
Brief Introduction to Provable Security

Michel Abdalla
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1 Introduction

The primary goal of cryptography is to enable parties to communicate securely over an insecure
channel, which may be under the control of an adversary. Though originally used mainly for
the purpose of protecting the privacy of messages, cryptography now encompasses many other
goals, such as guaranteeing the integrity of messages being exchanged or the authenticity of the
sender.

For most of its history, cryptography was essentially a game played between designers and
attackers in which one side would try to outsmart the other by conceiving ad hoc attack and
defense mechanisms for their particular goals [Bel11]. Although this ad hoc aspect may always
be present in the field, cryptography has since become a well established science, with clear
security definitions and objectives.

The exact security objectives in which one might be interested will be determined by the
application one has in mind and may depend on many factors, such as how powerful adversaries
may be or the type of information that needs to be protected. The two most common goals
usually considered are data privacy and authenticity. While the goal of data privacy is to keep
unintended parties from learning the contents of the message being sent over the channel, data
authenticity aims at guaranteeing that the contents of the message have not been tampered with
during the course of transmission.

Encryption schemes. The usual way to achieve data privacy and allow parties to exchange
messages privately over an insecure channel is to use an encryption scheme. In these schemes,
there are two types of keys, known as the encryption and decryption keys. Whenever a sender
wants to send a private message, or plaintext, to a receiver, he first converts it into an enciphered
form, called a ciphertext, with the help of the encryption key and then sends the latter to the
receiver. Upon the receipt of a ciphertext, the receiver can use the decryption key to recover the
original plaintext. The algorithms used to generate the ciphertext and to recover the plaintext
are known as the encryption and decryption algorithms respectively.

The classical example of an encryption scheme is Shannon’s one-time pad [Sha49]. In the
one-time pad scheme, both the sender and receiver have to share a secret key whose length is at
least that of the message being exchanged. To encrypt a message, the sender simply computes
the bit-wise XOR of the message with the shared secret key, which serves as the encryption
key, and sends it to the receiver. Upon receiving a ciphertext, the receiver can recover the
original message in a similar manner using the shared secret key as the decryption key. Despite
its simplicity, Shannon showed that the one-time pad is actually as secure as it gets since, as
long as the shared secret key does not get reused, it is impossible for an adversary to gain any
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information about the plaintext, other than its length, from the ciphertext. Moreover, this is
the case even if the adversary has unlimited computational resources. Its main drawback lies
in the key size, which needs to be at least as long as the message, thus imposing a limit on the
amount of information that can be securely transmitted.

Signature schemes. The standard way of achieving data authenticity is to use a signature
scheme. As in an encryption scheme, there are two types of keys, to which we refer as signing
and verification keys. Using the signing key, a sender can create a signature for each message
whose authenticity needs to be guaranteed. This signature will be attached to the message
before its transmission and will serve as a testament to the fact that the message is authentic.
After receiving a message together with its signature, the receiver can verify its authenticity by
checking the validity of the signature with the help of the verification key. The algorithms used
to generate the signature and to verify its validity are known as the signing and verification
algorithms respectively.

Symmetric and asymmetric settings. In order for an encryption scheme to guarantee data
privacy, it is clear that the decryption key used by the receiver should be kept hidden from
the adversary or else the adversary could use it to recover the plaintext associated with any
ciphertext sent over the channel. Likewise, to guarantee data authenticity, the signing key of a
signature scheme needs to remain secret or else the adversary could fabricate authenticators for
any message of its choice.

As for the encryption and verification keys used in these schemes, they might be either
secret or not depending on the particular setting in which we are interested. In the private-key
cryptographic setting, both encryption and verification keys are assumed to be unknown to
the adversary. Due to the secrecy of these keys, both senders and receivers have to agree on
their values before they can start communicating securely. Moreover, since these keys usually
have high entropy, one may need a cryptographic device to safely store them. In this setting,
signature schemes are also known as message authentication codes. On the other hand, in the
public-key cryptographic setting, encryption and verification keys are not necessarily hidden
from the adversary. They are only mathematically related to the corresponding decryption and
signing keys and may be made public. Because the encryption and verification keys are usually
equal to the decryption and signing keys, respectively, in the private-key setting and different
from them in the public-key setting, we also refer to these settings as symmetric and asymmetric.

The notion of public-key cryptography was introduced by Diffie and Hellman [DH76] and is
one of the main innovations of modern cryptography. Unlike private-key cryptography, public-
key cryptography does not require previously established secrets to enable secure communication
between parties. In public-key cryptography, each user has a pair of public and secret keys
associated to him. While the public key is known to all parties, including the adversary, the
secret key should only be known to the user with whom it is associated.

Since public and secret keys are mathematically related, it is always possible for an adversary
to compute a corresponding secret key when given a public key. Hence, public-key cryptography
should only be considered in an environment in which adversaries are assumed to be computa-
tionally bounded. In this computational-complexity setting, rather than impossibility, we talk
about the infeasibility of breaking the security of a scheme.

In order to link users to their public keys, public-key encryption and signature schemes have
to rely on the existence of a public-key infrastructure (PKI), where a trusted authority certifies
the relation between users and their public keys by means of a digital signature. Since users
need to know the public key associated with the trusted authority itself to be able to verify the
validity of signatures issued by this authority, the latter public key needs to be pre-distributed
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to all users in the system.

Key exchange. Although public-key encryption and signature schemes can guarantee the
privacy and authenticity of exchanged messages when users have access to certified copies of each
other’s public keys, their costs may be too high for certain applications. To avoid the use of such
primitives and improve the overall efficiency, users often prefer to secure their communication
via symmetric encryption and signature schemes. Unfortunately, this is only possible when users
are in possession of pre-established common secrets. To alleviate the need for pre-established
secrets without significantly impacting the overall efficiency, another way of dealing with this
problem is for users to first establish a common secret key via a key exchange protocol and to
use this key to derive keys for symmetric encryption and signature schemes.

Public information: (G, g, p)

Alice Bob

x
R← Zp ; X ← gx y

R← Zp ; Y ← gy

X−−−−−−−−−−−→
Y←−−−−−−−−−−−

SKA ← Y x SKB ← Xy

Figure 1: The Diffie-Hellman key exchange protocol [DH76]. The protocol works over a finite
cyclic group G of prime order p, generated by an element g.

The classical example of a key exchange protocol is the Diffie-Hellman key exchange [DH76],
which is depicted in Figure 1. Let G be a cyclic group of prime order p, let g be a generator
for G, and let Alice and Bob be two users willing to establish a shared secret key. In the Diffie-
Hellman key exchange protocol, Alice chooses a secret value x uniformly at random from Zp and
then sends the ephemeral public key value X = gx to Bob. Likewise, Bob chooses a secret value
y in Zp and sends Y = gy to Alice. Finally, after receiving the values X and Y , both Alice and
Bob can compute a common secret SK = gxy using their corresponding secret values.

Despite its simplicity, the Diffie-Hellman key exchange protocol can be shown to be secure
under reasonable assumptions with respect to adversaries which only eavesdrop on the commu-
nication without altering it. However, the same is not true with respect to active adversaries.
The problem with it is that the Diffie-Hellman key exchange protocol does not include any form
of authentication and can be easily compromised by an adversary that plays the role of one
of the parties in the protocol. It thus becomes clear that to avoid such impersonation attacks
and achieve security even in the presence of active adversaries, both parties need to somehow
authenticate each other in addition to establishing a common secret.

Provable security. Even though we have already mentioned that a cryptographic scheme may
possess several properties, such as data privacy and authenticity, we have not actually shown
how one can prove that a cryptographic scheme has these properties. In the past, the most
common approach to validate the security of a cryptographic scheme was to search for attacks
and to declare a scheme secure if no attack is found that contradicts its security. Unfortunately,
the problem with this approach is that we can never be certain that an attack does not exist.
Hence, the security of the scheme can only be considered heuristic at best as the possibility that
an attack exists cannot be excluded.

Another approach for proving the security of a cryptographic scheme, known as provable
security, is to relate the security of a cryptographic scheme with that of its underlying primi-
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tives or computational problems. To achieve this goal, one needs to first specify the attacker’s
capabilities and the security goals that a given cryptographic scheme must meet. Next, one
needs to specify the attacker’s capabilities and the security goals for the underlying primitives
and computational problems. Finally, one needs to provide a reduction which shows how to
transform an adversary that breaks the security goals of a cryptographic scheme into an adver-
sary against the security goals of the cryptographic primitives and computational problems on
which the scheme is based.

One direct consequence of provable security is that it obviates the need to search for specific
attacks against a cryptographic scheme. This is because as long as we are ready to believe that
the underlying primitives are secure or the computational problems are hard, then there can be
no attacks against the cryptographic scheme in question.

In order to illustrate how the provable security methodology can be used in practice, we
also provide a concrete example on how to prove the security of a cryptographic scheme by
considering the classical ElGamal public-key encryption scheme [ElG85]. But before doing so,
we start by recalling some of the standard tools and computational problems that we use in this
note.

2 Basic tools

In this section, we recall some of the definitions and basic tools that will be used in the remaining
chapters, such as the syntax of code-based games and the description of bilinear maps.

2.1 Notation and conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of n-bit strings,
and {0, 1}∗ is the set of all bit strings. The empty string is denoted ε. More generally, if S is a
set, then Sn is the set of n-tuples of elements of S, S≤n is the set of tuples of length at most n.
If x is a string then |x| denotes its length, and if S is a set then |S| denotes its size. If S is finite,

then x
R← S denotes the assignment to x of an element chosen uniformly at random from S. If

A is an algorithm, then y ← A(x) denotes the assignment to y of the output of A on input x,

and if A is randomized, then y
R← A(x) denotes that the output of an execution of A(x) with

fresh coins assigned to y. Unless otherwise indicated, an algorithm may be randomized. “PT”
stands for polynomial time and “PTA” for polynomial-time algorithm or adversary. We denote
by k ∈ N the security parameter. A function ν : N → [0, 1] is said to be negligible if for every
c ∈ N there exists a kc ∈ N such that ν(k) ≤ k−c for all k > kc, and it is said to be overwhelming
if the function |1− ν(k)| is negligible.

2.2 Code-based games

Some of the definitions in this note use code-based game-playing [BR06]. In such games, there
exist procedures for initialization (Initialize) and finalization (Finalize) and procedures to
respond to adversary oracle queries. A game G is executed with an adversary A as follows.
First, Initialize executes and its outputs are the inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of G. When A terminates, its output
becomes the input to the Finalize procedure. The output of the latter, denoted G(A), is called
the output of the game, and “G(A) = y” denotes the event that the output takes a value y.
Boolean flags are assumed initialized to false. Games Gi,Gj are identical until bad if their code
differs only in statements that follow the setting of bad to true.
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2.3 Represented groups

Let G = 〈g〉 be a finite cyclic group of prime order p generated by an element g, where k = |p|
is the security parameter. Throughout this note, we will use the multiplicative notation for
the group operation. Hence, g0 denotes the identity element of G and gu denotes the group
element of G that results from multiplying u copies of g, for u ∈ N. Note that gu = gu mod |G|

by Lagrange’s theorem.
Algorithms which operate on G will be given string representations of elements in G. For

that, we require an injective map : G → {0, 1}` associated to G, where ` is the length of the
representation of group elements. Similarly, when a number i ∈ N is an input to, or output
of, an algorithm, it must be appropriately encoded, say in binary. We assume all necessary
encoding methods are fixed, and do not normally write the operators.

The schemes considered in this note are parameterized by a group generator, which is a PTA
G that on input 1k returns the description of a multiplicative group G of prime order p, where
2k < p < 2k+1.

2.4 Bilinear maps

The pairing-based schemes that we consider are parameterized by a pairing parameter generator,
which is a PTA G that on input 1k returns the description of two multiplicative groups G and GT

of prime order p with an admissible map ê : G×G→ GT , where 2k < p < 2k+1. By admissible,
we mean that the map is bilinear, non-degenerate, and efficiently computable. Bilinearity means
that for all a, b ∈ Z∗p and all g ∈ G, we have ê(ga, gb) = ê(g, g)ab. By non-degenerate, we mean
that ê(g, g) = 1 if and only if g = 1.

3 Standard complexity assumptions

CDH and DDH Problems. Two of the most common computational problems in finite cyclic
groups are the computational Diffie-Hellman (CDH) and the decisional Diffie-Hellman (DDH)
problems. In the CDH problem, the adversary is given a tuple (g, ga, gb) for random integers

a, b ∈ Z∗p and a random generator g
R← G∗ and its goal is to compute gab. In the DDH problem,

the goal is to distinguish (g, ga, gb, gab) from (g, ga, gb, gc) when g is a random generator for G
and a, b, c are chosen uniformly at random from Z∗p.

To define more precisely the CDH problem with respect to a group generator G, we consider
the game Expcdh

G,k (A) described in Figure 2 using the notation of code-based games. The game
is defined by two procedures and is executed with an adversary A as follows. The procedure
Initialize chooses a random generator g

R← G∗ and two random integers x, y
R← Z∗p, computes

X ← gx and Y ← gy, and returns ((G, p), g,X, Y ) to A. Eventually, the adversary ends the
game by querying the Finalize procedure with a group element Z, which outputs true if Z = gxy

and false, otherwise. The advantage Advcdh
G,k (A) of an adversary A in solving the CDH problem

relative to G is then defined as the probability that Expcdh
G,k (A) outputs true. In other words,

Advcdh
G,k (A) = Pr

[
Expcdh

G,k (A) = true
]
.

In order to define more formally the DDH problem relative to a group generator G, consider
the games Expddh-β

G,k (A) described in Figure 2 for β ∈ {0, 1}. Both games are defined by two

procedures, which are executed with an adversary A as follows. In the game Expddh-0
G,k (A), the

procedure Initialize chooses a random generator g
R← G∗ and random integers x, y

R← Z∗p, sets
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Game Expcdh
G,k (A)

proc Initialize(k)

(G, p) R← G(1k )
−→
G ← (G, p)
g

R← G∗

x
R← Z∗p ; X ← gx

y
R← Z∗p ; Y ← gy

Return (
−→
G , g,X, Y )

proc Finalize(Z)

Return (Z = gxy)

Game Expddh-0
G,k (A)

proc Initialize(k)

(G, p) R← G(1k )
−→
G ← (G, p)
g

R← G∗

x
R← Z∗p ; X ← gx

y
R← Z∗p ; Y ← gy

z ← ab mod p ; Z ← gz

Return (
−→
G , g,X, Y, Z)

proc Finalize(β′)

Return (β′ = 1)

Game Expddh-1
G,k (A)

proc Initialize(k)

(G, p) R← G(1k )
−→
G ← (G, p)
g

R← G∗

x
R← Z∗p ; X ← gx

y
R← Z∗p ; Y ← gy

z
R← Z∗p ; Z ← gz

Return (
−→
G , g,X, Y, Z)

proc Finalize(β′)

Return (β′ = 1)

Figure 2: Games Expcdh
G,k (A), Expddh-0

G,k (A), and Expddh-1
G,k (A) defining the advantage of an

adversary A against the CDH and DDH problems relative to a group generator G and security
parameter k .

z ← xy mod p, computes X ← gx, Y ← gy, and Z ← gz, and returns ((G, p), g,X, Y, Z) to

A. In the game Expddh-1
G,k (A), the procedure Initialize chooses a random generator g

R← G∗

and random integers x, y, z
R← Z∗p, computes X ← gx, Y ← gy, and Z ← gz, and returns

((G, p), g,X, Y, Z) to A. In both games, the adversary eventually ends the game by querying
the Finalize procedure with a guess β, which in turn returns true if β′ = 1 and false, otherwise.
The advantage Advddh

G,k (A) of an adversary A in solving the DDH problem relative to G is then

defined as the probability that Expddh-0
G,k (A) outputs true minus the probability that Expddh-1

G,k (A)
outputs true. That is,

Advddh
G,k (A) = Pr

[
Expddh-0

G,k (A) = true
]
− Pr

[
Expddh-1

G,k (A) = true
]
.

Finally, the CDH and DDH problems are said to be hard relative to G if Advcdh
G,k (A) and

Advddh
G,k (A) are negligible functions in k for all PTAs A.

BDH and BDDH Problems. In the bilinear-map setting, two of the most common computa-
tional problems are the bilinear Diffie-Hellman (BDH) problem and its decisional version, the
bilinear decisional Diffie-Hellman (BDDH) problem [BF01, Jou04]. While in the BDH problem,
the goal is to compute ê(g, g)abc given a tuple (g, ga, gb, gc) for random integers a, b, c ∈ Z∗p, in

the BDDH problem, the goal is to distinguish the element ê(g, g)abc from a random element of
G∗T .

More precisely, the advantage Advbdh
G,k (A) of an adversary A in solving the BDH problem

relative to a pairing parameter generator G is defined as the probability that the adversaryA out-
puts ê(g, g)abc on input ((G,GT , p, ê), g, g

a, gb, gc) for randomly chosen g
R← G∗ and a, b, c

R← Z∗p.
Using the code-based notation, Advbdh

G,k (A) corresponds to probability that the game Expbdh
G,k (A)

returns true in Figure 3.
To define the advantage Advbddh

G,k (A) of an adversary A in solving the BDDH problem

relative to G, we consider the game Expbddh-β
G,k (A) between A and a challenger in Figure 3

for β ∈ {0, 1}. In these games, the procedure Initialize first chooses a random generator

g
R← G∗, random integers a, b, c

R← Z∗p, and a random element T
R← GT . If β = 1, Initialize
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Game Expbdh
G,k (A)

proc Initialize(k)

(G,GT , p, ê)
R← G(1k )

−→
G ← (G,GT , p, ê)
g

R← G∗

a
R← Z∗p ; A← ga

b
R← Z∗p ; B ← gb

c
R← Z∗p ; C ← gb

Return (
−→
G , g, A,B,C)

proc Finalize(Z)

Return (Z = ê(g, g)abc)

Game Expbddh-0
G,k (A)

proc Initialize(k)

(G,GT , p, ê)
R← G(1k )

−→
G ← (G,GT , p, ê)
g

R← G∗

a
R← Z∗p ; A← ga

b
R← Z∗p ; B ← gb

c
R← Z∗p ; C ← gb

z ← abc mod p ; Z ← ê(g, g)z

Return (
−→
G , g, A,B,C,Z)

proc Finalize(β′)

Return (β′ = 1)

Game Expbddh-1
G,k (A)

proc Initialize(k)

(G,GT , p, ê)
R← G(1k )

−→
G ← (G,GT , p, ê)
g

R← G∗

a
R← Z∗p ; A← ga

b
R← Z∗p ; B ← gb

c
R← Z∗p ; C ← gb

z
R← Z∗p ; Z ← ê(g, g)z

Return (
−→
G , g, A,B,C,Z)

proc Finalize(β′)

Return (β′ = 1)

Figure 3: Games Expbdh
G,k (A), Expbddh-0

G,k (A), and Expbddh-1
G,k (A) defining the advantage of an

adversary A against the BDH and BDDH problems relative to a pairing parameter generator G
and security parameter k .

returns the tuple ((G,GT , p, ê), g, g
a, gb, gc, ê(g, g)abc) to A; if β = 0, it returns the tuple

((G,GT , p, ê), g, g
a, gb, gc, T ) instead. The advantage Advbddh

G,k (A) is then defined as the proba-

bility that game Expbddh-0
G,k (A) outputs true minus the probability that game Expbddh-1

G,k (A) out-

puts true. Finally, the BDH and BDDH problems are said to be hard relative to G if Advbdh
G,k (A)

and Advbddh
G,k (A) are negligible functions in k for all PTAs A.

4 Example: Public-key encryption

In order to illustrate how provable security can be used in practice, we provide in this section a
proof of security for the classical ElGamal public-key encryption scheme [ElG85] as an example.
Towards this goal, we start by recalling the formal definition of a public-key encryption scheme
and what it means to be secure. Next, we describe the ElGamal public-key encryption scheme
and show that it meets the notion of indistinguishability under chosen-plaintext attacks under
the decisional Diffie-Hellman assumption described in Section 3.

Syntax. A public-key encryption scheme (PKE) is defined by a tuple of algorithms PKE =
(PG,KeyGen,Enc,Dec) and a message space M, providing the following functionality. Via

pars
R← PG(1k ), one can run the probabilistic parameter generation algorithm PG to setup

the common parameter pars for a given security parameter k . Via (pk , sk)
R← KeyGen(pars), a

user can run the probabilistic algorithm KeyGen to obtain a pair (pk , sk) of public and secret

keys with respect to common parameter pars. Via C
R← Enc(pk ,m), one can send an encrypted

message m ∈M to the user with public pk . Finally, via m← Dec(sk ,C ), the user in possession
of the secret key sk and a ciphertext C can run the deterministic decryption algorithm to re-
cover the underlying plaintext m. For correctness, it is required that for all honestly generated
keys (pk , sk)

R← KeyGen, for all messages m ∈ M, m = Dec(sk ,Enc(pk ,m)) holds with all but
negligible probability.

Security definition. The now-standard definition of security of PKE schemes, suggested by
Goldwasser and Micali [GM84], is indistinguishability under chosen-plaintext attacks (IND-CPA).
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Game Expind-cpa-β
PKE,k (A)

proc Initialize(k)

pars
R← PG(1k )

(pk , sk)
R← KeyGen(pars)

Return pk

proc LR(m∗0,m
∗
1)

C ∗
R← Enc(pk ,m∗β)

Return C ∗

proc Finalize(β′)

Return (β′ = 1)

Figure 4: Game Expind-cpa-β
PKE,k (A) for β ∈ {0, 1} defining the IND-CPA security of a public-key

encryption scheme PKE = (PG,KeyGen,Enc,Dec).

In this security model, the adversary receives the public key of the scheme that he is trying to
attack and his goal is to find a pair of messages of the same length whose encryptions he is able
to distinguish. Since the adversary is allowed to choose the challenge messages after seeing the
public key, this security notion implicitly provides security against key recovery attacks.

The precise definition of IND-CPA security considers the game Expind-cpa-β
PKE,k (A) described

in Figure 4. Expind-cpa-β
PKE,k (A) contains three procedures, which are executed with an adversary

A as follows. The procedure Initialize generates the common parameter pars
R← PG(1k ) and

a pair of public and secret keys (pk , sk)
R← KeyGen(pars) and returns pk to A. During the

execution of the game, the adversary is allowed to make a single query (m∗0,m
∗
1) to the LR

procedure, where m∗0,m
∗
1 ∈ {0, 1}∗ are assumed to have the same length. To answer it, the

game Expind-cpa-β
PKE,k (A) generates a challenge ciphertext C ∗

R← Enc(pk ,m∗β) and gives C ∗ to A.
Eventually, the adversary ends the game by querying the Finalize procedure with a guess β′

for the bit β used to generate the challenge ciphertext. The advantage Advind-cpa
PKE,k (A) of the

adversary A in breaking the IND-CPA security of PKE is then defined as the probability that
game Expind-cpa-0

PKE,k (A) outputs true minus the probability that game Expind-cpa-1
PKE,k (A) outputs

true. Finally, we say that PKE is secure if Advind-cpa
PKE,k (A) is a negligible function in k for all

PTAs A.

ElGamal encryption. The ElGamal public-key encryption scheme, described in Figure 5,
was proposed in [ElG85]. It can be seen as an adaptation of the Diffie-Hellman key exchange
described in Figure 1 on page 3 to the public-key setting by fixing the first message sent by one
the parties as the public key for that party.

As in the Diffie-Hellman key exchange, the ElGamal encryption scheme works over a finite
cyclic group G of prime order p obtained via a group generator G. To generate a pair (pk , sk)
of public and secret keys, the user chooses a generator g for G and a random element x ∈ Z∗p,
computes X ← gx, and sets pk = (G, p, g,X) and sk = (G, p, g, x). To encrypt a message m ∈ G
to a user with public key pk = (G, p, g,X), the sender simply chooses a random element r ∈ Z∗p
and outputs (C1,C2) = (gr,m ·Xr) as the ciphertext. To decrypt it, the user in possession of
the secret key sk = (G, p, g, x) corresponding to pk = (G, p, g,X) computes C2/C1

x to recover
the underlying message.

Security of ElGamal encryption. In order to prove that the ElGamal encryption scheme
meets the IND-CPA security notion depicted in Figure 4 if the DDH problem is hard with respect
to group generator G, we will provide a reduction which relates the advantage of the adversary
in breaking IND-CPA security game to the advantage of another adversary in breaking the DDH
problem with respect to G. More precisely, we want to prove the following theorem.

Theorem 4.1 Let EG refer to the ElGamal PKE scheme in Figure 5, let G be the underlying
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PG(1k ):

(G, p) R← G(1k )
pars ← (G, p)
Return pars

KeyGen(pars):
parse pars as (G, p)
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return (pk , sk)

Enc(pk ,m):

r
R← Z∗p ; C1 ← gr

K ← Xr

C2 ← m ·K
Return (C1,C2)

Dec(sk ,C ):
parse C as (C1,C2)
parse sk as (G, p, g, x)
m′ ← C2/C1

x

Return m′

Figure 5: The ElGamal public-key encryption scheme [ElG85], where G is a group generator.

group generator, let k be the security parameter, and let A be an adversary against IND-CPA
security notion as depicted in Figure 4, making at most a single query to the LR procedure.
Then, there exists an adversary B against the DDH problem with respect to G, whose running
time is that of A and such that

Advind-cpa
EG,k (A) ≤ 2 ·Advddh

G,k (B).

The actual proof of Theorem 4.1 is quite simple and uses the fact that, in order to distinguish
between the encryption of the challenge messages, the adversary needs to somehow distinguish
the value K = Xr = grx used to hide the message in C2 from a random element in the group,
when given the public key pk = (G, p, g,X = gx) and the first part of the ciphertext, C1 = gr.
However, to make this intuition more precise and to illustrate the usefulness of games in security
proofs, we will prove Theorem 4.1 using a sequence of hybrid games.

Our proof contains a total of 5 games, which are described in Figure 6, in which games
G0 and G4 correspond respectively to the games Expind-cpa-0

EG,k (A) and Expind-cpa-1
EG,k (A) of the

IND-CPA security definition. Hence, in order to show that the advantage Advind-cpa
EG,k (A) of A

against EG is negligible for all PTAs A, it suffices to show that the probability that GAi outputs
true for i = 0, . . . , 4 does not change significantly.

Proof: Consider the sequence of games depicted in Figure 6. By substituting the description
of the ElGamal PKE scheme (EG) in Game Expind-cpa-β

EG,k (A) for β ∈ {0, 1} in Figure 4, we have
that

Advind-cpa
EG,k (A) = Pr

[
Expind-cpa-0

EG,k (A) = true
]
− Pr

[
Expind-cpa-1

EG,k (A) = true
]

= Pr [ G0(A) = true ]− Pr [ G4(A) = true ] . (1)

We now claim that there exists an adversary B1 against the DDH problem relative to G such
that Pr [ G0(A) = true ] − Pr [ G1(A) = true ] ≤ Advddh

G,k (B). In order to prove this claim, we
build B1 as follows. Let ((G, p), g,X, Y, Z) be the input that B receives from the Initialize

procedure in Expddh-β
G,k (B1). B1 then sets (G, g) as the underlying group for EG and returns

pk = (G, p, g,X) to A as the output of its Initialize procedure of Expind-cpa-0
EG,k (A). When A

queries its LR procedure with a pair of messages (m∗0,m
∗
1), B1 simulates its behavior by setting

(C ∗1 ,C
∗
2 ) = (Y,m∗0 · Z) and returning it to A. Finally, when A queries its Finalize procedure

with a guess bit β′, B1 queries its own Finalize procedure with β′.
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Game G0

proc Initialize(k)

(G, p) R← G(1k )
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return pk

Game G1

proc Initialize(k)

(G, p) R← G(1k )
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return pk

Game G2

proc Initialize(k)

(G, p) R← G(1k )
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return pk

Game G3

proc Initialize(k)

(G, p) R← G(1k )
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return pk

Game G4

proc Initialize(k)

(G, p) R← G(1k )
g

R← G∗

x
R← Z∗p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g,X)
Return pk

proc LR(m∗0,m
∗
1)

r
R← Z∗p ; C∗1 ← gr

K ← Xr

C∗2 ← m∗0 ·K
Return (C∗1 ,C

∗
2 )

proc LR(m∗0,m
∗
1)

r
R← Z∗p ; C∗1 ← gr

K
R← G∗

C∗2 ← m∗0 ·K
Return (C∗1 ,C

∗
2 )

proc LR(m∗0,m
∗
1)

r
R← Z∗p ; C∗1 ← gr

K
R← G∗

C∗2
R← G

Return (C∗1 ,C
∗
2 )

proc LR(m∗0,m
∗
1)

r
R← Z∗p ; C∗1 ← gr

K
R← G∗

C∗2 ← m∗1 ·K
Return (C∗1 ,C

∗
2 )

proc LR(m∗0,m
∗
1)

r
R← Z∗p ; C∗1 ← gr

K ← Xr

C∗2 ← m∗1 ·K
Return (C∗1 ,C

∗
2 )

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

Figure 6: Sequence of games for the security proof of the ElGamal PKE scheme described in
Figure 5, where the rectangular boxes indicate differences with respect to the previous game. G
is the underlying group generator used in the ElGamal PKE scheme.

Given the above description of B1, it is not hard to see that, when we execute B1 in Expddh-0
G,k (B1),

B1 simulates Expind-cpa-0
EG,k (A) to A. Likewise, when B1 interacts with the challenger in

Expddh-1
G,k (B1), it simulates Expind-cpa-1

EG,k (A) to A. Thus,

Pr [ G0(A) = true ] = Pr
[

Expddh-0
G,k (B1) = true

]
Pr [ G1(A) = true ] = Pr

[
Expddh-1

G,k (B1) = true
]

which implies that

Pr [ G0(A) = true ]− Pr [ G1(A) = true ] ≤ Advddh
G,k (B1) . (2)

Due to the similarities between games G0(A) and G4(A) and games G1(A) and G3(A), we can
easily build an adversary B2 against the DDH problem relative to G such that

Pr [ G3(A) = true ]− Pr [ G4(A) = true ] ≤ Advddh
G,k (B2) . (3)

Finally, we note that the differences between games G1(A) and G2(A) and between games G2(A)
and G3(A) are purely syntactic since, in all of these cases, C ∗2 is a random element in the group
which does not depend on the guess bit β used to select the challenge message. Hence,

Pr [ G1(A) = true ] = Pr [ G2(A) = true ] = Pr [ G3(A) = true ] . (4)

The proof of Theorem 4.1 follows by combining equations 1, 2, 3, and 4 and by noticing that
the adversary B of the theorem statement runs B1 with probability 1/2 and B2 with probability
1/2.
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