
IV

Time Meets Frequency

When we listen to music, we clearly “hear” the time variation of the sound “frequencies.” These

localized frequency events are not pure tones but packets of close frequencies. The properties of

sounds are revealed by transforms that decompose signals over elementary functions that are well

concentrated in time and frequency. Windowed Fourier transforms and wavelet transforms are two

important classes of local time-frequency decompositions. Measuring the time variations of “in-

stantaneous” frequencies illustrates the limitations imposed by the Heisenberg uncertainty. These

instantaneous frequencies are detected as local maxima in windowed Fourier and wavelet dictio-

naries, and define a signal approximation support. Audio processing algorithms are implemented

by modifying the geometry of this approximation support.

There is no unique definition of time-frequency energy density. All quadratic time-frequency

distributions are related through the averaging of a single quadratic form called the Wigner-Ville

distribution. This framework gives another perspective on windowed Fourier and wavelet trans-

forms.

4.1 Time-Frequency Atoms

A linear time-frequency transform correlates the signal with a dictionary of waveforms that are

well concentrated in time and in frequency. These waveforms are called time-frequency atoms.

Let us consider a general dictionary of time-frequency atoms D = {φγ}γ∈Γ, where γ might be a

multi-index parameter. We suppose that φγ ∈ L2(R) and that ∥φγ∥ = 1. The corresponding linear

time-frequency transform of f ∈ L2(R) is defined by

Φf(γ) =

∫ +∞

−∞
f(t)φ∗γ(t) dt = ⟨f,φγ⟩.

The Parseval formula (2.25) proves that

Φf(γ) =

∫ +∞

−∞
f(t)φ∗γ(t) dt =

1

2π

∫ +∞

−∞
f̂(ω) φ̂∗γ(ω) dω. (4.1)

If φγ(t) is nearly zero when t is outside a neighborhood of an abscissa u, then ⟨f,φγ⟩ depends only

on the values of f in this neighborhood. Similarly, if φ̂γ(ω) is negligible for ω far from ξ, then the

67
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right integral of (4.1) proves that ⟨f,φγ⟩ reveals the properties of f̂ in the neighborhood of ξ.

Heisenberg Boxes The slice of information provided by ⟨f,φγ⟩ is represented in a time-frequency

plane (t,ω) by a region whose location and width depends on the time-frequency spread of φγ .

Since

∥φγ∥2 =

∫ +∞

−∞
|φγ(t)|2 dt = 1,

we interpret |φγ(t)|2 as a probability distribution centered at

uγ =

∫ +∞

−∞
t |φγ(t)|2 dt. (4.2)

The spread around uγ is measured by the variance

σ2
t (γ) =

∫ +∞

−∞
(t− uγ)

2 |φγ(t)|2 dt. (4.3)

The Plancherel formula (2.26) proves that
∫ +∞
−∞ |φ̂γ(ω)|2 dω = 2π∥φγ∥2. The center frequency of

φ̂γ is therefore defined by

ξγ =
1

2π

∫ +∞

−∞
ω |φ̂γ(ω)|2 dω, (4.4)

and its spread around ξγ is

σ2
ω(γ) =

1

2π

∫ +∞

−∞
(ω − ξγ)2 |φ̂γ(ω)|2 dω. (4.5)

The time-frequency resolution of φγ is represented in the time-frequency plane (t,ω) by a

Heisenberg box centered at (uγ , ξγ), whose width along time is σt(γ) and whose width along

frequency is σω(γ). This is illustrated by Figure 4.1. The Heisenberg uncertainty Theorem 2.6

proves that the area of the rectangle is at least 1/2:

σt σω !
1

2
. (4.6)

This limits the joint resolution of φγ in time and frequency. The time-frequency plane must be

manipulated carefully because a point (t0,ω0) is ill-defined. There is no function that is perfectly

well concentrated at a point t0 and a frequency ω0. Only rectangles with area at least 1/2 may

correspond to time-frequency atoms.
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|φ       |

u

ξ

0 t

ω
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σ
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Figure 4.1: Heisenberg box representing an atom φγ .
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Translation Invariant Dictionaries For pattern recognition, it can be important to construct sig-

nal representations that are translation invariant. When a pattern is translated, its numerical

descriptors are then translated but not modified. Observe that for any φγ ∈ D and any shift u

⟨f(t− u),φγ(t)⟩ = ⟨f(t),φγ(t + u)⟩ .

A translation invariant representation is thus obtained if φγ(t + u) is in D up to a multiplicative

constant. Such a dictionary is said to be translation invariant.

A translation invariant dictionary is obtained by translating a family of generators {φγ}γ∈Γ,

and can be written D = {φu,γ}γ∈Γ,u∈R, with φu,γ(t) = λu,γ φγ(t−u). The resulting time-frequency

transform of f can then be written as a convolution:

Φf(u, γ) = ⟨f,φu,γ⟩ =

∫ +∞

−∞
f(t)λu,γφ

∗
γ(t− u) dt = λu,γ f ⋆ φ̃γ(u)

with φ̃γ(t) = φ∗γ(−t).

Energy Density Let us suppose that φγ(t) is centered at t = 0 so that φu,γ(t) is centered at u.

Let ξγ be the center frequency of φ̂γ(ω) defined in (4.4). The time-frequency box of φu,γ specifies

a neighborhood of (u, ξγ) where the energy of f is measured by

PΦf(u, ξγ) = |⟨f,φu,γ⟩|2 =

∣∣∣∣

∫ +∞

−∞
f(t)φ∗u,γ(t) dt

∣∣∣∣

2

. (4.7)

Section 4.5.1 proves that any such energy density is an averaging of the Wigner-Ville distribution,

with a kernel that depends on the atoms φu,γ .

Example 4.1. A windowed Fourier atom is constructed with a window g modulated by the frequency

ξ and translated by u:

φu,γ(t) = gu,ξ(t) = eiξt g(t− u). (4.8)

The resulting window Fourier dictionary D = {gu,ξ(t)}u,ξ∈R2 is translation invariant since gu,ξ =

eiξu g0,ξ(t− u). A windowed Fourier dictionary is also frequency shit invariant because

eiωt gu,ξ(t) = gu,ξ+ω(t) ∈ D .

This dictionary is thus particularly useful to analyze patterns that are translated in time and fre-

quency.

A wavelet atom is a dilation by s and a translation by u of a mother wavelet ψ:

φu,γ(t) = ψu,s(t) =
1√
s
ψ

(
t− u

s

)
. (4.9)

A wavelet dictionary D = {ψu,s(t)}u∈R,s∈R+ translation invariant but also scale invariant, because

scaling any wavelet produces a dilated wavelet that remains in the dictionary. A wavelet dictionary

is well adapted to analyze patterns that are translated and scaled by arbitrary factors.

Wavelets and windowed Fourier atoms have their energy well localized in time, while their

Fourier transform is mostly concentrated in a limited frequency band. The properties of the resulting

transforms are studied in Sections 4.2 and 4.3.
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4.2 Windowed Fourier Transform

In 1946, Gabor [266] introduced windowed Fourier atoms to measure the “frequency variations”

of sounds. A real and symmetric window g(t) = g(−t) is translated by u and modulated by the

frequency ξ:

gu,ξ(t) = eiξtg(t− u). (4.10)

It is normalized ∥g∥ = 1 so that ∥gu,ξ∥ = 1 for any (u, ξ) ∈ R2. The resulting windowed Fourier

transform of f ∈ L2(R) is

Sf(u, ξ) = ⟨f, gu,ξ⟩ =

∫ +∞

−∞
f(t) g(t− u) e−iξt dt. (4.11)

This transform is also called the short time Fourier transform because the multiplication by g(t−u)

localizes the Fourier integral in the neighborhood of t = u.

As in (4.7), one can define an energy density called a spectrogram, denoted PS :

PSf(u, ξ) = |Sf(u, ξ)|2 =

∣∣∣∣

∫ +∞

−∞
f(t) g(t− u) e−iξt dt

∣∣∣∣

2

. (4.12)

The spectrogram measures the energy of f in a time-frequency neighborhood of (u, ξ) specified by

the Heisenberg box of gu,ξ.

Heisenberg Boxes Since g is even, gu,ξ(t) = eiξtg(t−u) is centered at u. The time spread around

u is independent of u and ξ:

σ2
t =

∫ +∞

−∞
(t− u)2 |gu,ξ(t)|2 dt =

∫ +∞

−∞
t2 |g(t)|2 dt. (4.13)

The Fourier transform ĝ of g is real and symmetric because g is real and symmetric. The

Fourier transform of gu,ξ is

ĝu,ξ(ω) = ĝ(ω − ξ) exp[−iu(ω − ξ)] . (4.14)

It is a translation by ξ of the frequency window ĝ, so its center frequency is ξ. The frequency

spread around ξ is

σ2
ω =

1

2π

∫ +∞

−∞
(ω − ξ)2 |ĝu,ξ(ω)|2 dω =

1

2π

∫ +∞

−∞
ω2 |ĝ(ω)|2 dω. (4.15)

It is independent of u and ξ. Hence gu,ξ corresponds to a Heisenberg box of area σt σω centered at

(u, ξ), as illustrated by Figure 4.2. The size of this box is independent of (u, ξ), which means that

a windowed Fourier transform has the same resolution across the time-frequency plane.

Example 4.2. A sinusoidal wave f(t) = exp(iξ0t) whose Fourier transform is a Dirac f̂(ω) =

2πδ(ω − ξ0) has a windowed Fourier transform

Sf(u, ξ) = ĝ(ξ − ξ0) exp[−iu(ξ − ξ0)] .

Its energy is spread over the frequency interval [ξ0 − σω/2, ξ0 + σω/2].
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Figure 4.2: Heisenberg boxes of two windowed Fourier atoms gu,ξ and gν,γ .

Example 4.3. The windowed Fourier transform of a Dirac f(t) = δ(t− u0) is

Sf(u, ξ) = g(u0 − u) exp(−iξu0) .

Its energy is spread in the time interval [u0 − σt/2, u0 + σt/2].

Example 4.4. A linear chirp f(t) = exp(iat2) has an “instantaneous frequency” that increases

linearly in time. For a Gaussian window g(t) = (πσ2)−1/4 exp[−t2/(2σ2)], the windowed Fourier

transform of f is calculated using the Fourier transform (2.34) of Gaussian chirps. One can verify

that its spectrogram is

PSf(u, ξ) = |Sf(u, ξ)|2 =

(
4πσ2

1 + 4a2σ4

)1/2

exp

(
−
σ2(ξ − 2au)2

1 + 4a2σ4

)
.

(4.16)

For a fixed time u, PSf(u, ξ) is a Gaussian that reaches its maximum at the frequency ξ(u) = 2au.

Observe that if we write f(t) = exp[iφ(t)], then ξ(u) is equal to the “instantaneous frequency,”

defined as the derivative of the phase: ω(u) = φ′(u) = 2au. Section 4.4.1 explains this result.

Example 4.5. Figure 4.3 gives the spectrogram of a signal that includes a linear chirp, a quadratic

chirp and two modulated Gaussians. The spectrogram is computed with a Gaussian window dilated

by σ = 0.05. As expected from (4.16), the linear chirp yields large amplitude coefficients along the

trajectory of its instantaneous frequency, which is a straight line. The quadratic chirp yields large

coefficients along a parabola. The two modulated Gaussians produce low and high frequency blobs

at u = 0.5 and u = 0.87.

4.2.1 Completeness and Stability

When the time-frequency indices (u, ξ) vary across R2, the Heisenberg boxes of the atoms gu,ξ cover

the whole time-frequency plane. One can thus expect that f can be recovered from its windowed

Fourier transform Sf(u, ξ). The following theorem gives a reconstruction formula and proves that

the energy is conserved.

Theorem 4.1. If f ∈ L2(R) then

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Sf(u, ξ) g(t− u) eiξt dξ du (4.17)
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Figure 4.3: The signal includes a linear chirp whose frequency increases, a quadratic chirp whose

frequency decreases, and two modulated Gaussian functions located at t = 0.5 and t = 0.87. (a)

Spectrogram PSf(u, ξ). Dark points indicate large amplitude coefficients. (b) Complex phase of

Sf(u, ξ) in regions where the modulus PSf(u, ξ) is non-zero.
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and ∫ +∞

−∞
|f(t)|2 dt =

1

2π

∫ +∞

−∞

∫ +∞

−∞
|Sf(u, ξ)|2 dξ du. (4.18)

Proof. The reconstruction formula (4.17) is proved first. Let us apply the Fourier Parseval formula

(2.25) to the integral (4.17) with respect to the integration in u. The Fourier transform of fξ(u) =

Sf(u, ξ) with respect to u is computed by observing that

Sf(u, ξ) = exp(−iuξ)

Z +∞

−∞
f(t) g(t − u) exp[iξ(u − t)] dt = exp(−iuξ) f ⋆ gξ(u),

where gξ(t) = g(t) exp(iξt), because g(t) = g(−t). Its Fourier transform is therefore

f̂ξ(ω) = f̂(ω + ξ) ĝξ(ω + ξ) = f̂(ω + ξ) ĝ(ω).

The Fourier transform of g(t − u) with respect to u is ĝ(ω) exp(−itω). Hence

1
2π

„Z +∞

−∞

Z +∞

−∞
Sf(u, ξ) g(t − u) exp(iξt) du

«
dξ =

1
2π

Z +∞

−∞

„
1
2π

Z +∞

−∞
f̂(ω + ξ) |ĝ(ω)|2 exp[it(ω + ξ)] dω

«
dξ .

If f̂ ∈ L
1(R), we can apply the Fubini Theorem A.2 to reverse the integration order. The inverse

Fourier transform proves that

1
2π

Z +∞

−∞
f̂(ω + ξ) exp[it(ω + ξ)] dξ = f(t).

Since 1
2π

R +∞
−∞ |ĝ(ω)|2 dω = 1, we derive (4.17). If f̂ ∈/ L

1(R), a density argument is used to verify this

formula.

Let us now prove the energy conservation (4.18). Since the Fourier transform in u of Sf(u, ξ) is

f̂(ω + ξ) ĝ(ω), the Plancherel formula (2.26) applied to the right-hand side of (4.18) gives

1
2π

Z +∞

−∞

Z +∞

−∞
|Sf(u, ξ)|2 du dξ =

1
2π

Z +∞

−∞

1
2π

Z +∞

−∞
|f̂(ω + ξ) ĝ(ω)|2 dω dξ.

The Fubini theorem applies and the Plancherel formula proves that

1
2π

Z +∞

−∞
|f̂(ω + ξ)|2 dξ = ∥f∥2,

which implies (4.18).

The reconstruction formula (4.17) can be rewritten

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
⟨f, gu,ξ⟩ gu,ξ(t) dξ du. (4.19)

It resembles the decomposition of a signal in an orthonormal basis but it is not, since the functions

{gu,ξ}u,ξ∈R2 are very redundant in L2(R). The second equality (4.18) justifies the interpretation of

the spectrogram PSf(u, ξ) = |Sf(u, ξ)|2 as an energy density, since its time-frequency sum equals

the signal energy.
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Reproducing Kernel A windowed Fourier transform represents a one-dimensional signal f(t) by

a two-dimensional function Sf(u, ξ). The energy conservation proves that Sf ∈ L2(R2). Because

Sf(u, ξ) is redundant, it is not true that any Φ ∈ L2(R2) is the windowed Fourier transform of

some f ∈ L2(R). The next theorem gives a necessary and sufficient condition for such a function

to be a windowed Fourier transform.

Theorem 4.2. Let Φ ∈ L2(R2). There exists f ∈ L2(R) such that Φ(u, ξ) = Sf(u, ξ) if and only

if

Φ(u0, ξ0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
Φ(u, ξ)K(u0, u, ξ0, ξ) du dξ, (4.20)

with

K(u0, u, ξ0, ξ) = ⟨gu,ξ, gu0,ξ0⟩ . (4.21)

Proof. Suppose that there exists f such that Φ(u, ξ) = Sf(u, ξ). Let us replace f with its reconstruction

integral (4.17) in the windowed Fourier transform definition:

Sf(u0, ξ0) =

Z +∞

−∞

„
1
2π

Z +∞

−∞

Z +∞

−∞
Sf(u, ξ) gu,ξ(t) du dξ

«
g∗

u0,ξ0(t) dt. (4.22)

Inverting the integral on t with the integrals on u and ξ yields (4.20). To prove that the condition

(4.20) is sufficient, we define f as in the reconstruction formula (4.17):

f(t) =
1
2π

Z +∞

−∞

Z +∞

−∞
Φ(u, ξ) g(t − u) exp(iξt) dξ du

and show that (4.20) implies that Φ(u, ξ) = Sf(u, ξ).

Ambiguity Function The reproducing kernel K(u0, u, ξ0, ξ) measures the time-frequency overlap

of the two atoms gu,ξ and gu0,ξ0 . The amplitude of K(u0, u, ξ0, ξ) decays with u0 − u and ξ0 − ξ
at a rate that depends on the energy concentration of g and ĝ. Replacing gu,ξ and gu0,ξ0 by their

expression and making the change of variable v = t−(u+u0)/2 in the inner product integral (4.21)

yields

K(u0, u, ξ0, ξ) = exp

(
−

i

2
(ξ0 − ξ)(u + u0)

)
Ag(u0 − u, ξ0 − ξ) (4.23)

where

Ag(τ, γ) =

∫ +∞

−∞
g
(
v +

τ

2

)
g
(
v −

τ

2

)
e−iγv dv (4.24)

is called the ambiguity function of g. Using the Parseval formula to replace this time integral with

a Fourier integral gives

Ag(τ, γ) =
1

2π

∫ +∞

−∞
ĝ
(
ω +

γ

2

)
ĝ
(
ω −

γ

2

)
eiτω dω. (4.25)

The decay of the ambiguity function measures the spread of g in time and of ĝ in frequency. For

example, if g has a support included in an interval of size T , then Ag(τ,ω) = 0 for |τ | ! T/2. The

integral (4.25) shows that the same result applies to the support of ĝ.
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4.2.2 Choice of Window

The resolution in time and frequency of the windowed Fourier transform depends on the spread of

the window in time and frequency. This can be measured from the decay of the ambiguity function

(4.24) or more simply from the area σt σω of the Heisenberg box. The uncertainty Theorem 2.6

proves that this area reaches the minimum value 1/2 if and only if g is a Gaussian. The ambiguity

function Ag(τ, γ) is then a two-dimensional Gaussian.

Window Scale The time-frequency localization of g can be modified with a scaling. Suppose

that g has a Heisenberg time and frequency width respectively equal to σt and σω. Let gs(t) =

s−1/2 g(t/s) be its dilation by s. A change of variables in the integrals (4.13) and (4.15) shows

that the Heisenberg time and frequency width of gs are respectively sσt and σω/s. The area of the

Heisenberg box is not modified but it is dilated by s in time and compressed by s in frequency.

Similarly, a change of variable in the ambiguity integral (4.24) shows that the ambiguity function

is dilated in time and frequency respectively by s and 1/s

Ags(τ, γ) = Ag
(τ

s
, sγ
)

.

The choice of a particular scale s depends on the desired resolution trade-off between time and

frequency.

Finite Support In numerical applications, g must have a compact support. Theorem 2.7 proves

that its Fourier transform ĝ necessarily has an infinite support. It is a symmetric function with

a main lobe centered at ω = 0, which decays to zero with oscillations. Figure 4.4 illustrates its

behavior. To maximize the frequency resolution of the transform, we must concentrate the energy

of ĝ near ω = 0. Three important parameters evaluate the spread of ĝ:

• The root mean-square bandwidth ∆ω, which is defined by

|ĝ(∆ω/2)|2

|ĝ(0)|2
=

1

2
.

• The maximum amplitude A of the first side-lobes located at ω = ±ω0 in Figure 4.4. It is

measured in decibels:

A = 10 log10
|ĝ(ω0)|2

|ĝ(0)|2
.

• The polynomial exponent p, which gives the asymptotic decay of |ĝ(ω)| for large frequencies:

|ĝ(ω)| = O(ω−p−1). (4.26)

Table 4.1 gives the values of these three parameters for several windows g whose supports

are restricted to [−1/2, 1/2] [292]. Figure 4.5 shows the graph of these windows.

To interpret these three frequency parameters, let us consider the spectrogram of a frequency

tone f(t) = exp(iξ0t). If ∆ω is small, then |Sf(u, ξ)|2 = |ĝ(ξ − ξ0)|2 has an energy concentrated

near ξ = ξ0. The side-lobes of ĝ create “shadows” at ξ = ξ0 ± ω0, which can be neglected if A is

also small.
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Figure 4.4: The energy spread of ĝ is measured by its bandwidth ∆ω and the maximum amplitude

A of the first side-lobes, located at ω = ±ω0.

Name g(t) ∆ω A p

Rectangle 1 0.89 −13db 0

Hamming 0.54 + 0.46 cos(2πt) 1.36 −43db 0

Gaussian exp(−18t2) 1.55 −55db 0

Hanning cos2(πt) 1.44 −32db 2

Blackman 0.42 + 0.5 cos(2πt)

+0.08 cos(4πt) 1.68 −58db 2

Table 4.1: Frequency parameters of five windows g whose supports are restricted to [−1/2, 1/2].

These windows are normalized so that g(0) = 1 but ∥g∥ ≠ 1.

If the frequency tone is embedded in a signal that has other components of much higher energy

at different frequencies, the tone can still be detected if ĝ(ω − ξ) attenuates these components

rapidly when |ω − ξ| increases. This means that |ĝ(ω)| has a rapid decay, and Theorem 2.5 proves

that this decay depends on the regularity of g. Property (4.26) is typically satisfied by windows

that are p times differentiable.

4.2.3 Discrete Windowed Fourier Transform

The discretization and fast computation of the windowed Fourier transform follow the same ideas

as the discretization of the Fourier transform described in Section 3.3. We consider discrete signals

of period N . The window g[n] is chosen to be a symmetric discrete signal of period N with unit

norm ∥g∥ = 1. Discrete windowed Fourier atoms are defined by

gm,l[n] = g[n−m] exp

(
i2πln

N

)
.

The discrete Fourier transform of gm,l is

ĝm,l[k] = ĝ[k − l] exp

(
−i2πm(k − l)

N

)
.

The discrete windowed Fourier transform of a signal f of period N is

Sf [m, l] = ⟨f, gm,l⟩ =
N−1∑

n=0

f [n] g[n−m] exp

(
−i2πln

N

)
, (4.27)
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Figure 4.5: Graphs of four windows g whose support are [−1/2, 1/2].

For each 0 " m < N , Sf [m, l] is calculated for 0 " l < N with a discrete Fourier transform of

f [n]g[n −m]. This is performed with N FFT procedures of size N , and thus requires a total of

O(N2 log2 N) operations. Figure 4.3 is computed with this algorithm.

Inverse Transform The following theorem discretizes the reconstruction formula and the energy

conservation of Theorem 4.1.

Theorem 4.3. If f is a signal of period N then

f [n] =
1

N

N−1∑

m=0

N−1∑

l=0

Sf [m, l] g[n−m] exp

(
i2πln

N

)
(4.28)

and
N−1∑

n=0

|f [n]|2 =
1

N

N−1∑

l=0

N−1∑

m=0

|Sf [m, l]|2. (4.29)

This theorem is proved by applying the Parseval and Plancherel formulas of the discrete Fourier

transform, exactly as in the proof of Theorem 4.1. The energy conservation (4.29) proves that this

windowed Fourier transform defines a tight frame, as explained in Chapter 5. The reconstruction

formula (4.28) is rewritten

f [n] =
1

N

N−1∑

m=0

g[n−m]
N−1∑

l=0

Sf [m, l] exp

(
i2πln

N

)
.

The second sum computes for each 0 " m < N the inverse discrete Fourier transform of Sf [m, l]

with respect to l. This is calculated with N FFT procedures, requiring a total of O(N2 log2 N)

operations.

A discrete windowed Fourier transform is an N2 image Sf [l,m] that is very redundant, since

it is entirely specified by a signal f of size N . The redundancy is characterized by a discrete

reproducing kernel equation, which is the discrete equivalent of (4.20).
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4.3 Wavelet Transforms

To analyze signal structures of very different sizes, it is necessary to use time-frequency atoms with

different time supports. The wavelet transform decomposes signals over dilated and translated

wavelets. A wavelet is a function ψ ∈ L2(R) with a zero average:
∫ +∞

−∞
ψ(t) dt = 0. (4.30)

It is normalized ∥ψ∥ = 1, and centered in the neighborhood of t = 0. A dictionary of time-

frequency atoms is obtained by scaling ψ by s and translating it by u:

D =

{
ψu,s(t) =

1√
s
ψ

(
t− u

s

)}

u∈R,s∈R+

.

These atoms remain normalized: ∥ψu,s∥ = 1. The wavelet transform of f ∈ L2(R) at time u and

scale s is

Wf(u, s) = ⟨f,ψu,s⟩ =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (4.31)

Linear Filtering The wavelet transform can be rewritten as a convolution product:

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt = f ⋆ ψ̄s(u) (4.32)

with

ψ̄s(t) =
1√
s
ψ∗
(
−t

s

)
.

The Fourier transform of ψ̄s(t) is
̂̄ψs(ω) =

√
s ψ̂∗(sω). (4.33)

Since ψ̂(0) =
∫ +∞
−∞ ψ(t) dt = 0, it appears that ψ̂ is the transfer function of a band-pass filter. The

convolution (4.32) computes the wavelet transform with dilated band-pass filters.

Analytic Versus Real Wavelets Like a windowed Fourier transform, a wavelet transform can mea-

sure the time evolution of frequency transients. This requires using a complex analytic wavelet,

which can separate amplitude and phase components. The properties of this analytic wavelet

transform are described in Section 4.3.2, and its application to the measurement of instantaneous

frequencies is explained in Section 4.4.2. In contrast, real wavelets are often used to detect sharp

signal transitions. Section 4.3.1 introduces elementary properties of real wavelets, which are devel-

oped in Chapter 6.

4.3.1 Real Wavelets

Suppose that ψ is a real wavelet. Since it has a zero average, the wavelet integral

Wf(u, s) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt

measures the variation of f in a neighborhood of u, whose size is proportional to s. Section 6.1.3

proves that when the scale s goes to zero, the decay of the wavelet coefficients characterizes the

regularity of f in the neighborhood of u. This has important applications for detecting transients

and analyzing fractals. This section concentrates on the completeness and redundancy properties

of real wavelet transforms.
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Example 4.6. Wavelets equal to the second derivative of a Gaussian are called Mexican hats.

They were first used in computer vision to detect multiscale edges [487]. The normalized Mexican

hat wavelet is

ψ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (4.34)

For σ = 1, Figure 4.6 plots −ψ and its Fourier transform

ψ̂(ω) =
−
√

8σ5/2 π1/4

√
3

ω2 exp

(
−σ2ω2

2

)
. (4.35)

Figure 4.7 shows the wavelet transform of a signal that is piecewise regular on the left and

almost everywhere singular on the right. The maximum scale is smaller than 1 because the support

of f is normalized to [0, 1]. The minimum scale is limited by the sampling interval of the discretized

signal used in numerical calculations. When the scale decreases, the wavelet transform has a rapid

decay to zero in the regions where the signal is regular. The isolated singularities on the left create

cones of large amplitude wavelet coefficients that converge to the locations of the singularities. This

is further explained in Chapter 6.

−ψ(t) −ψ̂(ω)

−5 0 5−0.5

0

0.5

1

−5 0 5

0

0.5

1

1.5

Figure 4.6: Mexican hat wavelet (4.34) for σ = 1 and its Fourier transform.
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Figure 4.7: Real wavelet transform Wf(u, s) computed with a Mexican hat wavelet (4.34). The

vertical axis represents log2 s. Black, grey and white points correspond respectively to positive,

zero and negative wavelet coefficients.



80 Chapter 4. Time Meets Frequency

A real wavelet transform is complete and maintains an energy conservation, as long as the

wavelet satisfies a weak admissibility condition, specified by the following theorem. This theorem

was first proved in 1964 by the mathematician Calderón [131], from a different point of view.

Wavelets did not appear as such, but Calderón defines a wavelet transform as a convolution operator

that decomposes the identity. Grossmann and Morlet [287] were not aware of Calderón’s work when

they proved the same formula for signal processing.

Theorem 4.4 (Calderón, Grossmann, Morlet). Let ψ ∈ L2(R) be a real function such that

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞. (4.36)

Any f ∈ L2(R) satisfies

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)

1√
s
ψ

(
t− u

s

)
du

ds

s2
, (4.37)

and ∫ +∞

−∞
|f(t)|2dt =

1

Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (4.38)

Proof. The proof of (4.38) is almost identical to the proof of (4.18). Let us concentrate on the proof

of (4.37). The right integral b(t) of (4.37) can be rewritten as a sum of convolutions. Inserting

Wf(u, s) = f ⋆ ψ̄s(u) with ψs(t) = s−1/2 ψ(t/s) yields

b(t) =
1

Cψ

Z +∞

0

Wf(., s) ⋆ ψs(t)
ds
s2

=
1

Cψ

Z +∞

0

f ⋆ ψ̄s ⋆ ψs(t)
ds
s2

. (4.39)

The “.” indicates the variable over which the convolution is calculated. We prove that b = f by

showing that their Fourier transforms are equal. The Fourier transform of b is

b̂(ω) =
1

Cψ

Z +∞

0

f̂(ω)
√

s ψ̂∗(sω)
√

s ψ̂(sω)
ds
s2

=
f̂(ω)
Cψ

Z +∞

0

|ψ̂(sω)|2 ds
s

.

Since ψ is real we know that |ψ̂(−ω)|2 = |ψ̂(ω)|2. The change of variable ξ = sω thus proves that

b̂(ω) =
1

Cψ
f̂(ω)

Z +∞

0

|ψ̂(ξ)|2

ξ
dξ = f̂(ω).

The theorem hypothesis

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞

is called the wavelet admissibility condition. To guarantee that this integral is finite we must

ensure that ψ̂(0) = 0, which explains why we imposed that wavelets must have a zero average.

This condition is nearly sufficient. If ψ̂(0) = 0 and ψ̂(ω) is continuously differentiable then the

admissibility condition is satisfied. One can verify that ψ̂(ω) is continuously differentiable if ψ has

a sufficient time decay ∫ +∞

−∞
(1 + |t|) |ψ(t)| dt < +∞.
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Reproducing Kernel Like a windowed Fourier transform, a wavelet transform is a redundant rep-

resentation, whose redundancy is characterized by a reproducing kernel equation. Inserting the

reconstruction formula (4.37) into the definition of the wavelet transform yields

Wf(u0, s0) =

∫ +∞

−∞

(
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)ψu,s(t) du

ds

s2

)
ψ∗

u0,s0
(t) dt.

Interchanging these integrals gives

Wf(u0, s0) =
1

Cψ

∫ +∞

−∞
K(u, u0, s, s0)Wf(u, s) du

ds

s2
, (4.40)

with

K(u0, u, s0, s) = ⟨ψu,s,ψu0,s0⟩ . (4.41)

The reproducing kernel K(u0, u, s0, s) measures the correlation of two wavelets ψu,s and ψu0,s0 .

The reader can verify that any function Φ(u, s) is the wavelet transform of some f ∈ L2(R) if and

only if it satisfies the reproducing kernel equation (4.40).

Scaling Function When Wf(u, s) is known only for s < s0, to recover f we need a complement

of information corresponding to Wf(u, s) for s > s0. This is obtained by introducing a scaling

function φ that is an aggregation of wavelets at scales larger than 1. The modulus of its Fourier

transform is defined by

|φ̂(ω)|2 =

∫ +∞

1
|ψ̂(sω)|2

ds

s
=

∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ, (4.42)

and the complex phase of φ̂(ω) can be arbitrarily chosen. One can verify that ∥φ∥ = 1 and we

derive from the admissibility condition (4.36) that

lim
ω→0

|φ̂(ω)|2 = Cψ. (4.43)

The scaling function can thus be interpreted as the impulse response of a low-pass filter. Let us

denote

φs(t) =
1√
s
φ

(
t

s

)
and φ̄s(t) = φ∗s(−t).

The low-frequency approximation of f at the scale s is

Lf(u, s) =

〈
f(t),

1√
s
φ

(
t− u

s

)〉
= f ⋆ φ̄s(u). (4.44)

With a minor modification of the proof of Theorem 4.4, it can be shown that (Exercise 4.6)

f(t) =
1

Cψ

∫ s0

0
Wf(., s) ⋆ ψs(t)

ds

s2
+

1

Cψs0
Lf(., s0) ⋆ φs0(t). (4.45)

Example 4.7. If ψ is the second order derivative of a Gaussian whose Fourier transform is given

by (4.35), then the integration (4.42) yields

φ̂(ω) =
2σ3/2π1/4

√
3

√
ω2 +

1

σ2
exp

(
−
σ2ω2

2

)
. (4.46)

Figure 4.8 displays φ and φ̂ for σ = 1.
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Figure 4.8: Scaling function associated to a Mexican hat wavelet and its Fourier transform calcu-

lated with (4.46).

4.3.2 Analytic Wavelets

To analyze the time evolution of frequency tones, it is necessary to use an analytic wavelet to

separate the phase and amplitude information of signals. The properties of the resulting analytic

wavelet transform are studied.

Analytic Signal A function fa ∈ L2(R) is said to be analytic if its Fourier transform is zero for

negative frequencies:

f̂a(ω) = 0 if ω < 0.

An analytic function is necessarily complex but is entirely characterized by its real part. Indeed,

the Fourier transform of its real part f = Re[fa] is

f̂(ω) =
f̂a(ω) + f̂∗

a (−ω)

2
,

and this relation can be inverted:

f̂a(ω) =

{
2 f̂(ω) if ω ! 0

0 if ω < 0
. (4.47)

The analytic part fa(t) of a signal f(t) is the inverse Fourier transform of f̂a(ω) defined by (4.47).

Discrete Analytic Part The analytic part fa[n] of a discrete signal f [n] of size N is also computed

by setting to zero the negative frequency components of its discrete Fourier transform. The Fourier

transform values at k = 0 and k = N/2 must be carefully adjusted so that Re[fa] = f (Exercise

3.22):

f̂a[k] =

⎧
⎪⎪⎨

⎪⎪⎩

f̂ [k] if k = 0, N/2

2 f̂ [k] if 0 < k < N/2

0 if N/2 < k < N

. (4.48)

We obtain fa[n] by computing the inverse discrete Fourier transform.

Example 4.8. The Fourier transform of

f(t) = a cos(ω0t + φ) =
a

2

(
exp[i(ω0t + φ)] + exp[−i(ω0t + φ)]

)

is

f̂(ω) = πa
(
exp(iφ) δ(ω − ω0) + exp(−iφ) δ(ω + ω0)

)
.
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The Fourier transform of the analytic part computed with (4.47) is f̂a(ω) = 2πa exp(iφ) δ(ω − ω0)

and hence

fa(t) = a exp[i(ω0t + φ)]. (4.49)

Time-Frequency Resolution An analytic wavelet transform is calculated with an analytic wavelet

ψ:

Wf(u, s) = ⟨f,ψu,s⟩ =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(

t− u

s

)
dt. (4.50)

Its time-frequency resolution depends on the time-frequency spread of the wavelet atoms ψu,s. We

suppose that ψ is centered at 0, which implies that ψu,s is centered at t = u. With the change of

variable v = t−u
s , we verify that

∫ +∞

−∞
(t− u)2 |ψu,s(t)|2 dt = s2 σ2

t , (4.51)

with σ2
t =

∫ +∞
−∞ t2 |ψ(t)|2 dt. Since ψ̂(ω) is zero at negative frequencies, the center frequency η of

ψ̂ is

η =
1

2π

∫ +∞

0
ω |ψ̂(ω)|2 dω. (4.52)

The Fourier transform of ψu,s is a dilation of ψ̂ by 1/s:

ψ̂u,s(ω) =
√

s ψ̂(sω) exp(−iωu) . (4.53)

Its center frequency is therefore η/s. The energy spread of ψ̂u,s around η/s is

1

2π

∫ +∞

0

(
ω −

η

s

)2 ∣∣∣ψ̂u,s(ω)
∣∣∣
2
dω =

σ2
ω

s2
, (4.54)

with

σ2
ω =

1

2π

∫ +∞

0
(ω − η)2 |ψ̂(ω)|2 dω.

The energy spread of a wavelet time-frequency atom ψu,s thus corresponds to a Heisenberg box

centered at (u, η/s), of size sσt along time and σω/s along frequency. The area of the rectangle

remains equal to σt σω at all scales but the resolution in time and frequency depends on s, as

illustrated in Figure 4.9.

An analytic wavelet transform defines a local time-frequency energy density PW f , which mea-

sures the energy of f in the Heisenberg box of each wavelet ψu,s centered at (u, ξ = η/s):

PW f(u, ξ) = |Wf(u, s)|2 =
∣∣∣Wf

(
u,
η

ξ

)∣∣∣
2
. (4.55)

This energy density is called a scalogram.

Completeness An analytic wavelet transform of f depends only on its analytic part fa. The

following theorem derives a reconstruction formula and proves that energy is conserved for real

signals.

Theorem 4.5. For any f ∈ L2(R)

Wf(u, s) =
1

2
Wfa(u, s). (4.56)
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Figure 4.9: Heisenberg boxes of two wavelets. Smaller scales decrease the time spread but increase

the frequency support, which is shifted towards higher frequencies.

If Cψ =
∫ +∞
0 ω−1 |ψ̂(ω)|2 dω < +∞ and f is real then

f(t) =
2

Cψ
Re

[∫ +∞

0

∫ +∞

−∞
Wf(u, s)ψs(t− u) du

ds

s2

]
, (4.57)

and

∥f∥2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2 du

ds

s2
. (4.58)

Proof. Let us first prove (4.56). The Fourier transform with respect to u of

fs(u) = Wf(u, s) = f ⋆ ψ̄s(u)

is

f̂s(ω) = f̂(ω)
√

s ψ̂∗(sω).

Since ψ̂(ω) = 0 at negative frequencies, and f̂a(ω) = 2f̂(ω) for ω ! 0, we derive that

f̂s(ω) =
1
2

f̂a(ω)
√

s ψ̂∗(sω),

which is the Fourier transform of (4.56).

With the same derivations as in the proof of (4.37) one can verify that the inverse wavelet formula

reconstructs the analytic part of f :

fa(t) =
1

Cψ

Z +∞

0

Z +∞

−∞
Wfa(u, s)ψs(t − u)

ds
s2

du. (4.59)

Since f = Re[fa], inserting (4.56) proves (4.57).

An energy conservation for the analytic part fa is proved as in (4.38) by applying the Plancherel

formula: Z +∞

−∞
|fa(t)|2 dt =

1
Cψ

Z +∞

0

Z +∞

−∞
|Waf(u, s)|2 du

ds
s2

.

Since Wfa(u, s) = 2Wf(u, s) and ∥fa∥2 = 2∥f∥2, equation (4.58) follows.

If f is real the change of variable ξ = 1/s in the energy conservation (4.58) proves that

∥f∥2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
PW f(u, ξ) du dξ.

It justifies the interpretation of a scalogram as a time-frequency energy density.
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Wavelet Modulated Windows An analytic wavelet can be constructed with a frequency modulation

of a real and symmetric window g. The Fourier transform of

ψ(t) = g(t) exp(iηt) (4.60)

is ψ̂(ω) = ĝ(ω− η). If ĝ(ω) = 0 for |ω| > η then ψ̂(ω) = 0 for ω < 0. Hence ψ is analytic, as shown

in Figure 4.10. Since g is real and even, ĝ is also real and symmetric. The center frequency of ψ̂

is therefore η and

|ψ̂(η)| = sup
ω∈R

|ψ̂(ω)| = ĝ(0). (4.61)

A Gabor wavelet ψ(t) = g(t) eiηt is obtained with a Gaussian window

g(t) =
1

(σ2π)1/4
exp

(
−t2

2σ2

)
. (4.62)

The Fourier transform of this window is ĝ(ω) = (4πσ2)1/4 exp(−σ2ω2/2). If σ2η2 ≫ 1 then ĝ(ω) ≈ 0

for |ω| > η. Such Gabor wavelets are thus considered to be approximately analytic.

ψ(ω)^

^ ω

0 ωη

g(   )

Figure 4.10: Fourier transform ψ̂(ω) of a wavelet ψ(t) = g(t) exp(iηt).

Example 4.9. The wavelet transform of f(t) = a exp(iω0t) is

Wf(u, s) = a
√

s ψ̂∗(sω0) exp(iω0t) = a
√

s ĝ(sω0 − η) exp(iω0t).

Observe that the normalized scalogram is maximum at ξ = ω0:

ξ

η
PW f(u, ξ) =

1

s
|Wf(u, s)|2 = a2

∣∣∣∣ĝ
(
η
(ω0

ξ
− 1
))∣∣∣∣

2

.

Example 4.10. The wavelet transform of a linear chirp f(t) = exp(iat2) = exp[iφ(t)] is computed

for a Gabor wavelet whose Gaussian window is (4.62). By using the Fourier transform of Gaussian

chirps (2.34) one can verify that

|Wf(u, s)|2

s
=

(
4πσ2

1 + 4s2a2σ4

)1/2

exp

(
−σ2

1 + 4a2s4σ4
(η − 2asu)2

)
.

As long as 4a2s4σ4 ≪ 1, at a fixed time u the renormalized scalogram η−1ξPW f(u, ξ) is a Gaussian

function of s that reaches its maximum at

ξ(u) =
η

s(u)
= φ′(u) = 2 a u. (4.63)

Section 4.4.2 explains why the amplitude is maximum at the instantaneous frequency φ′(u).

Example 4.11. Figure 4.11 displays the normalized scalogram η−1ξPW f(u, ξ), and the complex

phase ΘW (u, ξ) of Wf(u, s), for the signal f of Figure 4.3. The frequency bandwidth of wavelet
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Figure 4.11: (a) Normalized scalogram η−1ξPW f(u, ξ) computed from the signal in Figure 4.3.

Dark points indicate large amplitude coefficients. (b) Complex phase ΘW (u, ξ) of Wf(u, η/ξ),

where the modulus is non-zero.

atoms is proportional to 1/s = ξ/η. The frequency resolution of the scalogram is therefore finer

than the spectrogram at low frequencies but coarser than the spectrogram at higher frequencies.

This explains why the wavelet transform produces interference patterns between the high frequency

Gabor function at the abscissa t = 0.87 and the quadratic chirp at the same location, whereas the

spectrogram in Figure 4.3 separates them well.

4.3.3 Discrete Wavelets

Let f̄(t) be a continuous time signal defined over [0, 1]. Let f [n] be a the discrete signal obtained

by a low-pass filtering of f̄ and a uniform sampling at intervals N−1. Its discrete wavelet transform

can only be calculated at scales N−1 < s < 1, as shown in Figure 4.7. It is calculated for s = aj ,

with a = 21/v, which provides v intermediate scales in each octave [2j , 2j+1).

Let ψ(t) be a wavelet whose support is included in [−K/2,K/2]. For 1 " aj " N K−1, a

discrete wavelet scaled by aj is defined by

ψj [n] =
1√
aj
ψ
( n

aj

)
.

This discrete wavelet has Kaj non-zero values on [−N/2, N/2]. The scale aj is larger than 1

otherwise the sampling interval may be larger than the wavelet support.

Fast Transform To avoid border problems, we treat f [n] and the wavelets ψj [n] as periodic signals

of period N . The discrete wavelet transform can then be written as a circular convolution with
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ψ̄j [n] = ψ∗
j [−n]:

Wf [n, aj ] =
N−1∑

m=0

f [m]ψ∗
j [m− n] = f ⊙⋆ ψ̄j [n]. (4.64)

This circular convolution is calculated with the fast Fourier transform algorithm, which requires

O(N log2 N) operations. If a = 21/v, there are v log2(N/(2K)) scales aj ∈ [2N−1,K−1]. The total

number of operations to compute the wavelet transform over all scales is therefore O(vN(log2 N)2)

[407].

To compute the scalogram PW [n, ξ] = |Wf [n, ηξ ]|
2 we calculate Wf [n, s] at any scale s with a

parabola interpolation. Let j be the closest integer to log2 s/log2 a, and p(x) be the parabola such

that

p(j − 1) = Wf [n, aj−1] , p(j) = Wf [n, aj ] , p(j + 1) = Wf [n, aj+1].

A second order interpolation computes

Wf [n, s] = p

(
log2 s

log2 a

)
.

Parabolic interpolations are used instead of linear interpolations in order to locate more precisely

the ridges defined in Section 4.4.2.

Discrete Scaling Filter A wavelet transform computed up to a scale aJ is not a complete signal

representation. It is necessary to add the low frequencies Lf [n, aJ ] corresponding to scales larger

than aJ . A discrete and periodic scaling filter is computed by sampling the scaling function φ(t)

defined in (4.42):

φJ [n] =
1√
aJ

φ
( n

aJ

)
for n ∈ [−N/2, N/2].

Let φ̄J [n] = φ∗J [−n]. The low frequencies are carried by

Lf [n, aJ ] =
N−1∑

m=0

f [m]φ∗J [m− n] = f ⊙⋆ φ̄J [n]. (4.65)

Reconstruction An approximate inverse wavelet transform is implemented by discretizing the in-

tegral (4.45). Suppose that aI = 1 is the finest scale. Since ds/s2 = d loge s/s and the discrete

wavelet transform is computed along an exponential scale sequence {aj}j with a logarithmic in-

crement d loge s = loge a, we obtain

f [n] ≈
loge a

Cψ

J∑

j=I

1

aj
Wf [., aj ]⊙⋆ ψj [n] +

1

Cψ aJ
Lf [., aJ ]⊙⋆ φJ [n]. (4.66)

The “.” indicates the variable over which the convolution is calculated. These circular convolutions

are calculated using the FFT, with O(vN(log2 N)2) operations.

Analytic wavelet transforms are often computed over real signals f [n] that have no energy at

low frequencies. The scaling filter component is then negligible. Theorem 4.5 shows that

f [n] ≈
2 loge a

Cψ
Re

⎛

⎝
J∑

j=I

1

aj
Wf [., aj ]⊙⋆ ψj [n]

⎞

⎠ . (4.67)

The error introduced by the discretization of scales decreases when the number v of voices

per octave increases. However, the approximation of continuous time convolutions with discrete


