Examen du cours: Structures et Algorithmes Aléatoires

Temps conseillé: 1h.

1. Problème 1: on considère le modèle de graphe aléatoire vu en cours G(n,p) où $n \in \mathbb{N}$ et $p \in [0,1]$: Ω est l'ensemble des graphes (simples, i.e. sans boucle ni arête multiple) ayant pour sommets $\{1,\ldots,n\}$ et pour tout $G \in \Omega$

$$\mathbb{P}(G(n,p) = G) = p^{e_G}(1-p)^{\binom{n}{2}-e_G},$$

avec e_G le nombre d'arêtes de G. Soit X_n le nombre de sommets isolés dans G(n,p). Soit $c_n = np - \log n$. Toutes les limites sont prises quand n tend vers l'infini.

- (a) Montrer que si $c_n \to \infty$ alors $\mathbb{P}(X_n > 0) \to 0$.
- (b) Montrer que si $c_n \to -\infty$ alors $\mathbb{P}(X_n > 0) \to 1$.
- (c) Montrer que si $c_n \to c$ alors $\mathbb{P}(X_n = k) \to \mathbb{P}(Po(e^{-c}))$ où pour tout $\lambda > 0$, $Po(\lambda)$ est une variable aléatoire de Poisson de paramètre λ .
- 2. Problème 2: dans un graphe G=(V,E) ayant pour ensemble de sommets V et pour arêtes E, on note d_v le degré du sommet v: $d_v=|\{w\in V,\,(v,w)\in E\}|$. Un ensemble stable est un ensemble de sommets n'ayant pas d'arête entre eux. La taille d'un ensemble stable est le cardinal de l'ensemble. Soit $\alpha(G)$ la taille maximale d'un ensemble stable de G.
 - (a) Montrer que $\alpha(G) \ge \sum_{v \in V} \frac{1}{d_v + 1}$.
 - (b) Soit $n \ge m$. On définit alors e comme suit: soit q, r le quotient et reste dans la division de n par m, n = mq + r avec $0 \le r < m$. Alors $e = r\binom{q+1}{2} + (m-r)\binom{q}{2}$. Soit $G_{n,e}$ le graphe ayant n sommets et e arêtes, constitué par la réunion disjointe de m cliques ayant q ou q+1 sommets. En particluier $\alpha(G_{n,e}) = m$. Montrer que pour tout graphe H ayant n sommets et e arêtes, on a $\alpha(H) \ge m$.
 - (c) Montrer que pour tout graphe H ayant n sommets et e arêtes, si $\alpha(H) = m$ alors H est isomorphe à $G_{n,e}$ (c'est à dire, il existe une bijection ϕ de l'ensemble des sommets de H vers l'ensemble des sommets de $G_{n,e}$ telle que si (i,j) est une arête de H alors $(\phi(i),\phi(j))$ est une arête de $G_{n,e}$).