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Abstract—Many combinatorial optimization problems on XORSAT in Section IV. In particular, we construct a random
sparse graphs do not exhibit the correlation decay propertyIn instance where each variable and each clause has degree at

such cases, the cavity method remains a sophisticated hestic  |east3; with more variables than clauses and still the instance
with no rigorous proof. In this paper, we consider the maximun s pot satisfiable with high probability.

matching problem which is one of the simplest such example.
We show that monotonicity properties of the problem allows ©
to define solutions for the cavity equations. More importanly, Il.  MATCHINGS ON FINITE GRAPHS

we are able to identify the 'right’ solution of these equatims We consider a grapti’ = (V, E). We denote by the same

and then to compute the asymptotics for the size of a maximum -
matching. The results for finite graphs are self-contained.We symboldv the set of neighbors of nodec V and the set of

give references to recent extensions making use of the natiemf edges incident te. A matching is encoded by a binary vector

local weak convergence for graphs and the theory of unimodalr B = (Be, e € E) € {0,1}F define_d byB. = 1 if and only
networks. if the edgee belongs to the matching. We have for ale V,

> ecow Be < 1. The size of the matching is given By, B..
We introduce the family of probability distributions on thet
of matchings parametrised by a parameter 0:

As an application, we consider the random XORSAT problem
which according to the physics literature has a 'one-step nglica
symmetry breaking’ (LRSB) glass phase. We derive new bounds

on the satisfiability threshold valid for general graphs (ard 522 Be
conjectured to be tight). pe(B) = ; (1)
Pg(z)
|. INTRODUCTION where Pg(z) = Ygz2e 5 [T,y 1 (Yo, Be < 1). For

a finite graphG, we define the matching number ¢f as

Belief Propagation (BP) is a message-passing heuristic foy(G) = max{}__, B.} where the maximum is taken over
solving optimization problems in the context of sparse ggap matchings ofG. For any finite graph, when tends to infinity,
Despite the apparent empirical success of the BP algorithrthe distributionuZ, converges to the uniform distribution over
for solving a variety of problems, theoretical understagdi maximum matchings so that we have
of BP is far from complete. The effectiveness of BP depends
on one basic assumption: absence of long-range correation v(G) = lim Z pe(Be = 1). (2
Physicists have developed a non-rigorous approach to deal T e
with the emergence of long-range correlations: the ong-ste
replica symmetry breaking (1RSB) cavity method. We will A. Associated BP message passing
present some rigorous results confirming predictions made b . . -
this method. In this paper, we study the matching number of Ve introduce the seE of directed edges of comprising
sparse graphs. Some of the predictions of the cavity mettod [ WO directed edg‘f‘ —pandv — u for_e)ach undirected
have been rigorously proved in [2]. This problem is particlyl ~ €dgeuv € E. For ¢ € E, we denote by- ¢ the edge with
interesting as for some random graphs |Ong_range comakti opposite dlrecthn. Wlth a Sllght abuse_Of notation, we deno
appear at zero temperature. Indeed we will also derivegparti Py dv the set of incident edges toc V' directed towards. A
results for random XORSAT which is known to exhibit a 1RSB Set of messageX is an assignement of numbess,,, > 0
phase [3], [4]. to every oriented edges if. Given a set of messagés, we

. . . define a new set of messag¥sby:
The main purpose of this paper is to present recent contri-

butions to a rigorous formalization of the cavity method, [2] Y, = 1 3)
[5], [6] and [7]. We will concentrate on the finite graph case YY1+ ZwG@u\v Xwou

and give a self-contained presentation of the computatfon o . .

the matching number (Section I1). Transferring these tegnl  With the convention that the sum over the empty set equals
infinite graphs is rather standard (Section Ill) and requiveo ~ zero. We denote byR¢ the mapping sendinX < [0, o)

main mathematical tools: the notion of local weak conveegen 10 Y = R (X). We also denote bR~ the local update rule
for graphs and the theory of unimodular networks [8]. We will (3): Y= = R+ (X).
not present these tools and we refer to the references cit o ;
above for the detailed proofs. In Section I1I-B, we will eajsl qqoposmon L0
why basic methods based on the correlation decay fail at zero
temperature. Finally, we give some applications to irragul X = 2Ra(X) 4)

For any finite graphG and z > 0, the
fixed point equation:



has a unique attractive solution denotddz).

(i)  The functionz — Y(z) is non-decreasing and the
functionz — @ is non-increasing forz > 0.
(i) If in addition, G is a finite tree, then for alk € F, the

law of B, underpZ is a Bernoulli distribution with

Y2 (z)R_2(Y(2))

pg (Be =1) = 1+Y2(2)R_2(Y(2))

()

Comparisons between vectors are always componentwise.
Note that the right-hand side of (5) does not depend on the

choice of orientation of the edgeasY (z) solves (4). Before
proving this proposition, let deflne for alle V, the following

function of the messaged—, ¢ € dv),
_ YzR_2(Y)
Dy(Y) = %Z TR oY) 6)
€ €ov
> vean Y
— # (7)
1+ Z 2 681/

In view of point (iii) of Proposition 1, we see that if the gltap
G is a tree,D,(Y(z)) is simply the probability for vertex
to be covered by a matching distributed according:a In
particular, whenG is a tree, we can rewrite (2) as

!
G):ZIEEO§ZDU(Y2

veV

(8)

Proof: For the first point, we follow the proof of Theorem

3 in [5]. Let z > 0 and define the sequence of messages:

X%(z) =0 and fort > 0,
z

1+ Zweau\v Xfu—)u(z) .

The sequencX?(z) (resp.X?'*1(z)) is non-decreasing (resp.
non-increasing). We definém; .., 1 X?!(z) = X~ (z) and
limy oo J X2F1(2) = XT(2). For anyY(z) fixed point of
(4), a simple induction shows that

0< X¥(2) <X7(2) < Y(2) < XF(2

X5 ()

(9)

X2 (z) < 2

) <
We now prove thatX~(z) = X™*(z) finishing the proof of
the first point. Note that we ha’ ™ (z) = 2R¢(X ™ (z)) and
X~ (2) = 2Ra(X*(z)). In particular for anyz > 0, we have
XL (2)R_2(X*(2)) = X - (2)R=(X"(2)) so that in view
of (6), we have

=) Dy

> D (XF(z
veV

veV
We see from (7) that for each € V, D, is an increasing
function of the (X—, 7 e 0v), so that (10) together with
X~ (z) < X*(z) imply the desired result.

(10)

We now prove thatz — @ and z — X'(z) are
respectively non-increasing and non-decreasing, thidiémp
point (ii). We prove it by induction ort: conS|derz S 2
if Xt(z) < X%(2') then by (9) we havaX @) > X

and if @ > X (Z) then again by (9), we havKt“( ) <
XtJrl(Z/).

We consider now the case wheée is a tree. For any
directed edge — v, we definel’,_,,, as the subtree containing
u andv and obtained fronG by removing all incident edges
to v except the edgawv. A simple computation shows that

M%uﬁu(Buvzl) . z

z B — o M%w u(Bw“:]) .
L S =

This directly implies that for a finite treeY,.,(z)
MievBuw=1) Then a simple computation shows that

‘u’TuA»v(Buu 0)
) -1

Né(Buv:l)
= = z|1+ Yi—u(z
/’LZG(B’U,UZO) Z - ( )
-1
L+ > Yl
w’ €0v\u

wedu\v
Yoo (Z)Y;;—m (Z)

z

Yuso(2)Rosu(Y(2)),
which directly implies (5).

B. The zero temperature limit

In order to compute the matching number, we mustzlet
tend to infinity in Y(z) = 2R¢(Y(2)). Iterating once this
recursion, we gelY (z) = zRa(2Ra(Y(z))). Note that we
have for anyz > 0,

1

ZRu—}’U(ZX) = z—1 + Zweau\v X’u}%u

Hence we can define for anX e (0,1]75),

(X)) =
lim, o 1 2R (2X) € (0, 00]E

by its local update rule:
1
Zweau\u Xw_ﬂi’

with the conventiond /0 = oo and the sum over the empty
set equals zero (in particular, if is a leaf of the graplG,
then Q,,,,(X) = c0).

By point (ii) of Proposition 1, we can defingém, ,., T

Qu—sv (X) = (11)

Y(z) =Y € [0,00]Z andlim, .. | Y& =X € [0,1]
Then, we have
X = Rg(Y) and, Y = Qg(X), (12)

provided we can extend the map&; and Q¢ continuously
from their respective domain®,co)” and (0,1]” to their
compactificationd0, oo]® and [0, 1]* respectively. This can
be done easily as follows: if there exists € du\v with
Yiw—u = oo, then we setR,,_,,(Y) = 0; and if X,,,,, =0
for all w € du\v, then we seQ,,,,(X) = co.

Lemma 1. Letlim, ,o, 1 Y(2) =Y € [0,00]75). ThenY is
the smallest solution to the fixed point equati¥h= Q¢ o
Ra(Y).

Proof: Let Z Q¢ o Rg(Z). For anyz > 0, we
have for anyX € [0,1]", zRg(2X) < Q¢(X) so that an



easy induction implies thaX? (z) < Z whereX*(z) is the For anyY € [0,00], we definel(Y) = 1(Y = o)
sequence defined in the proof of Proposition 1. Letting first and still denote byl the function acting similarly on vectors

and thenz tend to infinity, allows us to conclude. B componentwise, i.e. f = I(Y) thenl- = I(Y~). We define
Note that thanks to (7), we can extend the functippgy)  for eachv e V-andI € {0,1}7,
continuously on[0, c0]* by settingD,(Y) = 1 as soon as
there existd» = oo for @ € dv. To summarize, we have for ~ F,(I) =1 A Z Iy +1 Z Pusod) =21, (A7)
eachv € V, u€dv u€dv
1Lm D,(Y(2)) = D,(Y) < 1, (13) wherea A b= min(a,b).
o . . . . B iney’ —
whereY is the smallest solution to the fixed point equation -€mma 3. For Y € [0,00] %, we defineY’ = Qg o R (Y).
Y = Qg o R (Y) that can be written as: If Y" < (resp.>) Y, then
1 > < L (I(Y)).
Yu%u — Z T , (14) veZVIDU(Y) - (resp _) veZVF (I( ))
wedu\v 1+Zw/€aw\u Yo w
with the conventions /0 = oo and 1/0c0 = 0 and the sum Proof: SupposeY’ <Y, then using Lemma 2, we get
over the empty set equals zero. /
VLR _2(Y) ,
> €
Lemma 2. We have for any¥ € [0, oo]E andv eV, ZDU(Y) - _Z:E 1+YLR_+(Y) 1(¥e <)
v gc €
YR Y
D,(Y) = Z ?;?()1(3/? < 00) A
1+Y2R _2(Y) -
< €dv +Zl(ﬂe € 0v, Yo =00).
+1(3¢ € v, Yo = o), (15) vev
where the first sum on the right-hand side should be undedistogFor the first termA, denoteX = Rg(Y) so thatY’ =
as a sum overe’ € duv with Y= < oco. Q¢(X).Then we have
. X)X
Proof: We only need to conside the case where there A = Z 0z (X)X = 1(9+(X) < x0)
exists @ € dv such thatY> = oco. By the discussion before g 1+ Q2(X)X_2
the lemma, we have in this ca®g (Y) = 1. Hence we need to Q0 (X)X
prove that the first term in the right-hand side of (15) vaessh = Z —2 7 4 (Q_2(X) < )
This follows form the following fact: lete”’ € dv\ ¢, then St Q2 (X)Xz
Y= = oo implies thatR_—,(Y) = 0. [ |
- T Y 10w <x)
Given a set of{ 0, 1}-valued messagek we define a new - = 1+ X0 »(X) —€ ‘
set of {0, 1}-valued messages by: VeV gedv
B,
Jusw=1[ Y Tysu=0], We now prove that

Ledu\v
with the convention that the sum over the empty set equals By=1( > 1(X¢>0)>2]. (18)
zero. We denote by the mapping sendinfito J = P (1) g eov

and as aboveP- denotes the local update rule. For the
messagesY € [O,oo]ﬁ (resp. X € [O,l]ﬁ) defined in
(12), we define the[0, 1}-valued messageE (resp.IX) by
IY.,, = 1Yy, = o) (resp. I, = 1(X,, > 0). It

Indeed if 3w # w’ both in 0v with X, ., X/, > 0, then
we have0 < Q_—(X) < oo for all @ € dv, so that in this
case we have

<

follows directly from (12) and the definitions above that B, = Z 5 (X)§—1 == 1.
5
IV = Pe(1¥), and,I¥ = Po(IY). (16) Teow ¢ ¢
; ate
We now show that for any finite graphi, the right-hand Note now that if B, > 0, there must exist&” € dv such

term in (8) is a function off* andI¥ only. Note that the that X> > 0 and sz_g(lx) S X and this last constraint
equality in (8) is only valid for finite trees and that in thisse, Implies that there existe’” # ¢’ € v with X2, > 0 and we
the fixed point equation (16) has a unique solution. Howeverinished the proof of (18). Hence we obtain

we will see in Section 1lI-B that this is not anymore true for
infinite trees and this multiplicity of solutions is relatealthe

absence of correlation decay. In the rest of this sectionyille ZD”(Y) = Z 1 Z 1(X2 >0) =2
consider any finite grapl (i.e. the analysis is not restricted !
to trees). In such case, the fixed point equation (16) hasyalwa
a solution and might have several solutions (as in the simple + Z 1A Z I(Y~)
case of the cycle’s). vev 2 cov

veV ¢ ecdv



B Proposition 3. For any finite bipartite graphG = (U, V, E),

' . .. we have
We are now ready to state our first main result for finite

hs: .
grapns Z DY) = 1:1795(1) {Z 1 <Z Ly yu 2> 1)

Proposition 2. For any finite graphG, we have u€lU w€U  \w€du
> Du(Y) = lim » Dy(Y(2) =inf Y Fy(D), +3 1 < 3 Pus(@) = 2) } . (19)
veV veV veV veV wE

where the infimum is over the solutionsIof Pg o P (I). andv(G) =3 ,cy Du(Y).

Proof: Let Y = lim, ., T Y(z) and recall that we We end this section by a result of Godsil [10] allowing to
denotedI¥ = I(Y) so thatI¥ = Pg o Ps(IV) by (16). reduce the computation of the matching number of any graph
By Lemma 3 and (13), we have to computations on trees (these results are not neededédor th

sequel but help to put them into perspective). We recall God-
lim Z D,(Y(2)) = Z D,(Y) = Z F,(1Y). sil’s notion of thepath-treeassociated with a rooted gragh
T ev vev vev if G is any rooted graph with roat, we define its path-tre€;

as the rooted tree whose vertex-set consists of all finit@lsim
We need to prove thah = Pg o Pg(I) then we have paths starting at the roet whose edges are the paif#, P’}
>, F(@) >3 o Du(Y). For any sucH, we defineW® as  of the form P = v...v,, P’ = v1... 03041 (n > 1);
follows: whose root is the single-vertex pathBy afinite simple path
i1 1 we mean here a finite sequence of distinct vertices. . v,
W% :{ 80 Ith? — (n > 1) such thatv;v;41 € E forall 1 < i < n.ltis
otherwise. well-known since Godsil’s result [10] that path-trees capt
k1 _ k > - considerable information about matchings in general geaggh
;Lk(]jir(]:tilgpglows tha?g;\;kﬁc); (ZVPL zo;;gj( IYV‘(I);“ )')A:SI? POI? are easier to work with than the graph itself. For a rooteglgra
all k > 0. In particular, W° < W' and again by induction, [G,v], let T . be the associated path-tree. The everis

we see that the sequené®V*}, is non-decreasing and we uncovered is equal 9.5, B = 0.
denote byW! its limit. Applying Lemma 3 toW*, we get Proposition 4. For any finite graph, we have for any > 0,

1
D, (WF) <Y F,(I). 1 (v uncovered = ,
R T
whereY"” = 2R, , Y’. As a consequence, we haugr) =

H —1 .
Yooy =, withz, = (1+ 3,05, Yil,,)  and YV is the
> Du(WhH <) F(D) smallest solution t& = Qr., , o Ry, ., (Y).
veV veV

Taking the limitk — oo, we obtain

Note that our results in previous section show that all
guantities are well-defined in the statement of this prajmsi
Such results have been used to obtain counting algorithm
for matchings [11] and sublinear-time algorithms [12]. &lot

Z D,(Y) < Z D, (W) < Z F,(I), however that Proposition 2 does not apply as edth is
computed on a different tree.

MoreoverY being the smallest solution to the fixed point
equationY = Rg o Rg(Y), we haveY < W! and using
the fact thatD,, is increasing, we get

veV veV veV
which concludes the proof. u [Il. M ATCHINGS ON INFINITE TREES
As explained above, an analysis on (path-)trees allows us
C. From trees to general graphs to capture most of the information about matchings. In tis¢ re

As far as matching number is concerned, our results so ff this paper, we will deal with sequences of graphs with size
allow us to compute it for trees only by combining (8) and dlverg[ng to infinity and compute the asymptotics for thelr
Proposition 2. Indeed i is a finite tree, it is simple to see Matching numbers. As shown in [2], [], this computation

that the solution td = Pg o Pe(I) is the unique solution to ¢&n be done using the local weak convergence of graphs and
I = P¢(I) so that we finally have: then interpreting the Gibbs distribution (1) on infinite ése

As explained in [6], the analysis made in previous section
1 extends tounimodulartrees [8]. Note in particular that the
v(G) = Z 1 <Z Ly 2 2) +31 <Z LHU> ; operatorsR, Qg or P¢ extend to infinite graphs. Given the
veV  \u€dv u€dv applications we have in mind, we will here restrict oursslve

wherel is the unique solution t& = P(I). We now consider © multi-type Galton-Watson trees (GWT).

the more general case of bipartite graphs. Adapting thefpro
of Lemma 3 allows us to get the first part of the following
proposition. The second part of the proposition does nddviol

directly from our analysis and its proof relies on KdnigiHa We start by describing a simple ensemble of bipartite
min-max Theorem and can be found in [9] (see Theorem 1)graphs between variable and function nodes, which we call

9. Random bipartite graphs and Multi-type Galton-Watson
trees



Gy = G(N,A,T'), whereN is the number of variable nodes, in Proposition 5 withp; solution of the fixed point equation
A(z) = Y450 Aaz? is the variable-node degree distribution (21). Now differentiatingF(z), we obtain:

andI'(z) = Y ,50Taz? is the function-node degree distri- (1) = R

buton, The nlimber of function nodes i = Na with — F'(s) =~ oeA"(1 — ) (r (1 —AQ —a:)) —x).

o= ?8; We refer to [13] Chapter 9.2 for more details.

We see that any local minimum df must satisfy the fixed
point equation (21) so that the expression simplifies to the o
Proposition 5. For a sequence of graphGy = G(N, A, T), given in Proposition 5.
whereA andT" are fixed and with\/ function nodes, we have

1 B. Correlation decay for — oo

—v(Gy) — min F(x), . . . o
MV( N) mren[%)rﬁ] (z) In this section, we show that the uniform distribution

over maximum matchings will not have the correlation decay

The following result was first proved in [2].

where property even for simple GWT and explain why standard
N1 -2z techniques cannot be applied.In this section, the sequence
Fl) = 1-T (1 - W) (Gn, = (Vi, En))nen is a sequence of finite graphs whose
(1) Ipc_al v_veak limit is a GWT vv_ith degree distribution with
+A’(1) 1-A(l—z)—2A(1-21)). finite first moment (i.e. there is no tyde= A).

For any finite graplt7, the leaf removal algorithm proceeds
We will not give a full proof of this result and refer to [6] as follows: start with the empty matching and then as long as
for a proof which extends the analysis made in Section II. Théhere is a pendant edge = (u,v) with u of degree one,
general idea is first to show that the random graphs consideréidd this edge to the matching and remove the edgmd
are locally tree-like and converge to multi-type Galtontygm ~ all its adjacent edges from the graph. The algorithm stops
trees. Using the branching property of the GWT, the recarsioWhen there is no more pendant edge. The grapks thus

(16) simplifies into a recursive distributional equatiorD@®:  simplified into a sub-graph with only isolated vertices, chetd
pairs and a so-called core denoted ®yG) with minimum

NA NT degree at least Let LR(G) be the number of isolated vertices
7141 g, J 44 dMon |, (20)  produced by the leaf-removal algorithm ¢h As explained
i1 in [14], there exists a maximum matching containing the
N . ) . matched pairs produced by the leaf-removal algorithm. ldenc
wherel, Iy, ... are ii.d. Bernoulli random variables with pa- in this maximum matching, thé&R(G) isolated vertices will
rameterpy, J, Ji,... arei.i.d. Bernoullirandom variables with pe exposed and we get the bounds:
parametep; and N*, NT' are independent random variables

=1

with the edge-perspective degree profildgz) = f\,gg and LR(G) <1-2v(G) < LR(G) +|C(G)|.
f(x) = D) Taking expectation in (20), we get It is clear that these bounds will be tight if we can prove
O that |C(G,)|/|V.| — 0. We now relate this condition to a
P = K(l —pJ), Dy = f(l —p1). (21) simple RDE. The analysis of the leaf-removal algorithm has

been done in [14, Section 4] (see also [15, Proposition 15] fo
Now in order to compute the Iimihlj—‘ > wev Du(Y) in (19)  a more closely related framework). The idea is to analyze the

(where U is the set of function nodes and/| = aN), leaf-removal step by step where in one step, all the pendant
we replace the operatioq%‘ S uev () and ‘_‘1/| Sev(-) by edges of the current graph are removed. We denol@;b;h_e
expectations so that we get; graph obtained afte¥ steps. We now put labels on the vertices.

First, all isolated vertices daff are of typeL. After k > 0 steps,
NT for all the pendant edges= (u,v) of G\ with u of degree
P Z*’i >1 one inGy, andwv of degree at leas?, we say that: is of type
i=1 L (a leaf of G}) andv is of type N (v will be covered, i.e. not
- 1-T(1—pp) exposed). All the pendant edges= (u,v) of G with both
’ u andv of degree one G, are of typeP (they are paired).
whereNT is distributed a§” andI;, I», ... arei.i.d. Bernoulli Let Ly(G) (resp.Ny(G), P.(G)) denote the sets of vertices of

Nl@@ﬁ%l(Z Lﬁum)

vEJU

r.v. with parametep;; and type L (resp.N, P) after k steps. Then the number of isolated
vertices produced by the leaf-removal algorithm aftesteps
) 1 is given by LRy(G) = |Lk(G)| — |Nk(G)| and we have the
M U] Z 1 <Z Puso(l) 2 2) bounds:
veEV u€dv
S 1C(G)| < V] = [Li(G)] = [Ne(G)| = [P(G)]. (22
=P Z; Jiz2 | =1=A0=ps)=psN(1=Ps).  The computations of the limittim,, W lim,, %
andlim,, P’T‘(/f") can be done thanks to a simple analysis on the
whereN* is distributed as\ and.J;, Js, ... arei.i.d. Bernoulli limiting tree. &onsider a GWT; for anychildren of the roob,

r.v. with parametep,;. Summing these two terms and using let p;, (resp.qx) be the probability that is of type L (resp.N)
the expressiom; = A(1 — py), we obtainF(p;) as defined after k-steps of the leaf-removal algorithm. By construction



is of type IV after & steps if and only if one of its children is Lemma 4. Let G be the bipartite graph associated b, then
of type L after k steps, hence we havg = 1 — A(1 —p).  we haverky(H) < v(G).

Similarly, v is of type L after k£ steps if and only if all its

children are of typeV afterk —1 steps, hencgy = A(gy—1). Proof: Note that for anyk x k£ submatricesS of H, we
Hence for allk > 1, we havep, = A(1 — A(1 — px—1))  haveinGF(2), det(S) = > 5, Hle Si.o(i),» SO that we can
andpy = 0. Sincex — A(1— A(1 —x)) is non-decreasing havedet(S) > 0 only if there exists a perfect matching in the
converges t@, the smallest solution to the fixed point equation subgraph corresponding % The result follows from the fact

o~ ~ ~

z=A(1-A(1—=z)) andg, converges taj = 1 — A(1 —p).  that there exists a&ko(H) x rko(H) non-singular submatrix of

A careful analysis (done in [15, Proposition 15]) shows that H. u
Ploe Ly) = Algr-1)+ 1 —quo1 — pr)A (gr-1), We will consider random large instance of the XORSAT
Plo € Ni) = 1—A(1—pi)—pel(gr_1), problem. We choosg uniformly at random so that for a given
Plo€ P,) — A ) H, the probability that belongs to the image dfl is simply

k)= PRAGE-1); 2rk2H—=M ‘We denote byH(N, A, T) the biadjacency matrix of

and a simple couPIin(g f;l‘rgumerllt S(hO\;\\/S that the\se(qu;’:‘mtitiethe graphG(N, A, T).
. Li(Go)| s Ni(Gn . Py (G
correspond tdimy, =5, limy, e andlimy, = Corollary 1. Consider a random XORSAT instance

respectively. (H(N,A,T),b) then the probability for this instance to
We consider the case where the fixed point equatica be satisfiable goes to zero @6 tends to infinity as soon as
A(1-A(1-2)) has a unique solution, namely= p* wherep*  MaXzc(0.1] H(z) >0, where

is the unique solution to the fixed point equatios= A(1—z). N1 - )
In this case, we have = 1 — p so that by (22), we get H(z) = T <1 - ﬁ)
i YGn) _aa o — P — (1
Jim ST 1A -p) - BN (29) _A,8 (1 - AL - ) - eA'(1 - 2))

Indeed if p = p*, then p* is the unique minimum of the

function F' defined in Proposition 5 and (23) is in accordance )

with Proposition 5. In words, the leaf-removal algorithraves We actually conjecture that

a core of sizex(n) and produces a maximum matching on thecopjecture 1. We have asV tends to infinity
complementary part of the core.

We now consider the case, whare< p*. In this case, we rky(H(N, A, T)) = v(G(N, A, T)) = o(N). (24)

need to consider the RDE associated to the fixed point equatio

Y = Qg o Rg(Y) see (14). This RDE has been solved in  This conjecture is known to hold in the particular bf
[15, Theorem 8]. In particular, ifningcjo,1) F(2) = F(p)  XORSAT, whenA is a Poisson distribution aridis determin-
Wh.ereF is Qef|ned in Proposition 5, the_n this RDE_has Aistic equals tok [16], [17] (see also [3] and [4]). Indeed it is
unigue solution. In this case, the correlation decay stidh easy to see that whef¥ is a finite tree, there is equality in

and a standard coupling argument similar as described aboy&mma 4 and (24) has been proved if one replatesy the
is sufficient to compute the limit of the matching number. (regular) rankek [15].

In words, in this case, although the size of the core is

macroscopic, we see that the number of uncovered vertices We end our paper with a numerical example illustrating

on the core i(n). Corollary 1. We consider a case where all function nodes

or variable nodes can have degregsor 15 only. More

precisely, the variable-node degree distributionAigr) =

223 4+ L1215 and the function-node degree distribution is

I'(z) = bz + (1 — bz with b = 5/4 — 9/(20a) where

a = M/N is the ratio of the number of clauses to the

number of variables. As increases, the number of constraints

increases and the XORSAT problem becomes less likely to be
In this section, we consider the XORSAT decision problemsatisfiable. Applying Corollary 1, we find that fer > o*,

(see Chapter 18 in [13]). An instance is given by a Eirb),  the random XORSAT instance becomes non-satisfiable with

whereH is a M x N binary matrix andb is a binary vector 0.963025298 < «* < 0.963025299 (see Figure 1). It is

of size M. The XORSAT decision problem requires to answerinteresting to note that* < 1 so that the number of

the question: does there exist a solution to the linear syste variables is (much) larger than the number of clauses bilit sti

Hz = b, i.e. doesh belongs to the image difl? the instance is not satisfiable. If Conjecture 1 is true, then

The following | il all i K " «o* should be the threshold for satisfiability of this random
e following lemma will allow us to make a connection y yooaT problem.

between this problem and our result for matchings. We in-

terpret the matriXtl as the biadjacency matrix of a bipartite

graph with M function nodes andV variable nodes and an ao 1RsSB computation at zero temperature

edge between variable nodand function node iff H;, = 1.

We define the binary rankk,(H) as the rank calculated over In this section, we follow the non-rigorous approach made
GF(2). in Section 19.3 of [13]. Indeed points (a) and (b) of Exercise

As soon asmin,e,1 F'(z) < F(p), there exists no
(almost) perfect matching on the core and the correlatiaaye
property fails. The introduction of the measure (1) allowsa
find the right solution to the RDE by lettingtend to infinity.

IV. APPLICATION: IRREGULAR XORSAT



[5]
0 T T T T 1
0.2 0.4 0.6 0.8 1
. [6]
-0.014
[7]
-0.021
-0.034 [8]
-0.04 4 [9]
-0.054
[10]
-0.06 4
[11]
-0.074
Fig. 1. Functionz — H(z) for o = 0.98;0.97; 0.96; 0.95; 0.94 [12]

19.4 is an easy extension of the computation made in thg?’]
section 19.3 and tells us that the complexity is given by:

[14]
A (1) N1 —x)
Yiot = 1 — M(1—-——) —A(l—2)—azA (-
ot (1) ( A'(1) (1 -2)—aA{l =) [15]
where z solvesz = T 1—7&(1 —x)). It is claimed in [14]
Exercise 19.4 [13], that the relevant solutionais= 1 but
this claim cannot be correct in such generality. If this waes t
case, we would hav&,,, = 1 — 20 — 1 _ 4 and then [17]

XORSAT would be satisfiable W|th(h|gh probability as long
as « < 1 contradicting Corollary 1. This suggests a picture
quite different from what is described in [13]. We describe i
for our example with degrees and 15. First assuming that
our conjecture is correct, the satisfiability thresholdudtde
as = o so that

1—
Etot—{o @

Note in particular, that the complexity.; is 'discontinuous’
at o,

for a < o*
otherwise.
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