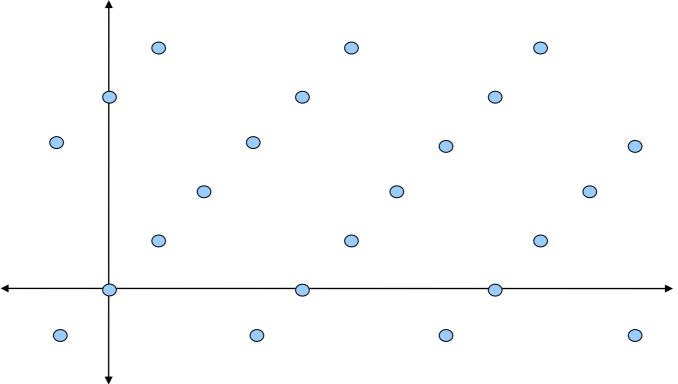
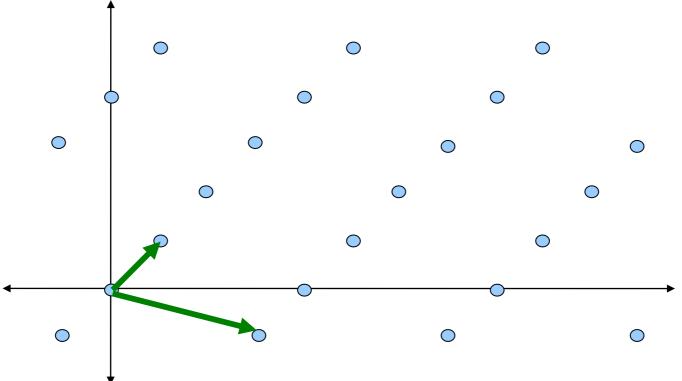
Shortest Independent Vector Problem (SIVP)



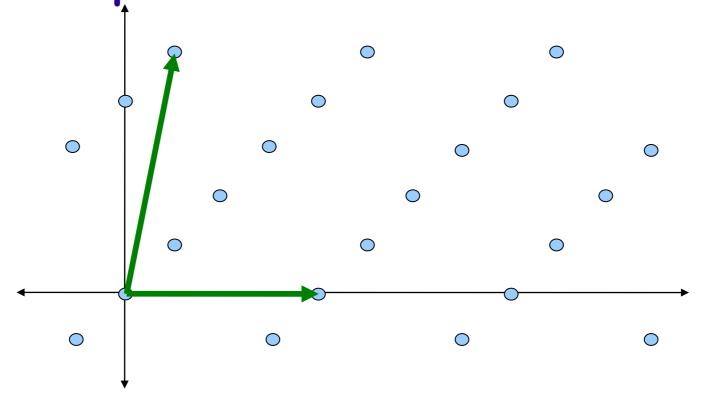
Find n short linearly independent vectors

Shortest Independent Vector Problem (SIVP)

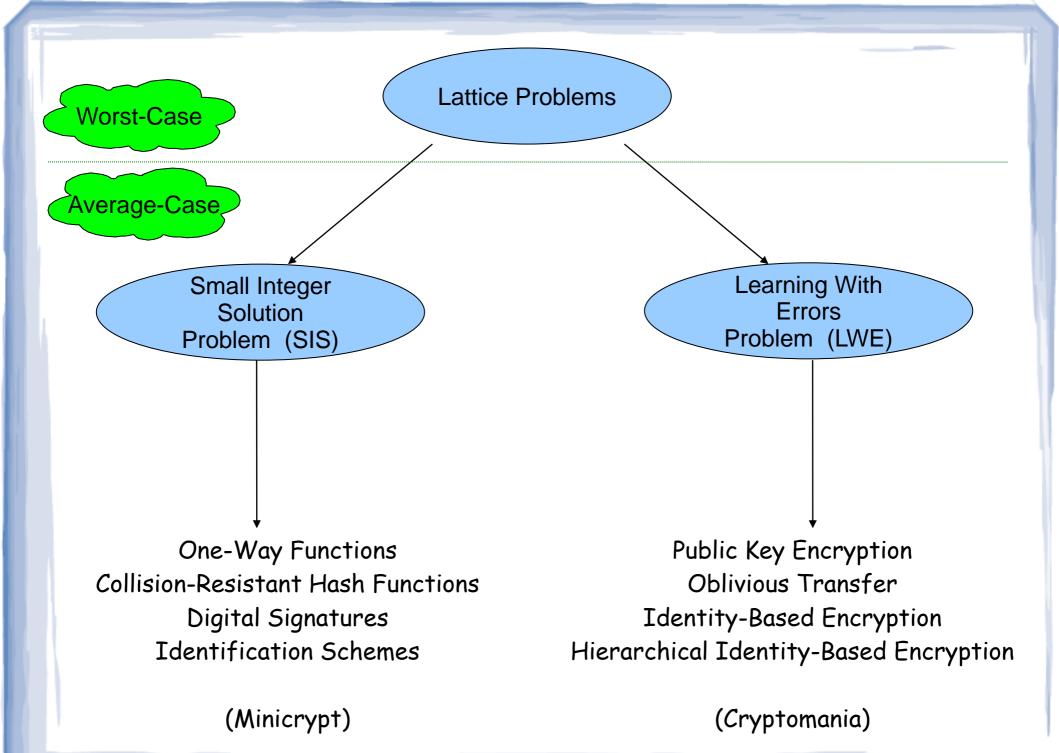


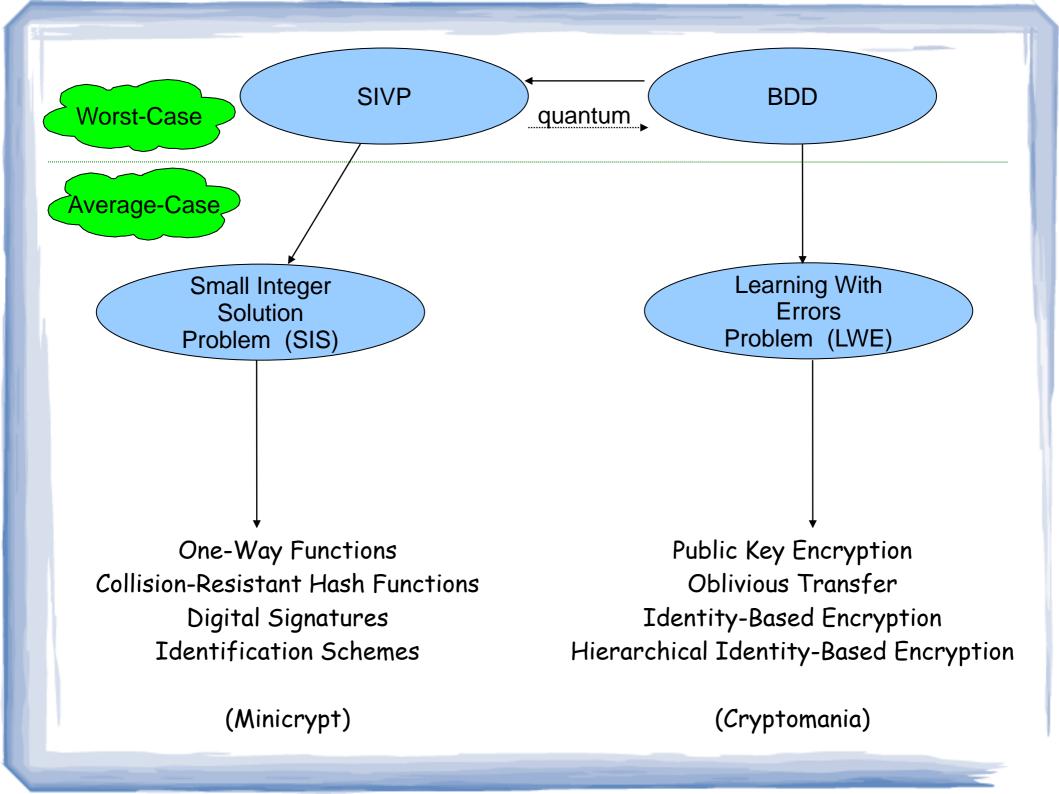
Find n short linearly independent vectors

Approximate Shortest Independent Vector Problem



Find n pretty short linearly independent vectors





Small Integer Solution Problem

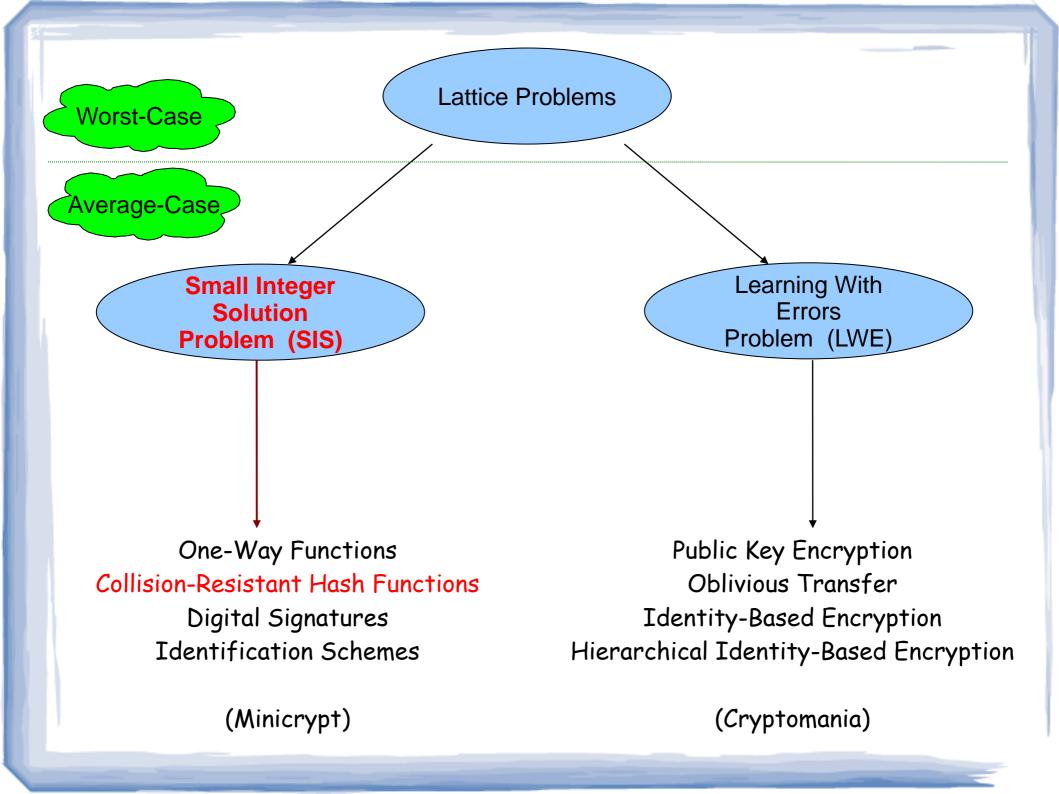
Given: Random vectors $a_1,...,a_m$ in \mathbf{Z}_q^n

Find: non-trivial solution $z_1,...,z_m$ in $\{-1,0,1\}$ such that:

$$z_1 = a_1 + z_2 = a_2 + \dots + z_m = 0 \text{ in } \mathbf{Z}_q^n$$

Observations:

- •If size of z_i is not restricted, then the problem is trivial
- •Immediately implies a collision-resistant hash function



Collision-Resistant Hash Function

Given: Random vectors $a_1,...,a_m$ in \mathbf{Z}_q^n

Find: non-trivial solution $z_1,...,z_m$ in $\{-1,0,1\}$ such that:

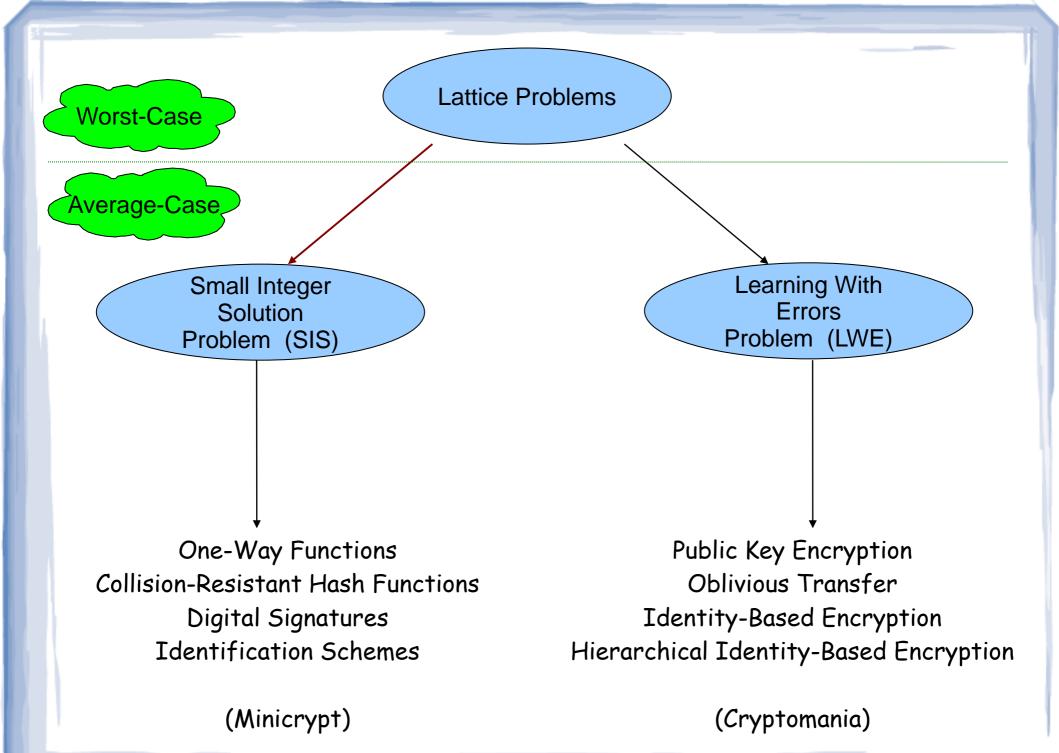
$$z_1 = a_1 + z_2 = a_2 + \dots + z_m = 0 \text{ in } \mathbf{Z}_q^n$$

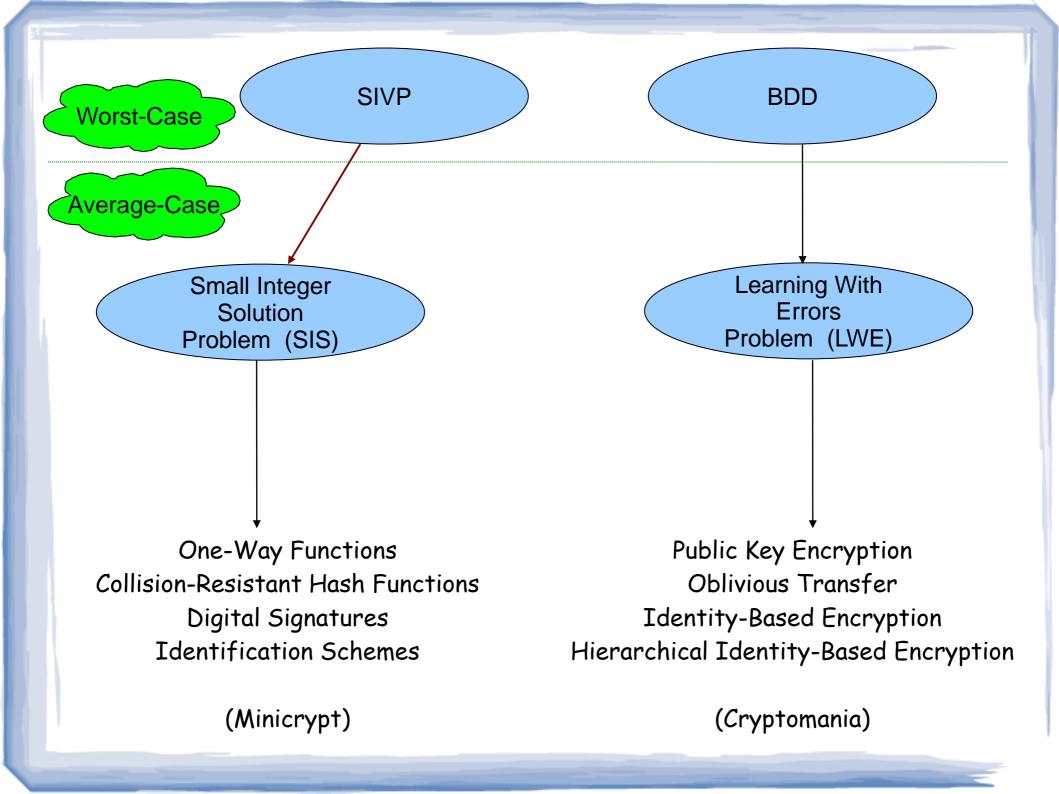
$$A=(a_1,...,a_m)$$
 Define $h_A: \{0,1\}^m \rightarrow \mathbf{Z}_q^n$ where $h_A(z_1,...,z_m)=a_1z_1+...+a_mz_m$

Domain of $h=\{0,1\}^m$ (size = 2^m) Range of $h=\mathbf{Z}_q^n$ (size = q^n) Set m>nlog q to get compression

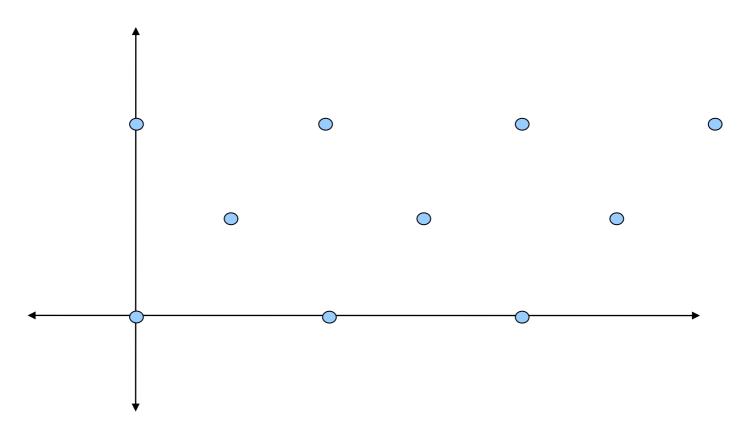
Collision: $a_1z_1+...+a_mz_m=a_1y_1+...+a_my_m$

So, $a_1(z_1-y_1)+...+a_m(z_m-y_m)=0$ and z_i-y_i are in $\{-1,0,1\}$





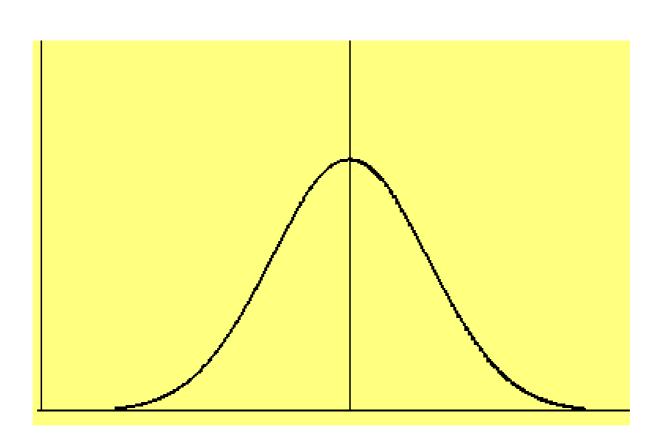
For Any Lattice ...



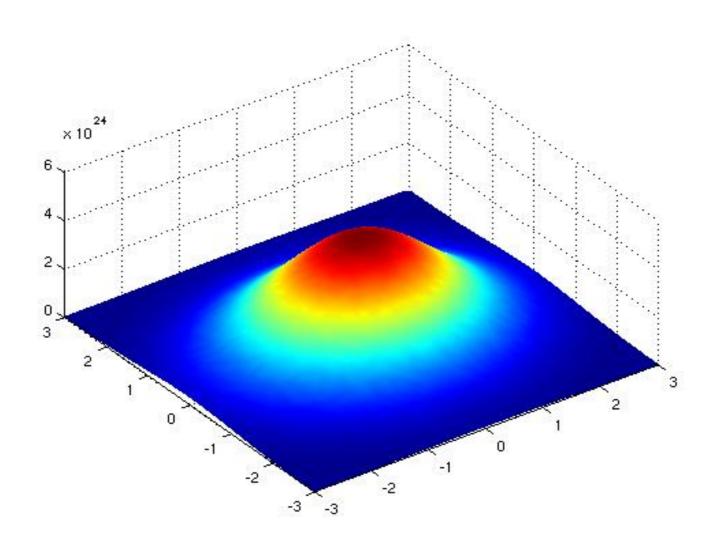
Consider the distribution obtained by:

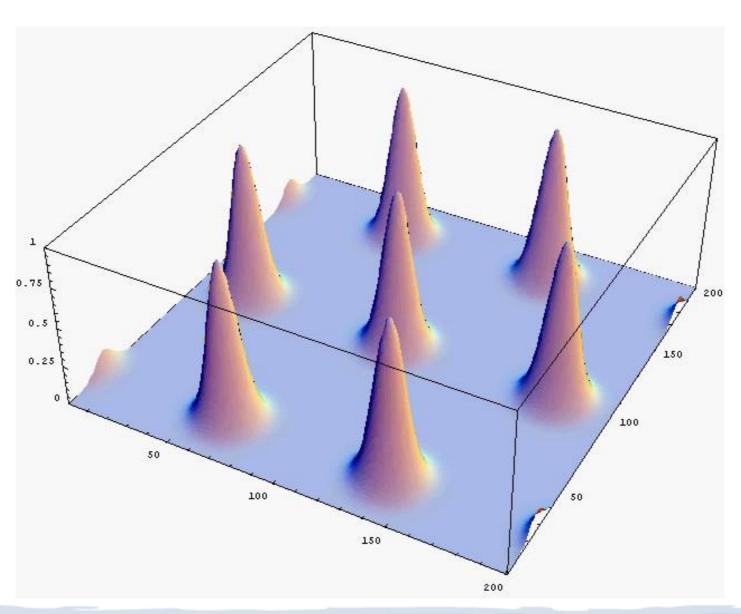
- 1. Pick a uniformly random lattice point
- 2. Sample from a Gaussian distribution centered at the lattice point

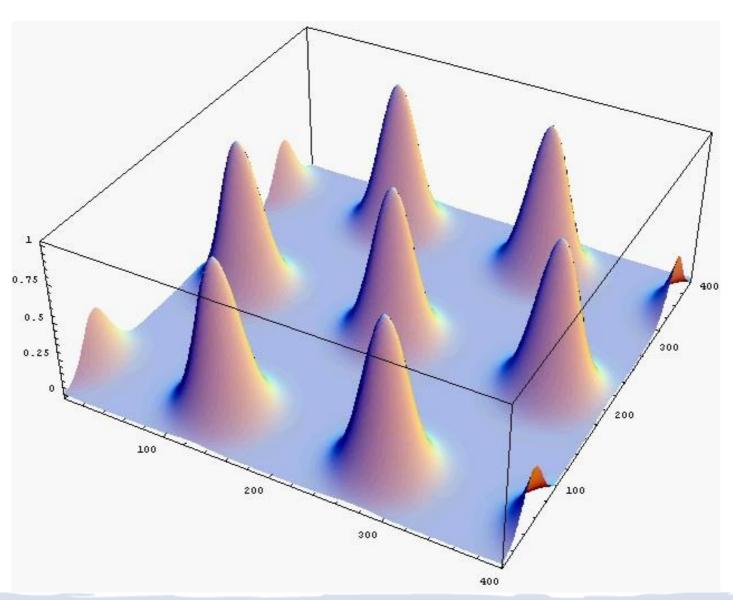
One-Dimensional Gaussian Distribution

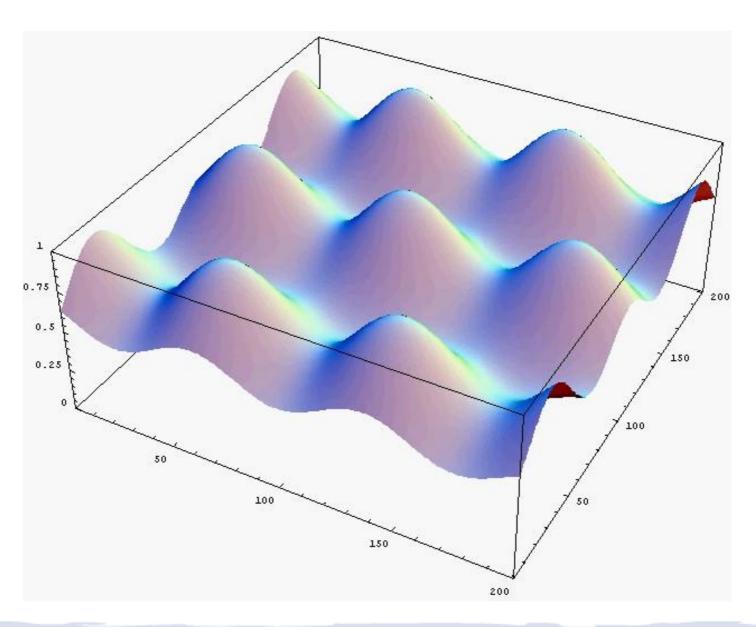


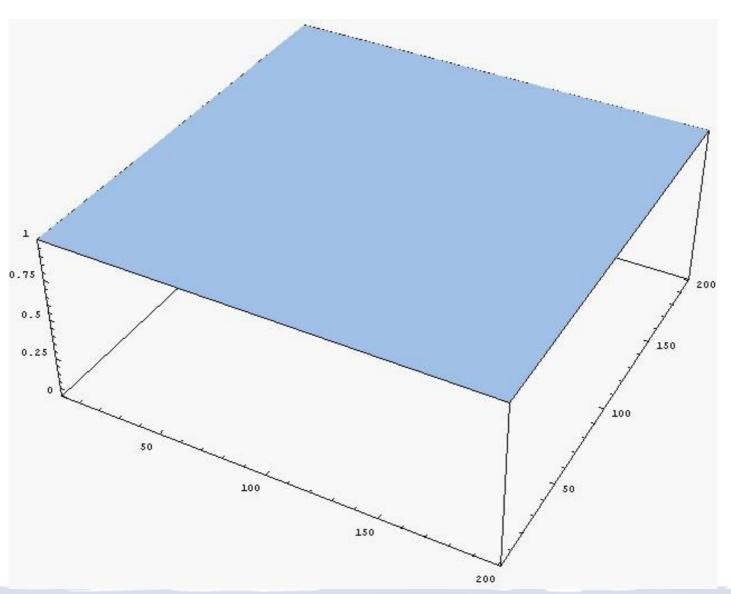
Two-Dimensional Gaussian Distribution



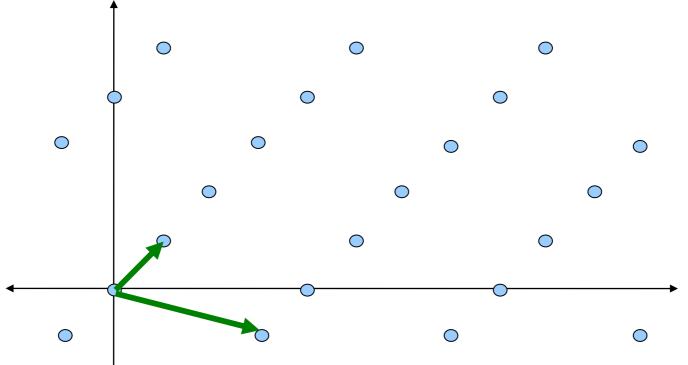








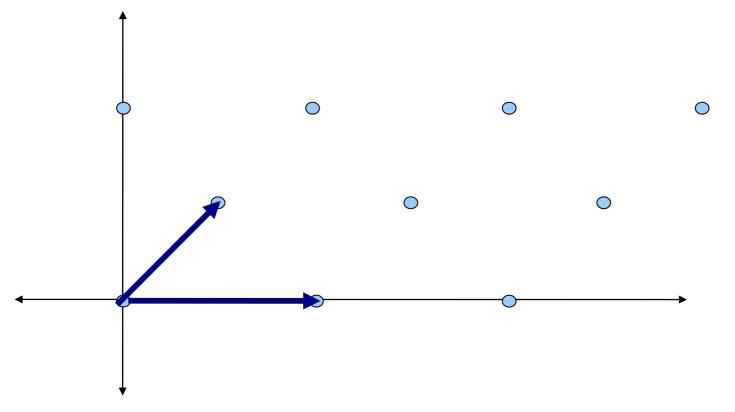
Shortest Independent Vector Problem (SIVP)



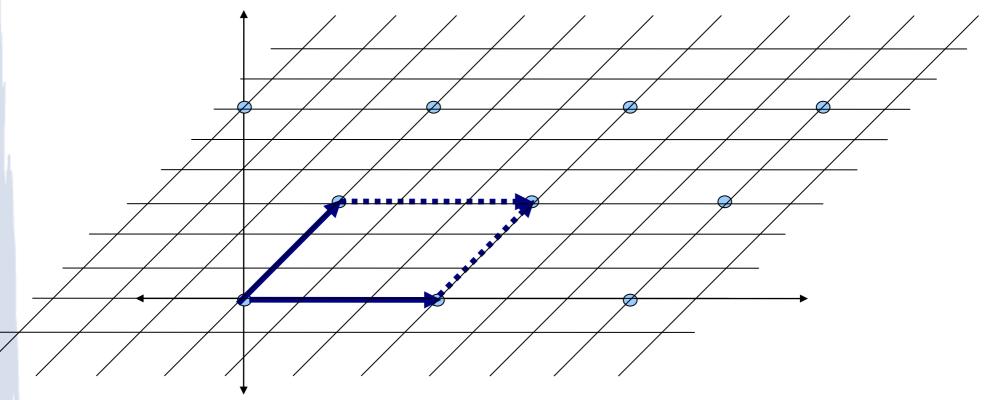
Find a short linearly independent vectors

Standard deviation of Gaussian that leads to the uniform distribution is related to the length of the longest vector in SIVP solution

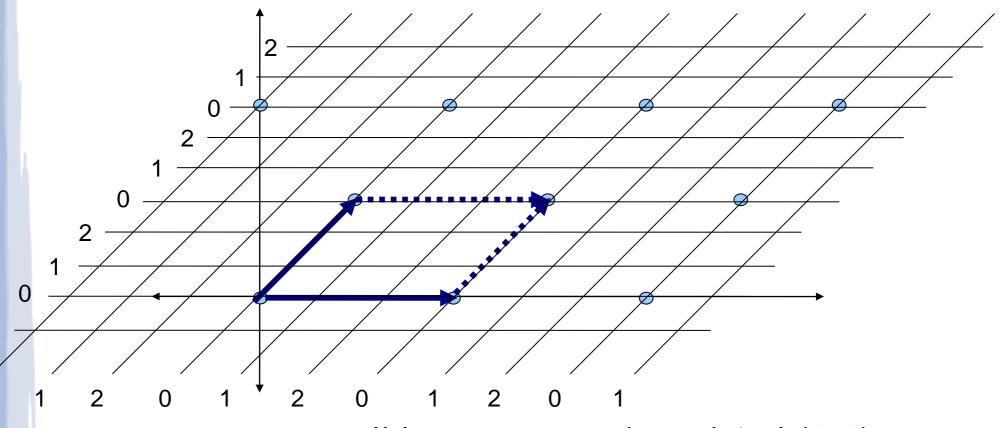
Worst-Case to Average-Case Reduction



Worst-Case to Average-Case Reduction

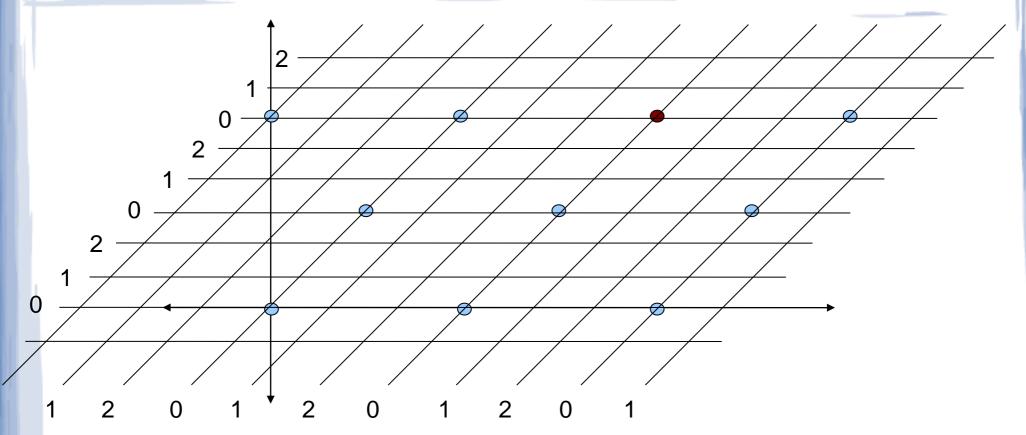


Worst-Case to Average-Case Reduction



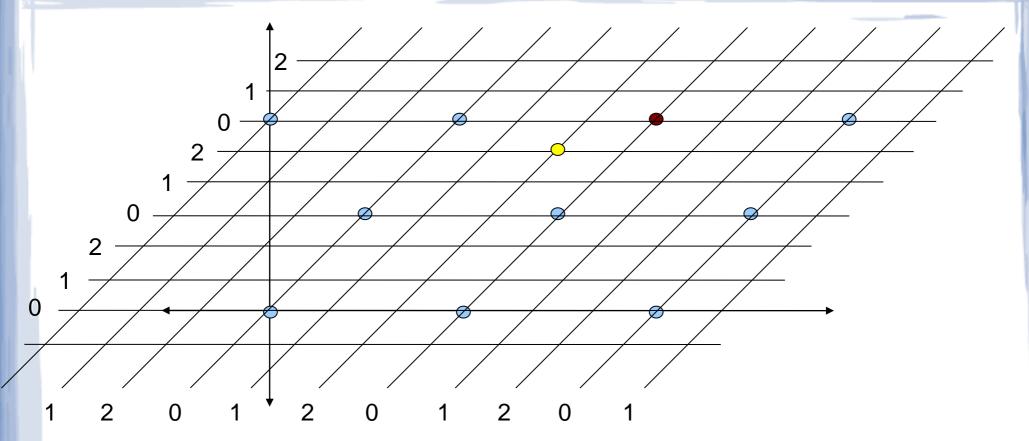
Important: All lattice points have label (0,0) and

All points labeled (0,0) are lattice points (0ⁿ in n dimensional lattices)



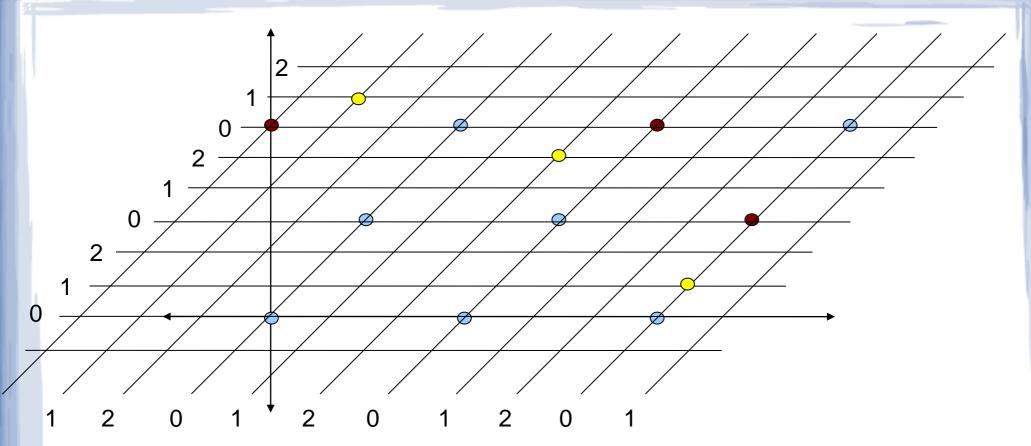
How to use the SIS oracle to find a short vector in any lattice: Repeat m times:

Pick a random lattice point



How to use the SIS oracle to find a short vector in any lattice: Repeat m times:

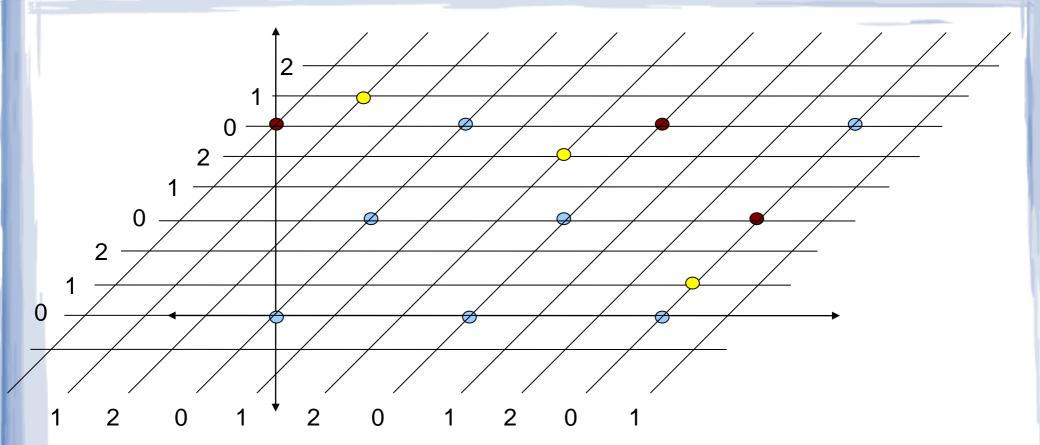
Pick a random lattice point Gaussian sample a point around the lattice point



How to use the SIS oracle to find a short vector in any lattice: Repeat m times:

Pick a random lattice point Gaussian sample a point around the lattice point

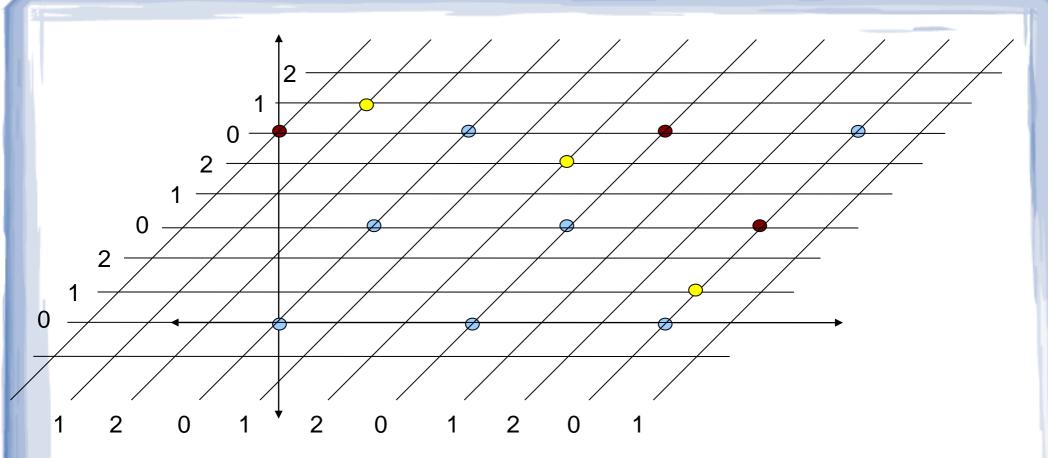
All the samples are uniform in Z_qⁿ



How to use the SIS oracle to find a short vector in any lattice: Repeat m times:

Pick a random lattice point

Gaussian sample a point around the lattice point Give the m " \mathbf{Z}_q^n samples" $a_1,...,a_m$ to the SIS oracle Oracle outputs $z_1,...,z_m$ in $\{-1,0,1\}$ such that $a_1z_1+...+a_mz_m=0$



Give the m " Z_q " samples" $a_1,...,a_m$ to the SIS oracle Oracle outputs $z_1,...,z_m$ in $\{-1,0,1\}$ such that $a_1z_1+...+a_mz_m=0$

$$\bullet$$
 = V_i

$$\circ = S_i$$

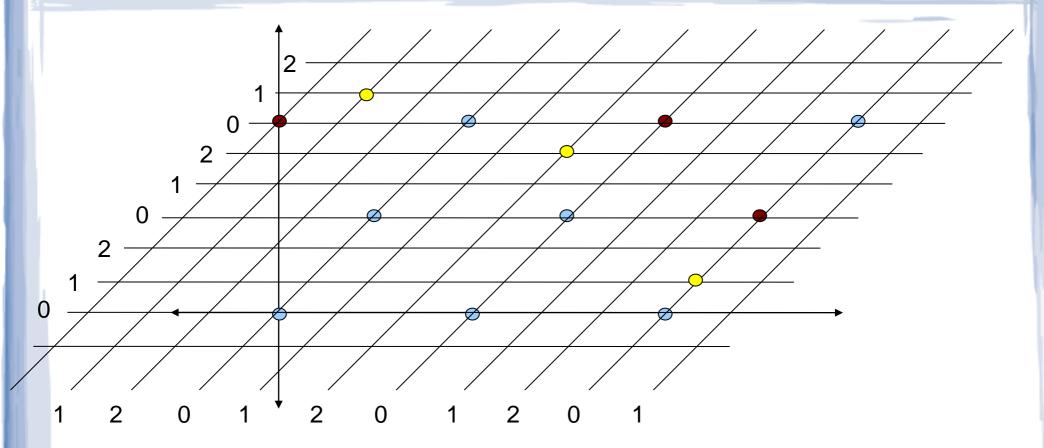
$$v_i + r_i = s_i$$

$$s_1 z_1 + ... + s_m z_m$$
 is a lattice vector

$$(v_1+r_1)z_1+...+(v_m+r_m)z_m$$
 is a lattice vector

$$(v_1z_1+...+v_mz_m)+(r_1z_1+...+r_mz_m)$$
 is a lattice vector

So
$$r_1 z_1 + ... + r_m z_m$$
 is a lattice vector



Give the m " Z_q " samples" $a_1,...,a_m$ to the SIS oracle Oracle outputs $z_1,...,z_m$ in $\{-1,0,1\}$ such that $a_1z_1+...+a_mz_m=0$

$$\bullet$$
 = V_i

$$\circ = S_i$$

$$v_i + r_i = s_i$$

So $r_1z_1+...+r_mz_m$ is a lattice vector r_i are short vectors, z_i are in $\{-1,0,1\}$ So $r_1z_1+...+r_mz_m$ is a **short** lattice vector

Some Technicalities

- You can't sample a "uniformly random" lattice point
 - In the proofs, we work with \mathbb{R}^n / L rather than \mathbb{R}^n
 - So you don't need to sample a random point lattice point
- What if $r_1z_1+...+r_mz_m$ is 0?
 - Can show that with high probability it isn't
 - Given an s_i , there are multiple possible r_i
- Gaussian sampling doesn't give us points on the grid
 - You can round to a grid point
 - Must be careful to bound the "rounding distance"