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Discrete Revolution
Digital signal processing has taken over. First used in the 1950’s at the service of analog signal pro-
cessing to simulate analog transforms, digital algorithms have invaded most traditional fortresses,
including phones, music recording, cameras, televisions, and all information processing. Analog
computations performed with electronic circuits are faster than digital algorithms implemented
with microprocessors, but are less precise and less flexible. Thus analog circuits are often replaced
by digital chips once the computational performance of microprocessors is sufficient to operate in
real time for a given application.

Whether sound recordings or images, most discrete signals are obtained by sampling an analog
signal. An analog to digital conversion is a linear approximation which introduces an error which
depends upon the sampling rate. Once more, the Fourier transform is unavoidable because the
eigenvectors of discrete time-invariant operators are sinusoidal waves. The Fourier transform is
discretized for signals of finite size and implemented with a Fast Fourier Transform algorithm.

3.1 Sampling Analog Signals

The simplest way to discretize an analog signal f is to record its sample values {f(ns)}n∈Z at
intervals s. An approximation of f(t) at any t ∈ R may be recovered by interpolating these
samples. The Shannon-Whittaker sampling theorem gives a sufficient condition on the support
of the Fourier transform f̂ to recover f(t) exactly. Aliasing and approximation errors are studied
when this condition is not satisfied.

Digital acquisition devices often do not satisfy the restrictive hypothesis of the Shannon-
Whittaker sampling theorem. General linear analog to discrete conversion is introduced in Section
3.1.3, showing that a stable uniform discretization is a linear approximation. A digital conversion
also approximates discrete coefficients with a given precision, to store them with a limited number
of bits. This quantization aspect is studied in Chapter 10.

3.1.1 Shannon-Whittaker Sampling Theorem

Sampling is first studied from the more classical Shannon-Whittaker point of view, which tries to
recover f(t) from its samples {f(ns)}n∈Z. A discrete signal may be represented as a sum of Diracs.
We associate to any sample f(ns) a Dirac f(ns)δ(t − ns) located at t = ns. A uniform sampling
of f thus corresponds to the weighted Dirac sum

fd(t) =
+∞∑

n=−∞
f(ns) δ(t− ns). (3.1)

The Fourier transform of δ(t− ns) is e−insω so the Fourier transform of fd is a Fourier series:

f̂d(ω) =
+∞∑

n=−∞
f(ns) e−insω. (3.2)
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42 Chapter 3. Discrete Revolution

To understand how to compute f(t) from the sample values f(ns) and hence f from fd, we relate
their Fourier transforms f̂ and f̂d.

Theorem 3.1. The Fourier transform of the discrete signal obtained by sampling f at intervals s
is

f̂d(ω) =
1

s

+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
. (3.3)

Proof. Since δ(t − ns) is zero outside t = ns,

f(ns) δ(t − ns) = f(t) δ(t − ns),

so we can rewrite (3.1) as multiplication with a Dirac comb:

fd(t) = f(t)
+∞X

n=−∞

δ(t − ns) = f(t) c(t). (3.4)

Computing the Fourier transform yields

f̂d(ω) =
1
2π

f̂ $ ĉ(ω). (3.5)

The Poisson formula (2.4) proves that

ĉ(ω) =
2π
s

+∞X

k=−∞

δ

„
ω − 2πk

s

«
. (3.6)

Since f̂ $ δ(ω − ξ) = f̂(ω − ξ), inserting (3.6) in (3.5) proves (3.3).

Theorem 3.1 proves that sampling f at intervals s is equivalent to making its Fourier transform
2π/s periodic by summing all its translations f̂(ω − 2kπ/s). The resulting sampling theorem was
first proved by Whittaker [482] in 1935 in a book on interpolation theory. Shannon rediscovered it
in 1949 for applications to communication theory [428].

Theorem 3.2 (Shannon, Whittaker). If the support of f̂ is included in [−π/s,π/s] then

f(t) =
+∞∑

n=−∞
f(ns)φs(t− ns), (3.7)

with

φs(t) =
sin(πt/s)

πt/s
. (3.8)

Proof. If n "= 0, the support of f̂(ω − nπ/s) does not intersect the support of f̂(ω) because f̂(ω) = 0
for |ω| > π/s. So (3.3) implies

f̂d(ω) =
f̂(ω)

s
if |ω| !

π
s

. (3.9)

The Fourier transform of φs is φ̂s = s1[−π/s,π/s]. Since the support of f̂ is in [−π/s,π/s] it results

from (3.9) that f̂(ω) = φ̂s(ω) f̂d(ω). The inverse Fourier transform of this equality gives

f(t) = φs $ fd(t) = φs $
+∞X

n=−∞

f(ns) δ(t − ns)

=
+∞X

n=−∞

f(ns)φs(t − ns).

The sampling theorem imposes that the support of f̂ is included in [−π/s,π/s], which guarantees
that f has no brutal variations between consecutive samples, and can thus be recovered with
a smooth interpolation. Section 3.1.3 shows that one can impose other smoothness conditions to
recover f from its samples. Figure 3.1 illustrates the different steps of a sampling and reconstruction
from samples, in both the time and Fourier domains.
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3.1.2 Aliasing

The sampling interval s is often imposed by computation or storage constraints and the support
of f̂ is generally not included in [−π/s,π/s]. In this case the interpolation formula (3.7) does not
recover f . We analyze the resulting error and a filtering procedure to reduce it.

(a)

(c)

(d)

(b)

1

0

Figure 3.1: (a): Signal f and its Fourier transform f̂ . (b): A uniform sampling of f makes its
Fourier transform periodic. (c): Ideal low-pass filter. (d): The filtering of (b) with (c) recovers f .

Theorem 3.1 proves that

f̂d(ω) =
1

s

+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
. (3.10)

Suppose that the support of f̂ goes beyond [−π/s,π/s]. In general the support of f̂(ω − 2kπ/s)
intersects [−π/s,π/s] for several k #= 0, as shown in Figure 3.2. This folding of high frequency com-
ponents over a low frequency interval is called aliasing. In the presence of aliasing, the interpolated
signal

φs % fd(t) =
+∞∑

n=−∞
f(ns)φs(t− ns)

has a Fourier transform

f̂d(ω) φ̂s(ω) = s f̂d(ω)1[−π/s,π/s](ω) = 1[−π/s,π/s](ω)
+∞∑

k=−∞

f̂

(
ω −

2kπ

s

)
(3.11)

which may be completely different from f̂(ω) over [−π/s,π/s]. The signal φs % fd may not even be
a good approximation of f , as shown by Figure 3.2.

Example 3.1. Let us consider a high frequency oscillation

f(t) = cos(ω0t) =
eiω0t + e−iω0t

2
.

Its Fourier transform is

f̂(ω) = π
(
δ(ω − ω0) + δ(ω + ω0)

)
.

If 2π/s > ω0 > π/s then (3.11) yields

f̂d(ω) φ̂s(ω)

= π 1[−π/s,π/s](ω)
+∞∑

k=−∞

(
δ
(
ω − ω0 −

2kπ

s

)
+ δ
(
ω + ω0 −

2kπ

s

))

= π
(
δ(ω −

2π

s
+ ω0) + δ(ω +

2π

s
− ω0)

)
,
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(c)

(d)
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Figure 3.2: (a): Signal f and its Fourier transform f̂ . (b): Aliasing produced by an overlapping of
f̂(ω − 2kπ/s) for different k, shown in dashed lines. (c): Ideal low-pass filter. (d): The filtering of
(b) with (c) creates a low-frequency signal that is different from f .

so

fd % φs(t) = cos

[(2π

s
− ω0

)
t

]
.

The aliasing reduces the high frequency ω0 to a lower frequency 2π/s−ω0 ∈ [−π/s,π/s]. The same
frequency folding is observed in a film that samples a fast moving object without enough images per
second. A wheel turning rapidly appears as turning much more slowly in the film.

Removal of Aliasing To apply the sampling theorem, f is approximated by the closest signal f̃
whose Fourier transform has a support in [−π/s,π/s]. The Plancherel formula (2.26) proves that

‖f − f̃‖2 =
1

2π

∫ +∞

−∞
|f̂(ω)− ̂̃f(ω)|2 dω

=
1

2π

∫

|ω|>π/s
|f̂(ω)|2 dω +

1

2π

∫

|ω|!π/s
|f̂(ω)− ̂̃f(ω)|2 dω.

This distance is minimum when the second integral is zero and hence

̂̃f(ω) = f̂(ω)1[−π/s,π/s](ω) =
1

s
φ̂s(ω) f̂(ω). (3.12)

It corresponds to f̃ = 1
s f % φs. The filtering of f by φs avoids the aliasing by removing any

frequency larger than π/s. Since ̂̃f has a support in [−π/s,π/s], the sampling theorem proves
that f̃(t) can be recovered from the samples f̃(ns). An analog to digital converter is therefore
composed of a filter that limits the frequency band to [−π/s,π/s], followed by a uniform sampling
at intervals s.

3.1.3 General Sampling and Linear Analog Conversions

The Shannon-Whittaker theorem is a particular example of linear discrete to analog conversion,
which does not apply to all digital acquisition devices. This section describes general analog to
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discrete conversion and reverse discrete to analog conversion, with a general linear filtering and
uniform sampling. Analog signals are approximated by linear projections on approximation spaces.

Sampling Theorems We want to recover a stable approximation of f ∈ L2(R) from a filtering and
uniform sampling that outputs {f % φ̄s(ns)}n∈Z, for some real filter φ̄s(t). These samples can be
written as inner products in L2(R):

f % φs(ns) =

∫ +∞

−∞
f(t) φ̄s(ns− t) dt = 〈f(t),φs(t− ns)〉 (3.13)

with φs(t) = φ̄s(−t). Let Us be the approximation space generated by linear combinations of the
{φs(t−ns)}n∈Z. The approximation f̃ ∈ Us which minimizes the maximum possible error ‖f − f̃‖
is the orthognal projection of f on Us (Exercice 3.5). The calculation of this orthogonal projection
is stable if {φs(t− ns)}n∈Z is a Riesz basis of Us, as defined in Section 5.1.1. Following Definition
5.1, a Riesz basis is a family of linearly independent functions that yields inner product satisfying
an energy equivalence. There exists B " A > 0 such that for any f ∈ Us

A ‖f‖2 !

+∞∑

n=−∞
|〈f(t),φs(t− ns)〉|2 ! B ‖f‖2. (3.14)

The basis is orthogonal if and only if A = B. The following generalized sampling theorem computes
the orthogonal projection on the approximation space Us [468].

Theorem 3.3 (Linear sampling). Let {φs(t−ns)}n∈Z be a Riesz basis of Us and φ̄s(t) = φs(−t).
There exists a biorthogonal basis {φ̃s(t− ns)}n∈Z of Us such that

∀f ∈ L2(R) , PUsf(t) =
+∞∑

n=−∞
f % φ̄s(ns) φ̃s(t− ns) . (3.15)

Proof. For any Riesz basis, Section 5.1.2 proves that there exists a biorthogonal basis {φ̃s,n(t)}n∈Z that
satisfies the biorthogonality relations

∀(n, m) ∈ Z
2 , 〈φs(t − ns) , φ̃s,m(t − ms)〉 = δ[n − m] . (3.16)

Since 〈φs(t − (n − m)s) , φ̃s,0(t)〉 = 〈φs(t − ns) , φ̃s,0(t − ms)〉 = 0 and since the dual basis is unique,
necessarily φ̃s,m(t) = φ̃s,0(t − ms). Section 5.1.2 proves in (5.20) that the orthogonal projection in Us

can be written

PUsf(t) =
+∞X

n=−∞

〈f(t),φs(t − ns)〉 φ̃s(t − ns)

which proves (3.15).

The orthogonal projection (3.15) can be rewritten as an analog filtering of the discrete signal
fd(t) =

∑+∞
n=−∞ f % φ̄s(ns) δ(t− ns):

PUsf(t) = fd % φ̃s(t) . (3.17)

If f ∈ Us then PUsf = f so it is exactly reconstructed by filtering the uniformly sampled discrete
signal {f % φ̄s(ns)}n∈Z with the analog filter φ̃(t). If f /∈ Us then (3.17) recovers the best linear
approximation approximation of f in Us. Section 9.1 shows that the linear approximation error
‖f−PUsf‖ depends essentially on the uniform regularity of f . Given some prior information on f ,
optimizing the analog discretization filter φs amounts to optimize the approximation space Us in
order to minimize this error. The following theorem characterizes filters φs that generate a Riesz
basis and computes the dual filter.
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Theorem 3.4. A filter φs generates a Riesz basis {φs(t − ns)}n∈Z of a space Us if and only if
there exists B " A > 0 such that

∀ω ∈ [0, 2π/s] , A !
1

s

+∞∑

k=−∞

|φ̂s(ω −
2kπ

s
)|2 ! B . (3.18)

The biorthogonal basis {φ̃s(t− ns)}n∈Z is defined by the dual filter φ̃s which satisfies:

̂̃φs(ω) =
s φ̂∗s(ω)

∑+∞
k=−∞ |φ̂s(ω − 2kπ/s)|2

. (3.19)

Proof. Theorem 5.1 proves that {φs(t − ns)}n∈Z is a Riesz basis of Us with Riesz bounds B " A > 0
if and only if

∀a ∈ !
2(Z) , A‖a‖2

! ‖
X

n∈Z

a[ns]φs(t − ns)‖2
! B‖a‖2 , (3.20)

with ‖a‖2 =
P

n∈Z
|a[ns]|2.

Let us first write these conditions in the Fourier domain. The Fourier transform of f(t) =P+∞
n=−∞ a[ns]φs(t − ns) is

f̂(ω) =
+∞X

n=−∞

a[ns] e−insω φ̂s(ω) = â(ω) φ̂s(ω) (3.21)

where â(ω) is the Fourier series â(ω) =
P+∞

n=−∞ a[ns] e−insω. Let us relate the norm of f and â. Since
â(ω) is 2π/s periodic, inserting (3.21) in the Plancherel formula (2.26) gives

‖f‖2 =
1
2π

Z +∞

−∞
|f̂(ω)|2 dω =

1
2π

Z 2π/s

0

+∞X

k=−∞

|â(ω + 2kπ/s)|2 |φ̂s(ω + 2kπ/s)|2 dω

=
1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω . (3.22)

Section 3.2.2 on Fourier series proves that

‖a‖2 =
+∞X

n=−∞

|a[ns]|2 =
s
2π

Z 2π/s

0

|â(ω)|2 dω . (3.23)

As a consequence of (3.22) and (3.23), the Riesz bound inequalities (3.20) are equivalent to

∀â ∈ L
2[0, 2π/s] ,

1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω !
B s
2π

Z 2π/s

0

|â(ω)|2 dω (3.24)

and

∀â ∈ L
2[0, 2π/s] ,

1
2π

Z 2π/s

0

|â(ω)|2
+∞X

k=−∞

|φ̂s(ω + 2kπ/s)|2 dω "
A s
2π

Z 2π/s

0

|â(ω)|2 dω . (3.25)

If φ̂s satisfies (3.18) then clearly (3.24) and (3.25) are valid, which proves (3.22).

Conversely, if {φs(ns − t)}n∈Z is a Riesz basis. Suppose that either the upper or the lower bound
of (3.18) is not satisfied for ω in a set of non-zero measure. Let â be the indicator function of this set.
Then either (3.24) or (3.25) are not valid for this â. This implies that the Riesz bounds (3.20) are not
valid for a and hence that it is not a Riesz basis, which contradicts our hypothesis. So (3.18) is indeed
valid for almost all ω ∈ [0, 2π/s].

To compute the biorthogonal basis, we are looking for φ̃s ∈ Us such that {φ̃s(t − ns)}n∈Z satisfies
the biorthogonal relations (3.16). Since φ̃s ∈ Us we saw in (3.21) that its Fourier transform can be

written c̃φs(ω) = â(ω)φ̂s(ω) where â(ω) is 2π/s periodic. Let us define g(t) = φ̄s $ φ̃s(t). Its Fourier
transform is

ĝ(ω) = φ̂∗
s(ω) ˆ̃φs(ω) = â(ω)|φ̂s(ω)|2 .
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The biorthogonal relations (3.16) are satisfied if and only if g(ns) = 0 if n "= 0 and g(0) = 1. It results
that gd(t) =

P+∞
n=−∞ g(ns) δ(t − ns) = δ(t). Theorem 3.1 derives in (3.3) that

ĝd(ω) =
1
s

+∞X

k=−∞

ĝ (ω − 2kπ/s) =
â(ω)

s

+∞X

k=−∞

|φ̂s(ω − 2kπ/s)|2 = 1.

It results that

â(ω) = s

 
+∞X

k=−∞

|φ̂s(ω − 2kπ/s)|2
!−1

which proves (3.19).

This theorem gives a necessary and sufficient condition on the low-pass filter φ̄s(t) = φs(−t) to
recover a stable signal approximation from a uniform sampling at intervals s. For various sampling
intervals s, the low-pass filter can be obtained by dilating a single filter φs(t) = s−1/2φ(t/s) and
hence φ̂s(ω) = s1/2φ̂(sω). The necessary and sufficient Riesz basis condition (3.18) is then satisfied
if and only if

∀ω ∈ [−π,π] , A !

+∞∑

k=−∞

|φ̂(ω − 2kπ)|2 ! B. (3.26)

It results from (3.19) that the dual filter satisfies ̂̃φs(ω) = s1/2̂̃φ(sω) and hence φ̃s(t) = s−1/2φ̃(t/s).
When A = B = 1 the Riesz basis is an orthonormal basis, which proves the following corollary.

Corollary 3.1. The family {φs(t− ns)}n∈Z is an orthonormal basis of the space Us it generates,
with φs(t) = s−1/2φ(t/s), if and only if

∀ω ∈ [0, 2π] ,
+∞∑

k=−∞

|φ̂(ω − 2kπ)|2 = 1 , (3.27)

and the dual filter is φ̃s = φs.

Shannon-Whittaker revisited The Shannon-Whittaker theorem 3.2 is defined with a sine-cardinal
perfect low-pass filter φs, which we renormalize here to have a unit norm. The following theorem
proves that it samples functions in an orthonormal basis.

Theorem 3.5. If φs(t) = s1/2 sin(πs−1t)/(πt) then {φs(t−ns)}n∈Z is an orthonormal basis of the
space Us of functions whose Fourier transforms have a support included in [−π/s,π/s]. If f ∈ Us

then
f(nT ) = s−1/2 f % φs(ns) . (3.28)

Proof. The filter satisfies φs(t) = s−1/2φ(t/s) with φ(t) = sin(πt)/(πt). The Fourier transform φ̂(ω) =
1[−π,π](ω) satisfies the condition (3.27) of Corollary 3.1, which proves that {φs(t − ns)}n∈Z is an
orthonormal basis of a space Us.

Any f(t) =
P+∞

n=−∞ a[ns]φs(t − ns) ∈ Us has a Fourier transform which can be written

f̂(ω) =
+∞X

n=−∞

a[ns] e−insω φ̂s(ω) = â(ω) s1/2
1[−π/s,π/s] , (3.29)

which implies that f ∈ Us if and only if f has a Fourier transform supported in [−π/s,π/s].

If f ∈ Us then decomposing it the orthonormal basis {φs(t − ns)}n∈Z gives

f(t) = PUsf(t) =
X

n∈Z

〈f(u),φs(u − ns)〉φs(t − ns) .

Since φs(ps) = s−1/2δ[ps] and φs(−t) = φs(t), it results that

f(ns) = s−1/2〈f(u),φs(u − ns)〉 = s−1/2 f $ φs(ns) .
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This theorem proves that in the particular case of the Shannon-Whittaker sampling theorem,
if f ∈ Us then the sampled low-pass filtered values f % φs(ns) are proportional to the signal
samples f(ns). This comes from the fact that the sine-cardinal φ(t) = sin(πt/s)/(πt/s) satisfies
the interpolation property φ(ns) = δ[ns]. A generalization of such multiscale interpolations is
studied in Section 7.6.

The Shannon-Whittaker sampling approximates signals by restricting their Fourier transform
to a low frequency interval. It is particularly effective for smooth signals whose Fourier transform
have an energy concentrated at low frequencies. It is also well adapted to sound recordings, which
are well approximated by lower frequency harmonics.

For discontinuous signals such as images, a low-frequency restriction produces Gibbs oscillations
studied in Section 2.3.3. The image visual quality is degraded by these oscillations, which have
a total variation (2.65) that is infinite. A piecewise constant approximation has the advantage of
creating no such spurious oscillations.

Block Sampler A block sampler approximates signals with piecewise constant functions. The
approximation space Us is the set of all functions that are constant on intervals [ns, (n + 1)s],
for any n ∈ Z. Let φs(t) = s−1/2 1[0,s](t). The family {φs(t − ns]}n∈Z is an orthonormal basis
of Us (Exercise 3.1). If f /∈ Us then its orthogonal projection on Us is calculated with a partial
decomposition in the block orthonormal basis of Us

PUsf(t) =
+∞∑

n=−∞
〈f(u),φs(u− ns)〉φs(t− ns), (3.30)

and each coefficient is proportional to the signal average on [ns, (n + 1)s]

〈f(u),φs(u− ns)〉 = f % φs(ns) = s−1/2

∫ (n+1)s

ns
f(u) du .

This block analog to digital conversion is particularly simple to implement in analog electronic,
where the integration is performed by a capacity.

In domains where f is a regular function, a piecewise constant approximation PUsf is not
very precise and can be significantly improved. More precise approximations are obtained with
approximation spaces Us of higher order polynomial splines. The resulting approximations can
introduce small Gibbs oscillations, but these oscillations have a finite total variation.

Spline Sampling Block samplers are generalized by a spline sampling with a space Us of splines
functions that are m− 1 times continuously differentiable and equal to a polynomial of degree m
on any interval [ns, (n + 1)s), for n ∈ Z. When m = 1, functions in Us are piecewise linear and
continuous.

A Riesz basis of polynomial splines is constructed with box splines. A box spline φ of degree m
is computed by convolving the box window 1[0,1] with itself m + 1 times and centering it at 0 or
1/2. Its Fourier transform is

φ̂(ω) =

(
sin(ω/2)

ω/2

)m+1

exp

(
−iεω

2

)
. (3.31)

If m is even then ε = 1 and φ has a support centered at t = 1/2. If m is odd then ε = 0 and φ(t)
is symmetric about t = 0. One can verify that φ̂(ω) satisfies the sampling condition (3.26) using
a closed form expression (7.19) of the resulting series. It results that for any s > 0, a box splines
family {φs(t− ns)}n∈Z defines a Riesz basis of Us, and thus a stable sampling.

3.2 Discrete Time-Invariant Filters

3.2.1 Impulse Response and Transfer Function

Classical discrete signal processing algorithms are mostly based on time-invariant linear operators
[50, 54]. The time-invariance is limited to translations on the sampling grid. To simplify notation,


