY

p=1

ĥ(2−pω)√
2

. (7.73)

Since ψ has p vanishing moments, we showed in (iii) that ĥ(ω) has a zero of order p at ω = ±π. But
ĥ(ω) is also 2π periodic, so (7.73) implies that φ̂(ω) = O(|ω − 2lπ|p) in the neighborhood of ω = 2lπ,
for any l '= 0. Hence φ̂(m)(2lπ) = 0 if m < p.

Since ak
m,l = 0 and φ(2lπ) = 0 when l '= 0, it follows from (7.72) that

φ̂(ω) δ(k)(ω − 2lπ) = 0 for l '= 0.

The only term that remains in the summation (7.71) is l = 0 and inserting (7.72) yields

q̂k(ω) = (i)k 1
2π

 
φ̂(0) δ(k)(ω) +

k−1X

m=0

ak
m,0 δ

(m)(ω)

!
.

The inverse Fourier transform of δ(m)(ω) is (2π)−1(−it)m and Theorem 7.2 proves that φ̂(0) '= 0. Hence
the inverse Fourier transform qk of q̂k is a polynomial of degree k.

The hypothesis (iv) is called the Fix-Strang condition [445]. The polynomials {qk}0!k<p define a
basis of the space of polynomials of degree p − 1. The Fix-Strang condition thus proves that ψ
has p vanishing moments if and only if any polynomial of degree p − 1 can be written as a linear
expansion of {φ(t − n)}n∈Z. The decomposition coefficients of the polynomials qk do not have a
finite energy because polynomials do not have a finite energy.

Size of Support If f has an isolated singularity at t0 and if t0 is inside the support of ψj,n(t) =
2−j/2 ψ(2−jt − n), then 〈f,ψj,n〉 may have a large amplitude. If ψ has a compact support of size
K, at each scale 2j there are K wavelets ψj,n whose support includes t0. To minimize the number
of high amplitude coefficients we must reduce the support size of ψ. The following theorem relates
the support size of h to the support of φ and ψ.

Theorem 7.5 (Compact support). The scaling function φ has a compact support if and only if h
has a compact support and their support are equal. If the support of h and φ is [N1, N2] then the
support of ψ is [(N1 −N2 + 1)/2 , (N2 −N1 + 1)/2].
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Proof. If φ has a compact support, since

h[n] =
1√
2

fi
φ

„
t
2

«
,φ(t − n)

fl
,

we derive that h also has a compact support. Conversely, the scaling function satisfies

1√
2
φ

„
t
2

«
=

+∞X

n=−∞

h[n]φ(t − n). (7.74)

If h has a compact support then one can prove [193] that φ has a compact support. The proof is not
reproduced here.

To relate the support of φ and h, we suppose that h[n] is non-zero for N1 " n " N2 and that
φ has a compact support [K1, K2]. The support of φ(t/2) is [2K1, 2K2]. The sum at the right of
(7.74) is a function whose support is [N1 + K1, N2 + K2]. The equality proves that the support of φ is
[K1, K2] = [N1, N2].

Let us recall from (7.68) and (7.67) that

1√
2
ψ

„
t
2

«
=

+∞X

n=−∞

g[n]φ(t − n) =
+∞X

n=−∞

(−1)1−n h[1 − n]φ(t − n).

If the supports of φ and h are equal to [N1, N2], the sum in the right-hand side has a support equal to
[N1 − N2 + 1, N2 − N1 + 1]. Hence ψ has a support equal to [(N1 −N2 + 1)/2, (N2 −N1 + 1)/2].

If h has a finite impulse response in [N1, N2], Theorem 7.5 proves that ψ has a support of size
N2−N1 centered at 1/2. To minimize the size of the support, we must synthesize conjugate mirror
filters with as few non-zero coefficients as possible.

Support Versus Moments The support size of a function and the number of vanishing moments
are a priori independent. However, we shall see in Theorem 7.7 that the constraints imposed
on orthogonal wavelets imply that if ψ has p vanishing moments then its support is at least
of size 2p − 1. Daubechies wavelets are optimal in the sense that they have a minimum size
support for a given number of vanishing moments. When choosing a particular wavelet, we thus
face a trade-off between the number of vanishing moments and the support size. If f has few
isolated singularities and is very regular between singularities, we must choose a wavelet with
many vanishing moments to produce a large number of small wavelet coefficients 〈f,ψj,n〉. If the
density of singularities increases, it might be better to decrease the size of its support at the cost of
reducing the number of vanishing moments. Indeed, wavelets that overlap the singularities create
high amplitude coefficients.

The multiwavelet construction of Geronimo, Hardin and Massupust [270] offers more design
flexibility by introducing several scaling functions and wavelets. Exercise 7.16 gives an example.
Better trade-off can be obtained between the multiwavelets supports and their vanishing moments
[446]. However, multiwavelet decompositions are implemented with a slightly more complicated
filter bank algorithm than a standard orthogonal wavelet transform.

Regularity The regularity of ψ has mostly a cosmetic influence on the error introduced by thresh-
olding or quantizing the wavelet coefficients. When reconstructing a signal from its wavelet coeffi-
cients

f =
+∞∑

j=−∞

+∞∑

n=−∞
〈f,ψj,n〉ψj,n,

an error ε added to a coefficient 〈f,ψj,n〉 will add the wavelet component εψj,n to the reconstructed
signal. If ψ is smooth, then εψj,n is a smooth error. For image coding applications, a smooth error
is often less visible than an irregular error, even though they have the same energy. Better quality
images are obtained with wavelets that are continuously differentiable than with the discontinuous
Haar wavelet. The following theorem due to Tchamitchian [454] relates the uniform Lipschitz
regularity of φ and ψ to the number of zeroes of ĥ(ω) at ω = π.
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Theorem 7.6 (Tchamitchian). Let ĥ(ω) be a conjugate mirror filter with p zeroes at π and which
satisfies the sufficient conditions of Theorem 7.2. Let us perform the factorization

ĥ(ω) =
√

2

(
1 + eiω

2

)p

l̂(ω).

If supω∈R |l̂(ω)| = B then ψ and φ are uniformly Lipschitz α for

α < α0 = p− log2 B − 1. (7.75)

Proof. This result is proved by showing that there exist C1 > 0 and C2 > 0 such that for all ω ∈ R

|φ̂(ω)| " C1 (1 + |ω|)−p+log2 B (7.76)

|ψ̂(ω)| " C2 (1 + |ω|)−p+log2 B . (7.77)

The Lipschitz regularity of φ and ψ is then derived from Theorem 6.1, which shows that if
R +∞
−∞ (1 +

|ω|α) |f̂(ω)| dω < +∞, then f is uniformly Lipschitz α.

We proved in (7.32) that φ̂(ω) =
Q+∞

j=1 2−1/2 ĥ(2−jω). One can verify that

+∞Y

j=1

1 + exp(i2−jω)
2

=
1 − exp(iω)

iω
,

hence

|φ̂(ω)| =
|1 − exp(iω)|p

|ω|p
+∞Y

j=1

|l̂(2−jω)|. (7.78)

Let us now compute an upper bound for
Q+∞

j=1 |l̂(2
−jω)|. At ω = 0 we have ĥ(0) =

√
2 so l̂(0) = 1.

Since ĥ(ω) is continuously differentiable at ω = 0, l̂(ω) is also continuously differentiable at ω = 0. We
thus derive that there exists ε > 0 such that if |ω| < ε then |l̂(ω)| " 1 + K|ω|. Consequently

sup
|ω|!ε

+∞Y

j=1

|l̂(2−jω)| " sup
|ω|!ε

+∞Y

j=1

(1 + K|2−jω|) " eKε. (7.79)

If |ω| > ε, there exists J ! 1 such that 2J−1ε " |ω| " 2Jε and we decompose

+∞Y

j=1

l̂(2−jω) =
JY

j=1

|l̂(2−jω)|
+∞Y

j=1

|l̂(2−j−Jω)|. (7.80)

Since supω∈R |l̂(ω)| = B, inserting (7.79) yields for |ω| > ε

+∞Y

j=1

l̂(2−jω) " BJ eKε = eKε 2J log2 B . (7.81)

Since 2J
" ε−12|ω|, this proves that

∀ω ∈ R ,
+∞Y

j=1

l̂(2−jω) " eKε
“
1 +

|2ω|log2 B

εlog2 B

”
.

Equation (7.76) is derived from (7.78) and this last inequality. Since |ψ̂(2ω)| = 2−1/2 |ĥ(ω + π)| |φ̂(ω)|,
(7.77) is obtained from (7.76).

This theorem proves that if B < 2p−1 then α0 > 0. It means that φ and ψ are uniformly continuous.
For any m > 0, if B < 2p−1−m then α0 > m so ψ and φ are m times continuously differentiable.
Theorem 7.4 shows that the number p of zeros of ĥ(ω) at π is equal to the number of vanishing
moments of ψ. A priori, we are not guaranteed that increasing p will improve the wavelet regularity,
since B might increase as well. However, for important families of conjugate mirror filters such as
splines or Daubechies filters, B increases more slowly than p, which implies that wavelet regularity
increases with the number of vanishing moments. Let us emphasize that the number of vanishing
moments and the regularity of orthogonal wavelets are related but it is the number of vanishing
moments and not the regularity that affects the amplitude of the wavelet coefficients at fine scales.
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7.2.2 Shannon, Meyer and Battle-Lemarié Wavelets

We study important classes of wavelets whose Fourier transforms are derived from the general
formula proved in Theorem 7.3,

ψ̂(ω) =
1√
2

ĝ
(ω

2

)
φ̂
(ω

2

)
=

1√
2

exp

(
−iω

2

)
ĥ∗
(ω

2
+ π

)
φ̂
(ω

2

)
. (7.82)

Shannon Wavelet The Shannon wavelet is constructed from the Shannon multiresolution approxi-
mation, which approximates functions by their restriction to low frequency intervals. It corresponds
to φ̂ = 1[−π,π] and ĥ(ω) =

√
21[−π/2,π/2](ω) for ω ∈ [−π,π]. We derive from (7.82) that

ψ̂(ω) =

{
exp (−iω/2) if ω ∈ [−2π,−π] ∪ [π, 2π]
0 otherwise

(7.83)

and hence

ψ(t) =
sin 2π(t− 1/2)

2π(t− 1/2)
−

sinπ(t− 1/2)

π(t− 1/2)
.

This wavelet is C∞ but has a slow asymptotic time decay. Since ψ̂(ω) is zero in the neighborhood
of ω = 0, all its derivatives are zero at ω = 0. Theorem 7.4 thus implies that ψ has an infinite
number of vanishing moments.

Since ψ̂(ω) has a compact support we know that ψ(t) is C∞. However |ψ(t)| decays only like
|t|−1 at infinity because ψ̂(ω) is discontinuous at ±π and ±2π.

Meyer Wavelets A Meyer wavelet [374] is a frequency band-limited function whose Fourier trans-
form is smooth, unlike the Fourier transform of the Shannon wavelet. This smoothness provides
a much faster asymptotic decay in time. These wavelets are constructed with conjugate mirror
filters ĥ(ω) that are Cn and satisfy

ĥ(ω) =

{ √
2 if ω ∈ [−π/3,π/3]

0 if ω ∈ [−π,−2π/3] ∪ [2π/3,π]
. (7.84)

The only degree of freedom is the behavior of ĥ(ω) in the transition bands [−2π/3,−π/3] ∪
[π/3, 2π/3]. It must satisfy the quadrature condition

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (7.85)

and to obtain Cn junctions at |ω| = π/3 and |ω| = 2π/3, the n first derivatives must vanish at
these abscissa. One can construct such functions that are C∞.

The scaling function φ̂(ω) =
∏+∞

p=1 2−1/2 ĥ(2−pω) has a compact support and one can verify
that

φ̂(ω) =

{
2−1/2 ĥ(ω/2) if |ω| " 4π/3

0 if |ω| > 4π/3
. (7.86)

The resulting wavelet (7.82) is

ψ̂(ω) =






0 if |ω| " 2π/3

2−1/2 ĝ(ω/2) if 2π/3 " |ω| " 4π/3

2−1/2 exp(−iω/2) ĥ(ω/4) if 4π/3 " |ω| " 8π/3

0 if |ω| > 8π/3

. (7.87)

The functions φ and ψ are C∞ because their Fourier transforms have a compact support. Since
ψ̂(ω) = 0 in the neighborhood of ω = 0, all its derivatives are zero at ω = 0, which proves that ψ
has an infinite number of vanishing moments.

If ĥ is Cn then ψ̂ and φ̂ are also Cn. The discontinuities of the (n + 1)th derivative of ĥ are
generally at the junction of the transition band |ω| = π/3 , 2π/3, in which case one can show that
there exists A such that

|φ(t)| " A (1 + |t|)−n−1 and |ψ(t)| " A (1 + |t|)−n−1 .
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Although the asymptotic decay of ψ is fast when n is large, its effective numerical decay may be
relatively slow, which is reflected by the fact that A is quite large. As a consequence, a Meyer
wavelet transform is generally implemented in the Fourier domain. Section 8.4.2 relates these
wavelet bases to lapped orthogonal transforms applied in the Fourier domain. One can prove [18]
that there exists no orthogonal wavelet that is C∞ and has an exponential decay.

ψ(t) |ψ̂(ω)|

−5 0 5−1

−0.5

0

0.5

1

−10 −5 0 5 100

0.2

0.4

0.6

0.8

1

Figure 7.8: Meyer wavelet ψ and its Fourier transform modulus computed with (7.89).

Example 7.10. To satisfy the quadrature condition (7.85), one can verify that ĥ in (7.84) may
be defined on the transition bands by

ĥ(ω) =
√

2 cos

[
π

2
β

(
3|ω|
π
− 1

)]
for |ω| ∈ [π/3, 2π/3] ,

where β(x) is a function that goes from 0 to 1 on the interval [0, 1] and satisfies

∀x ∈ [0, 1] , β(x) + β(1− x) = 1. (7.88)

An example due to Daubechies [18] is

β(x) = x4 (35− 84x + 70x2 − 20x3). (7.89)

The resulting ĥ(ω) has n = 3 vanishing derivatives at |ω| = π/3 , 2π/3. Figure 7.8 displays the
corresponding wavelet ψ.

Haar Wavelet The Haar basis is obtained with a multiresolution of piecewise constant functions.
The scaling function is φ = 1[0,1]. The filter h[n] given in (7.46) has two non-zero coefficients equal

to 2−1/2 at n = 0 and n = 1. Hence

1√
2
ψ

(
t

2

)
=

+∞∑

n=−∞
(−1)1−n h[1− n]φ(t− n) =

1√
2

(
φ(t− 1)− φ(t)

)
,

so

ψ(t) =






−1 if 0 " t < 1/2
1 if 1/2 " t < 1
0 otherwise

(7.90)

The Haar wavelet has the shortest support among all orthogonal wavelets. It is not well adapted
to approximating smooth functions because it has only one vanishing moment.

Battle-Lemarié Wavelets Polynomial spline wavelets introduced by Battle [97] and Lemarié [344]
are computed from spline multiresolution approximations. The expressions of φ̂(ω) and ĥ(ω) are
given respectively by (7.18) and (7.48). For splines of degree m, ĥ(ω) and its first m derivatives are
zero at ω = π. Theorem 7.4 derives that ψ has m + 1 vanishing moments. It follows from (7.82)
that

ψ̂(ω) =
exp(−iω/2)

ωm+1

√
S2m+2(ω/2 + π)

S2m+2(ω)S2m+2(ω/2)
.
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φ(t) ψ(t)
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Figure 7.9: Linear spline Battle-Lemarié scaling function φ and wavelet ψ.

This wavelet ψ has an exponential decay. Since it is a polynomial spline of degree m, it is m − 1
times continuously differentiable. Polynomial spline wavelets are less regular than Meyer wavelets
but have faster time asymptotic decay. For m odd, ψ is symmetric about 1/2. For m even it is
antisymmetric about 1/2. Figure 7.5 gives the graph of the cubic spline wavelet ψ corresponding
to m = 3. For m = 1, Figure 7.9 displays linear splines φ and ψ. The properties of these wavelets
are further studied in [104, 14, 163].

7.2.3 Daubechies Compactly Supported Wavelets

Daubechies wavelets have a support of minimum size for any given number p of vanishing mo-
ments. Theorem 7.5 proves that wavelets of compact support are computed with finite impulse
response conjugate mirror filters h. We consider real causal filters h[n], which implies that ĥ is a
trigonometric polynomial:

ĥ(ω) =
N−1∑

n=0

h[n] e−inω.

To ensure that ψ has p vanishing moments, Theorem 7.4 shows that ĥ must have a zero of order
p at ω = π. To construct a trigonometric polynomial of minimal size, we factor (1 + e−iω)p, which
is a minimum size polynomial having p zeros at ω = π:

ĥ(ω) =
√

2

(
1 + e−iω

2

)p

R(e−iω). (7.91)

The difficulty is to design a polynomial R(e−iω) of minimum degree m such that ĥ satisfies

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (7.92)

As a result, h has N = m+ p+1 non-zero coefficients. The following theorem by Daubechies [193]
proves that the minimum degree of R is m = p− 1.

Theorem 7.7 (Daubechies). A real conjugate mirror filter h, such that ĥ(ω) has p zeroes at ω = π,
has at least 2p non-zero coefficients. Daubechies filters have 2p non-zero coefficients.

Proof. The proof is constructive and computes the Daubechies filters. Since h[n] is real, |ĥ(ω)|2 is an
even function and can thus be written as a polynomial in cosω. Hence |R(e−iω)|2 defined in (7.91) is
a polynomial in cosω that we can also write as a polynomial P (sin2 (ω/2))

|ĥ(ω)|2 = 2
“
cos

ω
2

”2p
P
“
sin2 ω

2

”
. (7.93)

The quadrature condition (7.92) is equivalent to

(1 − y)p P (y) + yp P (1 − y) = 1, (7.94)

for any y = sin2(ω/2) ∈ [0, 1]. To minimize the number of non-zero terms of the finite Fourier series
ĥ(ω), we must find the solution P (y) ! 0 of minimum degree, which is obtained with the Bezout
theorem on polynomials.
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Theorem 7.8 (Bezout). Let Q1(y) and Q2(y) be two polynomials of degrees n1 and n2 with no common
zeroes. There exist two unique polynomials P1(y) and P2(y) of degrees n2 − 1 and n1 − 1 such that

P1(y) Q1(y) + P2(y) Q2(y) = 1. (7.95)

The proof of this classical result is in [18]. Since Q1(y) = (1 − y)p and Q2(y) = yp are two
polynomials of degree p with no common zeros, the Bezout theorem proves that there exist two unique
polynomials P1(y) and P2(y) such that

(1 − y)p P1(y) + yp P2(y) = 1.

The reader can verify that P2(y) = P1(1 − y) = P (1 − y) with

P (y) =
p−1X

k=0

„
p − 1 + k

k

«
yk. (7.96)

Clearly P (y) ! 0 for y ∈ [0, 1]. Hence P (y) is the polynomial of minimum degree satisfying (7.94) with
P (y) ! 0.

Minimum Phase Factorization Now we need to construct a minimum degree polynomial

R(e−iω) =
mX

k=0

rk e−ikω = r0

mY

k=0

(1 − ak e−iω)

such that |R(e−iω)|2 = P (sin2(ω/2)). Since its coefficients are real, R∗(e−iω) = R(eiω) and hence

|R(e−iω)|2 = R(e−iω) R(eiω) = P

„
2 − eiω − e−iω

4

«
= Q(e−iω). (7.97)

This factorization is solved by extending it to the whole complex plane with the variable z = e−iω:

R(z) R(z−1) = r2
0

mY

k=0

(1 − ak z) (1 − ak z−1) = Q(z) = P

„
2 − z − z−1

4

«
. (7.98)

Let us compute the roots of Q(z). Since Q(z) has real coefficients if ck is a root, then c∗k is also a root
and since it is a function of z + z−1 if ck is a root then 1/ck and hence 1/c∗k are also roots. To design
R(z) that satisfies (7.98), we choose each root ak of R(z) among a pair (ck, 1/ck) and include a∗

k as a
root to obtain real coefficients. This procedure yields a polynomial of minimum degree m = p−1, with
r2
0 = Q(0) = P (1/2) = 2p−1. The resulting filter h of minimum size has N = p + m + 1 = 2p non-zero

coefficients.

Among all possible factorizations, the minimum phase solution R(eiω) is obtained by choosing ak

among (ck, 1/ck) to be inside the unit circle |ak| " 1 [50]. The resulting causal filter h has an energy
maximally concentrated at small abscissa n ! 0. It is a Daubechies filter of order p.

The constructive proof of this theorem synthesizes causal conjugate mirror filters of size 2p. Table
7.2 gives the coefficients of these Daubechies filters for 2 " p " 10. The following theorem derives
that Daubechies wavelets calculated with these conjugate mirror filters have a support of minimum
size.

Theorem 7.9 (Daubechies). If ψ is a wavelet with p vanishing moments that generates an or-
thonormal basis of L2(R), then it has a support of size larger than or equal to 2p−1. A Daubechies
wavelet has a minimum size support equal to [−p + 1, p]. The support of the corresponding scaling
function φ is [0, 2p− 1].

This theorem is a direct consequence of Theorem 7.7. The support of the wavelet, and that
of the scaling function, are calculated with Theorem 7.5. When p = 1 we get the Haar wavelet.
Figure 7.10 displays the graphs of φ and ψ for p = 2, 3, 4.

The regularity of φ and ψ is the same since ψ(t) is a finite linear combination of the φ(2t− n).
This regularity is however difficult to estimate precisely. Let B = supω∈R |R(e−iω)| where R(e−iω)
is the trigonometric polynomial defined in (7.91). Theorem 7.6 proves that ψ is at least uniformly
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n hp[n]

p = 2 0 .482962913145
1 .836516303738
2 .224143868042
3−.129409522551

p = 3 0 .332670552950
1 .806891509311
2 .459877502118
3−.135011020010
4−.085441273882
5 .035226291882

p = 4 0 .230377813309
1 .714846570553
2 .630880767930
3−.027983769417
4−.187034811719
5 .030841381836
6 .032883011667
7−.010597401785

p = 5 0 .160102397974
1 .603829269797
2 .724308528438
3 .138428145901
4−.242294887066
5−.032244869585
6 .077571493840
7−.006241490213
8−.012580751999
9 .003335725285

p = 6 0 .111540743350
1 .494623890398
2 .751133908021
3 .315250351709
4−.226264693965
5−.129766867567
6 .097501605587
7 .027522865530
8−.031582039317
9 .000553842201

10 .004777257511
11−.001077301085

p = 7 0 .077852054085
1 .396539319482
2 .729132090846
3 .469782287405
4−.143906003929
5−.224036184994
6 .071309219267
7 .080612609151
8−.038029936935
9−.016574541631

10 .012550998556
11 .000429577973
12−.001801640704
13 .000353713800

n hp[n]

p = 8 0 .054415842243
1 .312871590914
2 .675630736297
3 .585354683654
4−.015829105256
5−.284015542962
6 .000472484574
7 .128747426620
8−.017369301002
9 −.04408825393

10 .013981027917
11 .008746094047
12−.004870352993
13−.000391740373
14 .000675449406
15−.000117476784

p = 9 0 .038077947364
1 .243834674613
2 .604823123690
3 .657288078051
4 .133197385825
5−.293273783279
6−.096840783223
7 .148540749338
8 .030725681479
9−.067632829061

10 .000250947115
11 .022361662124
12−.004723204758
13−.004281503682
14 .001847646883
15 .000230385764
16−.000251963189
17 .000039347320

p = 10 0 .026670057901
1 .188176800078
2 .527201188932
3 .688459039454
4 .281172343661
5−.249846424327
6−.195946274377
7 .127369340336
8 .093057364604
9−.071394147166

10−.029457536822
11 .033212674059
12 .003606553567
13−.010733175483
14 .001395351747
15 .001992405295
16−.000685856695
17−.000116466855
18 .000093588670
19−.000013264203

Table 7.2: Daubechies filters for wavelets with p vanishing moments.
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Figure 7.10: Daubechies scaling function φ and wavelet ψ with p vanishing moments.
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Figure 7.11: Daubechies (first two) and Symmlets (last two) scaling functions and wavelets with
p = 8 vanishing moments.

Lipschitz α for α < p − log2 B − 1. For Daubechies wavelets, B increases more slowly than p
and Figure 7.10 shows indeed that the regularity of these wavelets increases with p. Daubechies
and Lagarias [197] have established a more precise technique that computes the exact Lipschitz
regularity of ψ. For p = 2 the wavelet ψ is only Lipschitz 0.55 but for p = 3 it is Lipschitz 1.08
which means that it is already continuously differentiable. For p large, φ and ψ are uniformly
Lipschitz α, for α of the order of 0.2 p [167].

Symmlets Daubechies wavelets are very asymmetric because they are constructed by selecting the
minimum phase square root of Q(e−iω) in (7.97). One can show [50] that filters corresponding to
a minimum phase square root have their energy optimally concentrated near the starting point of
their support. They are thus highly non-symmetric, which yields very asymmetric wavelets.

To obtain a symmetric or antisymmetric wavelet, the filter h must be symmetric or antisym-
metric with respect to the center of its support, which means that ĥ(ω) has a linear complex phase.
Daubechies proved [193] that the Haar filter is the only real compactly supported conjugate mir-
ror filter that has a linear phase. The Symmlet filters of Daubechies are obtained by optimizing
the choice of the square root R(e−iω) of Q(e−iω) to obtain an almost linear phase. The resulting
wavelets still have a minimum support [−p + 1, p] with p vanishing moments but they are more
symmetric, as illustrated by Figure 7.11 for p = 8. The coefficients of the Symmlet filters are in
WaveLab. Complex conjugate mirror filters with a compact support and a linear phase can be
constructed [351], but they produce complex wavelet coefficients whose real and imaginary parts
are redundant when the signal is real.

Coiflets For an application in numerical analysis, Coifman asked Daubechies [193] to construct
a family of wavelets ψ that have p vanishing moments and a minimum size support, but whose
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scaling functions also satisfy

∫ +∞

−∞
φ(t) dt = 1 and

∫ +∞

−∞
tk φ(t) dt = 0 for 1 " k < p. (7.99)

Such scaling functions are useful in establishing precise quadrature formulas. If f is Ck in the
neighborhood of 2Jn with k < p, then a Taylor expansion of f up to order k shows that

2−J/2 〈f,φJ,n〉 ≈ f(2Jn) + O(2(k+1)J) . (7.100)

At a fine scale 2J , the scaling coefficients are thus closely approximated by the signal samples. The
order of approximation increases with p. The supplementary condition (7.99) requires increasing
the support of ψ; the resulting Coiflet has a support of size 3p−1 instead of 2p−1 for a Daubechies
wavelet. The corresponding conjugate mirror filters are tabulated in WaveLab.

Audio Filters The first conjugate mirror filters with finite impulse response were constructed in
1986 by Smith and Barnwell [442] in the context of perfect filter bank reconstruction, explained
in Section 7.3.2. These filters satisfy the quadrature condition |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, which is
necessary and sufficient for filter bank reconstruction. However, ĥ(0) .=

√
2 so the infinite product

of such filters does not yield a wavelet basis of L2(R). Instead of imposing any vanishing moments,
Smith and Barnwell [442], and later Vaidyanathan and Hoang [470], designed their filters to reduce
the size of the transition band, where |ĥ(ω)| decays from nearly

√
2 to nearly 0 in the neighborhood

of ±π/2. This constraint is important in optimizing the transform code of audio signals, explained
in Section 10.3.3. However, many cascades of these filters exhibit wild behavior. The Vaidyanathan-
Hoang filters are tabulated in WaveLab. Many other classes of conjugate mirror filters with finite
impulse response have been constructed [67, 77]. Recursive conjugate mirror filters may also be
designed [299] to minimize the size of the transition band for a given number of zeroes at ω = π.
These filters have a fast but non-causal recursive implementation for signals of finite size.

7.3 Wavelets and Filter Banks

Decomposition coefficients in a wavelet orthogonal basis are computed with a fast algorithm that
cascades discrete convolutions with h and g, and subsamples the output. Section 7.3.1 derives
this result from the embedded structure of multiresolution approximations. A direct filter bank
analysis is performed in Section 7.3.2, which gives more general perfect reconstruction conditions
on the filters. Section 7.3.3 shows that perfect reconstruction filter banks decompose signals in a
basis of !

2(Z). This basis is orthogonal for conjugate mirror filters.

7.3.1 Fast Orthogonal Wavelet Transform

We describe a fast filter bank algorithm that computes the orthogonal wavelet coefficients of a
signal measured at a finite resolution. A fast wavelet transform decomposes successively each
approximation PVj f into a coarser approximation PVj+1f plus the wavelet coefficients carried by
PWj+1f . In the other direction, the reconstruction from wavelet coefficients recovers each PVj f
from PVj+1f and PWj+1f .

Since {φj,n}n∈Z and {ψj,n}n∈Z are orthonormal bases of Vj and Wj the projection in these
spaces is characterized by

aj [n] = 〈f,φj,n〉 and dj [n] = 〈f,ψj,n〉 .

The following theorem [359, 360] shows that these coefficients are calculated with a cascade of
discrete convolutions and subsamplings. We denote x̄[n] = x[−n] and

x̌[n] =

{
x[p] if n = 2p
0 if n = 2p + 1

. (7.101)
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Theorem 7.10 (Mallat). At the decomposition

aj+1[p] =
+∞∑

n=−∞
h[n− 2p] aj [n] = aj ' h̄[2p], (7.102)

dj+1[p] =
+∞∑

n=−∞
g[n− 2p] aj [n] = aj ' ḡ[2p]. (7.103)

At the reconstruction,

aj [p] =
+∞∑

n=−∞
h[p− 2n] aj+1[n] +

+∞∑

n=−∞
g[p− 2n] dj+1[n]

= ǎj+1 ' h[p] + ďj+1 ' g[p]. (7.104)

Proof. Proof of (7.102) Any φj+1,p ∈ Vj+1 ⊂ Vj can be decomposed in the orthonormal basis
{φj,n}n∈Z of Vj :

φj+1,p =
+∞X

n=−∞

〈φj+1,p,φj,n〉φj,n. (7.105)

With the change of variable t′ = 2−jt − 2p we obtain

〈φj+1,p,φj,n〉 =

Z +∞

−∞

1√
2j+1

φ
“ t − 2j+1p

2j+1

” 1√
2j
φ∗
“ t − 2jn

2j

”
dt

=

Z +∞

−∞

1√
2
φ
“ t

2

”
φ∗(t − n + 2p) dt

=

fi
1√
2
φ
“ t

2

”
,φ(t − n + 2p)

fl
= h[n − 2p]. (7.106)

Hence (7.105) implies that

φj+1,p =
+∞X

n=−∞

h[n − 2p]φj,n. (7.107)

Computing the inner product of f with the vectors on each side of this equality yields (7.102).

Proof of (7.103) Since ψj+1,p ∈ Wj+1 ⊂ Vj , it can be decomposed as

ψj+1,p =
+∞X

n=−∞

〈ψj+1,p,φj,n〉φj,n.

As in (7.106), the change of variable t′ = 2−jt − 2p proves that

〈ψj+1,p,φj,n〉 =

fi
1√
2
ψ

„
t
2

«
,φ(t − n + 2p)

fl
= g[n − 2p] (7.108)

and hence

ψj+1,p =
+∞X

n=−∞

g[n − 2p]φj,n. (7.109)

Taking the inner product with f on each side gives (7.103).

Proof of (7.104) Since Wj+1 is the orthogonal complement of Vj+1 in Vj the union of the two bases
{ψj+1,n}n∈Z and {φj+1,n}n∈Z is an orthonormal basis of Vj . Hence any φj,p can be decomposed in
this basis:

φj,p =
+∞X

n=−∞

〈φj,p,φj+1,n〉φj+1,n

+
+∞X

n=−∞

〈φj,p,ψj+1,n〉ψj+1,n.
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Inserting (7.106) and (7.108) yields

φj,p =
+∞X

n=−∞

h[p − 2n]φj+1,n +
+∞X

n=−∞

g[p − 2n]ψj+1,n.

Taking the inner product with f on both sides of this equality gives (7.104).

Theorem 7.10 proves that aj+1 and dj+1 are computed by taking every other sample of the con-
volution of aj with h̄ and ḡ respectively, as illustrated by Figure 7.12. The filter h̄ removes the
higher frequencies of the inner product sequence aj whereas ḡ is a high-pass filter which collects the
remaining highest frequencies. The reconstruction (7.104) is an interpolation that inserts zeroes
to expand aj+1 and dj+1 and filters these signals, as shown in Figure 7.12.

a

dj+2

j+1a

j+1d

ja j+2

-g

h

2

2

g

h

2

2-

-

-

(a)

ddj+2

j+1aj+2a ja++

j+1

22

2 g

h h

g2

(b)

Figure 7.12: (a): A fast wavelet transform is computed with a cascade of filterings with h̄ and ḡ
followed by a factor 2 subsampling. (b): A fast inverse wavelet transform reconstructs progressively
each aj by inserting zeroes between samples of aj+1 and dj+1, filtering and adding the output.

An orthogonal wavelet representation of aL = 〈f,φL,n〉 is composed of wavelet coefficients of f
at scales 2L < 2j " 2J plus the remaining approximation at the largest scale 2J :

[{dj}L<j!J , aJ ] . (7.110)

It is computed from aL by iterating (7.102) and (7.103) for L " j < J . Figure 7.7 gives a numerical
example computed with the cubic spline filter of Table 7.1. The original signal aL is recovered from
this wavelet representation by iterating the reconstruction (7.104) for J > j ! L.

Initialization Most often the discrete input signal b[n] is obtained by a finite resolution device that
averages and samples an analog input signal. For example, a CCD camera filters the light intensity
by the optics and each photo-receptor averages the input light over its support. A pixel value
thus measures average light intensity. If the sampling distance is N−1, to define and compute the
wavelet coefficients, we need to associate to b[n] a function f(t) ∈ VL approximated at the scale
2L = N−1, and compute aL[n] = 〈f,φL,n〉. Exercise 7.6 explains how to compute aL[n] = 〈f,φL,n〉
so that b[n] = f(N−1n).

A simpler and faster approach considers

f(t) =
+∞∑

n=−∞
b[n]φ

(
t− 2Ln

2L

)
∈ VL.

Since {φL,n(t) = 2−L/2 φ(2−Lt− n)}n∈Z is orthonormal and 2L = N−1,

b[n] = N1/2 〈f,φL,n〉 = N1/2 aL[n] .

But φ̂(0) =
∫∞
−∞ φ(t) dt = 1, so

N1/2 aL[n] =

∫ +∞

−∞
f(t)

1

N−1
φ

(
t−N−1n

N−1

)
dt
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is a weighted average of f in the neighborhood of N−1n over a domain proportional to N−1. Hence
if f is regular,

b[n] = N1/2 aL[n] ≈ f(N−1n) . (7.111)

If ψ is a Coiflet and f(t) is regular in the neighborhood of N−1n, then (7.100) shows that
N−1/2 aL[n] is a high order approximation of f(N−1n).

Finite Signals Let us consider a signal f whose support is in [0, 1] and which is approximated with
a uniform sampling at intervals N−1. The resulting approximation aL has N = 2−L samples. This
is the case in Figure 7.7 with N = 1024. Computing the convolutions with h̄ and ḡ at abscissa
close to 0 or close to N requires knowing the values of aL[n] beyond the boundaries n = 0 and
n = N − 1. These boundary problems may be solved with one of the three approaches described
in Section 7.5.

Section 7.5.1 explains the simplest algorithm, which periodizes aL. The convolutions in Theorem
7.10 are replaced by circular convolutions. This is equivalent to decomposing f in a periodic wavelet
basis of L2[0, 1]. This algorithm has the disadvantage of creating large wavelet coefficients at the
borders.

If ψ is symmetric or antisymmetric, we can use a folding procedure described in Section 7.5.2,
which creates smaller wavelet coefficients at the border. It decomposes f in a folded wavelet basis
of L2[0, 1]. However, we mentioned in Section 7.2.3 that Haar is the only symmetric wavelet with
a compact support. Higher order spline wavelets have a symmetry but h must be truncated in
numerical calculations.

The most efficient boundary treatment is described in Section 7.5.3, but the implementation is
more complicated. Boundary wavelets which keep their vanishing moments are designed to avoid
creating large amplitude coefficients when f is regular. The fast algorithm is implemented with
special boundary filters, and requires the same number of calculations as the two other methods.

Complexity Suppose that h and g have K non-zero coefficients. Let aL be a signal of size N = 2−L.
With appropriate boundary calculations, each aj and dj has 2−j samples. Equations (7.102) and
(7.103) compute aj+1 and dj+1 from aj with 2−jK additions and multiplications. The wavelet
representation (7.110) is therefore calculated with at most 2KN additions and multiplications.
The reconstruction (7.104) of aj from aj+1 and dj+1 is also obtained with 2−jK additions and
multiplications. The original signal aL is thus also recovered from the wavelet representation with
at most 2KN additions and multiplications.

Wavelet Graphs The graphs of φ and ψ are computed numerically with the inverse wavelet trans-
form. If f = φ then a0[n] = δ[n] and dj [n] = 0 for all L < j " 0. The inverse wavelet transform
computes aL and (7.111) shows that

N1/2 aL[n] ≈ φ(N−1n) .

If φ is regular and N is large enough, we recover a precise approximation of the graph of φ from
aL.

Similarly, if f = ψ then a0[n] = 0, d0[n] = δ[n] and dj [n] = 0 for L < j < 0. Then aL[n]
is calculated with the inverse wavelet transform and N1/2 aL[n] ≈ ψ(N−1n). The Daubechies
wavelets and scaling functions in Figure 7.10 are calculated with this procedure.

7.3.2 Perfect Reconstruction Filter Banks

The fast discrete wavelet transform decomposes signals into low-pass and high-pass components
subsampled by 2; the inverse transform performs the reconstruction. The study of such classical
multirate filter banks became a major signal processing topic in 1976, when Croisier, Esteban and
Galand [188] discovered that it is possible to perform such decompositions and reconstructions
with quadrature mirror filters (Exercise 7.7). However, besides the simple Haar filter, a quadrature
mirror filter can not have a finite impulse response. In 1984, Smith and Barnwell [443] and Mintzer
[375] found necessary and sufficient conditions for obtaining perfect reconstruction orthogonal filters
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with a finite impulse response, that they called conjugate mirror filters. The theory was completed
by the biorthogonal equations of Vetterli [472, 471] and the general paraunitary matrix theory
of Vaidyanathan [469]. We follow this digital signal processing approach which gives a simple
understanding of conjugate mirror filter conditions. More complete presentations of filter banks
properties can be found in [1, 2, 62, 66, 67].

Filter Bank A two-channel multirate filter bank convolves a signal a0 with a low-pass filter h̄[n] =
h[−n] and a high-pass filter ḡ[n] = g[−n] and subsamples by 2 the output:

a1[n] = a0 ' h̄[2n] and d1[n] = a0 ' ḡ[2n]. (7.112)

A reconstructed signal ã0 is obtained by filtering the zero expanded signals with a dual low-pass
filter h̃ and a dual high-pass filter g̃, as shown in Figure 7.13. With the zero insertion notation
(7.101) it yields

ã0[n] = ǎ1 ' h̃[n] + ď1 ' g̃[n]. (7.113)

We study necessary and sufficient conditions on h, g, h̃ and g̃ to guarantee a perfect reconstruction
ã0 = a0.

+0a  [n] 0a  [n]
~

2

2 gg

h

2

2

1

1a [n]

d [n]

h
~

~

Figure 7.13: The input signal is filtered by a low-pass and a high-pass filter and subsampled. The
reconstruction is performed by inserting zeroes and filtering with dual filters h̃ and g̃.

Subsampling and Zero Interpolation Subsamplings and expansions with zero insertions have sim-
ple expressions in the Fourier domain. Since x̂(ω) =

∑+∞
n=−∞ x[n] e−inω the Fourier series of the

subsampled signal y[n] = x[2n] can be written

ŷ(2ω) =
+∞∑

n=−∞
x[2n] e−i2nω =

1

2

(
x̂(ω) + x̂(ω + π)

)
. (7.114)

The component x̂(ω + π) creates a frequency folding. This aliasing must be canceled at the
reconstruction.

The insertion of zeros defines

y[n] = x̌[n] =

{
x[p] if n = 2p
0 if n = 2p + 1

,

whose Fourier transform is

ŷ(ω) =
+∞∑

n=−∞
x[n] e−i2nω = x̂(2ω). (7.115)

The following theorem gives Vetterli’s [471] biorthogonal conditions, which guarantee that ã0 = a0.

Theorem 7.11 (Vetterli). The filter bank performs an exact reconstruction for any input signal
if and only if

ĥ∗(ω + π) ̂̃h(ω) + ĝ∗(ω + π) ̂̃g(ω) = 0, (7.116)

and

ĥ∗(ω) ̂̃h(ω) + ĝ∗(ω) ̂̃g(ω) = 2. (7.117)
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Proof. We first relate the Fourier transform of a1 and d1 to the Fourier transform of a0. Since h and
g are real, the transfer functions of h̄ and ḡ are respectively ĥ(−ω) = ĥ∗(ω) and ĝ(−ω) = ĝ∗(ω). By
using (7.114), we derive from the definition (7.112) of a1 and d1 that

â1(2ω) =
1
2

“
â0(ω) ĥ∗(ω) + â0(ω + π) ĥ∗(ω + π)

”
, (7.118)

d̂1(2ω) =
1
2

(â0(ω) ĝ∗(ω) + â0(ω + π) ĝ∗(ω + π)) . (7.119)

The expression (7.113) of ã0 and the zero insertion property (7.115) also imply

b̃a0(ω) = â1(2ω) b̃h(ω) + d̂1(2ω) b̃g(ω). (7.120)

Hence

b̃a0(ω) =
1
2

“
ĥ∗(ω) b̃h(ω) + ĝ∗(ω) b̃g(ω)

”
â0(ω) +

1
2

“
ĥ∗(ω + π) b̃h(ω) + ĝ∗(ω + π) b̃g(ω)

”
â0(ω + π).

To obtain a0 = ã0 for all a0, the filters must cancel the aliasing term â0(ω + π) and guarantee a unit
gain for â0(ω), which proves equations (7.116) and (7.117).

Theorem 7.11 proves that the reconstruction filters h̃ and g̃ are entirely specified by the decompo-
sition filters h and g. In matrix form, it can be rewritten

(
ĥ(ω) ĝ(ω)
ĥ(ω + π) ĝ(ω + π)

)
×

(
̂̃h
∗
(ω)

̂̃g
∗
(ω)

)

=

(
2
0

)
. (7.121)

The inversion of this 2× 2 matrix yields

(
̂̃h
∗
(ω)

̂̃g
∗
(ω)

)

=
2

∆(ω)

(
ĝ(ω + π)
−ĥ(ω + π)

)
(7.122)

where ∆(ω) is the determinant

∆(ω) = ĥ(ω) ĝ(ω + π)− ĥ(ω + π) ĝ(ω). (7.123)

The reconstruction filters are stable only if the determinant does not vanish for all ω ∈ [−π,π].
Vaidyanathan [469] has extended this result to multirate filter banks with an arbitrary number M
of channels by showing that the resulting matrices of filters satisfy paraunitary properties [66].

Finite Impulse Response When all filters have a finite impulse response, the determinant ∆(ω) can
be evaluated. This yields simpler relations between the decomposition and reconstruction filters.

Theorem 7.12. Perfect reconstruction filters satisfy

ĥ∗(ω) ̂̃h(ω) + ĥ∗(ω + π) ̂̃h(ω + π) = 2. (7.124)

For finite impulse response filters, there exist a ∈ R and l ∈ Z such that

ĝ(ω) = a e−i(2l+1)ω ̂̃h
∗
(ω + π) and ̂̃g(ω) = a−1 e−i(2l+1)ω ĥ∗(ω + π). (7.125)

Proof. Equation (7.122) proves that

b̃h
∗
(ω) =

2
∆(ω)

ĝ(ω + π) and b̃g
∗
(ω) =

−2
∆(ω)

ĥ(ω + π). (7.126)

Hence

ĝ(ω) b̃g
∗
(ω) = −∆(ω + π)

∆(ω)
b̃h
∗
(ω + π) ĥ(ω + π). (7.127)
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The definition (7.123) implies that ∆(ω + π) = −∆(ω). Inserting (7.127) in (7.117) yields (7.124).

The Fourier transform of finite impulse response filters is a finite series in exp(±inω). The deter-
minant ∆(ω) defined by (7.123) is therefore a finite series. Moreover (7.126) proves that ∆−1(ω) must
also be a finite series. A finite series in exp(±inω) whose inverse is also a finite series must have a
single term. Since ∆(ω) = −∆(ω + π) the exponent n must be odd. This proves that there exist l ∈ Z

and a ∈ R such that
∆(ω) = −2 a exp[i(2l + 1)ω]. (7.128)

Inserting this expression in (7.126) yields (7.125).

The factor a is a gain which is inverse for the decomposition and reconstruction filters and l is a
reverse shift. We generally set a = 1 and l = 0. In the time domain (7.125) can then be rewritten

g[n] = (−1)1−n h̃[1− n] and g̃[n] = (−1)1−n h[1− n]. (7.129)

The two pairs of filters (h, g) and (h̃, g̃) play a symmetric role and can be inverted.

Conjugate Mirror Filters If we impose that the decomposition filter h is equal to the reconstruction
filter h̃, then (7.124) is the condition of Smith and Barnwell [443] and Mintzer [375] that defines
conjugate mirror filters:

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (7.130)

It is identical to the filter condition (7.29) that is required in order to synthesize orthogonal wavelets.
The next section proves that it is also equivalent to discrete orthogonality properties.

7.3.3 Biorthogonal Bases of !
2(Z)

The decomposition of a discrete signal in a multirate filter bank is interpreted as an expansion in
a basis of !

2(Z). Observe first that the low-pass and high-pass signals of a filter bank computed
with (7.112) can be rewritten as inner products in !

2(Z):

a1[l] =
+∞∑

n=−∞
a0[n]h[n− 2l] = 〈a0[n], h[n− 2l]〉, (7.131)

d1[l] =
+∞∑

n=−∞
a0[n] g[n− 2l] = 〈a0[n], g[n− 2l]〉. (7.132)

The signal recovered by the reconstructing filters is

a0[n] =
+∞∑

l=−∞

a1[l] h̃[n− 2l] +
+∞∑

l=−∞

d1[l] g̃[n− 2l]. (7.133)

Inserting (7.131) and (7.132) yields

a0[n] =
+∞∑

l=−∞

〈f [k], h[k − 2l]〉 h̃[n− 2l] +
+∞∑

l=−∞

〈f [k], g[k − 2l]〉 g̃[n− 2l]. (7.134)

We recognize the decomposition of a0 over dual families of vectors {h̃[n − 2l], g̃[n − 2l]}l∈Z and
{h[n− 2l], g[n− 2l]}l∈Z. The following theorem proves that these two families are biorthogonal.

Theorem 7.13. If h, g, h̃ and g̃ are perfect reconstruction filters whose Fourier transform is
bounded then {h̃[n− 2l], g̃[n− 2l]}l∈Z and {h[n− 2l], g[n − 2l]}l∈Z are biorthogonal Riesz bases of
!
2(Z).

Proof. To prove that these families are biorthogonal we must show that for all n ∈ Z

〈h̃[n], h[n − 2l]〉 = δ[l] (7.135)

〈g̃[n], g[n − 2l]〉 = δ[l] (7.136)
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and
〈h̃[n], g[n − 2l]〉 = 〈g̃[n], h[n − 2l]〉 = 0. (7.137)

For perfect reconstruction filters, (7.124) proves that

1
2

“
ĥ∗(ω) b̃h(ω) + ĥ∗(ω + π) b̃h(ω + π)

”
= 1.

In the time domain, this equation becomes

h̄ % h̃[2l] =
+∞X

k=−∞

h̃[n] h̄[n − 2l] = δ[l], (7.138)

which verifies (7.135). The same proof as for (7.124) shows that

1
2

“
ĝ∗(ω) b̃g(ω) + ĝ∗(ω + π) b̃g(ω + π)

”
= 1.

In the time domain, this equation yields (7.136). It also follows from (7.122) that

1
2

“
ĝ∗(ω) b̃h(ω) + ĝ∗(ω + π) b̃h(ω + π)

”
= 0,

and
1
2

“
ĥ∗(ω) b̃g(ω) + ĥ∗(ω + π) b̃g(ω + π)

”
= 0.

The inverse Fourier transforms of these two equations yield (7.137).

To finish the proof, one must show the existence of Riesz bounds. The reader can verify that this
is a consequence of the fact that the Fourier transform of each filter is bounded.

Orthogonal Bases A Riesz basis is orthonormal if the dual basis is the same as the original basis.
For filter banks, this means that h = h̃ and g = g̃. The filter h is then a conjugate mirror filter

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (7.139)

The resulting family {h[n− 2l], g[n− 2l]}l∈Z is an orthogonal basis of !
2(Z).

Discrete Wavelet Bases The construction of conjugate mirror filters is simpler than the construc-
tion of orthogonal wavelet bases of L2(R). Why then should we bother with continuous time
models of wavelets, since in any case all computations are discrete and rely on conjugate mirror
filters? The reason is that conjugate mirror filters are most often used in filter banks that cascade
several levels of filterings and subsamplings. It is thus necessary to understand the behavior of such
a cascade [406]. In a wavelet filter bank tree, the output of the low-pass filter h̄ is sub-decomposed
whereas the output of the high-pass filter ḡ is not; this is illustrated in Figure 7.12. Suppose that
the sampling distance of the original discrete signal is N−1. We denote aL[n] this discrete signal,
with 2L = N−1. At the depth j−L ! 0 of this filter bank tree, the low-pass signal aj and high-pass
signal dj can be written

aj [l] = aL ' φ̄j [2
j−Ll] = 〈aL[n],φj [n− 2j−Ll]〉

and
dj [l] = aL ' ψ̄j [2

j−Ll] = 〈aL[n],ψj [n− 2j−Ll]〉.

The Fourier transforms of these equivalent filters are

φ̂j(ω) =
j−L−1∏

p=0

ĥ(2pω) and ψ̂j(ω) = ĝ(2j−L−1ω)
j−L−2∏

p=0

ĥ(2pω). (7.140)

A filter bank tree of depth J − L ! 0, decomposes aL over the family of vectors
[{
φJ [n− 2J−Ll]

}

l∈Z

,
{
ψj [n− 2j−Ll]

}

L<j!J , l∈Z

]
. (7.141)
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For conjugate mirror filters, one can verify that this family is an orthonormal basis of !
2(Z).

These discrete vectors are close to a uniform sampling of the continuous time scaling functions
φj(t) = 2−j/2φ(2−jt) and wavelets ψj(t) = 2−j/2φ(2−jt). When the number L − j of successive
convolutions increases, one can verify that φj [n] and ψj [n] converge respectively to N−1/2 φj(N−1n)
and N−1/2 ψj(N−1n). The factor N−1/2 normalizes the !

2(Z) norm of these sampled functions. If
L− j = 4 then φj [n] and ψj [n] are already very close to these limit values. The impulse responses
φj [n] and ψj [n] of the filter bank are thus much closer to continuous time scaling functions and
wavelets than they are to the original conjugate mirror filters h and g. This explains why wavelets
provide appropriate models for understanding the applications of these filter banks. Chapter 8
relates more general filter banks to wavelet packet bases.

If the decomposition and reconstruction filters of the filter bank are different, the resulting basis
(7.141) is non-orthogonal. The stability of this discrete wavelet basis does not degrade when the
depth J−L of the filter bank increases. The next section shows that the corresponding continuous
time wavelet ψ(t) generates a Riesz basis of L2(R).

7.4 Biorthogonal Wavelet Bases

The stability and completeness properties of biorthogonal wavelet bases are described for perfect
reconstruction filters h and h̃ having a finite impulse response. The design of linear phase wavelets
with compact support is explained in Section 7.4.2.

7.4.1 Construction of Biorthogonal Wavelet Bases

An infinite cascade of perfect reconstruction filters (h, g) and (h̃, g̃) yields two scaling functions
and wavelets whose Fourier transforms satisfy

φ̂(2ω) =
1√
2

ĥ(ω) φ̂(ω) , ̂̃φ(2ω) =
1√
2
̂̃h(ω) ̂̃φ(ω) , (7.142)

ψ̂(2ω) =
1√
2

ĝ(ω) φ̂(ω) , ̂̃ψ(2ω) =
1√
2
̂̃g(ω) ̂̃φ(ω) . (7.143)

In the time domain, these relations become

φ(t) =
√

2
+∞∑

n=−∞
h[n]φ(2t− n) , φ̃(t) =

√
2

+∞∑

n=−∞
h̃[n] φ̃(2t− n) (7.144)

ψ(t) =
√

2
+∞∑

n=−∞
g[n]φ(2t− n) , ψ̃(t) =

√
2

+∞∑

n=−∞
g̃[n] φ̃(2t− n) . (7.145)

The perfect reconstruction conditions are given by Theorem 7.12. If we normalize the gain and
shift to a = 1 and l = 0, the filters must satisfy

ĥ∗(ω) ̂̃h(ω) + ĥ∗(ω + π) ̂̃h(ω + π) = 2, (7.146)

and

ĝ(ω) = e−iω ̂̃h
∗
(ω + π) , ̂̃g(ω) = e−iω ĥ∗(ω + π). (7.147)

Wavelets should have a zero average, which means that ψ̂(0) = ̂̃ψ(0) = 0. This is obtained

by setting ĝ(0) = ̂̃g(0) = 0 and hence ĥ(π) = ̂̃h(π) = 0. The perfect reconstruction condition

(7.146) implies that ĥ∗(0) ̂̃h(0) = 2. Since both filters are defined up to multiplicative constants

respectively equal to λ and λ−1, we adjust λ so that ĥ(0) = ̂̃h(0) =
√

2.
In the following, we also suppose that h and h̃ are finite impulse response filters. One can then

prove [18] that

φ̂(ω) =
+∞∏

p=1

ĥ(2−pω)√
2

and ̂̃φ(ω) =
+∞∏

p=1

̂̃h(2−pω)√
2

(7.148)
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are the Fourier transforms of distributions of compact support. However, these distributions may
exhibit wild behavior and have infinite energy. Some further conditions must be imposed to guar-

antee that φ̂ and ̂̃φ are the Fourier transforms of finite energy functions. The following theorem
gives sufficient conditions on the perfect reconstruction filters for synthesizing biorthogonal wavelet
bases of L2(R).

Theorem 7.14 (Cohen, Daubechies, Feauveau). Suppose that there exist strictly positive trigono-
metric polynomials P (eiω) and P̃ (eiω) such that

∣∣∣ĥ
(ω

2

)∣∣∣
2
P (eiω/2) +

∣∣∣ĥ
(ω

2
+ π

)∣∣∣
2
P (ei(ω/2+π)) = 2P (eiω), (7.149)

∣∣∣̂̃h
(ω

2

)∣∣∣
2

P̃ (eiω/2) +
∣∣∣̂̃h
(ω

2
+ π

)∣∣∣
2

P̃ (ei(ω/2+π)) = 2 P̃ (eiω) (7.150)

and that P and P̃ are unique (up to normalization). Suppose that

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0 , inf
ω∈[−π/2,π/2]

|̂̃h(ω)| > 0. (7.151)

• Then the functions φ̂ and ̂̃φ defined in (7.148) belong to L2(R), and φ, φ̃ satisfy biorthogonal
relations

〈φ(t), φ̃(t− n)〉 = δ[n]. (7.152)

• The two wavelet families {ψj,n}(j,n)∈Z2 and {ψ̃j,n}(j,n)∈Z2 are biorthogonal Riesz bases of
L2(R).

The proof of this theorem is in [171] and [18]. The hypothesis (7.151) is also imposed by
Theorem 7.2, which constructs orthogonal bases of scaling functions. The conditions (7.149) and
(7.150) do not appear in the construction of wavelet orthogonal bases because they are always
satisfied with P (eiω) = P̃ (eiω) = 1 and one can prove that constants are the only invariant
trigonometric polynomials [340].

Biorthogonality means that for any (j, j′, n, n′) ∈ Z4,

〈ψj,n, ψ̃j′,n′〉 = δ[n− n′] δ[j − j′]. (7.153)

Any f ∈ L2(R) has two possible decompositions in these bases:

f =
+∞∑

n,j=−∞

〈f,ψj,n〉 ψ̃j,n =
+∞∑

n,j=−∞

〈f, ψ̃j,n〉ψj,n . (7.154)

The Riesz stability implies that there exist A > 0 and B > 0 such that

A ‖f‖2 "

+∞∑

n,j=−∞

|〈f,ψj,n〉|2 " B ‖f‖2, (7.155)

1

B
‖f‖2 "

+∞∑

n,j=−∞

|〈f, ψ̃j,n〉|2 "
1

A
‖f‖2. (7.156)

Multiresolutions Biorthogonal wavelet bases are related to multiresolution approximations. The
family {φ(t−n)}n∈Z is a Riesz basis of the space V0 it generates, whereas {φ̃(t−n)}n∈Z is a Riesz
basis of another space Ṽ0. Let Vj and Ṽj be the spaces defined by

f(t) ∈ Vj ⇔ f(2jt) ∈ V0,

f(t) ∈ Ṽj ⇔ f(2jt) ∈ Ṽ0.

One can verify that {Vj}j∈Z and {Ṽj}j∈Z are two multiresolution approximations of L2(R). For
any j ∈ Z, {φj,n}n∈Z and {φ̃j,n}n∈Z are Riesz bases of Vj and Ṽj . The dilated wavelets {ψj,n}n∈Z

and {ψ̃j,n}n∈Z are bases of two detail spaces Wj and W̃j such that

Vj ⊕Wj = Vj−1 and Ṽj ⊕ W̃j = Ṽj−1 .

The biorthogonality of the decomposition and reconstruction wavelets implies that Wj is not
orthogonal to Vj but is to Ṽj whereas W̃j is not orthogonal to Ṽj but is to Vj .
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Fast Biorthogonal Wavelet Transform The perfect reconstruction filter bank studied in Section 7.3.2
implements a fast biorthogonal wavelet transform. For any discrete signal input b[n] sampled at
intervals N−1 = 2L, there exists f ∈ VL such that aL[n] = 〈f,φL,n〉 = N−1/2 b[n]. The wavelet
coefficients are computed by successive convolutions with h̄ and ḡ. Let aj [n] = 〈f,φj,n〉 and
dj [n] = 〈f,ψj,n〉. As in Theorem 7.10, one can prove that

aj+1[n] = aj ' h̄[2n] , dj+1[n] = aj ' ḡ[2n] . (7.157)

The reconstruction is performed with the dual filters h̃ and g̃:

aj [n] = ǎj+1 ' h̃[n] + ďj+1 ' g̃[n]. (7.158)

If aL includes N non-zero samples, the biorthogonal wavelet representation [{dj}L<j!J , aJ ] is
calculated with O(N) operations, by iterating (7.157) for L " j < J . The reconstruction of aL by
applying (7.158) for J > j ! L requires the same number of operations.

7.4.2 Biorthogonal Wavelet Design

The support size, the number of vanishing moments, the regularity and the symmetry of biorthog-
onal wavelets is controlled with an appropriate design of h and h̃.

Support If the perfect reconstruction filters h and h̃ have a finite impulse response then the
corresponding scaling functions and wavelets also have a compact support. As in Section 7.2.1,
one can show that if h[n] and h̃[n] are non-zero respectively for N1 " n " N2 and Ñ1 " n " Ñ2,
then φ and φ̃ have a support respectively equal to [N1, N2] and [Ñ1, Ñ2]. Since

g[n] = (−1)1−n h[1− n] and g̃[n] = (−1)1−n h̃[1− n],

the supports of ψ and ψ̃ defined in (7.145) are respectively
[

N1 − Ñ2 + 1

2
,
N2 − Ñ1 + 1

2

]

and

[
Ñ1 −N2 + 1

2
,
Ñ2 −N1 + 1

2

]

. (7.159)

Both wavelets thus have a support of the same size and equal to

l =
N2 −N1 + Ñ2 − Ñ1

2
. (7.160)

Vanishing Moments The number of vanishing moments of ψ and ψ̃ depends on the number of

zeroes at ω = π of ĥ(ω) and ̂̃h(ω). Theorem 7.4 proves that ψ has p̃ vanishing moments if the
derivatives of its Fourier transform satisfy ψ̂(k)(0) = 0 for k " p̃. Since φ̂(0) = 1, (7.4.1) implies

that it is equivalent to impose that ĝ(ω) has a zero of order p̃ at ω = 0. Since ĝ(ω) = e−iω ̂̃h∗(ω + π),

this means that ̂̃h(ω) has a zero of order p̃ at ω = π. Similarly the number of vanishing moments
of ψ̃ is equal to the number p of zeroes of ĥ(ω) at π.

Regularity Although the regularity of a function is a priori independent of the number of vanishing
moments, the smoothness of biorthogonal wavelets is related to their vanishing moments. The
regularity of φ and ψ is the same because (7.145) shows that ψ is a finite linear expansion of φ
translated. Tchamitchian’s Theorem 7.6 gives a sufficient condition for estimating this regularity.
If ĥ(ω) has a zero of order p at π, we can perform the factorization

ĥ(ω) =

(
1 + e−iω

2

)p

l̂(ω) . (7.161)

Let B = supω∈[−π,π] |l̂(ω)|. Theorem 7.6 proves that φ is uniformly Lipschitz α for

α < α0 = p− log2 B − 1.
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Generally, log2 B increases more slowly than p. This implies that the regularity of φ and ψ increases
with p, which is equal to the number of vanishing moments of ψ̃. Similarly, one can show that the
regularity of ψ̃ and φ̃ increases with p̃, which is the number of vanishing moments of ψ. If ĥ and
h̃ have different numbers of zeroes at π, the properties of ψ and ψ̃ can therefore be very different.

Ordering of Wavelets Since ψ and ψ̃ might not have the same regularity and number of vanishing
moments, the two reconstruction formulas

f =
+∞∑

n,j=−∞

〈f,ψj,n〉 ψ̃j,n, (7.162)

f =
+∞∑

n,j=−∞

〈f, ψ̃j,n〉ψj,n (7.163)

are not equivalent. The decomposition (7.162) is obtained with the filters (h, g) at the decompo-
sition and (h̃, g̃) at the reconstruction. The inverse formula (7.163) corresponds to (h̃, g̃) at the
decomposition and (h, g) at the reconstruction.

To produce small wavelet coefficients in regular regions we must compute the inner products
using the wavelet with the maximum number of vanishing moments. The reconstruction is then
performed with the other wavelet, which is generally the smoothest one. If errors are added to
the wavelet coefficients, for example with a quantization, a smooth wavelet at the reconstruction
introduces a smooth error. The number of vanishing moments of ψ is equal to the number p̃ of

zeroes at π of ̂̃h. Increasing p̃ also increases the regularity of ψ̃. It is thus better to use h at the

decomposition and h̃ at the reconstruction if ĥ has fewer zeroes at π than ̂̃h.

Symmetry It is possible to construct smooth biorthogonal wavelets of compact support which
are either symmetric or antisymmetric. This is impossible for orthogonal wavelets, besides the
particular case of the Haar basis. Symmetric or antisymmetric wavelets are synthesized with
perfect reconstruction filters having a linear phase. If h and h̃ have an odd number of non-zero
samples and are symmetric about n = 0, the reader can verify that φ and φ̃ are symmetric about
t = 0 while ψ and ψ̃ are symmetric with respect to a shifted center. If h and h̃ have an even number
of non-zero samples and are symmetric about n = 1/2, then φ(t) and φ̃(t) are symmetric about
t = 1/2, while ψ and ψ̃ are antisymmetric with respect to a shifted center. When the wavelets are
symmetric or antisymmetric, wavelet bases over finite intervals are constructed with the folding
procedure of Section 7.5.2.

7.4.3 Compactly Supported Biorthogonal Wavelets

We study the design of biorthogonal wavelets with a minimum size support for a specified number of
vanishing moments. Symmetric or antisymmetric compactly supported spline biorthogonal wavelet
bases are constructed with a technique introduced in [171].

Theorem 7.15 (Cohen, Daubechies, Feauveau). Biorthogonal wavelets ψ and ψ̃ with respectively
p̃ and p vanishing moments have a support of size at least p + p̃ − 1. CDF biorthogonal wavelets
have a minimum support of size p + p̃− 1.

Proof. The proof follows the same approach as the proof of Daubechies’s Theorem 7.7. One can verify
that p and p̃ must necessarily have the same parity. We concentrate on filters h[n] and h̃[n] that have
a symmetry with respect to n = 0 or n = 1/2. The general case proceeds similarly. We can then factor

ĥ(ω) =
√

2 exp

„
−iεω

2

« “
cos

ω
2

”p
L(cosω) , (7.164)

b̃h(ω) =
√

2 exp

„
−iεω

2

« “
cos

ω
2

”p̃
L̃(cosω) , (7.165)

with ε = 0 for p and p̃ even and ε = 1 for odd values. Let q = (p + p̃)/2. The perfect reconstruction
condition

ĥ∗(ω) b̃h(ω) + ĥ∗(ω + π) b̃h(ω + π) = 2



228 Chapter 7. Wavelet Bases

n p,p̃ h[n] h̃[n]

0 0.70710678118655 0.99436891104358
1,−1p = 20.35355339059327 0.41984465132951
2,−2p̃ = 4 −0.17677669529664
3,−3 −0.06629126073624
4,−4 0.03314563036812

0, 1 0.53033008588991 0.95164212189718
−1, 2p = 30.17677669529664−0.02649924094535
−2, 3p̃ = 7 −0.30115912592284
−3, 4 0.03133297870736
−4, 5 0.07466398507402
−5, 6 −0.01683176542131
−6, 7 −0.00906325830378
−7, 8 0.00302108610126

Table 7.3: Perfect reconstruction filters h and h̃ for compactly supported spline wavelets, with ĥ
and ̂̃h having respectively p̃ and p zeros at ω = π.

is imposed by writing

L(cosω) L̃(cosω) = P
“
sin2 ω

2

”
, (7.166)

where the polynomial P (y) must satisfy for all y ∈ [0, 1]

(1 − y)q P (y) + yq P (1 − y) = 1. (7.167)

We saw in (7.96) that the polynomial of minimum degree satisfying this equation is

P (y) =
q−1X

k=0

„
q − 1 + k

k

«
yk. (7.168)

The spectral factorization (7.166) is solved with a root attribution similar to (7.98). The resulting
minimum support of ψ and ψ̃ specified by (7.160) is then p + p̃ − 1.

Spline Biorthogonal Wavelets Let us choose

ĥ(ω) =
√

2 exp

(
−iεω

2

) (
cos

ω

2

)p
(7.169)

with ε = 0 for p even and ε = 1 for p odd. The scaling function computed with (7.148) is then a
box spline of degree p− 1

φ̂(ω) = exp

(
−iεω

2

) (
sin(ω/2)

ω/2

)p

.

Since ψ is a linear combination of box splines φ(2t − n), it is a compactly supported polynomial
spline of same degree.

The number of vanishing moments p̃ of ψ is a free parameter, which must have the same parity
as p. Let q = (p+ p̃)/2. The biorthogonal filter h̃ of minimum length is obtained by observing that
L(cosω) = 1 in (7.164). The factorization (7.166) and (7.168) thus imply that

̂̃h(ω) =
√

2 exp

(
−iεω

2

) (
cos

ω

2

)p̃
q−1∑

k=0

(
q − 1 + k

k

) (
sin

ω

2

)2k
. (7.170)

These filters satisfy the conditions of Theorem 7.14 and thus generate biorthogonal wavelet bases.
Table 7.3 gives the filter coefficients for (p = 2, p̃ = 4) and (p = 3, p̃ = 7). The resulting dual
wavelet and scaling functions are shown in Figure 7.13.



7.4. Biorthogonal Wavelet Bases 229
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Figure 7.14: Spline biorthogonal wavelets and scaling functions of compact support corresponding
to the filters of Table 7.3.
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Figure 7.15: Biorthogonal wavelets and scaling functions calculated with the filters of Table 7.4,
with p = 2 and p̃ = 2 (top row) and with p = 4 and p̃ = 4 (bottom row).

Closer Filter Length Biorthogonal filters h and h̃ of more similar length are obtained by factoring
the polynomial P (sin2 ω

2 ) in (7.166) with two polynomial L(cosω) and L̃(cosω) of similar degree.
There is a limited number of possible factorizations. For q = (p + p̃)/2 < 4, the only solution
is L(cosω) = 1. For q = 4 there is one non-trivial factorization and for q = 5 there are two.
Table 7.4 gives the resulting coefficients of the filters h and h̃ of most similar length, computed
by Cohen, Daubechies and Feauveau [171]. These filters also satisfy the conditions of Theorem
7.14 and therefore define biorthogonal wavelet bases. Figure 7.15 gives the scaling functions and
wavelets for p = p̃ = 2 and p = p̃ = 4, which correspond respectively to filter sizes 5/3 and 9/7.
For p = p̃ = 4, φ, ψ are similar to φ̃, ψ̃, which indicates that this basis is nearly orthogonal. This
particular set of filters is often used in image compression and recommended for JPEG-2000. The
quasi-orthogonality guarantees a good numerical stability and the symmetry allows one to use the
folding procedure of Section 7.5.2 at the boundaries. There are also enough vanishing moments
to create small wavelet coefficients in regular image domains. Section 7.8.5 describes their lifting
implementation which is simple and efficient. The filters 5/3 are also recommended for lossless
compression with JPEG-2000, because they use integer operations with a lifting algorithm. The
design of other compactly supported biorthogonal filters is discussed extensively in [171, 473].
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p, p̃ n h[n] h̃[n]

p = 2 0 1.06066017177982 0.70710678118655
p̃ = 2 −1, 1 0.35355339059327 0.35355339059327

−2, 2 -0.17677669529664 0

0 0.85269867900889 0.78848561640637
p = 4 −1, 1 0.37740285561283 0.41809227322204
p̃ = 4 −2, 2−0.11062440441844−0.04068941760920

−3, 3−0.02384946501956−0.06453888262876
−4, 4 0.03782845554969 0

0 0.89950610974865 0.73666018142821
p = 5 −1, 1 0.47680326579848 0.34560528195603
p̃ = 5 −2, 2−0.09350469740094−0.05446378846824

−3, 3−0.13670658466433 0.00794810863724
−4, 4−0.00269496688011 0.03968708834741
−5, 5 0.01345670945912 0

0 0.54113273169141 1.32702528570780
p = 5 −1, 1 0.34335173921766 0.47198693379091
p̃ = 5 −2, 2 0.06115645341349−0.36378609009851

−3, 3 0.00027989343090−0.11843354319764
−4, 4 0.02183057133337 0.05382683783789
−5, 5 0.00992177208685 0

Table 7.4: Perfect reconstruction filters of most similar length.

7.5 Wavelet Bases on an Interval

To decompose signals f defined over an interval [0, 1], it is necessary to construct wavelet bases
of L2[0, 1]. Such bases are synthesized by modifying the wavelets ψj,n(t) = 2−j/2ψ(2−jt − n) of
a basis {ψj,n}(j,n)∈Z2 of L2(R). The inside wavelets ψj,n whose support are included in [0, 1] are
not modified. The boundary wavelets ψj,n whose supports overlap t = 0 or t = 1 are transformed
into functions having a support in [0, 1], which are designed in order to provide the necessary
complement to generate a basis of L2[0, 1]. If ψ has a compact support then there is a constant
number of boundary wavelets at each scale.

The main difficulty is to construct boundary wavelets that keep their vanishing moments. The
next three sections describe different approaches to constructing boundary wavelets. Periodic
wavelets have no vanishing moments at the boundary, whereas folded wavelets have one vanishing
moment. The custom-designed boundary wavelets of Section 7.5.3 have as many vanishing moments
as the inside wavelets but are more complicated to construct. Scaling functions φj,n are also
restricted to [0, 1] by modifying the scaling functions φj,n(t) = 2−j/2φ(2−jt− n) associated to the
wavelets ψj,n. The resulting wavelet basis of L2[0, 1] is composed of 2−J scaling functions at a
coarse scale 2J < 1, plus 2−j wavelets at each scale 2j " 2J :

[
{φint

J,n}0!n<2−J , {ψint
j,n}−∞<j!J , 0!n<2−j

]
. (7.171)

On any interval [a, b], a wavelet orthonormal basis of L2[a, b] is constructed with a dilation by b−a
and a translation by a of the wavelets in (7.171).

Discrete Basis of CN The decomposition of a signal in a wavelet basis over an interval is computed
by modifying the fast wavelet transform algorithm of Section 7.3.1. A discrete signal b[n] of N
samples is associated to the approximation of a signal f ∈ L2[0, 1] at a scale N−1 = 2L with
(7.111):

N−1/2 b[n] = aL[n] = 〈f,φint
L,n〉 for 0 " n < 2−L .

Its wavelet coefficients can be calculated at scales 1 ! 2j > 2L. We set

aj [n] = 〈f,φint
j,n〉 and dj [n] = 〈f,ψint

j,n〉 for 0 " n < 2−j . (7.172)
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The wavelets and scaling functions with support inside [0, 1] are identical to the wavelets and
scaling functions of a basis of L2(R). The corresponding coefficients aj [n] and dj [n] can thus be
calculated with the decomposition and reconstruction equations given by Theorem 7.10. These
convolution formulas must however be modified near the boundary where the wavelets and scaling
functions are modified. Boundary calculations depend on the specific design of the boundary
wavelets, as explained in the next three sections. The resulting filter bank algorithm still computes
the N coefficients of the wavelet representation [aJ , {dj}L<j!J ] of aL with O(N) operations.

Wavelet coefficients can also be written as discrete inner products of aL with discrete wavelets:

aj [n] = 〈aL[m],φint
j,n[m]〉 and dj [n] = 〈aL[m],ψint

j,n[m]〉 . (7.173)

As in Section 7.3.3, we verify that
[
{φint

J,n[m]}0!n<2−J , {ψint
j,n[m]}L<j!J , 0!n<2−j

]

is an orthonormal basis of CN .

7.5.1 Periodic Wavelets

A wavelet basis {ψj,n}(j,n)∈Z2 of L2(R) is transformed into a wavelet basis of L2[0, 1] by periodizing
each ψj,n. The periodization of f ∈ L2(R) over [0, 1] is defined by

fpér(t) =
+∞∑

k=−∞

f(t + k). (7.174)

The resulting periodic wavelets are

ψpér
j,n (t) =

1√
2j

+∞∑

k=−∞

ψ

(
t− 2jn + k

2j

)
.

For j " 0, there are 2−j different ψpér
j,n indexed by 0 " n < 2−j . If the support of ψj,n is included

in [0, 1] then ψpér
j,n (t) = ψj,n(t) for t ∈ [0, 1]. The restriction to [0, 1] of this periodization thus

modifies only the boundary wavelets whose supports overlap t = 0 or t = 1. As indicated in Figure
7.16, such wavelets are transformed into boundary wavelets which have two disjoint components
near t = 0 and t = 1. Taken separately, the components near t = 0 and t = 1 of these boundary
wavelets have no vanishing moments, and thus create large signal coefficients, as we shall see later.
The following theorem proves that periodic wavelets together with periodized scaling functions
φpér

j,n generate an orthogonal basis of L2[0, 1].

0 t1

Figure 7.16: The restriction to [0, 1] of a periodic wavelet ψpér
j,n has two disjoint components near

t = 0 and t = 1.

Theorem 7.16. For any J " 0
[
{ψpér

j,n}−∞<j!J,0!n<2−j , {φpér
J,n}0!n<2−J

]
(7.175)

is an orthogonal basis of L2[0, 1].

Proof. The orthogonality of this family is proved with the following lemma.

Lemma 7.2. Let α(t),β(t) ∈ L
2(R). If 〈α(t),β(t + k)〉 = 0 for all k ∈ Z then

Z 1

0

αpér(t)βpér(t) dt = 0. (7.176)
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To verify (7.176) we insert the definition (7.174) of periodized functions:

Z 1

0

αpér(t)βpér(t) dt =

Z +∞

−∞
α(t)βpér(t) dt

=
+∞X

k=−∞

Z +∞

−∞
α(t)β(t + k) dt = 0.

Since [{ψj,n}−∞<j!J,n∈Z , {φJ,n}n∈Z] is orthogonal in L
2(R), we can verify that any two different

wavelets or scaling functions αpér and βpér in (7.175) have necessarily a non-periodized version that
satisfies 〈α(t),β(t+ k)〉 = 0 for all k ∈ Z. Lemma 7.2 thus proves that (7.175) is orthogonal in L

2[0, 1].

To prove that this family generates L
2[0, 1], we extend f ∈ L

2[0, 1] with zeros outside [0, 1] and
decompose it in the wavelet basis of L

2(R):

f =
JX

j=−∞

+∞X

n=−∞

〈f,ψj,n〉ψj,n +
+∞X

n=−∞

〈f,φJ,n〉φJ,n . (7.177)

This zero extension is periodized with the sum (7.174), which defines fpér(t) = f(t) for t ∈ [0, 1].
Periodizing (7.177) proves that f can be decomposed over the periodized wavelet family (7.175) in
L

2[0, 1].

Theorem 7.16 shows that periodizing a wavelet orthogonal basis of L2(R) defines a wavelet or-
thogonal basis of L2[0, 1]. If J = 0 then there is a single scaling function, and one can verify that
φ0,0(t) = 1. The resulting scaling coefficient 〈f,φ0,0〉 is the average of f over [0, 1].

Periodic wavelet bases have the disadvantage of creating high amplitude wavelet coefficients in
the neighborhood of t = 0 and t = 1, because the boundary wavelets have separate components
with no vanishing moments. If f(0) .= f(1), the wavelet coefficients behave as if the signal were
discontinuous at the boundaries. This can also be verified by extending f ∈ L2[0, 1] into an infinite
1 periodic signal fpér and by showing that

∫ 1

0
f(t)ψpér

j,n (t) dt =

∫ +∞

−∞
fpér(t)ψj,n(t) dt. (7.178)

If f(0) .= f(1) then fpér(t) is discontinuous at t = 0 and t = 1, which creates high amplitude
wavelet coefficients when ψj,n overlaps the interval boundaries.

Periodic Discrete Transform For f ∈ L2[0, 1] let us consider

aj [n] = 〈f,φpér
j,n〉 and dj [n] = 〈f,ψpér

j,n 〉.

We verify as in (7.178) that these inner products are equal to the coefficients of a periodic signal
decomposed in a non-periodic wavelet basis:

aj [n] = 〈fpér,φj,n〉 and dj [n] = 〈fpér,ψj,n〉.

The convolution formulas of Theorem 7.10 thus apply if we take into account the periodicity of
fpér. This means that aj [n] and dj [n] are considered as discrete signals of period 2−j , and all
convolutions in (7.102-7.104) must therefore be replaced by circular convolutions. Despite the
poor behavior of periodic wavelets near the boundaries, they are often used because the numerical
implementation is particularly simple.

7.5.2 Folded Wavelets

Decomposing f ∈ L2[0, 1] in a periodic wavelet basis was shown in (7.178) to be equivalent to a
decomposition of fpér in a regular basis of L2(R). Let us extend f with zeros outside [0, 1]. To
avoid creating discontinuities with such a periodization, the signal is folded with respect to t = 0:
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f0(t) = f(t) + f(−t). The support of f0 is [−1, 1] and it is transformed into a 2 periodic signal, as
illustrated in Figure 7.17

f repl(t) =
+∞∑

k=−∞

f0(t− 2k) =
+∞∑

k=−∞

f(t− 2k) +
+∞∑

k=−∞

f(2k − t). (7.179)

Clearly f repl(t) = f(t) if t ∈ [0, 1], and it is symmetric with respect to t = 0 and t = 1. If f
is continuously differentiable then f repl is continuous at t = 0 and t = 1, but its derivative is
discontinuous at t = 0 and t = 1 if f ′(0) .= 0 and f ′(1) .= 0.

Decomposing f repl in a wavelet basis {ψj,n}(j,n)∈Z2 is equivalent to decomposing f on a folded

wavelet basis. Let ψrepl
j,n be the folding of ψj,n with the summation (7.179). One can verify that

∫ 1

0
f(t)ψrepl

j,n (t) dt =

∫ +∞

−∞
f repl(t)ψj,n(t) dt. (7.180)

Suppose that f is regular over [0, 1]. Then f repl is continuous at t = 0, 1 and hence produces
smaller boundary wavelet coefficients than fpér. However, it is not continuously differentiable at
t = 0, 1, which creates bigger wavelet coefficients at the boundary than inside.

0

f(t)

1

Figure 7.17: The folded signal f repl(t) is 2 periodic, symmetric about t = 0 and t = 1, and equal
to f(t) on [0, 1].

To construct a basis of L2[0, 1] with the folded wavelets ψrepl
j,n , it is sufficient for ψ(t) to be either

symmetric or antisymmetric with respect to t = 1/2. The Haar wavelet is the only real compactly
supported wavelet that is symmetric or antisymmetric and which generates an orthogonal basis
of L2(R). On the other hand, if we loosen up the orthogonality constraint, Section 7.4 proves
that there exist biorthogonal bases constructed with compactly supported wavelets that are either
symmetric or antisymmetric. Let {ψj,n}(j,n)∈Z2 and {ψ̃j,n}(j,n)∈Z2 be such biorthogonal wavelet
bases. If we fold the wavelets as well as the scaling functions then for J " 0

[
{ψrepl

j,n }−∞<j!J , 0!n<2−j , {φrepl
J,n }0!n<2−J

]
(7.181)

is a Riesz basis of L2[0, 1] [173]. The biorthogonal basis is obtained by folding the dual wavelets
ψ̃j,n and is given by [

{ψ̃repl
j,n }−∞<j!J , 0!n<2−j , {φ̃repl

J,n }0!n<2−J

]
. (7.182)

If J = 0 then φrepl
0,0 = φ̃repl

0,0 = 1.
Biorthogonal wavelets of compact support are characterized by a pair of finite perfect recon-

struction filters (h, h̃). The symmetry of these wavelets depends on the symmetry and size of the
filters, as explained in Section 7.4.2. A fast folded wavelet transform is implemented with a modi-
fied filter bank algorithm, where the treatment of boundaries is slightly more complicated than for
periodic wavelets. The symmetric and antisymmetric cases are considered separately.

Folded Discrete Transform For f ∈ L2[0, 1], we consider

aj [n] = 〈f,φrepl
j,n 〉 and dj [n] = 〈f,ψrepl

j,n 〉.

We verify as in (7.180) that these inner products are equal to the coefficients of a folded signal
decomposed in a non-folded wavelet basis:

aj [n] = 〈f repl,φj,n〉 and dj [n] = 〈f repl,ψj,n〉.
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The convolution formulas of Theorem 7.10 thus apply if we take into account the symmetry and
periodicity of f repl. The symmetry properties of φ and ψ imply that aj [n] and dj [n] also have
symmetry and periodicity properties, which must be taken into account in the calculations of
(7.102-7.104).

Symmetric biorthogonal wavelets are constructed with perfect reconstruction filters h and ĥ of
odd size that are symmetric about n = 0. Then φ is symmetric about 0, whereas ψ is symmetric
about 1/2. As a result, one can verify that aj [n] is 2−j+1 periodic and symmetric about n = 0
and n = 2−j . It is thus characterized by 2−j + 1 samples, for 0 " n " 2−j . The situation is
different for dj [n] which is 2−j+1 periodic but symmetric with respect to −1/2 and 2−j − 1/2. It
is characterized by 2−j samples, for 0 " n < 2−j .

To initialize this algorithm, the original signal aL[n] defined over 0 " n < N − 1 must be
extended by one sample at n = N , and considered to be symmetric with respect to n = 0 and
n = N . The extension is done by setting aL[N ] = aL[N − 1]. For any J < L, the resulting discrete
wavelet representation

[
{dj}L<j!J , aJ

]
is characterized by N +1 coefficients. To avoid adding one

more coefficient, one can modify symmetry at the right boundary of aL by considering that it is
symmetric with respect to N − 1/2 instead of N . The symmetry of the resulting aj and dj at
the right boundary is modified accordingly by studying the properties of the convolution formula
(7.157). As a result, these signals are characterized by 2−j samples and the wavelet representation
has N coefficients. A simpler implementation of this folding technique is given with a lifting
in Section 7.8.5. This folding approach is used in most applications because it leads to simpler
data structures which keep constant the number of coefficients. However, the discrete coefficients
near the right boundary can not be written as inner products of some function f(t) with dilated
boundary wavelets.

Antisymmetric biorthogonal wavelets are obtained with perfect reconstruction filters h and ĥ
of even size that are symmetric about n = 1/2. In this case φ is symmetric about 1/2 and ψ is
antisymmetric about 1/2. As a result aj and dj are 2−j+1 periodic and respectively symmetric
and antisymmetric about −1/2 and 2−j − 1/2. They are both characterized by 2−j samples, for
0 " n < 2−j . The algorithm is initialized by considering that aL[n] is symmetric with respect
to −1/2 and N − 1/2. There is no need to add another sample. The resulting discrete wavelet
representation

[
{dj}L<j!J , aJ

]
is characterized by N coefficients.

7.5.3 Boundary Wavelets

Wavelet coefficients are small in regions where the signal is regular only if the wavelets have enough
vanishing moments. The restriction of periodic and folded “boundary” wavelets to the neighbor-
hood of t = 0 and t = 1 have respectively 0 and 1 vanishing moment. These boundary wavelets
thus cannot fully take advantage of the signal regularity. They produce large inner products, as if
the signal were discontinuous or had a discontinuous derivative. To avoid creating large amplitude
wavelet coefficients at the boundaries, one must synthesize boundary wavelets that have as many
vanishing moments as the original wavelet ψ. Initially introduced by Meyer, this approach has
been refined by Cohen, Daubechies and Vial [173]. The main results are given without proofs.

Multiresolution of L2[0, 1] A wavelet basis of L2[0, 1] is constructed with a multiresolution approx-
imation {Vint

j }−∞<j!0. A wavelet has p vanishing moments if it is orthogonal to all polynomials

of degree p − 1 or smaller. Since wavelets at a scale 2j are orthogonal to functions in Vint
j , to

guarantee that they have p vanishing moments we make sure that polynomials of degree p− 1 are
inside Vint

j .

We define an approximation space Vint
j ⊂ L2[0, 1] with a compactly supported Daubechies

scaling function φ, associated to a wavelet with p vanishing moments. Theorem 7.7 proves that
the support of φ has size 2p − 1. We translate φ so that its support is [−p + 1, p]. At a scale
2j " (2p)−1, there are 2−j − 2p scaling functions with a support inside [0, 1]:

φint
j,n(t) = φj,n(t) =

1√
2j
φ
( t− 2jn

2j

)
for p " n < 2−j − p .

To construct an approximation space Vint
j of dimension 2−j we add p scaling functions with a
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support on the left boundary near t = 0:

φint
j,n(t) =

1√
2j
φleft

n

( t

2j

)
for 0 " n < p ,

and p scaling functions on the right boundary near t = 1:

φint
j,n(t) =

1√
2j
φright

2−j−1−n

( t− 1

2j

)
for 2−j − p " n < 2−j .

The following theorem constructs appropriate boundary scaling functions {φleft
n }0!n<p and

{φright
n }0!n<p.

Theorem 7.17 (Cohen, Daubechies, Vial). One can construct boundary scaling functions φleft
n and

φright
n so that if 2−j ! 2p then {φint

j,n}0!n<2−j is an orthonormal basis of a space Vint
j satisfying

Vint
j ⊂ Vint

j−1

lim
j→−∞

Vint
j = Closure




− log2(2p)⋃

j=−∞

Vint
j



 = L2[0, 1] ,

and the restrictions to [0, 1] of polynomials of degree p− 1 are in Vint
j .

Proof. A sketch of the proof is given. All details can be found in [173]. Since the wavelet ψ corre-
sponding to φ has p vanishing moments, the Fix-Strang condition (7.70) implies that

qk(t) =
+∞X

n=−∞

nk φ(t − n) (7.183)

is a polynomial of degree k. At any scale 2j , qk(2−jt) is still a polynomial of degree k, and for 0 " k < p
this family defines a basis of polynomials of degree p−1. To guarantee that polynomials of degree p−1
are in V

int
j we impose that the restriction of qk(2−jt) to [0, 1] can be decomposed in the basis of V

int
j :

qk(2−jt)1[0,1](t) =
p−1X

n=0

a[n]φleft
n (2−jt) +

2−j−p−1X

n=p

nk φ(2−jt − n) +

p−1X

n=0

b[n]φright
n (2−jt − 2−j) . (7.184)

Since the support of φ is [−p + 1, p], the condition (7.184) together with (7.183) can be separated into
two non-overlapping left and right conditions. With a change of variable, we verify that (7.184) is
equivalent to

pX

n=−p+1

nk φ(t − n)1[0,+∞)(t) =
p−1X

n=0

a[n]φleft
n (t), (7.185)

and
p−1X

n=−p

nk φ(t − n)1(−∞,0](t) =
p−1X

n=0

b[n]φright
n (t). (7.186)

The embedding property V
int
j ⊂ V

int
j−1 is obtained by imposing that the boundary scaling functions

satisfy scaling equations. We suppose that φleft
n has a support [0, p + n] and satisfies a scaling equation

of the form

2−1/2 φleft
n (2−1t) =

p−1X

l=0

H left
n,l φ

left
l (t) +

p+2nX

m=p

hleft
n,m φ(t − m) , (7.187)

whereas φright
n has a support [−p − n, 0] and satisfies a similar scaling equation on the right. The

constants H left
n,l , hleft

n,m, Hright
n,l and hright

n,m are adjusted to verify the polynomial reproduction equations

(7.185) and (7.186), while producing orthogonal scaling functions. The resulting family {φint
j,n}0!n<2−j

is an orthonormal basis of a space V
int
j .

The convergence of the spaces V
int
j to L

2[0, 1] when 2j goes to 0 is a consequence of the fact that the
multiresolution spaces Vj generated by the Daubechies scaling function {φj,n}n∈Z converge to L

2(R).
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The proof constructs the scaling functions through scaling equations specified by discrete filters. At
the boundaries, the filter coefficients are adjusted to construct orthogonal scaling functions with a
support in [0, 1], and to guarantee that polynomials of degree p−1 are reproduced by these scaling
functions. Table 7.5 gives the filter coefficients for p = 2.

Wavelet Basis of L
2[0, 1] Let Wint

j be the orthogonal complement of Vint
j in Vint

j−1. The support
of the Daubechies wavelet ψ with p vanishing moments is [−p + 1, p]. Since ψj,n is orthogonal to
any φj,l, we verify that an orthogonal basis of Wint

j can be constructed with the 2−j − 2p inside
wavelets with support in [0, 1]:

ψint
j,n(t) = ψj,n(t) =

1√
2j
ψ
( t− 2jn

2j

)
for p " n < 2−j − p,

to which are added 2p left and right boundary wavelets

ψint
j,n(t) =

1√
2j
ψleft

n

( t

2j

)
for 0 " n < p ,

ψint
j,n(t) =

1√
2j
ψright

2−j−1−n

( t− 1

2j

)
for 2−j − p " n < 2−j .

Since Wint
j ⊂ Vint

j−1, the left and right boundary wavelets at any scale 2j can be expanded into
scaling functions at the scale 2j−1. For j = 1 we impose that the left boundary wavelets satisfy
equations of the form

1√
2
ψleft

n

(
t

2

)
=

p−1∑

l=0

Gleft
n,l φ

left
l (t) +

p+2n∑

m=p

gleft
n,m φ(t−m) . (7.188)

The right boundary wavelets satisfy similar equations. The coefficients Gleft
n,l , gleft

n,m, Gright
n,l , gright

n,m

are computed so that {ψint
j,n}0!n<2−j is an orthonormal basis of Wint

j . Table 7.5 gives the values
of these coefficients for p = 2.

For any 2J " (2p)−1 the multiresolution properties prove that

L2[0, 1] = Vint
J ⊕J

j=−∞ Wint
j ,

which implies that [
{φint

J,n}0!n<2−J , {ψint
j,n}−∞<j!J , 0!n<2−j

]
(7.189)

is an orthonormal wavelet basis of L2[0, 1]. The boundary wavelets, like the inside wavelets, have
p vanishing moments because polynomials of degree p − 1 are included in the space Vint

J . Figure
7.18 displays the 2p = 4 boundary scaling functions and wavelets.
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k l Hleft
k,l Gleft

k,l k m hleft
k,m gleft

k,m

0 0 0.6033325119 −0.7965436169 0 2−0.398312997 −0.2587922483
0 1 0.690895531 0.5463927140 1 2 0.8500881025 0.227428117
1 0 0.03751746045 0.01003722456 1 3 0.2238203570 −0.8366028212
1 1 0.4573276599 0.1223510431 1 4−0.1292227434 0.4830129218

k l Hright
k,l Gright

k,l k m hright
k,m gright

k,m

−2−2 0.1901514184 −0.3639069596 −2−5 0.4431490496 0.235575950
−2−1−0.1942334074 0.3717189665 −2−4 0.7675566693 0.4010695194
−1−2 0.434896998 0.8014229620 −2−3 0.3749553316 −0.7175799994
−2−1 0.8705087534 −0.2575129195 −1−3 0.2303890438 −0.5398225007

h[−1] h[0] h[1] h[2]

0.482962913145 0.836516303738 0.224143868042−0.129409522551

Table 7.5: Left and right border coefficients for a Daubechies wavelet with p = 2 vanish-
ing moments. The inside filter coefficients are at the bottom of the table. A table of co-
efficients for p ! 2 vanishing moments can be retrieved over the Internet at the FTP site
ftp://math.princeton.edu/pub/user/ingrid/interval-tables.
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Figure 7.18: Boundary scaling functions and wavelets with p = 2 vanishing moments.

Fast Discrete Algorithm For any f ∈ L2[0, 1] we denote

aj [n] = 〈f,φint
j,n〉 and dj [n] = 〈f,ψint

j,n〉 for 0 " n " 2−j .

Wavelet coefficients are computed with a cascade of convolutions identical to Theorem 7.10 as long
as filters do not overlap the signal boundaries. A Daubechies filter h is considered here to have a
support located at [−p + 1, p]. At the boundary, the usual Daubechies filters are replaced by the
boundary filters that relate the boundary wavelets and scaling functions to the finer-scale scaling
functions in (7.187) and (7.188).

Theorem 7.18 (Cohen, Daubechies, Vial).
If 0 " k < p

aj [k] =
p−1∑

l=0

H left
k,l aj−1[l] +

p+2k∑

m=p

hleft
k,m aj−1[m],

dj [k] =
p−1∑

l=0

Gleft
k,l aj−1[l] +

p+2k∑

m=p

gleft
k,m aj−1[m].
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If p " k < 2−j − p

aj [k] =
+∞∑

l=−∞

h[l − 2k] aj−1[l],

dj [k] =
+∞∑

l=−∞

g[l − 2k] aj−1[l].

If −p " k < 0

aj [2
−j + k] =

−1∑

l=−p

Hright
k,l aj−1[2

−j+1 + l] +
−p−1∑

m=−p+2k+1

hright
k,m aj−1[2

−j+1 + m],

dj [2
−j + k] =

−1∑

l=−p

Gright
k,l aj−1[2

−j+1 + l] +
−p−1∑

m=−p+2k+1

gright
k,m aj−1[2

−j+1 + m].

This cascade algorithm decomposes aL into a discrete wavelet transform [aJ , {dj}L<j!J ] with
O(N) operations. The maximum scale must satisfy 2J " (2p)−1, because the number of bound-
ary coefficients remains equal to 2p at all scales. The implementation is more complicated than
the folding and periodic algorithms described in Sections 7.5.1 and 7.5.2, but does not require
more computations. The signal aL is reconstructed from its wavelet coefficients, by inverting the
decomposition formula in Theorem 7.18.

Theorem 7.19 (Cohen, Daubechies, Vial).
If 0 " l " p− 1

aj−1[l] =
p−1∑

k=0

H left
k,l aj [k] +

p−1∑

k=0

Gleft
k,l dj [k].

If p " l " 3p− 2

aj−1[l] =
p−1∑

k=(l−p)/2

hleft
k,l aj [k] +

+∞∑

k=−∞

h[l − 2k] aj [k] +

p−1∑

k=(l−p)/2

gleft
k,l dj [k] +

+∞∑

k=−∞

g[l − 2k] dj [k].

If 3p− 1 " l " 2−j+1 − 3p

aj−1[l] =
+∞∑

k=−∞

h[l − 2k] aj [k] +
+∞∑

k=−∞

g[l − 2k] dj [k].

If −p− 1 ! l ! −3p + 1

aj−1[2
−j+1 + l] =

(l+p−1)/2∑

k=−p

hright
k,l aj [2

−j + k] +
+∞∑

k=−∞

h[l − 2k] aj [2
−j + k] +

(l+p−1)/2∑

k=−p

gright
k,l dj [2

−j + k] +
+∞∑

k=−∞

g[l − 2k] dj [2
−j + k].

If −1 ! l ! −p

aj−1[2
−j+1 + l] =

−1∑

k=−p

Hright
k,l aj [2

−j + k] +
−1∑

k=−p

Gright
k,l dj [2

−j + k].

The original signal aL is reconstructed from the orthogonal wavelet representation [aJ , {dj}L<j!J ]
by iterating these equations for L < j " J . This reconstruction is performed with O(N) operations.
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7.6 Multiscale Interpolations

Multiresolution approximations are closely connected to the generalized interpolations and sam-
pling theorems studied in Section 3.1.3. The next section constructs general classes of interpolation
functions from orthogonal scaling functions and derives new sampling theorems. Interpolation bases
have the advantage of easily computing the decomposition coefficients from the sample values of
the signal. Section 7.6.2 constructs interpolation wavelet bases.

7.6.1 Interpolation and Sampling Theorems

Section 3.1.3 explains that a sampling scheme approximates a signal by its orthogonal projection
onto a space Us and samples this projection at intervals s. The space Us is constructed so that any
function in Us can be recovered by interpolating a uniform sampling at intervals s. We relate the
construction of interpolation functions to orthogonal scaling functions and compute the orthogonal
projector on Us.

We call interpolation function any φ such that {φ(t − n)}n∈Z is a Riesz basis of the space U1

it generates, and which satisfies

φ(n) =

{
1 if n = 0
0 if n .= 0

. (7.190)

Any f ∈ U1 is recovered by interpolating its samples f(n):

f(t) =
+∞∑

n=−∞
f(n)φ(t− n). (7.191)

Indeed, we know that f is a linear combination of the basis vector {φ(t − n)}n∈Z and the inter-
polation property (7.190) yields (7.191). The Whittaker sampling Theorem 3.2 is based on the
interpolation function

φ(t) =
sinπt

πt
.

In this case, the space U1 is the set of functions whose Fourier transforms are included in [−π,π].
Scaling an interpolation function yields a new interpolation for a different sampling interval.

Let us define φs(t) = φ(t/s) and

Us =
{
f ∈ L2(R) with f(st) ∈ U1

}
.

One can verify that any f ∈ Us can be written

f(t) =
+∞∑

n=−∞
f(ns)φs(t− ns) . (7.192)

Scaling Autocorrelation We denote by φo an orthogonal scaling function, defined by the fact that
{φo(t−n)}n∈Z is an orthonormal basis of a space V0 of a multiresolution approximation. Theorem
7.2 proves that this scaling function is characterized by a conjugate mirror filter ho. The following
theorem defines an interpolation function from the autocorrelation of φo [422].

Theorem 7.20. Let φ̄o(t) = φo(−t) and h̄o[n] = ho[−n]. If |φ̂o(ω)| = O((1 + |ω|)−1) then

φ(t) =

∫ +∞

−∞
φo(u)φo(u− t) du = φo ' φ̄o(t) (7.193)

is an interpolation function. Moreover

φ

(
t

2

)
=

+∞∑

n=−∞
h[n]φ(t− n) (7.194)

with

h[n] =
+∞∑

m=−∞
ho[m]ho[m− n] = ho ' h̄o[n]. (7.195)
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Proof. Observe first that
φ(n) = 〈φo(t),φo(t − n)〉 = δ[n],

which prove the interpolation property (7.190). To prove that {φ(t − n)}n∈Z is a Riesz basis of the
space U1 it generates, we verify the condition (7.9). The autocorrelation φ(t) = φo %φ̄o(t) has a Fourier
transform φ̂(ω) = |φ̂o(ω)|2. Condition (7.9) thus means that there exist B ! A > 0 such that

∀ω ∈ [−π,π] , A "

+∞X

k=−∞

|φ̂o(ω − 2kπ)|4 " B . (7.196)

We proved in (7.14) that the orthogonality of a family {φo(t − n)}n∈Z is equivalent to

∀ω ∈ [−π,π] ,
+∞X

k=−∞

|φ̂o(ω + 2kπ)|2 = 1. (7.197)

The right inequality of (7.196) is therefore valid for A = 1. Let us prove the left inequality. Since
|φ̂o(ω)| = O((1 + |ω|)−1), one can verify that there exists K > 0 such that for all ω ∈ [−π,π],P

|k|>K |φ̂o(ω + 2kπ)|2 < 1/2, so (7.197) implies that
PK

k=−K |φ̂o(ω + 2kπ)|2 ! 1/2. It follows that

KX

k=−K

|φ̂o(ω + 2kπ)|4 !
1

4(2K + 1)
,

which proves (7.196) for A−1 = 4(2K + 1).

Since φo is a scaling function, (7.23) proves that there exists a conjugate mirror filter ho such that

1√
2
φo

„
t
2

«
=

+∞X

n=−∞

ho[n]φo(t − n).

Computing φ(t) = φo % φ̄o(t) yields (7.194) with h[n] = ho % h̄o[n].

Theorem 7.20 proves that the autocorrelation of an orthogonal scaling function φo is an interpo-
lation function φ that also satisfies a scaling equation. One can design φ to approximate regular
signals efficiently by their orthogonal projection in Us. Definition 6.1 measures the regularity of f
with a Lipschitz exponent, which depends on the difference between f and its Taylor polynomial ex-
pansion. The following theorem gives a condition for recovering polynomials by interpolating their
samples with φ. It derives an upper bound for the error when approximating f by its orthogonal
projection in Us.

Theorem 7.21 (Fix, Strang). Any polynomial q(t) of degree smaller or equal to p−1 is decomposed
into

q(t) =
+∞∑

n=−∞
q(n)φ(t− n) (7.198)

if and only if ĥ(ω) has a zero of order p at ω = π.
Suppose that this property is satisfied. If f has a compact support and is uniformly Lipschitz α " p
then there exists C > 0 such that

∀s > 0 , ‖f − PUsf‖ " C sα. (7.199)

Proof. The main steps of the proof are given, without technical detail. Let us set s = 2j . One can
verify that the spaces {Vj = U2j}j∈Z define a multiresolution approximation of L

2(R). The Riesz
basis of V0 required by Definition 7.1 is obtained with θ = φ. This basis is orthogonalized by Theorem
7.1 to obtain an orthogonal basis of scaling functions. Theorem 7.3 derives a wavelet orthonormal basis
{ψj,n}(j,n)∈Z2 of L

2(R).

Using Theorem 7.4, one can verify that ψ has p vanishing moments if and only if ĥ(ω) has p zeros
at π. Although φ is not the orthogonal scaling function, the Fix-Strang condition (7.70) remains valid.
It is thus also equivalent that for k < p

qk(t) =
+∞X

n=−∞

nk φ(t − n)
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is a polynomial of degree k. The interpolation property (7.191) implies that qk(n) = nk for all n ∈ Z

so qk(t) = tk. Since {tk}0!k<p is a basis for polynomials of degree p− 1, any polynomial q(t) of degree
p − 1 can be decomposed over {φ(t − n)}n∈Z if and only if ĥ(ω) has p zeros at π.

We indicate how to prove (7.199) for s = 2j . The truncated family of wavelets {ψl,n}l!j,n∈Z is an
orthogonal basis of the orthogonal complement of U2j = Vj in L

2(R). Hence

‖f − PU
2j f‖2 =

jX

l=−∞

+∞X

n=−∞

|〈f,ψl,n〉|2.

If f is uniformly Lipschitz α, since ψ has p vanishing moments, Theorem 6.3 proves that there exists
A > 0 such that

|Wf(2ln, 2l)| = |〈f,ψl,n〉| " A 2(α+1/2)l.

To simplify the argument we suppose that ψ has a compact support, although this is not required.
Since f also has a compact support, one can verify that the number of non-zero 〈f,ψl,n〉 is bounded
by K 2−l for some K > 0. Hence

‖f − PU
2j f‖2

"

jX

l=−∞

K 2−l A2 2(2α+1)l
"

K A2

1 − 2−α 22αj ,

which proves (7.199) for s = 2j .

As long as α " p, the larger the Lipschitz exponent α the faster the error ‖f − PUsf‖ decays to
zero when the sampling interval s decreases. If a signal f is Ck with a compact support then it is
uniformly Lipschitz k, so Theorem 7.21 proves that ‖f − PUsf‖ " C sk.

Example 7.11. A cubic spline interpolation function is obtained from the linear spline scaling
function φo. The Fourier transform expression (7.5) yields

φ̂(ω) = |φ̂o(ω)|2 =
48 sin4(ω/2)

ω4 (1 + 2 cos2(ω/2))
. (7.200)

Figure 7.19(a) gives the graph of φ, which has an infinite support but exponential decay. With
Theorem 7.21 one can verify that this interpolation function recovers polynomials of degree 3 from
a uniform sampling. The performance of spline interpolation functions for generalized sampling
theorems is studied in [161, 468].
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Figure 7.19: (a): Cubic spline interpolation function. (b): Deslaurier-Dubuc interpolation function
of degree 3.

Example 7.12. Deslaurier-Dubuc [205] interpolation functions of degree 2p − 1 are compactly
supported interpolation functions of minimal size that decompose polynomials of degree 2p−1. One
can verify that such an interpolation function is the autocorrelation of a scaling function φo. To
reproduce polynomials of degree 2p−1, Theorem 7.21 proves that ĥ(ω) must have a zero of order 2p
at π. Since h[n] = ho ' h̄o[n] it follows that ĥ(ω) = |ĥo(ω)|2, and hence ĥo(ω) has a zero of order p
at π. Daubechies’s Theorem 7.7 designs minimum size conjugate mirror filters ho which satisfy this
condition. Daubechies filters ho have 2p non-zero coefficients and the resulting scaling function φo
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has a support of size 2p− 1. The autocorrelation φ is the Deslaurier-Dubuc interpolation function,
whose support is [−2p + 1, 2p− 1].

For p = 1, φo = 1[0,1] and φ is the piecewise linear tent function whose support is [−1, 1].
For p = 2, the Deslaurier-Dubuc interpolation function φ is the autocorrelation of the Daubechies
2 scaling function, shown in Figure 7.10. The graph of this interpolation function is in Figure
7.19(b). Polynomials of degree 2p− 1 = 3 are interpolated by this function.

The scaling equation (7.194) implies that any autocorrelation filter verifies h[2n] = 0 for n .=
0. For any p ! 0, the non-zero values of the resulting filter are calculated from the coefficients
of the polynomial (7.168) that is factored to synthesize Daubechies filters. The support of h is
[−2p + 1, 2p− 1] and

h[2n + 1] = (−1)p−n

∏2p−1
k=0 (k − p + 1/2)

(n + 1/2) (p− n− 1)! (p + n)!
for −p " n < p. (7.201)

Dual Basis If f ∈/ Us then it is approximated by its orthogonal projection PUsf on Us before the
samples at intervals s are recorded. This orthogonal projection is computed with a biorthogonal
basis {φ̃s(t−ns)}n∈Z [80]. Theorem 3.4 proves that φ̃s(t) = s−1φ̃(s−1t) where the Fourier transform
of φ̃ is

̂̃φ(ω) =
φ̂∗(ω)

∑+∞
k=−∞ |φ̂(ω + 2kπ)|2

. (7.202)

Figure 7.20 gives the graph of the cubic spline φ̃ associated to the cubic spline interpolation
function. The orthogonal projection of f over Us is computed by decomposing f in the biorthogonal
bases

PUsf(t) =
+∞∑

n=−∞
〈f(u), φ̃s(u− ns)〉φs(t− ns). (7.203)

Let ¯̃φs(t) = φ̃s(−t). The interpolation property (7.190) implies that

PUsf(ns) = 〈f(u), φ̃s(u− ns)〉 = f ' ¯̃φs(ns). (7.204)

This discretization of f through a projection onto Us is therefore obtained by a filtering with ¯̃φs

followed by a uniform sampling at intervals s. The best linear approximation of f is recovered with
the interpolation formula (7.203).
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Figure 7.20: The dual cubic spline φ̃(t) associated to the spline interpolation function φ(t) shown
in Figure 7.19(a).

7.6.2 Interpolation Wavelet Basis

An interpolation function φ can recover a signal f from a uniform sampling {f(ns)}n∈Z if f belongs
to an appropriate subspace Us of L2(R). Donoho [212] has extended this approach by constructing
interpolation wavelet bases of the whole space of uniformly continuous signals, with the sup norm.
The decomposition coefficients are calculated from sample values instead of inner product integrals.
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Subdivision Scheme Let φ be an interpolation function, which is the autocorrelation of an or-
thogonal scaling function φo. Let φj,n(t) = φ(2−jt − n). The constant 2−j/2 that normalizes the
energy of φj,n is not added because we shall use a sup norm ‖f‖∞ = supt∈R |f(t)| instead of the
L2(R) norm, and

‖φj,n‖∞ = ‖φ‖∞ = |φ(0)| = 1.

We define the interpolation space Vj of functions

g =
+∞∑

n=−∞
a[n]φj,n,

where a[n] has at most a polynomial growth in n. Since φ is an interpolation function, a[n] = g(2jn).
This space Vj is not included in L2(R) since a[n] may not have a finite energy. The scaling equation
(7.194) implies that Vj+1 ⊂ Vj for any j ∈ Z. If the autocorrelation filter h has a Fourier transform

ĥ(ω) which has a zero of order p at ω = π, then Theorem 7.21 proves that polynomials of degree
smaller than p− 1 are included in Vj .

For f ∈/ Vj , we define a simple projector on Vj that interpolates the dyadic samples f(2jn):

PVj f(t) =
+∞∑

n=−∞
f(2jn)φj(t− 2jn). (7.205)

This projector has no orthogonality property but satisfies PVj f(2jn) = f(2jn). Let C0 be the
space of functions that are uniformly continuous over R. The following theorem proves that any
f ∈ C0 can be approximated with an arbitrary precision by PVj f when 2j goes to zero.

Theorem 7.22 (Donoho). Suppose that φ has an exponential decay. If f ∈ C0 then

lim
j→−∞

‖f − PVj f‖∞ = lim
j→−∞

sup
t∈R

|f(t)− PVj f(t)| = 0. (7.206)

Proof. Let ω(δ, f) denote the modulus of continuity

ω(δ, f) = sup
|h|!δ

sup
t∈R

|f(t + h) − f(t)|. (7.207)

By definition, f ∈ C0 if lim
δ→0

ω(δ, f) = 0.

Any t ∈ R can be written t = 2j(n + h) with n ∈ Z and |h| " 1. Since PVj f(2jn) = f(2jn),

|f(2j(n + h)) − PVj f(2j(n + h))| " |f(2j(n + h)) − f(2jn)|

+ |PVj f(2j(n + h)) − PVj f(2jn)|

" ω(2j , f) + ω(2j , PVj f).

The next lemma proves that ω(2j , PVj f) " Cφ ω(2j , f) where Cφ is a constant independent of j and

f . Taking a sup over t = 2j(n + h) implies the final result:

sup
t∈R

|f(t) − PVj f(t)| " (1 + Cφ)ω(2j , f) → 0 when j → −∞.

Lemma 7.3. There exists Cφ > 0 such that for all j ∈ Z and f ∈ C0

ω(2j , PVj f) " Cφ ω(2j , f). (7.208)

Let us set j = 0. For |h| " 1, a summation by parts gives

PV0f(t + h) − PV0f(t) =
+∞X

n=−∞

(f(n + 1) − f(n)) θh(t − n)

where

θh(t) =
+∞X

k=1

(φ(t + h − k) − φ(t − k)) .
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Hence

|PV0f(t + h) − PV0f(t)| " sup
n∈Z

|f(n + 1) − f(n)|
+∞X

n=−∞

|θh(t − n)|. (7.209)

Since φ has an exponential decay, there exists a constant Cφ such that if |h| " 1 and t ∈ R thenP+∞
n=−∞ |θh(t − n)| " Cφ. Taking a sup over t in (7.209) proves that

ω(1, PV0f) " Cφ sup
n∈Z

|f(n + 1) − f(n)| " Cφ ω(1, f).

Scaling this result by 2j yields (7.208).

Interpolation Wavelets The projection PVj f(t) interpolates the values f(2jn). When reducing
the scale by 2, we obtain a finer interpolation PVj−1f(t) which also goes through the intermediate
samples f(2j(n + 1/2)). This refinement can be obtained by adding “details” that compensate for
the difference between PVj f(2j(n + 1/2)) and f(2j(n + 1/2)). To do this, we create a “detail”
space Wj that provides the values f(t) at intermediate dyadic points t = 2j(n + 1/2). This space
is constructed from interpolation functions centered at these locations, namely φj−1,2n+1. We call
interpolation wavelets

ψj,n = φj−1,2n+1 .

Observe that ψj,n(t) = ψ(2−jt− n) with

ψ(t) = φ(2t− 1) .

The function ψ is not truly a wavelet since it has no vanishing moment. However, we shall see
that it plays the same role as a wavelet in this decomposition. We define Wj to be the space of all
sums

∑+∞
n=−∞ a[n]ψj,n. The following theorem proves that it is a (non-orthogonal) complement of

Vj in Vj−1.

Theorem 7.23. For any j ∈ Z

Vj−1 = Vj ⊕Wj .

If f ∈ Vj−1 then

f =
+∞∑

n=−∞
f(2jn)φj,n +

+∞∑

n=−∞
dj [n]ψj,n

with
dj [n] = f

(
2j (n + 1/2)

)
− PVj f

(
2j (n + 1/2)

)
. (7.210)

Proof. Any f ∈ Vj−1 can be written

f =
+∞X

n=−∞

f(2j−1n)φj−1,n .

The function f − PVj f belongs to Vj−1 and vanishes at {2jn}n∈Z. It can thus be decomposed over
the intermediate interpolation functions φj−1,2n+1 = ψj,n:

f(t) − PVj f(t) =
+∞X

n=−∞

dj [n]ψj,n(t) ∈ Wj .

This proves that Vj−1 ⊂ Vj ⊕ Wj . By construction we know that Wj ⊂ Vj−1 so Vj−1 = Vj ⊕ Wj .
Setting t = 2j−1(2n + 1) in this formula also verifies (7.210).

Theorem 7.23 refines an interpolation from a coarse grid 2jn to a finer grid 2j−1n by adding “de-
tails” whose coefficients dj [n] are the interpolation errors f(2j(n+1/2))−PVj f(2j(n+1/2)). The
following theorem defines a interpolation wavelet basis of C0 in the sense of uniform convergence.
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Theorem 7.24. If f ∈ C0 then

lim
m→+∞
l→−∞

‖f −
m∑

n=−m

f(2Jn)φJ,n −
J∑

j=l

m∑

n=−m

dj [n]ψj,n‖∞ = 0. (7.211)

The formula (7.211) decomposes f into a coarse interpolation at intervals 2J plus layers of
details that give the interpolation errors on successively finer dyadic grids. The proof is done by
choosing f to be a continuous function with a compact support, in which case (7.211) is derived
from Theorem 7.23 and (7.206). The density of such functions in C0 (for the sup norm) allows us
to extend this result to any f in C0. We shall write

f =
+∞∑

n=−∞
f(2Jn)φJ,n +

J∑

j=−∞

+∞∑

n=−∞
dj [n]ψj,n,

which means that [{φJ,n}n∈Z , {ψj,n}n∈Z,j!J ] is a basis of C0. In L2(R), “biorthogonal” scaling
functions and wavelets are formally defined by

f(2Jn) = 〈f, φ̃J,n〉 =

∫ +∞

−∞
f(t) φ̃J,n(t) dt ,

dj [n] = 〈f, ψ̃j,n〉 =

∫ +∞

−∞
f(t) ψ̃j,n(t) dt . (7.212)

Clearly φ̃J,n(t) = δ(t − 2Jn). Similarly, (7.210) and (7.205) implies that ψ̃j,n is a finite sum of
Diracs. These dual scaling functions and wavelets do not have a finite energy, which illustrates the
fact that [{φJ,n}n∈Z , {ψj,n}n∈Z,j!J ] is not a Riesz basis of L2(R).

If ĥ(ω) has p zeros at π then one can verify that ψ̃j,n has p vanishing moments. With similar
derivations as in the proof of (6.20) in Theorem 6.4, one can show that if f is uniformly Lipschitz
α " p then there exists A > 0 such that

|〈f, ψ̃j,n〉| = |dj [n]| " A 2αj .

A regular signal yields small amplitude wavelet coefficients at fine scales. We can thus neglect
these coefficients and still reconstruct a precise approximation of f .

Fast Calculations The interpolating wavelet transform of f is calculated at scale 1 ! 2j > N−1 =
2L from its sample values {f(N−1n)}n∈Z. At each scale 2j , the values of f in between samples
{2jn}n∈Z are calculated with the interpolation (7.205):

PVj f
(
2j (n + 1/2)

)
=

+∞∑

k=−∞

f(2jk)φ (n− k + 1/2)

=
+∞∑

k=−∞

f(2jk)hi[n− k], (7.213)

where the interpolation filter hi is a subsampling of the autocorrelation filter h in (7.195):

hi[n] = φ (n + 1/2) = h[2n + 1]. (7.214)

The wavelet coefficients are computed with (7.210):

dj [n] = f
(
2j (n + 1/2)

)
− PVj f

(
2j (n + 1/2)

)
.

The reconstruction of f(N−1n) from the wavelet coefficients is performed recursively by recovering
the samples f(2j−1n) from the coarser sampling f(2jn) with the interpolation (7.213) to which is
added dj [n]. If hi[n] is a finite filter of size K and if f has a support in [0, 1] then the decomposition
and reconstruction algorithms require KN multiplications and additions.
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A Deslauriers-Dubuc interpolation function φ has the shortest support while including polyno-
mials of degree 2p − 1 in the spaces Vj . The corresponding interpolation filter hi[n] defined by
(7.214) has 2p non-zero coefficients for −p " n < p, which are calculated in (7.201). If p = 2 then
hi[1] = hi[−2] = −1/16 and hi[0] = hi[−1] = 9/16. Suppose that q(t) is a polynomial of degree
smaller or equal to 2p− 1. Since q = PVj q, (7.213) implies a Lagrange interpolation formula

q
(
2j (n + 1/2)

)
=

+∞∑

k=−∞

q(2jk)hi[n− k] .

The Lagrange filter hi of size 2p is the shortest filter that recovers intermediate values of polynomials
of degree 2p− 1 from a uniform sampling.

To restrict the wavelet interpolation bases to a finite interval [0, 1] while reproducing polyno-
mials of degree 2p−1, the filter hi is modified at the boundaries. Suppose that f(N−1n) is defined
for 0 " n < N . When computing the interpolation

PVj f
(
2j (n + 1/2)

)
=

+∞∑

k=−∞

f(2jk)hi[n− k],

if n is too close to 0 or to 2−j − 1 then hi must be modified to ensure that the support of hi[n− k]
remains inside [0, 2−j −1]. The interpolation PVj f(2j(n+1/2)) is then calculated from the closest
2p samples f(2jk) for 2jk ∈ [0, 1]. The new interpolation coefficients are computed in order to
recover exactly all polynomials of degree 2p− 1 [450]. For p = 2, the problem occurs only at n = 0
and the appropriate boundary coefficients are

hi[0] =
5

16
, hi[−1] =

15

16
, hi[−2] =

−5

16
, hi[−3] =

1

16
.

The symmetric boundary filter hi[−n] is used on the other side at n = 2−j − 1.

7.7 Separable Wavelet Bases

To any wavelet orthonormal basis {ψj,n}(j,n)∈Z2 of L2(R), one can associate a separable wavelet
orthonormal basis of L2(R2):

{
ψj1,n1(x1)ψj2,n2(x2)

}

(j1,j2,n1,n2)∈Z4
. (7.215)

The functions ψj1,n1(x1)ψj2,n2(x2) mix information at two different scales 2j1 and 2j2 along x1

and x2, which we often want to avoid. Separable multiresolutions lead to another construction
of separable wavelet bases whose elements are products of functions dilated at the same scale.
These multiresolution approximations also have important applications in computer vision, where
they are used to process images at different levels of details. Lower resolution images are indeed
represented by fewer pixels and might still carry enough information to perform a recognition task.

Signal decompositions in separable wavelet bases are computed with a separable extension of
the filter bank algorithm described in Section 7.7.3. Section 7.7.4 constructs separable wavelet
bases in any dimension, and explains the corresponding fast wavelet transform algorithm. Non-
separable wavelet bases can also be constructed [83, 333] but they are used less often in image
processing. Section 7.8.3 gives examples of non-separable quincunx biorthogonal wavelet bases,
which have a single quasi-istropic wavelet at each scale.

7.7.1 Separable Multiresolutions

As in one dimension, the notion of resolution is formalized with orthogonal projections in spaces
of various sizes. The approximation of an image f(x1, x2) at the resolution 2−j is defined as
the orthogonal projection of f on a space V2

j that is included in L2(R2). The space V2
j is the

set of all approximations at the resolution 2−j . When the resolution decreases, the size of V2
j
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decreases as well. The formal definition of a multiresolution approximation {V2
j}j∈Z of L2(R2) is

a straightforward extension of Definition 7.1 that specifies multiresolutions of L2(R). The same
causality, completeness and scaling properties must be satisfied.

We consider the particular case of separable multiresolutions. Let {Vj}j∈Z be a multiresolution
of L2(R). A separable two-dimensional multiresolution is composed of the tensor product spaces

V2
j = Vj ⊗Vj . (7.216)

The space V2
j is the set of finite energy functions f(x1, x2) that are linear expansions of separable

functions:

f(x1, x2) =
+∞∑

m=−∞
a[m] fm(x1) gm(x2) with fm ∈ Vj , gm ∈ Vj .

Section A.5 reviews the properties of tensor products. If {Vj}j∈Z is a multiresolution approxima-
tion of L2(R) then {V2

j}j∈Z is a multiresolution approximation of L2(R2).
Theorem 7.1 demonstrates the existence of a scaling function φ such that {φj,m}m∈Z is an

orthonormal basis of Vj . Since V2
j = Vj ⊗ Vj , Theorem A.6 proves that for x = (x1, x2) and

n = (n1, n2)

{
φ2

j,n(x) = φj,n1(x1)φj,n2(x2) =
1

2j
φ
(x1 − 2jn1

2j

)
φ
(x2 − 2jn2

2j

)}

n∈Z2

is an orthonormal basis of V2
j . It is obtained by scaling by 2j the two-dimensional separable scaling

function φ2(x) = φ(x1)φ(x2) and translating it on a two-dimensional square grid with intervals 2j .

Example 7.13. Piecewise constant approximation Let Vj be the approximation space of
functions that are constant on [2jm, 2j(m + 1)] for any m ∈ Z. The tensor product defines a
two-dimensional piecewise constant approximation. The space V2

j is the set of functions that are
constant on any square [2jn1, 2j(n1+1)]×[2jn2, 2j(n2+1)], for (n1, n2) ∈ Z2. The two dimensional
scaling function is

φ2(x) = φ(x1)φ(x2) =

{
1 if 0 " x1 " 1 and 0 " x2 " 1
0 otherwise

.

Example 7.14. Shannon approximation Let Vj be the space of functions whose Fourier
transforms have a support included in [−2−jπ, 2−jπ]. The space V2

j is the set of functions
whose two-dimensional Fourier transforms have a support included in the low-frequency square
[−2−jπ, 2−jπ]× [−2−jπ, 2−jπ]. The two-dimensional scaling function is a perfect two-dimensional
low-pass filter whose Fourier transform is

φ̂(ω1) φ̂(ω2) =

{
1 if |ω1| " 2−jπ and |ω2| " 2−jπ
0 otherwise

.

Example 7.15. Spline approximation Let Vj be the space of polynomial spline functions of
degree p that are Cp−1, with nodes located at 2−jm for m ∈ Z. The space V2

j is composed of
two-dimensional polynomial spline functions that are p− 1 times continuously differentiable. The
restriction of f(x1, x2) ∈ V2

j to any square [2jn1, 2j(n1 + 1)) × [2jn2, 2j(n2 + 1)) is a separable
product q1(x1)q2(x2) of two polynomials of degree at most p.

Multiresolution Vision An image of 512 by 512 pixels often includes too much information for real
time vision processing. Multiresolution algorithms process less image data by selecting the relevant
details that are necessary to perform a particular recognition task [57]. The human visual system
uses a similar strategy. The distribution of photoreceptors on the retina is not uniform. The visual
acuity is greatest at the center of the retina where the density of receptors is maximum. When
moving apart from the center, the resolution decreases proportionally to the distance from the
retina center [427].

The high resolution visual center is called the fovea. It is responsible for high acuity tasks such
as reading or recognition. A retina with a uniform resolution equal to the highest fovea resolution
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Figure 7.21: Multiresolution approximations aj [n1, n2] of an image at scales 2j , for −5 ! j ! −8.

would require about 10,000 times more photoreceptors. Such a uniform resolution retina would
increase considerably the size of the optic nerve that transmits the retina information to the visual
cortex and the size of the visual cortex that processes this data.

Active vision strategies [81] compensate the non-uniformity of visual resolution with eye sac-
cades, which move successively the fovea over regions of a scene with a high information content.
These saccades are partly guided by the lower resolution information gathered at the periphery of
the retina. This multiresolution sensor has the advantage of providing high resolution information
at selected locations, and a large field of view, with relatively little data.

Multiresolution algorithms implement in software [124] the search for important high resolution
data. A uniform high resolution image is measured by a camera but only a small part of this
information is processed. Figure 7.21 displays a pyramid of progressively lower resolution images
calculated with a filter bank presented in Section 7.7.3. Coarse to fine algorithms analyze first
the lower resolution image and selectively increase the resolution in regions where more details are
needed. Such algorithms have been developed for object recognition, and stereo calculations [283].

7.7.2 Two-Dimensional Wavelet Bases

A separable wavelet orthonormal basis of L2(R2) is constructed with separable products of a scaling
function φ and a wavelet ψ. The scaling function φ is associated to a one-dimensional multires-
olution approximation {Vj}j∈Z. Let {V2

j}j∈Z be the separable two-dimensional multiresolution
defined by V2

j = Vj ⊗Vj . Let W2
j be the detail space equal to the orthogonal complement of the

lower resolution approximation space V2
j in V2

j−1:

V2
j−1 = V2

j ⊕W2
j . (7.217)

To construct a wavelet orthonormal basis of L2(R2), the following theorem builds a wavelet basis
of each detail space W2

j .

Theorem 7.25. Let φ be a scaling function and ψ be the corresponding wavelet generating a
wavelet orthonormal basis of L2(R). We define three wavelets:

ψ1(x) = φ(x1)ψ(x2) , ψ2(x) = ψ(x1)φ(x2) , ψ3(x) = ψ(x1)ψ(x2), (7.218)

and denote for 1 " k " 3

ψk
j,n(x) =

1

2j
ψk

(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)
.

The wavelet family {
ψ1

j,n , ψ2
j,n , ψ3

j,n

}
n∈Z2 (7.219)

is an orthonormal basis of W2
j and

{
ψ1

j,n , ψ2
j,n , ψ3

j,n

}
(j,n)∈Z3 (7.220)
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is an orthonormal basis of L2(R2).

Proof. Equation (7.217) is rewritten

Vj−1 ⊗ Vj−1 = (Vj ⊗ Vj) ⊕ W
2
j . (7.221)

The one-dimensional multiresolution space Vj−1 can also be decomposed into Vj−1 = Vj ⊕ Wj . By
inserting this in (7.221), the distributivity of ⊕ with respect to ⊗ proves that

W
2
j = (Vj ⊗ Wj) ⊕ (Wj ⊗ Vj) ⊕ (Wj ⊗ Wj) . (7.222)

Since {φj,m}m∈Z and {ψj,m}m∈Z are orthonormal bases of Vj and Wj , we derive that

{φj,n1(x1)ψj,n2(x2) , ψj,n1(x1)φj,n2(x2) , ψj,n1(x1)ψj,n2(x2)}(n1,n2)∈Z2

is an orthonormal basis of W
2
j . As in the one-dimensional case, the overall space L

2(R2) can be
decomposed as an orthogonal sum of the detail spaces at all resolutions:

L
2(R2) = ⊕+∞

j=−∞W
2
j . (7.223)

Hence
{φj,n1(x1)ψj,n2(x2) , ψj,n1(x1)φj,n2(x2) , ψj,n1(x1)ψj,n2(x2)}(j,n1,n2)∈Z3

is an orthonormal basis of L
2(R2).

The three wavelets extract image details at different scales and in different directions. Over positive
frequencies, φ̂ and ψ̂ have an energy mainly concentrated respectively on [0,π] and [π, 2π]. The
separable wavelet expressions (7.218) imply that

ψ̂1(ω1,ω2) = φ̂(ω1) ψ̂(ω2) , ψ̂2(ω1,ω2) = ψ̂(ω1) φ̂(ω2)

and ψ̂3(ω1,ω2) = ψ̂(ω1) ψ̂(ω2). Hence |ψ̂1(ω1,ω2)| is large at low horizontal frequencies ω1 and
high vertical frequencies ω2, whereas |ψ̂2(ω1,ω2)| is large at high horizontal frequencies and low
vertical frequencies, and |ψ̂3(ω1,ω2)| is large at at high horizontal and vertical frequencies. Figure
7.22 displays the Fourier transform of separable wavelets and scaling functions calculated from a
one-dimensional Daubechies 4 wavelet.

Suppose that ψ(t) has p vanishing moments and is thus orthogonal to one-dimensional polyno-
mials of degree p− 1. The wavelet ψ1 has p one-dimensional directional vanishing moments along
x2 in the sense that it is orthogonal to any function f(x1, x2) that is a polynomial of degree p− 1
along x2 for x1 fixed. It is a horizontal directional wavelet that yields large coefficients for hori-
zontal edges, as explained in Section 5.5.1. Similarly, ψ2 has p− 1 directional vanishing moments
along x1 and is a vertical directional wavelet. This is illustrated by the decomposition of a square
in Figure 7.24. The wavelet ψ3 has directional vanishing moments along both x1 and x2 and is
therefore not a directional wavelet. It produces large coefficients at corners or junctions. The three
wavelets ψk for k = 1, 2, 3 are orthogonal to two-dimensional polynomials of degree p− 1.

Example 7.16. For a Shannon multiresolution approximation, the resulting two-dimensional
wavelet basis paves the two-dimensional Fourier plane (ω1,ω2) with dilated rectangles. The Fourier
transforms φ̂ and ψ̂ are the indicator functions respectively of [−π,π] and [−2π,−π]∪ [π, 2π]. The
separable space V2

j contains functions whose two-dimensional Fourier transforms have a support
included in the low-frequency square [−2−jπ, 2−jπ]×[−2−jπ, 2−jπ]. This corresponds to the support
of φ̂2

j,n indicated in Figure 7.23. The detail space W2
j is the orthogonal complement of V2

j in V2
j−1

and thus includes functions whose Fourier transforms have a support in the frequency annulus be-
tween the two squares [−2−jπ, 2−jπ]× [−2−jπ, 2−jπ] and [−2−j+1π, 2−j+1π]× [−2−j+1π, 2−j+1π].
As shown in Figure 7.23, this annulus is decomposed in three separable frequency regions, which
are the Fourier supports of ψ̂k

j,n for 1 " k " 3. Dilating these supports at all scales 2j yields an
exact cover of the frequency plane (ω1,ω2).

For general separable wavelet bases, Figure 7.23 gives only an indication of the domains where
the energy of the different wavelets is concentrated. When the wavelets are constructed with a
one-dimensional wavelet of compact support, the resulting Fourier transforms have side lobes that
appear in Figure 7.22.
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Figure 7.22: Fourier transforms of a separable scaling function and of 3 separable wavelets calcu-
lated from a one-dimensional Daubechies 4 wavelet.
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Figure 7.24: Separable wavelet transforms of Lena and of a white square in a black background,
decomposed respectively on 3 and 4 octaves. Black, grey and white pixels correspond respectively
to positive, zero and negative wavelet coefficients. The disposition of wavelet image coefficients
dk

j [n,m] = 〈f,ψk
j,n〉 is illustrated on the top left.

Example 7.17. Figure 7.24 gives two examples of wavelet transforms computed using separable
Daubechies wavelets with p = 4 vanishing moments. They are calculated with the filter bank al-
gorithm of Section 7.7.3. Coefficients of large amplitude in d1

j , d2
j and d3

j correspond respectively
to vertical high frequencies (horizontal edges), horizontal high frequencies (vertical edges), and
high frequencies in both directions (corners). Regions where the image intensity varies smoothly
yield nearly zero coefficients, shown in grey. The large number of nearly zero coefficients makes it
particularly attractive for compact image coding.

Separable Biorthogonal Bases One-dimensional biorthogonal wavelet bases are extended to sep-
arable biorthogonal bases of L2(R2) with the same approach as in Theorem 7.25. Let φ, ψ and φ̃,
ψ̃ be two dual pairs of scaling functions and wavelets that generate biorthogonal wavelet bases of
L2(R). The dual wavelets of ψ1, ψ2 and ψ3 defined by (7.218) are

ψ̃1(x) = φ̃(x1) ψ̃(x2) , ψ̃2(x) = ψ̃(x1) φ̃(x2) , ψ̃3(x) = ψ̃(x1) ψ̃(x2) . (7.224)

One can verify that {
ψ1

j,n , ψ2
j,n , ψ3

j,n

}
(j,n)∈Z3 (7.225)

and {
ψ̃1

j,n , ψ̃2
j,n , ψ̃3

j,n

}

(j,n)∈Z3
(7.226)

are biorthogonal Riesz bases of L2(R2).
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7.7.3 Fast Two-Dimensional Wavelet Transform

The fast wavelet transform algorithm presented in Section 7.3.1 is extended in two dimensions. At
all scales 2j and for any n = (n1, n2), we denote

aj [n] = 〈f,φ2
j,n〉 and dk

j [n] = 〈f,ψk
j,n〉 for 1 " k " 3 .

For any pair of one-dimensional filters y[m] and z[m] we write the product filter yz[n] = y[n1] z[n2],
and ȳ[m] = y[−m]. Let h[m] and g[m] be the conjugate mirror filters associated to the wavelet ψ.

The wavelet coefficients at the scale 2j+1 are calculated from aj with two-dimensional sepa-
rable convolutions and subsamplings. The decomposition formula are obtained by applying the
one-dimensional convolution formula (7.103) and (7.102) of Theorem 7.10 to the separable two-
dimensional wavelets and scaling functions for n = (n1, n2):

aj+1[n] = aj ' h̄h̄[2n] , (7.227)

d1
j+1[n] = aj ' h̄ḡ[2n] , (7.228)

d2
j+1[n] = aj ' ḡh̄[2n] , (7.229)

d3
j+1[n] = aj ' ḡḡ[2n] . (7.230)

We showed in (3.70) that a separable two-dimensional convolution can be factored into one-
dimensional convolutions along the rows and columns of the image. With the factorization il-
lustrated in Figure 7.25(a), these four convolutions equations are computed with only six groups
of one-dimensional convolutions. The rows of aj are first convolved with h̄ and ḡ and subsampled
by 2. The columns of these two output images are then convolved respectively with h̄ and ḡ and
subsampled, which gives the four subsampled images aj+1, d1

j+1, d2
j+1 and d3

j+1.
We denote by y̌[n] = y̌[n1, n2] the image twice the size of y[n], obtained by inserting a row of

zeros and a column of zeros between pairs of consecutive rows and columns. The approximation
aj is recovered from the coarser scale approximation aj+1 and the wavelet coefficients dk

j+1 with
two-dimensional separable convolutions derived from the one-dimensional reconstruction formula
(7.104)

aj [n] = ǎj+1 ' hh[n] + ď1
j+1 ' hg[n] + ď2

j+1 ' gh[n] + ď3
j+1 ' gg[n] . (7.231)

These four separable convolutions can also be factored into six groups of one-dimensional convo-
lutions along rows and columns, illustrated in Figure 7.25(b).

Let b[n] be an input image whose pixels have a distance 2L. We associate to b[n] a function
f(x) ∈ V2

L approximated at the scale 2L. Its coefficients aL[n] = 〈f,φ2
L,n〉 are defined like in

(7.111) by
b[n] = 2−L aL[n] ≈ f(2Ln) . (7.232)

The wavelet image representation of aL is computed by iterating (7.227-7.230) for L " j < J :

[
aJ , {d1

j , d
2
j , d

3
j}L<j!J

]
. (7.233)

The image aL is recovered from this wavelet representation by computing (7.231) for J > j ! L.

Finite Image and Complexity When aL is a finite image of N = N1 N2 pixels, we face boundary
problems when computing the convolutions (7.227-7.231). Since the decomposition algorithm is
separable along rows and columns, we use one of the three one-dimensional boundary techniques
described in Section 7.5. The resulting values are decomposition coefficients in a wavelet basis of
L2[0, 1]2. Depending on the boundary treatment, this wavelet basis is a periodic basis, a folded
basis or a boundary adapted basis.

For square images with N1 = N2, the resulting images aj and dk
j have 2−2j samples. The

images of the wavelet representation (7.233) thus include a total of N samples. If h and g have
size K, the reader can verify that 2K2−2(j−1) multiplications and additions are needed to compute
the four convolutions (7.227-7.230) with the factorization of Figure 7.25(a). The wavelet represen-
tation (7.233) is thus calculated with fewer than 8/3 KN operations. The reconstruction of aL by
factoring the reconstruction equation (7.231) requires the same number of operations.
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Figure 7.25: (a): Decomposition of aj with 6 groups of one-dimensional convolutions and subsam-
plings along the image rows and columns. (b): Reconstruction of aj by inserting zeros between
the rows and columns of aj+1 and dk

j+1, and filtering the output.

Fast Biorthogonal Wavelet Transform The decomposition of an image in a biorthogonal wavelet
basis is performed with the same fast wavelet transform algorithm. Let (h̃, g̃) be the perfect
reconstruction filters associated to (h, g). The inverse wavelet transform is computed by replacing
the filters (h, g) that appear in (7.231) by (h̃, g̃).

7.7.4 Wavelet Bases in Higher Dimensions

Separable wavelet orthonormal bases of L2(Rp) are constructed for any p ! 2, with a procedure
similar to the two-dimensional extension. Let φ be a scaling function and ψ a wavelet that yields
an orthogonal basis of L2(R). We denote θ0 = φ and θ1 = ψ. To any integer 0 " ε < 2p written in
binary form ε = ε1 . . . , εp we associate the p-dimensional functions defined in x = (x1, . . . , xp) by

ψε(x) = θε1(x1) . . . θεn(xp) ,

For ε = 0, we obtain a p-dimensional scaling function

ψ0(x) = φ(x1) . . .φ(xp).

Non-zero indexes ε correspond to 2p − 1 wavelets. At any scale 2j and for n = (n1, . . . , np) we
denote

ψεj,n(x) = 2−pj/2 ψε
(x1 − 2jn1

2j
, . . . ,

xp − 2jnp

2j

)
.

Theorem 7.26. The family obtained by dilating and translating the 2p − 1 wavelets for ε .= 0

{
ψεj,n

}

1!ε<2p , (j,n)∈Zp+1
(7.234)

is an orthonormal basis of L2(Rp).
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The proof is done by induction on p. It follows the same steps as the proof of Theorem 7.25
which associates to a wavelet basis of L2(R) a separable wavelet basis of L2(R2). For p = 2, we
verify that the basis (7.234) includes 3 elementary wavelets. For p = 3, there are 7 different wavelets.

Fast Wavelet Transform Let b[n] be an input p-dimensional discrete signal sampled at intervals 2L.
We associate to b[n] an approximation f at the scale 2L whose scaling coefficients aL[n] = 〈f,ψ0

L,n〉
satisfy

b[n] = 2−Lp/2 aL[n] ≈ f(2Ln) .

The wavelet coefficients of f at scales 2j > 2L are computed with separable convolutions and
subsamplings along the p signal dimensions. We denote

aj [n] = 〈f,ψ0
j,n〉 and dεj [n] = 〈f,ψεj,n〉 for 0 < ε < 2p .

The fast wavelet transform is computed with filters that are separable products of the one-
dimensional filters h and g. The separable p-dimensional low-pass filter is

h0[n] = h[n1] . . . h[np] .

Let us denote u0[m] = h[m] and u1[m] = g[m]. To any integer ε = ε1 . . . εp written in a binary
form, we associate a separable p-dimensional band-pass filter

gε[n] = uε1 [n1] . . . uεp [np].

Let ḡε[n] = gε[−n]. One can verify that

aj+1[n] = aj ' h̄0[2n] , (7.235)

dεj+1[n] = aj ' ḡε[2n] . (7.236)

We denote by y̌[n] the signal obtained by adding a zero between any two samples of y[n] that
are adjacent in the p-dimensional lattice n = (n1, . . . , np). It doubles the size of y[n] along each
direction. If y[n] has Mp samples, then y̌[n] has (2M)p samples. The reconstruction is performed
with

aj [n] = ǎj+1 ' h0[n] +
2p−1∑

ε=1

ďεj+1 ' gε[n] . (7.237)

The 2p separable convolutions needed to compute aj and {dεj}1!ε!2p as well as the reconstruc-
tion (7.237) can be factored in 2p+1 − 2 groups of one-dimensional convolutions along the rows of
p-dimensional signals. This is a generalization of the two-dimensional case, illustrated in Figures
7.25. The wavelet representation of aL is

[
{dεj}1!ε<2p , L<j!J , aJ

]
. (7.238)

It is computed by iterating (7.235) and (7.236) for L " j < J . The reconstruction of aL is
performed with the partial reconstruction (7.237) for J > j ! L.

If aL is a finite signal of size N1 · · ·Np, the one-dimensional convolutions are modified with
one of the three boundary techniques described in Section 7.5. The resulting algorithm computes
decomposition coefficients in a separable wavelet basis of L2[0, 1]p. If N1 = · · · = Np, the signals aj

and dεj have 2−pj samples. Like aL, the wavelet representation (7.238) is composed of N samples. If
the filter h has K non-zero samples then the separable factorization of (7.235) and (7.236) requires
pK2−p(j−1) multiplications and additions. The wavelet representation (7.238) is thus computed
with fewer than p(1− 2−p)−1KN multiplications and additions. The reconstruction is performed
with the same number of operations.


