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Fourier Kingdom

The story begins in 1807 when Fourier presents a memoir to the Institut de France, where he
claims that any periodic function can be represented as a series of harmonically related sinusoids.
This idea had a profound impact in mathematical analysis, physics and engineering, but it took
one and a half centuries to understand the convergence of Fourier series and complete the theory
of Fourier integrals.

Fourier was motivated by the study of heat diffusion, which is governed by a linear differential
equation. However, the Fourier transform diagonalizes all linear time-invariant operators, which
are the building blocks of signal processing. It is therefore not only the starting point of our
exploration but the basis of all further developments.

2.1 Linear Time-Invariant Filtering

Classical signal processing operations such as signal transmission, stationary noise removal or
predictive coding are implemented with linear time-invariant operators. The time invariance of an
operator L means that if the input f(t) is delayed by τ , fτ (t) = f(t − τ), then the output is also
delayed by τ :

g(t) = Lf(t) ⇒ g(t− τ) = Lfτ (t). (2.1)

For numerical stability, the operator L must have a weak form of continuity, which means that
Lf is modified by a small amount if f is slightly modified. This weak continuity is formalized by
the theory of distributions [60, 63], which guarantees that we are on a safe ground without further
worrying about it.

2.1.1 Impulse Response

Linear time-invariant systems are characterized by their response to a Dirac impulse, defined in
Appendix A.7. If f is continuous, its value at t is obtained by an “integration” against a Dirac
located at t. Let δu(t) = δ(t− u):

f(t) =

∫ +∞

−∞
f(u) δu(t) du.

The continuity and linearity of L imply that

Lf(t) =

∫ +∞

−∞
f(u)Lδu(t) du.

Let h be the impulse response of L:
h(t) = Lδ(t).
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The time-invariance proves that Lδu(t) = h(t− u) and hence

Lf(t) =

∫ +∞

−∞
f(u)h(t− u) du =

∫ +∞

−∞
h(u)f(t− u) du = h ⋆f (t). (2.2)

A time-invariant linear filter is thus equivalent to a convolution with the impulse response h.
The continuity of f is not necessary. This formula remains valid for any signal f for which the
convolution integral converges.

Let us recall a few useful properties of convolution products:

• Commutativity
f ⋆ h(t) = h ⋆ f(t). (2.3)

• Differentiation
d

dt
(f ⋆ h)(t) =

df

dt
⋆ h(t) = f ⋆

dh

dt
(t). (2.4)

• Dirac convolution
f ⋆ δτ (t) = f(t− τ). (2.5)

Stability and Causality A filter is said to be causal if Lf(t) does not depend on the values f(u)
for u > t. Since

Lf(t) =

∫ +∞

−∞
h(u) f(t− u) du,

this means that h(u) = 0 for u < 0. Such impulse responses are said to be causal.
The stability property guarantees that Lf(t) is bounded if f(t) is bounded. Since

|Lf(t)| !

∫ +∞

−∞
|h(u)| |f(t− u)| du ! sup

u∈R

|f(u)|
∫ +∞

−∞
|h(u)| du,

it is sufficient that
∫ +∞
−∞ |h(u)| du < +∞. One can verify that this condition is also necessary if h

is a function. We thus say that h is stable if it is integrable.

Example 2.1. An amplification and delay system is defined by

Lf(t) = λ f(t− τ).

The impulse response of this filter is h(t) = λ δ(t− τ).
Example 2.2. A uniform averaging of f over intervals of size T is calculated by

Lf(t) =
1

T

∫ t+T/2

t−T/2
f(u) du.

This integral can be rewritten as a convolution of f with the impulse response h = 1/T 1[−T/2,T/2].

2.1.2 Transfer Functions

Complex exponentials eiωt are eigenvectors of convolution operators. Indeed

Leiωt =

∫ +∞

−∞
h(u) eiω(t−u) du,

which yields

Leiωt = eitω

∫ +∞

−∞
h(u) e−iωu du = ĥ(ω) eiωt.

The eigenvalue

ĥ(ω) =

∫ +∞

−∞
h(u) e−iωu du

is the Fourier transform of h at the frequency ω. Since complex sinusoidal waves eiωt are the
eigenvectors of time-invariant linear systems, it is tempting to try to decompose any function f as
a sum of these eigenvectors. We are then able to express Lf directly from the eigenvalues ĥ(ω).
The Fourier analysis proves that under weak conditions on f , it is indeed possible to write it as a
Fourier integral.
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2.2 Fourier Integrals

To avoid convergence issues, the Fourier integral is first defined over the space L1(R) of integrable
functions [53]. It is then extended to the space L2(R) of finite energy functions [22].

2.2.1 Fourier Transform in L1(R)

The Fourier integral

f̂(ω) =

∫ +∞

−∞
f(t) e−iωt dt (2.6)

measures “how much” oscillations at the frequency ω there is in f . If f ∈ L1(R) this integral does
converge and

|f̂(ω)| !

∫ +∞

−∞
|f(t)| dt < +∞. (2.7)

The Fourier transform is thus bounded, and one can verify that it is a continuous function of ω
(Exercise 2.1). If f̂ is also integrable, the following theorem gives the inverse Fourier transform.

Theorem 2.1 (Inverse Fourier Transform). If f ∈ L1(R) and f̂ ∈ L1(R) then

f(t) =
1

2π

∫ +∞

−∞
f̂(ω) eiωt dω. (2.8)

Proof. Replacing f̂(ω) by its integral expression yields

1
2π

Z +∞

−∞
f̂(ω) exp(iωt) dω =

1
2π

Z +∞

−∞

„Z +∞

−∞
f(u) exp[iω(t − u)] du

«
dω.

We cannot apply the Fubini Theorem A.2 directly because f(u) exp[iω(t − u)] is not integrable in R2.
To avoid this technical problem, we multiply by exp(−ε2ω2/4) which converges to 1 when ε goes to 0.
Let us define

Iε(t) =
1
2π

Z +∞

−∞

„Z +∞

−∞
f(u) exp

„
−ε2ω2

4

«
exp[iω(t − u)] du

«
dω. (2.9)

We compute Iε in two different ways using the Fubini theorem. The integration with respect to u gives

Iε(t) =
1
2π

Z +∞

−∞
f̂(ω) exp

„
−ε2ω2

4

«
exp(iωt) dω.

Since ˛̨
˛̨f̂(ω) exp

„
−ε2ω2

4

«
exp[iω(t − u)]

˛̨
˛̨ ! |f̂(ω)|

and since f̂ is integrable, we can apply the dominated convergence Theorem A.1, which proves that

lim
ε→0

Iε(t) =
1
2π

Z +∞

−∞
f̂(ω) exp(iωt) dω. (2.10)

Let us now compute the integral (2.9) differently by applying the Fubini theorem and integrating with
respect to ω:

Iε(t) =

Z +∞

−∞
gε(t − u) f(u) du, (2.11)

with

gε(x) =
1
2π

Z +∞

−∞
exp(ixω) exp

„
−ε2ω2

4

«
dω.

A change of variable ω′ = εω shows that gε(x) = ε−1g1(ε
−1x), and it is proved in (2.32) that g1(x) =

π−1/2 e−x2
. The Gaussian g1 has an integral equal to 1 and a fast decay. The squeezed Gaussians gε

have an integral that remains equal to 1, and thus they converge to a Dirac δ when ε goes to 0. By
inserting (2.11) one can thus verify that

lim
ε→0

Z +∞

−∞
|Iε(t) − f(t)| dt = lim

ε→0

Z Z
gε(t − u) |f(u) − f(t)| du dt = 0.

Inserting (2.10) proves (2.8).



26 Chapter 2. Fourier Kingdom

The inversion formula (2.8) decomposes f as a sum of sinusoidal waves eiωt of amplitude f̂(ω). By
using this formula, we can show (Exercise 2.1) that the hypothesis f̂ ∈ L1(R) implies that f must
be continuous. The reconstruction (2.8) is therefore not proved for discontinuous functions. The
extension of the Fourier transform to the space L2(R) will address this issue.

The most important property of the Fourier transform for signal processing applications is the
convolution theorem. It is another way to express the fact that sinusoidal waves eitω are eigenvalues
of convolution operators.

Theorem 2.2 (Convolution). Let f ∈ L1(R) and h ∈ L1(R). The function g = h ⋆ f is in L1(R)
and

ĝ(ω) = ĥ(ω) f̂(ω). (2.12)

Proof.

ĝ(ω) =

Z +∞

−∞
exp(−itω)

„Z +∞

−∞
f(t − u) h(u) du

«
dt.

Since |f(t − u)||h(u)| is integrable in R2, we can apply the Fubini Theorem A.2, and the change of
variable (t, u) → (v = t − u, u) yields

ĝ(ω) =

Z +∞

−∞

Z +∞

−∞
exp[−i(u + v)ω] f(v) h(u) du dv

=

„Z +∞

−∞
exp(−ivω) f(v) dv

«„Z +∞

−∞
exp(−iuω) h(u) du

«
,

which verifies (2.12).

The response Lf = g = f ⋆ h of a linear time-invariant system can be calculated from its Fourier
transform ĝ(ω) = f̂(ω) ĥ(ω) with the inverse Fourier formula

g(t) =
1

2π

∫ +∞

−∞
ĝ(ω) eiωt dω, (2.13)

which yields

Lf(t) =
1

2π

∫ +∞

−∞
ĥ(ω) f̂(ω) eiωt dω. (2.14)

Each frequency component eitω of amplitude f̂(ω) is amplified or attenuated by ĥ(ω). Such a
convolution is thus called a frequency filtering, and ĥ is the transfer function of the filter.

The following table summarizes important properties of the Fourier transform, often used in
calculations. Most of these formulas are proved with a change of variable in the Fourier integral.

Property Function Fourier Transform

f(t) f̂(ω)

Inverse f̂(t) 2π f(−ω) (2.15)

Convolution f1 ⋆ f2(t) f̂1(ω) f̂2(ω) (2.16)

Multiplication f1(t) f2(t)
1

2π
f̂1 ⋆ f̂2(ω) (2.17)

Translation f(t− u) e−iuω f̂(ω) (2.18)

Modulation eiξt f(t) f̂(ω − ξ) (2.19)

Scaling f(t/s) |s| f̂(sω) (2.20)

Time derivatives f (p)(t) (iω)p f̂(ω) (2.21)

Frequency derivatives (−it)p f(t) f̂ (p)(ω) (2.22)

Complex conjugate f∗(t) f̂∗(−ω) (2.23)

Hermitian symmetry f(t) ∈ R f̂(−ω) = f̂∗(ω) (2.24)
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2.2.2 Fourier Transform in L2(R)

The Fourier transform of the indicator function f = 1[−1,1] is

f̂(ω) =

∫ 1

−1
e−iωt dt =

2 sinω

ω
.

This function is not integrable because f is not continuous, but its square is integrable. The inverse
Fourier transform Theorem 2.1 thus does not apply. This motivates the extension of the Fourier
transform to the space L2(R) of functions f with a finite energy

∫ +∞
−∞ |f(t)|2 dt < +∞. By working

in the Hilbert space L2(R), we also have access to all the facilities provided by the existence of an
inner product. The inner product of f ∈ L2(R) and g ∈ L2(R) is

⟨f, g⟩ =

∫ +∞

−∞
f(t) g∗(t) dt,

and the resulting norm in L2(R) is

∥f∥2 = ⟨f, f⟩ =

∫ +∞

−∞
|f(t)|2 dt.

The following theorem proves that inner products and norms in L2(R) are conserved by the Fourier
transform up to a factor of 2π. Equations (2.25) and (2.26) are called respectively the Parseval
and Plancherel formulas.

Theorem 2.3. If f and h are in L1(R) ∩ L2(R) then
∫ +∞

−∞
f(t)h∗(t) dt =

1

2π

∫ +∞

−∞
f̂(ω) ĥ∗(ω) dω. (2.25)

For h = f it follows that ∫ +∞

−∞
|f(t)|2 dt =

1

2π

∫ +∞

−∞
|f̂(ω)|2 dω. (2.26)

Proof. Let g = f ⋆ h̄ with h̄(t) = h∗(−t). The convolution Theorem 2.2 and property (2.23) show that
ĝ(ω) = f̂(ω) ĥ∗(ω). The reconstruction formula (2.8) applied to g(0) yields

Z +∞

−∞
f(t) h∗(t) dt = g(0) =

1
2π

Z +∞

−∞
ĝ(ω) dω =

1
2π

Z +∞

−∞
f̂(ω) ĥ∗(ω) dω.

Density Extension in L
2(R) If f ∈ L2(R) but f ∈/ L1(R), its Fourier transform cannot be calculated

with the Fourier integral (2.6) because f(t) eiωt is not integrable. It is defined as a limit using the
Fourier transforms of functions in L1(R) ∩ L2(R).

Since L1(R) ∩ L2(R) is dense in L2(R), one can find a family {fn}n∈Z of functions in L1(R) ∩
L2(R) that converges to f :

lim
n→+∞

∥f − fn∥ = 0.

Since {fn}n∈Z converges, it is a Cauchy sequence, which means that ∥fn − fp∥ is arbitrarily small

if n and p are large enough. Moreover, fn ∈ L1(R), so its Fourier transform f̂n is well defined.
The Plancherel formula (2.26) proves that {f̂n}n∈Z is also a Cauchy sequence because

∥f̂n − f̂p∥ =
√

2π ∥fn − fp∥

is arbitrarily small for n and p large enough. A Hilbert space (Appendix A.2) is complete, which
means that all Cauchy sequences converge to an element of the space. Hence, there exists f̂ ∈ L2(R)
such that

lim
n→+∞

∥f̂ − f̂n∥ = 0.

By definition, f̂ is the Fourier transform of f . This extension of the Fourier transform to L2(R)
satisfies the convolution theorem, the Parseval and Plancherel formulas, as well as all properties
(2.15-2.24).
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Diracs Diracs are often used in calculations; their properties are summarized in Appendix A.7.
A Dirac δ associates to a function its value at t = 0. Since eiωt = 1 at t = 0 it seems reasonable to
define its Fourier transform by

δ̂(ω) =

∫ +∞

−∞
δ(t) e−iωt dt = 1. (2.27)

This formula is justified mathematically by the extension of the Fourier transform to tempered
distributions [60, 63].

2.2.3 Examples

The following examples often appear in Fourier calculations. They also illustrate important Fourier
transform properties.

• The indicator function f = 1[−T,T ] is discontinuous at t = ±T . Its Fourier transform is
therefore not integrable:

f̂(ω) =

∫ T

−T
e−iωt dt =

2 sin(Tω)

ω
. (2.28)

• An ideal low-pass filter has a transfer function φ̂ = 1[−ξ,ξ] that selects low frequencies over
[−ξ, ξ]. The impulse response is calculated with the inverse Fourier integral (2.8):

φ(t) =
1

2π

∫ ξ

−ξ
eiωt dω =

sin(ξt)

πt
. (2.29)

• A passive electronic circuit implements analog filters with resistances, capacities and induc-
tors. The input voltage f(t) is related to the output voltage g(t) by a differential equation
with constant coefficients:

K∑

k=0

ak f (k)(t) =
M∑

k=0

bk g(k)(t). (2.30)

Suppose that the circuit is not charged for t < 0, which means that f(t) = g(t) = 0. The
output g is a linear time-invariant function of f and can thus be written g = f ⋆φ. Computing
the Fourier transform of (2.30) and applying (2.22) proves that

φ̂(ω) =
ĝ(ω)

f̂(ω)
=

∑K
k=0 ak (iω)k

∑M
k=0 bk (iω)k

. (2.31)

It is therefore a rational function of iω. An ideal low-pass transfer function 1[−ξ,ξ] thus
cannot be implemented by an analog circuit. It must be approximated by a rational function.
Chebyshev or Butterworth filters are often used for this purpose [13].

• A Gaussian f(t) = exp(−t2) is a C∞ function with a fast asymptotic decay. Its Fourier
transform is also a Gaussian:

f̂(ω) =
√
π exp(−ω2/4). (2.32)

This Fourier transform is computed by showing with an integration by parts that f̂(ω) =∫ +∞
−∞ exp(−t2) e−iωtdt is differentiable and satisfies the differential equation

2 f̂ ′(ω) + ω f̂(ω) = 0. (2.33)

The solution of this equation is a Gaussian f̂(ω) = K exp(−ω2/4), and since f̂(0) =∫ +∞
−∞ exp(−t2) dt =

√
π, we obtain (2.32).

• A Gaussian chirp f(t) = exp[−(a − ib)t2] has a Fourier transform calculated with a similar
differential equation:

f̂(ω) =

√
π

a− ib
exp

(
−(a + ib)ω2

4(a2 + b2)

)
. (2.34)
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• A translated Dirac δτ (t) = δ(t − τ) has a Fourier transform calculated by evaluating e−iωt

at t = τ :

δ̂τ (ω) =

∫ +∞

−∞
δ(t− τ) e−iωt dt = e−iωτ . (2.35)

• The Dirac comb is a sum of translated Diracs

c(t) =
+∞∑

n=−∞
δ(t− nT )

that is used to uniformly sample analog signals. Its Fourier transform is derived from (2.35):

ĉ(ω) =
+∞∑

n=−∞
e−inTω. (2.36)

The Poisson formula proves that it is also equal to a Dirac comb with a spacing equal to
2π/T .

Theorem 2.4 (Poisson Formula). In the sense of distribution equalities (A.29),

+∞∑

n=−∞
e−inTω =

2π

T

+∞∑

k=−∞

δ

(
ω −

2πk

T

)
. (2.37)

Proof. The Fourier transform ĉ in (2.36) is periodic with period 2π/T . To verify the Poisson formula, it
is therefore sufficient to prove that the restriction of ĉ to [−π/T,π/T ] is equal to 2π/T δ. The formula
(2.37) is proved in the sense of a distribution equality (A.29) by showing that for any test function
θ̂(ω) with a support included in [−π/T,π/T ],

⟨ĉ, θ̂⟩ = lim
N→+∞

Z +∞

−∞

NX

n=−N

exp(−inTω) θ̂(ω) dω =
2π
T

θ̂(0).

The sum of the geometric series is

NX

n=−N

exp(−inTω) =
sin[(N + 1/2)Tω]

sin[Tω/2]
. (2.38)

Hence

⟨ĉ, θ̂⟩ = lim
N→+∞

2π
T

Z π/T

−π/T

sin[(N + 1/2)Tω]
πω

Tω/2
sin[Tω/2]

θ̂(ω) dω. (2.39)

Let

ψ̂(ω) =

(
θ̂(ω) Tω/2

sin[Tω/2] if |ω| ! π/T

0 if |ω| > π/T

and ψ(t) be the inverse Fourier transform of ψ̂(ω). Since 2ω−1 sin(aω) is the Fourier transform of
1[−a,a](t), the Parseval formula (2.25) implies

⟨ĉ, θ̂⟩ = lim
N→+∞

2π
T

Z +∞

−∞

sin[(N + 1/2)Tω]
πω

ψ̂(ω) dω

= lim
N→+∞

2π
T

Z (N+1/2)T

−(N+1/2)T

ψ(t) dt. (2.40)

When N goes to +∞ the integral converges to ψ̂(0) = θ̂(0).

2.3 Properties

2.3.1 Regularity and Decay

The global regularity of a signal f depends on the decay of |f̂(ω)| when the frequency ω increases.
The differentiability of f is studied. If f̂ ∈ L1(R), then the Fourier inversion formula (2.8) implies
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that f is continuous and bounded:

|f(t)| !
1

2π

∫ +∞

−∞
|eiωtf̂(ω)| dω =

1

2π

∫ +∞

−∞
|f̂(ω)| dω < +∞ . (2.41)

The next theorem applies this property to obtain a sufficient condition that guarantees the differ-
entiability of f at any order p.

Theorem 2.5. A function f is bounded and p times continuously differentiable with bounded
derivatives if ∫ +∞

−∞
|f̂(ω)| (1 + |ω|p) dω < +∞ . (2.42)

Proof. The Fourier transform of the kth order derivative f (k)(t) is (iω)kf̂(ω). Applying (2.41) to this
derivative proves that

|f (k)(t)| !

Z +∞

−∞
|f̂(ω)| |ω|k dω.

Condition (2.42) implies that
R +∞
−∞ |f̂(ω)||ω|k dω < +∞ for any k ! p, so f (k)(t) is continuous and

bounded.

This result proves that if there exist a constant K and ε > 0 such that

|f̂(ω)| !
K

1 + |ω|p+1+ε
, then f ∈ Cp.

If f̂ has a compact support then (2.42) implies that f ∈ C∞.
The decay of |f̂(ω)| depends on the worst singular behavior of f . For example, f = 1[−T,T ] is

discontinuous at t = ±T , so |f̂(ω)| decays like |ω|−1. In this case, it could also be important to
know that f(t) is regular for t ≠ ±T . This information cannot be derived from the decay of |f̂(ω)|.
To characterize local regularity of a signal f it is necessary to decompose it over waveforms that
are well localized in time, as opposed to sinusoidal waves eiωt. Section 6.1.3 explains that wavelets
are particularly well adapted to this purpose.

2.3.2 Uncertainty Principle

Can we construct a function f whose energy is well localized in time and whose Fourier transform
f̂ has an energy concentrated in a small frequency neighborhood? The Dirac δ(t − u) has a
support restricted to t = u but its Fourier transform e−iuω has an energy uniformly spread over all
frequencies. We know that |f̂(ω)| decays quickly at high frequencies only if f has regular variations
in time. The energy of f must therefore be spread over a relatively large domain.

To reduce the time spread of f , we can scale it by s < 1 while maintaining constant its total
energy. If

fs(t) =
1√
s

f

(
t

s

)
then ∥fs∥2 = ∥f∥2.

The Fourier transform f̂s(ω) =
√

s f̂(sω) is dilated by 1/s so we lose in frequency localization what
we gained in time. Underlying is a trade-off between time and frequency localization.

Time and frequency energy concentrations are restricted by the Heisenberg uncertainty prin-
ciple. This principle has a particularly important interpretation in quantum mechanics as an
uncertainty as to the position and momentum of a free particle. The state of a one-dimensional
particle is described by a wave function f ∈ L2(R). The probability density that this particle is lo-
cated at t is 1

∥f∥2 |f(t)|2. The probability density that its momentum is equal to ω is 1
2π∥f∥2 |f̂(ω)|2.

The average location of this particle is

u =
1

∥f∥2

∫ +∞

−∞
t |f(t)|2 dt, (2.43)
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and the average momentum is

ξ =
1

2π∥f∥2

∫ +∞

−∞
ω |f̂(ω)|2 dω. (2.44)

The variances around these average values are respectively

σ2
t =

1

∥f∥2

∫ +∞

−∞
(t− u)2 |f(t)|2 dt (2.45)

and

σ2
ω =

1

2π∥f∥2

∫ +∞

−∞
(ω − ξ)2 |f̂(ω)|2 dω. (2.46)

The larger σt, the more uncertainty there is concerning the position of the free particle; the larger
σω, the more uncertainty there is concerning its momentum.

Theorem 2.6 (Heisenberg Uncertainty). The temporal variance and the frequency variance of
f ∈ L2(R) satisfy

σ2
t σ

2
ω "

1

4
. (2.47)

This inequality is an equality if and only if there exist (u, ξ, a, b) ∈ R2 × C2 such that

f(t) = a exp[iξt− b(t− u)2]. (2.48)

Proof. The following proof due to Weyl [68] supposes that lim|t|→+∞
√

tf(t) = 0, but the theorem is
valid for any f ∈ L

2(R). If the average time and frequency localization of f is u and ξ, then the average
time and frequency location of exp(−iξt) f(t + u) is zero. It is thus sufficient to prove the theorem for
u = ξ = 0. Observe that

σ2
t σ

2
ω =

1
2π∥f∥4

Z +∞

−∞
|t f(t)|2 dt

Z +∞

−∞
|ω f̂(ω)|2 dω. (2.49)

Since iωf̂(ω) is the Fourier transform of f ′(t), the Plancherel identity (2.26) applied to iωf̂(ω) yields

σ2
t σ

2
ω =

1
∥f∥4

Z +∞

−∞
|t f(t)|2 dt

Z +∞

−∞
|f ′(t)|2 dt. (2.50)

Schwarz’s inequality implies

σ2
t σ

2
ω "

1
∥f∥4

»Z +∞

−∞
|t f ′(t) f∗(t)| dt

–2

"
1

∥f∥4

»Z +∞

−∞

t
2

[f ′(t) f∗(t) + f ′∗(t) f(t)] dt

–2

"
1

4∥f∥4

»Z +∞

−∞
t (|f(t)|2)′ dt

–2
.

Since lim|t|→+∞
√

t f(t) = 0, an integration by parts gives

σ2
t σ

2
ω "

1
4∥f∥4

»Z +∞

−∞
|f(t)|2 dt

–2
=

1
4
. (2.51)

To obtain an equality, Schwarz’s inequality applied to (2.50) must be an equality. This implies that
there exists b ∈ C such that

f ′(t) = −2 b t f(t). (2.52)

Hence, there exists a ∈ C such that f(t) = a exp(−bt2). The other steps of the proof are then equalities
so that the lower bound is indeed reached. When u ≠ 0 and ξ ≠ 0 the corresponding time and frequency
translations yield (2.48).

In quantum mechanics, this theorem shows that we cannot reduce arbitrarily the uncertainty as to
the position and the momentum of a free particle. In signal processing, the modulated Gaussians
(2.48) that have a minimum joint time-frequency localization are called Gabor chirps. As expected,
they are smooth functions with a fast time asymptotic decay.
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Compact Support Despite the Heisenberg uncertainty bound, we might still be able to construct
a function of compact support whose Fourier transform has a compact support. Such a function
would be very useful in constructing a finite impulse response filter with a band-limited transfer
function. Unfortunately, the following theorem proves that it does not exist.

Theorem 2.7. If f ≠ 0 has a compact support then f̂(ω) cannot be zero on a whole interval.
Similarly, if f̂ ≠ 0 has a compact support then f(t) cannot be zero on a whole interval.

Proof. We prove only the first statement, since the second is derived from the first by applying the
Fourier transform. If f̂ has a compact support included in [−b, b] then

f(t) =
1
2π

Z b

−b

f̂(ω) exp(iωt) dω. (2.53)

If f(t) = 0 for t ∈ [c, d], by differentiating n times under the integral at t0 = (c + d)/2, we obtain

f (n)(t0) =
1
2π

Z b

−b

f̂(ω) (iω)n exp(iωt0) dω = 0. (2.54)

Since

f(t) =
1
2π

Z b

−b

f̂(ω) exp[iω(t − t0)] exp(iωt0) dω, (2.55)

developing exp[iω(t − t0)] as an infinite series yields for all t ∈ R

f(t) =
1
2π

+∞X

n=0

[i(t − t0)]
n

n!

Z b

−b

f̂(ω)ωn exp(iωt0) dω = 0. (2.56)

This contradicts our assumption that f ≠ 0.

2.3.3 Total Variation

The total variation measures the total amplitude of signal oscillations. It plays an important role
in image processing, where its value depends on the length of the image level sets. We show that
a low-pass filter can considerably amplify the total variation by creating Gibbs oscillations.

Variations and Oscillations If f is differentiable, its total variation is defined by

∥f∥V =

∫ +∞

−∞
|f ′(t)| dt . (2.57)

If {xp}p are the abscissa of the local extrema of f where f ′(xp) = 0, then

∥f∥V =
∑

p

|f(xp+1)− f(xp)| .

It thus measures the total amplitude of the oscillations of f . For example, if f(t) = exp(−t2), then
∥f∥V = 2. If f(t) = sin(πt)/(πt), then f has a local extrema at xp ∈ [p, p + 1] for any p ∈ Z. Since
|f(xp+1)− f(xp)| ∼ |p|−1, we derive that ∥f∥V = +∞.

The total variation of non-differentiable functions can be calculated by considering the derivative
in the general sense of distributions [60, 73]. This is equivalent to approximating the derivative by
a finite difference on an interval h that goes to zero:

∥f∥V = lim
h→0

∫ +∞

−∞

|f(t)− f(t− h)|
|h|

dt . (2.58)

The total variation of discontinuous functions is thus well defined. For example, if f = 1[a,b] then
(2.58) gives ∥f∥V = 2. We say that f has a bounded variation if ∥f∥V < +∞.

Whether f ′ is the standard derivative of f or its generalized derivative in the sense of distribu-
tions, its Fourier transform is f̂ ′(ω) = iωf̂(ω). Hence

|ω| |f̂(ω)| !

∫ +∞

−∞
|f ′(t)|dt = ∥f∥V ,
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which implies that

|f̂(ω)| !
∥f∥V
|ω|

. (2.59)

However, |f̂(ω)| = O(|ω|−1) is not a sufficient condition to guarantee that f has bounded variation.
For example, if f(t) = sin(πt)/(πt), then f̂ = 1[−π,π] satisfies |f̂(ω)| ! π|ω|−1 although ∥f∥V =

+∞. In general, the total variation of f cannot be evaluated from |f̂(ω)|.

Discrete Signals Let fN [n] = f ⋆ φN (n/N) be a discrete signal obtained with an averaging filter
φN (t) = 1[0,N−1](t), and a uniform sampling at intervals N−1. The discrete total variation is
calculated by approximating the signal derivative by a finite difference over the sampling distance
h = N−1, and replacing the integral (2.58) by a Riemann sum, which gives:

∥fN∥V =
∑

n

|fN [n]− fN [n− 1]| . (2.60)

If np are the abscissa of the local extrema of fN , then

∥fN∥V =
∑

p

|fN [np+1]− fN [np]| .

The total variation thus measures the total amplitude of the oscillations of f . In accordance with
(2.58), we say that the discrete signal has a bounded variation if ∥fN∥V is bounded by a constant
independent of the resolution N .

Gibbs Oscillations Filtering a signal with a low-pass filter can create oscillations that have an
infinite total variation. Let fξ = f ⋆ φξ be the filtered signal obtained with an ideal low-pass filter

whose transfer function is φ̂ξ = 1[−ξ,ξ]. If f ∈ L2(R), then fξ converges to f in L2(R) norm:

limξ→+∞ ∥f − fξ∥ = 0. Indeed, f̂ξ = f̂ 1[−ξ,ξ] and the Plancherel formula (2.26) implies that

∥f − fξ∥2 =
1

2π

∫ +∞

−∞
|f̂(ω)− f̂ξ(ω)|2 dω =

1

2π

∫

|ω|>ξ
|f̂(ω)|2 dω,

which goes to zero as ξ increases. However, if f is discontinuous in t0, then we show that fξ has
Gibbs oscillations in the neighborhood of t0, which prevents supt∈R |f(t)− fξ(t)| from converging
to zero as ξ increases.

Let f be a bounded variation function ∥f∥V < +∞ that has an isolated discontinuity at t0,
with a left limit f(t−0 ) and right limit f(t+0 ). It is decomposed as a sum of fc, which is continuous
in the neighborhood of t0, plus a Heaviside step of amplitude f(t+0 )− f(t−0 ):

f(t) = fc(t) + [f(t+0 )− f(t−0 )]u(t− t0),

with

u(t) =

{
1 if t " 0
0 otherwise

. (2.61)

Hence
fξ(t) = fc ⋆ φξ(t) + [f(t+0 )− f(t−0 )]u ⋆φ ξ(t− t0). (2.62)

Since fc has bounded variation and is uniformly continuous in the neighborhood of t0, one can
prove (Exercise 2.15) that fc ⋆ φξ(t) converges uniformly to fc(t) in a neighborhood of t0. The
following theorem shows that this is not true for u ⋆ φξ, which creates Gibbs oscillations.

Theorem 2.8 (Gibbs). For any ξ > 0,

u ⋆ φξ(t) =

∫ ξt

−∞

sin x

πx
dx. (2.63)
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Proof. The impulse response of an ideal low-pass filter, calculated in (2.29), is φξ(t) = sin(ξt)/(πt).
Hence

u ⋆ φξ(t) =

Z +∞

−∞
u(τ)

sin ξ(t − τ)
π(t − τ)

dτ =

Z +∞

0

sin ξ(t − τ)
π(t − τ)

dτ.

The change of variable x = ξ(t − τ) gives (2.63).

f(t) f ⋆ φ4ξ(t) f ⋆ φ2ξ(t) f ⋆ φξ(t)
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Figure 2.1: Gibbs oscillations created by low-pass filters with cut-off frequencies that decrease from
left to right.

The function

s(ξt) =

∫ ξt

−∞

sinx

πx
dx

is a sigmoid that increases from 0 at t = −∞ to 1 at t = +∞, with s(0) = 1/2. It has oscillations
of period π/ξ, which are attenuated when the distance to 0 increases, but their total variation is
infinite: ∥s∥V = +∞. The maximum amplitude of the Gibbs oscillations occurs at t = ±π/ξ, with
an amplitude independent of ξ:

A = s(π)− 1 =

∫ π

−∞

sin x

πx
dx− 1 ≈ 0.045 .

Inserting (2.63) in (2.62) shows that

f(t)− fξ(t) = [f(t+0 )− f(t−0 )] s(ξ(t− t0)) + ε(ξ, t) , (2.64)

where limξ→+∞ sup|t−t0|<α |ε(ξ, t)| = 0 in some neighborhood of size α > 0 around t0. The sigmoid
s(ξ(t − t0)) centered at t0 creates a maximum error of fixed amplitude for all ξ. This is seen in
Figure 2.1, where the Gibbs oscillations have an amplitude proportional to the jump f(t+0 )−f(t−0 )
at all frequencies ξ.

Image Total Variation The total variation of an image f(x1, x2) depends on the amplitude of its
variations as well as the length of the contours along which they occur. Suppose that f(x1, x2) is
differentiable. The total variation is defined by

∥f∥V =

∫ ∫
|∇⃗f(x1, x2)| dx1 dx2 , (2.65)

where the modulus of the gradient vector is

|∇⃗f(x1, x2)| =

(∣∣∣∣
∂f(x1, x2)

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂f(x1, x2)

∂x2

∣∣∣∣
2
)1/2

.

As in one dimension, the total variation is extended to discontinuous functions by taking the
derivatives in the general sense of distributions. An equivalent norm is obtained by approximating
the partial derivatives by finite differences:

|∆hf(x1, x2)| =

(∣∣∣∣
f(x1, x2)− f(x1 − h, x2)

h

∣∣∣∣
2

+

∣∣∣∣
f(x1, x2)− f(x1, x2 − h)

h

∣∣∣∣
2
)1/2

.
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One can verify that

∥f∥V ! lim
h→0

∫ ∫
|∆hf(x1, x2)| dx1 dx2 !

√
2 ∥f∥V . (2.66)

The finite difference integral gives a larger value when f(x1, x2) is discontinuous along a diagonal
line in the (x1, x2) plane.

The total variation of f is related to the length of it level sets. Let us define

Ωy = {(x1, x2) ∈ R2 : f(x1, x2) > y} .

If f is continuous then the boundary ∂Ωy of Ωy is the level set of all (x1, x2) such that f(x1, x2) = y.
Let H1(∂Ωy) be the length of ∂Ωy. Formally, this length is calculated in the sense of the mono-
dimensional Hausdorff measure. The following theorem relates the total variation of f to the length
of its level sets.

Theorem 2.9 (Co-area Formula). If ∥f∥V < +∞ then

∥f∥V =

∫ +∞

−∞
H1(∂Ωy) dy. (2.67)

Proof. The proof is a highly technical result that is given in [73]. We give an intuitive explanation
when f is continuously differentiable. In this case ∂Ωy is a differentiable curve x(y, s) ∈ R2, which
is parameterized by the arc-length s. Let τ⃗(x) be the vector tangent to this curve in the plane. The
gradient ∇⃗f(x) is orthogonal to τ⃗(x). The Frenet coordinate system along ∂Ωy is composed of τ⃗(x)
and of the unit vector n⃗(x) parallel to ∇⃗f(x). Let ds and dn be the Lebesgue measures in the direction
of τ⃗ and n⃗. We have

|∇⃗f(x)| = ∇⃗f(x) . n⃗ =
dy
dn

, (2.68)

where dy is the differential of amplitudes across level sets. The idea of the proof is to decompose the
total variation integral over the plane as an integral along the level sets and across level sets, which we
write:

∥f∥V =

Z Z
|∇⃗f(x1, x2)| dx1 dx2 =

Z Z

∂Ωy

|∇⃗f(x(y, s))| ds dn. (2.69)

By using (2.68) we can get

∥f∥V =

Z Z

∂Ωy

ds dy .

But
R
∂Ωy

ds = H1(∂Ωy) is the length of the level set, which justifies (2.67).

The co-area formula gives an important geometrical interpretation of the total image variation.
Images are uniformly bounded so the integral (2.67) is calculated over a finite interval and is
proportional to the average length of level sets. It is finite as long as the level sets are not fractal
curves. Let f = α1Ω be proportional to the indicator function of a set Ω ⊂ R2 which has a
boundary ∂Ω of length L. The co-area formula (2.9) implies that ∥f∥V = αL. In general, bounded
variation images must have step edges of finite length.

Discrete Images A camera measures light intensity with photoreceptors that perform an averaging
and a uniform sampling over a grid that is supposed to be uniform. For a resolution N , the sampling
interval is N−1. The resulting image can be written fN [n1, n2] = f ⋆ φN (n1/N, n2/N), where
φN = 1[0,N−1]2 and f is the averaged analog image. Its total variation is defined by approximating
derivatives by finite differences and the integral (2.66) by a Riemann sum:

∥fN∥V =
1

N

∑

n1

∑

n2

( ∣∣∣fN [n1, n2]− fN [n1 − 1, n2]
∣∣∣
2

+ (2.70)

∣∣∣fN [n1, n2]− fN [n1, n2 − 1]
∣∣∣
2)1/2

.

In accordance with (2.66) we say that the image has bounded variation if ∥fN∥V is bounded by
a constant independent of the resolution N . The co-area formula proves that it depends on the
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(a) (b)

Figure 2.2: (a): The total variation of this image remains nearly constant when the resolution N
increases. (b): Level sets ∂Ωy obtained by sampling uniformly the amplitude variable y.

length of the level sets as the image resolution increases. The
√

2 upper bound factor in (2.66)
comes from the fact that the length of a diagonal line can be increased by

√
2 if it is approximated

by a zig-zag line that remains on the horizontal and vertical segments of the image sampling grid.
Figure 2.2(a) shows a bounded variation image and Figure 2.2(b) displays the level sets obtained
by discretizing uniformly the amplitude variable y. The total variation of this image remains nearly
constant as the resolution varies.

2.4 Two-Dimensional Fourier Transform

The Fourier transform in Rn is a straightforward extension of the one-dimensional Fourier trans-
form. The two-dimensional case is briefly reviewed for image processing applications. The Fourier
transform of a two-dimensional integrable function f ∈ L1(R2) is

f̂(ω1,ω2) =

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2) exp[−i(ω1x1 + ω2x2)] dx1 dx2. (2.71)

In polar coordinates exp[i(ω1x + ω2y)] can be rewritten

exp[i(ω1x1 + ω2x2)] = exp[iξ(x1 cos θ + x2 sin θ)]

with ξ =
√
ω2

1 + ω2
2 . It is a plane wave that propagates in the direction of θ and oscillates at the

frequency ξ. The properties of a two-dimensional Fourier transform are essentially the same as
in one dimension. We summarize a few important results. We write ω = (ω1,ω2), x = (x1, x2),
ω · x = ω1x1 + ω2x2 and

∫∫
f(x1, x2)dx1 dx2 =

∫∫
f(x) dx.

• If f ∈ L1(R2) and f̂ ∈ L1(R2) then

f(x) =
1

4π2

∫ ∫
f̂(ω) exp[i(ω · x)] dω. (2.72)

• If f ∈ L1(R2) and h ∈ L1(R2) then the convolution

g(x) = f ⋆ h(x) =

∫ ∫
f(u)h(x− u) du

has a Fourier transform
ĝ(ω) = f̂(ω) ĥ(ω). (2.73)

• The Parseval formula proves that
∫ ∫

f(x) g∗(x) dx =
1

4π2

∫ ∫
f̂(ω) ĝ∗(ω) dω . (2.74)
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If f = g, we obtain the Plancherel equality
∫ ∫

|f(x)|2 dx =
1

4π2

∫ ∫
|f̂(ω)|2 dω . (2.75)

The Fourier transform of a finite energy function thus has finite energy. With the same
density based argument as in one dimension, energy equivalence makes it possible to extend
the Fourier transform to any function f ∈ L2(R2).

• If f ∈ L2(R2) is separable, which means that

f(x) = f(x1, x2) = g(x1)h(x2),

then its Fourier transform is

f̂(ω) = f̂(ω1,ω2) = ĝ(ω1) ĥ(ω2),

where ĥ and ĝ are the one-dimensional Fourier transforms of g and h. For example, the
indicator function

f(x1, x2) =

{
1 if |x1| ! T , |x2| ! T
0 otherwise

= 1[−T,T ](x1)× 1[−T,T ](x2)

is a separable function whose Fourier transform is derived from (2.28):

f̂(ω1,ω2) =
4 sin(Tω1) sin(Tω2)

ω1 ω2
.

• If f(x1, x2) is rotated by θ:

fθ(x1, x2) = f(x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ),

then its Fourier transform is rotated by θ:

f̂θ(ω1,ω2) = f̂(ω1 cos θ − ω2 sin θ,ω1 sin θ + ω2 cos θ). (2.76)

Radon Transform A Radon transform computes integrals of f ∈ L2(R2) along rays. It is provides
a good model for some tomographic systems such as X-ray measurements in medical imaging.
Inverting the Radon transform is then needed to reconstruct the 2D or 3D body from these integrals.

Let us write τθ = (cos θ, sin θ). A ray ∆t,θ is a line defined by its equation

x · τθ = x1 cos θ + x2 sin θ = t .

The projection pθ of f along a parallel line of orientation θ is defined by

∀ θ ∈ [0,π),∀ t ∈ R, pθ(t) =

∫

∆t,θ

f(x) ds =

∫ ∫
f(x) δ(x · τθ − t) dx, (2.77)

where δ is the Dirac distribution. The Radon transform maps f(x) to pθ(t) for θ ∈ [0,π). In
medical imaging applications, a scanner is rotated around an object to compute the projection
pθ for many angles θ ∈ [0,π), as illustrated in Figure 2.3. The Fourier slice theorem relates the
Fourier transform of pθ to slices of the Fourier transform of f .

Theorem 2.10 (Fourier slice). The Fourier transform of projections satisfies

∀ θ ∈ [0,π) , ∀ ξ ∈ R p̂θ(ξ) = f̂(ξ cos θ, ξ sin θ).

Proof. The Fourier transform of the projection is

p̂θ(ξ) =

Z +∞

−∞

„Z Z
f(x) δ(x · τθ − t) dx

«
e−itξdt

=

Z Z
f(x) exp (−i(x · τθ)ξ) dx = f̂(ξτθ).



38 Chapter 2. Fourier Kingdom

An image f can be recovered from its projections pθ thanks to the projection slice theorem. Indeed,
the Fourier transform f̂ is known along each ray of direction θ and f is thus obtained with the 2D
inverse Fourier transform (2.71). The following back projection theorem gives an inversion formula.

Theorem 2.11 (Back projection). The image f is recovered using a one-dimensional filter h(t):

f(x) =
1

2π

∫ π

0
pθ ∗ h(x · τθ) dθ with ĥ(ξ) = |ξ| .

Proof. The inverse Fourier transform (2.72) in polar coordinates (ω1,ω2) = (ξ cos θ, ξ sin θ), with
dω1 dω2 = ξ dθ dξ, can be written

f(x) =
1

4π2

Z +∞

0

Z 2π

0

f̂(ξ cos θ, ξ sin θ) exp (i(x · τθ)ξ) ξ dθ dξ .

Using the Fourier slice Theorem 2.10 with pθ+π(t) = pθ(−t), this is rewritten as

f(x) =
1
2π

Z π

0

„
1
2π

Z +∞

−∞
|ξ| p̂θ(ξ) exp (i(x · τθ)ξ) dξ

«
dθ .

The inner integral is the inverse Fourier transform of p̂θ(ξ) |ξ| evaluated at x · τθ ∈ R. The convolution
formula (2.73) shows that it is equal to pθ ∗ h(x · τθ).

t

t

Figure 2.3: The Radon transform and its reconstruction with an increasing number of back pro-
jections.

In medical imaging applications, only a limited number of projections is available, and the
Fourier transform f̂ is thus partially known. In this case, an approximation of f can still be re-
covered by summing the corresponding filtered back projections pθ ∗ h(x · τθ). Figure 2.3 describes
this process, and shows the reconstruction of an image with a geometric object, using an increasing
number of evenly spaced projections. Section 13.3 describes a non-linear super-resolution recon-
struction algorithm, that recovers a more precise image by using a sparse representation.


