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The discrete windowed Fourier transform of a signal f of period N is

Sf [m, l] = 〈f, gm,l〉 =
N−1∑

n=0

f [n] g[n−m] exp

(
−i2πln

N

)
, (4.27)

For each 0 ! m < N , Sf [m, l] is calculated for 0 ! l < N with a discrete Fourier transform of
f [n]g[n −m]. This is performed with N FFT procedures of size N , and thus requires a total of
O(N2 log2 N) operations. Figure 4.3 is computed with this algorithm.

Inverse Transform The following theorem discretizes the reconstruction formula and the energy
conservation of Theorem 4.1.

Theorem 4.3. If f is a signal of period N then

f [n] =
1

N

N−1∑

m=0

N−1∑

l=0

Sf [m, l] g[n−m] exp

(
i2πln

N

)
(4.28)

and
N−1∑

n=0

|f [n]|2 =
1

N

N−1∑

l=0

N−1∑

m=0

|Sf [m, l]|2. (4.29)

This theorem is proved by applying the Parseval and Plancherel formulas of the discrete Fourier
transform, exactly as in the proof of Theorem 4.1. The energy conservation (4.29) proves that this
windowed Fourier transform defines a tight frame, as explained in Chapter 5. The reconstruction
formula (4.28) is rewritten

f [n] =
1

N

N−1∑

m=0

g[n−m]
N−1∑

l=0

Sf [m, l] exp

(
i2πln

N

)
.

The second sum computes for each 0 ! m < N the inverse discrete Fourier transform of Sf [m, l]
with respect to l. This is calculated with N FFT procedures, requiring a total of O(N2 log2 N)
operations.

A discrete windowed Fourier transform is an N2 image Sf [l,m] that is very redundant, since
it is entirely specified by a signal f of size N . The redundancy is characterized by a discrete
reproducing kernel equation, which is the discrete equivalent of (4.20).

4.3 Wavelet Transforms

To analyze signal structures of very different sizes, it is necessary to use time-frequency atoms with
different time supports. The wavelet transform decomposes signals over dilated and translated
wavelets. A wavelet is a function ψ ∈ L2(R) with a zero average:

∫ +∞

−∞
ψ(t) dt = 0. (4.30)

It is normalized ‖ψ‖ = 1, and centered in the neighborhood of t = 0. A dictionary of time-
frequency atoms is obtained by scaling ψ by s and translating it by u:

D =

{
ψu,s(t) =

1√
s
ψ

(
t− u

s

)}

u∈R,s∈R+

.

These atoms remain normalized: ‖ψu,s‖ = 1. The wavelet transform of f ∈ L2(R) at time u and
scale s is

Wf(u, s) = 〈f,ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (4.31)
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Linear Filtering The wavelet transform can be rewritten as a convolution product:

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt = f # ψ̄s(u) (4.32)

with

ψ̄s(t) =
1√
s
ψ∗
(
−t

s

)
.

The Fourier transform of ψ̄s(t) is
̂̄ψs(ω) =

√
s ψ̂∗(sω). (4.33)

Since ψ̂(0) =
∫ +∞
−∞ ψ(t) dt = 0, it appears that ψ̂ is the transfer function of a band-pass filter. The

convolution (4.32) computes the wavelet transform with dilated band-pass filters.

Analytic Versus Real Wavelets Like a windowed Fourier transform, a wavelet transform can mea-
sure the time evolution of frequency transients. This requires using a complex analytic wavelet,
which can separate amplitude and phase components. The properties of this analytic wavelet
transform are described in Section 4.3.2, and its application to the measurement of instantaneous
frequencies is explained in Section 4.4.2. In contrast, real wavelets are often used to detect sharp
signal transitions. Section 4.3.1 introduces elementary properties of real wavelets, which are devel-
oped in Chapter 6.

4.3.1 Real Wavelets

Suppose that ψ is a real wavelet. Since it has a zero average, the wavelet integral

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt

measures the variation of f in a neighborhood of u, whose size is proportional to s. Section 6.1.3
proves that when the scale s goes to zero, the decay of the wavelet coefficients characterizes the
regularity of f in the neighborhood of u. This has important applications for detecting transients
and analyzing fractals. This section concentrates on the completeness and redundancy properties
of real wavelet transforms.

Example 4.6. Wavelets equal to the second derivative of a Gaussian are called Mexican hats.
They were first used in computer vision to detect multiscale edges [487]. The normalized Mexican
hat wavelet is

ψ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (4.34)

For σ = 1, Figure 4.6 plots −ψ and its Fourier transform

ψ̂(ω) =
−
√

8σ5/2 π1/4

√
3

ω2 exp

(
−σ2ω2

2

)
. (4.35)

Figure 4.7 shows the wavelet transform of a signal that is piecewise regular on the left and
almost everywhere singular on the right. The maximum scale is smaller than 1 because the support
of f is normalized to [0, 1]. The minimum scale is limited by the sampling interval of the discretized
signal used in numerical calculations. When the scale decreases, the wavelet transform has a rapid
decay to zero in the regions where the signal is regular. The isolated singularities on the left create
cones of large amplitude wavelet coefficients that converge to the locations of the singularities. This
is further explained in Chapter 6.

A real wavelet transform is complete and maintains an energy conservation, as long as the
wavelet satisfies a weak admissibility condition, specified by the following theorem. This theorem
was first proved in 1964 by the mathematician Calderón [131], from a different point of view.
Wavelets did not appear as such, but Calderón defines a wavelet transform as a convolution operator
that decomposes the identity. Grossmann and Morlet [287] were not aware of Calderón’s work when
they proved the same formula for signal processing.
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Figure 4.6: Mexican hat wavelet (4.34) for σ = 1 and its Fourier transform.
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Figure 4.7: Real wavelet transform Wf(u, s) computed with a Mexican hat wavelet (4.34). The
vertical axis represents log2 s. Black, grey and white points correspond respectively to positive,
zero and negative wavelet coefficients.
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Theorem 4.4 (Calderón, Grossmann, Morlet). Let ψ ∈ L2(R) be a real function such that

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞. (4.36)

Any f ∈ L2(R) satisfies

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)

1√
s
ψ

(
t− u

s

)
du

ds

s2
, (4.37)

and ∫ +∞

−∞
|f(t)|2dt =

1

Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (4.38)

Proof. The proof of (4.38) is almost identical to the proof of (4.18). Let us concentrate on the proof
of (4.37). The right integral b(t) of (4.37) can be rewritten as a sum of convolutions. Inserting
Wf(u, s) = f ! ψ̄s(u) with ψs(t) = s−1/2 ψ(t/s) yields

b(t) =
1

Cψ

Z +∞

0

Wf(., s) ! ψs(t)
ds
s2

=
1

Cψ

Z +∞

0

f ! ψ̄s ! ψs(t)
ds
s2

. (4.39)

The “.” indicates the variable over which the convolution is calculated. We prove that b = f by
showing that their Fourier transforms are equal. The Fourier transform of b is

b̂(ω) =
1

Cψ

Z +∞

0

f̂(ω)
√

s ψ̂∗(sω)
√

s ψ̂(sω)
ds
s2

=
f̂(ω)
Cψ

Z +∞

0

|ψ̂(sω)|2 ds
s

.

Since ψ is real we know that |ψ̂(−ω)|2 = |ψ̂(ω)|2. The change of variable ξ = sω thus proves that

b̂(ω) =
1

Cψ
f̂(ω)

Z +∞

0

|ψ̂(ξ)|2

ξ
dξ = f̂(ω).

The theorem hypothesis

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞

is called the wavelet admissibility condition. To guarantee that this integral is finite we must
ensure that ψ̂(0) = 0, which explains why we imposed that wavelets must have a zero average.
This condition is nearly sufficient. If ψ̂(0) = 0 and ψ̂(ω) is continuously differentiable then the
admissibility condition is satisfied. One can verify that ψ̂(ω) is continuously differentiable if ψ has
a sufficient time decay ∫ +∞

−∞
(1 + |t|) |ψ(t)| dt < +∞.

Reproducing Kernel Like a windowed Fourier transform, a wavelet transform is a redundant rep-
resentation, whose redundancy is characterized by a reproducing kernel equation. Inserting the
reconstruction formula (4.37) into the definition of the wavelet transform yields

Wf(u0, s0) =

∫ +∞

−∞

(
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)ψu,s(t) du

ds

s2

)
ψ∗

u0,s0
(t) dt.

Interchanging these integrals gives

Wf(u0, s0) =
1

Cψ

∫ +∞

−∞
K(u, u0, s, s0)Wf(u, s) du

ds

s2
, (4.40)

with
K(u0, u, s0, s) = 〈ψu,s,ψu0,s0〉 . (4.41)

The reproducing kernel K(u0, u, s0, s) measures the correlation of two wavelets ψu,s and ψu0,s0 .
The reader can verify that any function Φ(u, s) is the wavelet transform of some f ∈ L2(R) if and
only if it satisfies the reproducing kernel equation (4.40).
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Scaling Function When Wf(u, s) is known only for s < s0, to recover f we need a complement
of information corresponding to Wf(u, s) for s > s0. This is obtained by introducing a scaling
function φ that is an aggregation of wavelets at scales larger than 1. The modulus of its Fourier
transform is defined by

|φ̂(ω)|2 =

∫ +∞

1
|ψ̂(sω)|2

ds

s
=

∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ, (4.42)

and the complex phase of φ̂(ω) can be arbitrarily chosen. One can verify that ‖φ‖ = 1 and we
derive from the admissibility condition (4.36) that

lim
ω→0

|φ̂(ω)|2 = Cψ. (4.43)

The scaling function can thus be interpreted as the impulse response of a low-pass filter. Let us
denote

φs(t) =
1√
s
φ

(
t

s

)
and φ̄s(t) = φ∗s(−t).

The low-frequency approximation of f at the scale s is

Lf(u, s) =

〈
f(t),

1√
s
φ

(
t− u

s

)〉
= f # φ̄s(u). (4.44)

With a minor modification of the proof of Theorem 4.4, it can be shown that (Exercise 4.6)

f(t) =
1

Cψ

∫ s0

0
Wf(., s) # ψs(t)

ds

s2
+

1

Cψs0
Lf(., s0) # φs0(t). (4.45)

Example 4.7. If ψ is the second order derivative of a Gaussian whose Fourier transform is given
by (4.35), then the integration (4.42) yields

φ̂(ω) =
2σ3/2π1/4

√
3

√
ω2 +

1

σ2
exp

(
−
σ2ω2

2

)
. (4.46)

Figure 4.8 displays φ and φ̂ for σ = 1.
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Figure 4.8: Scaling function associated to a Mexican hat wavelet and its Fourier transform calcu-
lated with (4.46).

4.3.2 Analytic Wavelets

To analyze the time evolution of frequency tones, it is necessary to use an analytic wavelet to
separate the phase and amplitude information of signals. The properties of the resulting analytic
wavelet transform are studied.


