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ABSTRACT
This paper considers large scale distributed content service
platforms, such as peer-to-peer video-on-demand systems.
Such systems feature two basic resources, namely storage
and bandwidth. Their efficiency critically depends on two
factors: (i) content replication within servers, and (ii) how
incoming service requests are matched to servers holding re-
quested content. To inform the corresponding design choices,
we make the following contributions.

We first show that, for underloaded systems, so-called pro-
portional content placement with a simple greedy strategy
for matching requests to servers ensures full system efficiency
provided storage size grows logarithmically with the system
size. However, for constant storage size, this strategy un-
dergoes a phase transition with severe loss of efficiency as
system load approaches criticality.

To better understand the role of the matching strategy in
this performance degradation, we characterize the asymp-
totic system efficiency under an optimal matching policy.
Our analysis shows that –in contrast to greedy matching–
optimal matching incurs an inefficiency that is exponen-
tially small in the server storage size, even at critical system
loads. It further allows a characterization of content repli-
cation policies that minimize the inefficiency. These optimal
policies, which differ markedly from proportional placement,
have a simple structure which makes them implementable
in practice.

On the methodological side, our analysis of matching per-
formance uses the theory of local weak limits of random
graphs, and highlights a novel characterization of matching
numbers in bipartite graphs, which may both be of indepen-
dent interest.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems
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1. INTRODUCTION
The surge in consumption of video over the Internet neces-

sitates massive bandwidth provisioning. At the same time,
storage is extremely cheap. Extensive replication of content
not only within data centers, but also at the periphery of the
network, e.g. in users’ computers, can thus be envisioned
to leverage uplink bandwidth available from users’ homes.
People’s CDN is one particular commercial initiative in this
direction; the massively popular PPLive peer-to-peer system
for video-on-demand is another example of this approach.

Such systems feature two key resources, namely storage
and bandwidth. Ideally, one would like to utilize storage by
pre-loading content replicas at individual servers, in such a
way that bandwidth of all servers is available to serve any
incoming request. In other words, a challenge in engineer-
ing such systems is to create content replicas so that band-
width can be used maximally. Several strategies for content
replication have been considered: uniform replication does
not discriminate between contents; proportional replication
tunes the number of replicas to the average number of re-
quests, and automatically arises at cache memories when the
so-called random-useful cache eviction method is used (it is
also approximately achieved by the classical least-recently-
used eviction rule [21]).

Our first objective is to develop a clear understanding of
the relative merits of distinct replication strategies in the
context of large-scale distributed server platforms. We also
aim at characterizing the amount of storage necessary to re-
move the content bottleneck, i.e. for what amount of storage
is the system service capacity only constrained by its overall
bandwidth? These properties certainly depend both on the
content replication strategy and on the algorithm used to
match incoming service requests to servers capable of treat-
ing these requests.

To this end, we develop performance models based on bi-
partite graphs (Section 2). To motivate our main results,
in Section 3 we first consider simple strategies for these two
design issues, namely proportional replication and greedy
online matching. Regarding proportional replication, us-
ing simple large-deviations estimates (Chernoff bounds) we



show that a limited amount of storage (logarithmic in sys-
tem size) suffices to absorb all requests in sub-critical sce-
narios, where the system is under-loaded. In other words,
the content bottleneck is removed under these assumptions.
However, these analysis techniques are not powerful enough
to characterize system performance under critical or super-
critical load. We also establish through mean field analysis
that system inefficiency is exponentially small in the amount
of storage per server, provided the system is not critically
loaded. In contrast, the performance degrades significantly
at critical loads.

We thus turn to other analysis tools to bound the best
possible inefficiency under general replication strategies and
system loads. In Section 4, we exploit recent advances [17,
12] in the application of the cavity method from statistical
physics to obtain explicit characterizations of the optimal
system capacity under given replication strategies (Theo-
rem 2). We also establish a novel characterization of the
matching numbers in finite bipartite graphs (Theorem 1)
which helps explain the formulas of Theorem 2. In addi-
tion, this result suggests that the applicability of the cavity
method could be extended to broad classes of bipartite ran-
dom graph models beyond locally tree-like graphs, as it was
recently observed in related frameworks by [7] and [5].

We then leverage these tools to revisit our initial questions
in Section 5. There, we establish that system inefficiency
under optimal matching is exponentially small in storage
space, and this even at criticality, for a large class of replica-
tion policies which includes uniform and proportional. We
furthermore identify the best replication policies; they have
a simple distinct structure for each of the three possible sys-
tem regimes, namely sub-critical, critical and super-critical.
We review related work in Section 6 and conclude in Sec-
tion 7.

2. SYSTEM MODEL AND STATISTICAL
ASSUMPTIONS

In this section we introduce the bipartite graph represen-
tation of the system on which our analysis is based. We also
describe some statistical assumptions on the contents and
the replication policies at the servers, as well as the random
graph models that they induce.

2.1 Content-server graph
We are given a collection of n contents and m servers.

Each server is storing replicas of a subset of the contents. We
assume that all servers have an identical storage capacity d ∈
N, i.e. each server is capable of storing d different contents
at then same time. Such a system can be represented by a
bipartite graph G = (C ∪ S,E) where:

• the set C represents the contents and is of cardinality
n;

• the set S represents the servers and is of cardinality
m;

• there is an (undirected) edge (cs) ∈ E whenever server
s stores a replica of content c.

We denote by ∂c or ∂s the neighborhood of c or s, i.e. the
set of neighbors in G of c or s. Hence, ∂c is the set of servers
that hold a replica of content c, and ∂s is the set of contents
of which server s stores a replica. The degree of a node

s ∈ S is exactly d = |∂s|, while the degree of a node c ∈ C
is equal to the total number of replicas of content c in the
system. In Section 2.2, we will explain how the graph G is
constructed. Before, we describe how the natural constraints
on the service of requests can be seen on the graph G.

We let bc ∈ N be the number of requests made for content
c ∈ C. Such a request for content c can be served only
by a server having content c stored on disk, i.e. a request
for content c can only be served by a neighbor of c in the
bipartite graph G. Moreover, we assume in this paper that
servers can serve at most one request at a time, although
an analysis could be attempted using similar methods when
servers have a larger service capacity. Hence, if a request
for a content c is assigned to server s ∈ ∂c, then server s
becomes unavailable for all the contents in ∂s\c, where ∂s\c
is a short-hand notation for ∂s \ {c}.

We are now ready to define an allocation which represents
a possible assignement of requests to servers. Given a bipar-
tite graph G = (C ∪ S,E), and a vector B = (bc)c∈C , an
allocation is a subset of edges A ⊆ E such that

• each server in S is adjacent to at most one edge in A,
as a server is able to serve at most one request.

• each content c in C is adjacent to at most bc edges in
A: it would make no sense to dedicate more servers to
the service of content c than there are requests for c.

The total number of requests satisfied by an allocation A is
simply given by the cardinality |A| of the set A since if edge
(cs) ∈ A one request for content c is served by server s. The
maximum size of such an allocation for a given graph G is
denoted by M(G,B). In the particular case where bc = 1 for
all contents c ∈ C, an allocation of G is what is classically
known as a matching, and M(G,B) = M(G) is then the
matching number of G.

We define the load of the system as ratio of the total num-
ber of requests summed over all contents and the total ser-
vice capacity summed over all servers, thus ρ =

∑

c bc/m.
If ρ < 1 (resp. ρ > 1, ρ = 1), we say that the system is
under-loaded (resp. over-loaded, critical). Clearly, in the
under-loaded regime not all servers can be assigned to a re-
quest, while in the over-loaded regime not all requests can
be serviced. Hence, we have |A| ≤ min

(
∑

c∈C bc,m
)

and
we define the inefficiency of an allocation A as the quan-
tity γA = ρ ∧ 1 − |A|/m ≥ 0, where ρ ∧ 1 = min(ρ, 1). In
the under-loaded regime, the inefficiency represents the ra-
tio of the total number of unallocated requests divided by
the total number of servers. In the over-loaded regime, the
inefficiency represents the fraction of unallocated servers.

The objective is to minimize the inefficiency of the al-
locations output by the matching algorithm on the graph
determined by the replication policy. This could result in a
joint optimization problem of both the matching scheme and
the replication strategy, however for tractability reasons we
will consider the two problems separately. This leads to two
design questions, namely: (i) find a replication policy that
minimizes the minimal inefficiency over the resulting graph
G, given by γG,B = ρ∧1−M(G,B)/m; (ii) find a matching
algorithm which is simple and whose inefficiency approaches
as close as possible to γG,B for graphs G (and B) of interest.
We will deal with both questions in the sequel.

Note that the problem of finding a maximum allocation
in a finite bipartite graph is known to be of strongly polyno-
mial complexity [4], using a strongly polynomial algorithm



for maximum flow problems by [20]. There may nonthe-
less exist lower-complexity methods, that yield comparable
performance for the graphs of interest.

2.2 Random graph models
The large scale of the system as well as the uncertainty

ahead of time in the number of requests for each content
make it hopeless to design with too much precision the joint
constitution of the caches of all the servers, i.e. deciding
jointly of each and every edges in the bipartite graph G.
Indeed, we will be interested in a regime where the number
of contents n and the number of servers m tend to infinity
together, with m

n
→ β ∈ R+. In this regime, it seems plau-

sible that there will be little fine-tuned cooperation among
the servers, and they will thus essentially make independent
choices for their cache based on the available statistics on
the requests. Of course, allowing more cooperation between
servers could only improve the performance and would ar-
guably be even more realistic, however one would have to
precisely define the extent of cooperation that is reasonable;
we will not deal with such issues in this paper. We will also
assume that the storage size d of each server does not scale
with n. Indeed the point of having a large number of servers
is precisely that the storage size of each server does not need
to scale with the size of the system.

We now present the most simple model we will use in
this paper, which represents a situation where no informa-
tion on the requests is available to the servers: in this case,
each server picks d contents uniformly at random among all
contents and independently of the other servers. Then, the
distribution of the number of replicas of a given content, i.e.
its degree in the graph G is a Binomial random variable with
parameters m and d

n
. Hence in the regime where n tends to

infinity with m/n → β while d is kept fixed, the distribution
of the degree of a content in G tends to a Poisson distri-
bution with mean dβ. Note that even if the degrees of the
contents are not independent for any fixed n, the degrees
become k-wise independent for any k = o(n) in the limit
when n tends to infinity [6]. We will refer to this model
as the single class model. In Section 3, we will moreover
use a Poisson distribution of parameter λ for the number
of requests in order to analyze the performance of a simple
greedy algorithm for matching requests to servers.

Of course, in a real system, the contents are not all of
the same popularity, and we may consider prioritizing repli-
cation of more popular contents at the servers. In such a
system the number of requests for a content and its num-
ber of replicas would not be independent as in the previous
example; however the servers may not have full information
ahead of time about the number of requests for each content
and they may have to rely only on a coarse-grained estimate
of the popularity of the contents.

We model this situation by partitioning the set of all con-
tents into popularity classes. Specifically, we let class i con-
tain a fraction αi of all contents and we assume that the
number of requests for the contents in class i are independent
and identically distributed with a Poisson distribution with
mean λi. Servers do not distinguish between contents within
the same popularity class, but they may favor some classes
with respect to others. For example, we can let servers as-
sign independently contents to each memory slot in the fol-
lowing way: the server first chooses a class of content, for
example picking class i with probability θi; then it picks a

particular content within that class uniformly at random.
Then, the number of replicas and number of requests for
a content are independent given its class. Moreover in the
large n limit, they are distributed as two independent Pois-
son random variables: the number of replicas having mean
βdθi/αi =: βid and the number of requests having mean
λi. Of course, other types of content popularity distribu-
tions could be of interest (notably Zipf-like distributions),
however the model considered here is particularly suited for
investigating how to adapt the replication policy to the pop-
ularity of contents, i.e. how to choose the θi’s as a function
of the αi’s and λi’s. It will be used for that purpose in
Section 5. We call this model the multi-class model.

3. CANDIDATE STRATEGIES
In this section we consider easily implementable candi-

dates for the replication policy and matching algorithm.
Their analysis will serve as a point of comparison to de-
termine whether more advanced strategies are needed or
not. We first consider the so-called proportional placement
policy, which maintains for each content a number of repli-
cas proportional to its popularity, and then a simple online
matching algorithm that iteratively makes random assigne-
ments of requests to available servers.

3.1 Proportional placement
Assume that the numbers of requests bc for content c are

mutually independent over all c ∈ C, bc having a Poisson
distribution with parameter λc ≥ λ for some fixed param-
eter λ > 0. Based on knowledge of the λc’s only (and not
of the bc’s), the replication problem consists in determining
the number of replicas dc of each item c and their place-
ment onto servers. A candidate strategy consists in taking
the number of replicas dc deterministic and proportional to
the expected number of requests λc: dc ≈ (βd)λc/λ, where
λ = n−1∑n

c=1 λc. The system is then sub-critical if the fol-
lowing stability condition holds, that the expected number
of requests be smaller than the number of servers, which
reads

δ := β − λ > 0, (1)

where we introduced notation δ for the stability margin β−λ.
In this context we have the following:

Proposition 1. Assuming δ > 0 and proportional place-
ment is used, all requests can be met with high probability if
the storage space per server d satisfies d ≥ Ω(log(n)).

As a corollary, this result implies that the inefficiency of
proportional placement is equal to 0 a.s. for d logarithmic
in the number of contents n in the system, i.e. E[γG,B ] = 0
for d ≥ Ω(log(n)) when G is chosen according to the propor-
tionnal placement rule (and B is drawn as explained before).

Proof. For each content c and each of the correspond-
ing bc requests, we can split the request equally into dc sub-
requests of size 1/dc. To a given server s with correspond-
ing collection ∂s of stored items, for each item c ∈ ∂s we
associate bc sub-requests to that particular server. Then a
service of all requests will be feasible provided that for each
such server s ∈ {1, . . . , βn} one has

∑

c∈∂s

bc
dc

≤ 1. (2)



Indeed, this mapping of sub-requests to servers would con-
stitute a fractional matching of requests, and an integral
matching would therefore exist, by the total unimodularity
of the adjacency matrix of the graph G.

Calling As the event corresponding to Condition (2) and
Ac

s its complement, Chernoff’s inequality yields

P(Ac

s) ≤ exp
(

− supθ>0

[

θ −
∑

c∈∂s logEe
θ(bc/dc)

])

= exp
(

− supθ>0

[

θ −
∑

c∈∂s λc

(

−1 + eθ/dc
)])

.

Note that dc ≥ dβλc/λ − 1 ≥ λcd
(

1 + δ
2λ

)

for d large
enough, namely for d ≥ 2λ/(δλ). Replacing dc by this cor-
responding lower bound in the above expression, we obtain

P(Ac

s) ≤ exp

(

− sup
θ>0

[

θ −
∑

c∈∂s

λc

(

−1 + eθ
′/λc

)

])

,

where we introduced the notation θ′ := θλ/(d(λ+δ/2λ)). It

is readily checked that the function λc → λc

(

−1 + eθ
′/λc

)

is decreasing in λc, and is thus upper-bounded by its value
at λ for all λc ≥ λ. Using the fact that the cardinality of ∂s
is precisely d, this then entails

P(Ac

s) ≤ e− supθ>0[θ−dλ(−1+eθλ/(dλ(δ/2+λ)))]

= e−dλh(1+δ/(2λ)),

where h(x) := x log(x)− x+1 is the Cramér transform of a
unit rate Poisson random variable. It follows that

P(Ac

s) ≤ n−αλh(1+δ/(2λ))

for d ≥ α log(n). Thus, provided

α >
1

λh(1 + δ/(2λ))
, (3)

by the union bound the probability that at least one event
As fails is o(1). Consequently, under the stability assump-
tion (1), for popularities lower-bounded by λ > 0, all re-
quests are met with high probability as n → ∞ provided

d ≥ max(α log(n), 2λ/(δλ)),

where constant α verifies (3).

This result indicates that a logarithmic storage size d suf-
fices to meet all the requests, provided one uses the above
proportional placement. Note also that proportional place-
ment is robust, in the sense that this feasibility property
does not depend on the particular way in which content
replicas are co-located within servers so long as one does
not replicate content more than once at a single server.

Nevertheless, several questions of interest remain open. In
particular, the above argument does not say what happens
when the stability margin δ becomes small: indeed, for small
δ, the lower bound (3) on α is Θ(δ−2), and it is thus not clear
how this replication policy behaves in a near-critical regime
δ → 0. In addition, it does not say how many requests re-
main unmatched under storage size restrictions, for instance
for constant rather than logarithmic d. Moreover, it states
the existence of a matching, but does not address whether
such a matching is easy to find. The first two of these three
questions will be addressed in Section 5.

3.2 Online matching algorithm
We now study the performance of a simple online algo-

rithm for matching incoming requests to servers. For sim-
plicity we consider the single-class model, where all contents
have the same popularity, and servers choose uniformly at
random which content they store.

We consider the following algorithm: pick a request at
random and match it, if possible, to an unmatched server
chosen uniformly at random among all unmatched servers
storing the corresponding content; otherwise the request is
discarded and all further requests for the same content will
be rejected as well. We call such contents depleted contents
(as opposed to available contents).

We adopt a temporal view of this process, assuming that
a request arrives at every time step and is for a content
chosen uniformly at random. As soon as a request arrives,
the algorithm checks whether it can be matched to a server
or not; as this does not require knowledge of the requests
that will arrive at later time steps, we say this algorithm
is online. After λn time steps, the number of requests for
the contents will be independent Poisson random variables
of parameter λ, as required.

Let γ be the limit of the inefficency of the online algorithm
as n → ∞. We then have the following:

Proposition 2. For ρ 6= 1, the inefficiency γ verifies

γ ≤ exp (−dβ|ρ− 1|(1 + o(1))) ,

where the o(1) is with respect to the storage capacity d. In
the critical regime ρ = 1,

γ =
log 2

dβ
+ o(1/d).

Thus, online matching incurs severe performance degrada-
tion at criticality, compared to the under-loaded and over-
loaded regimes. This will be contrasted with the properties
of optimal matching in Section 5.

The remainder of this section describes the main steps in
the proof of the Proposition 2 above.

3.2.1 Mean field analysis of online matching
We let Xn

t be the number of matched servers at time t
and Y n

t be the number of contents for which at least one
request has already been discarded by time t. It can be
easily verified that (Xn

t , Y
n
t )t∈N is a Markov chain. Indeed,

it is enough to check that the induced subgraph on the n−Y n
t

available contents and the m−Xn
t unmatched servers is still

distributed according to the same random graph model, i.e.
every unassigned server stores exactly d available contents
(because it cannot store depleted contents as those would
not be depleted otherwise) and the set of contents stored by
an unmatched server is chosen uniformly at random among
the subsets of size d of the set of available contents. The
correct distribution of number of requests for each content
is ensured by the random uniform choice of a content among
all contents for each incoming request.

The one-step transition probabilities of the Markov chain
are as follows:

(Xn
t+1, Y

n
t+1) =











(Xn
t , Y

n
t ) w.p.

Y n
t
n

(Xn
t , Y

n
t + 1) w.p.

n−Y n
t

n
px,y

(Xn
t + 1, Y n

t ) w.p.
n−Y n

t
n

(1− px,y)



where px,y is the probability that no unmatched server stores
a particular available content given Xn

t = x and Y n
t = y.

We have

px,y =

(

(

n−y−1
d

)

(

n−y
d

)

)m−x

∼n→∞ e
−dm−x

n−y .

In the limit n → ∞, we use mean field techniques to
approximate the Markov chain (Xn

t , Y
n
t )t by the solution

of differential equations. We define x(t) and y(t) as candi-

date approximations of
Xn

tn
n

and
Y n
tn
n

respectively, by setting:
x(0) = y(0) = 0 and x(t), y(t) are given by the following dif-
ferential equations:

ẋ = (1− y)
(

1− e
−d β−x

1−y

)

(4)

ẏ = (1− y)e−d
β−x
1−y (5)

Classical results of Kurtz [11] then imply the following

Lemma 1. Almost surely, we have

lim
n→∞

1

n
(Xn

λn, Y
n
λn) = (x(λ), y(λ)).

The limiting inefficiency γ of the online algorithm is thus
given by γ = ρ ∧ 1 − x(λ)/β. While the above differential
equations do not admit closed form solutions, it is possible
to derive explicit upper and lower bounds based on more
tractable ODE’s, which become accurate for large d. We
defer this part of the proof to the appendix.

4. OPTIMAL MATCHING
In this section, we compute the size of a maximum alloca-

tion M(G,B) and hence the inefficiency γG,B of the graph
for the models presented in Section 2.2. Our first main re-
sult shows that M(G,B) can be expressed in terms of ’local
contributions’ for any bipartite graph G and any numbers
of requests B. This expression turns out to be ’continuous’
in the large n limit and converge a.s. to a deterministic
quantity for random graphs drawn according to the mod-
els of Section 2.2, which allows us to compute explicitly the
asymptotic for the maximum number of requests satisfied.

4.1 Finite bipartite graphs
We focus here on finite bipartite deterministic graphs.

The results obtained in this subsection are meant to help
understand Theorem 2 on which the analysis in Section 5
builds.

We will need to introduce some notations to state the
results of this section. First-of-all, recall from Section 2.1
that G = (C ∪ S,E) is a finite bipartite graph and bc is the
number of requests for content c ∈ C. An allocation A is a
subset of edges of G which satisfies some degree constraints
at the vertices of G: in the subgraph (C ∪ S,A) where only
edges in A are kept, each node c ∈ C has degree at most bc
and each node s ∈ S has degree at most 1. We define bs = 1
for all s ∈ S to ease the definition of quantities that are
similar for contents and servers, so that the vector (bv)v∈C∪S

represents the degree constraints for the allocation A.
The characterization of M(G,B) that we will obtain here

involves a message passing algorithm between the vertices
of G, which can be seen to be the well-known belief propa-
gation algorithm from statistical physics [15, 16]. We will
not expand on the links with belief propagation as this is

not the purpose of this paper and no prior knowledge of the
related literature will be needed here.

As neighboring vertices in G will be sending messages to
each other, and although the original graph G is not ori-
ented, it is convenient to associate to each edge (cs) ∈ E

two oriented edges denoted by c → s and s → c. We let
−→
E

be the set of oriented edges of G. In what follows a vector

I ∈ {0, 1}
−→
E will be interpreted as a set of (binary) messages

Ix→y ∈ {0, 1} along oriented edges x → y ∈
−→
E . We say

that Ix→y is the message from x to y. For a given oriented
edge x → y, we define the local operator which takes as ar-
guments all incoming messages to x except the one coming
from y:

Px→y

(

(Iz→x)z∈∂x\y

)

= 1





∑

z∈∂x\y

Iz→x < bx



 . (6)

By convention, if x is a leaf in the graph G, i.e. y is the only
neighbor of x, we set Px→y = 1.

If J is a vector in {0, 1}
−→
E and L is a subset of

−→
E , we

write JL for the vector induced by J on {0, 1}L and |JL| =
∑

−→e ∈L J−→e . Also, for x ∈ V , let
−→
∂x be the set of edges

directed towards x. It will be convenient to see the lo-
cal operator Px→y as an operator from {0, 1}

−→
E to {0, 1},

although it depends only on a few component of the in-

put. Namely, with these notations, for I ∈ {0, 1}
−→
E , we can

rewrite (6) as: Px→y(I) = 1
(

|I−→
∂x

| − Iy→x < bx
)

. It is now
easy to define a global operator on the graph G, denoted

PG : {0, 1}
−→
E → {0, 1}

−→
E , which performs simultaneously the

action of all the local operators Px→y for all x, y, so that
J = PG(I) is defined by: Jx→y = Px→y(I). In words, the
action of PG on messages I is as follows: for each oriented
edge x → y, return a message 0 on this edge if the sum of
the incoming messages to x from neighbors different from y
is at least bx and return a message 1 otherwise.

The global operator PG was introduced in [12], where it
was shown that in the special case where G is a finite tree
(i.e. acyclic graph) there is a unique fixed point to the oper-
ator PG (obtained by iterating it) and the size of the maxi-
mum allocation can be computed from this fixed point. Here
we show that this result is indeed correct for a much larger
class of graphs, namely for any bipartite graph.

Theorem 1. Consider a finite, bipartite graph G = (C ∪
S,E) with bc ∈ N for c ∈ C. We define the function FS :

{0, 1}
−→
E → N by

FS(I) =
∑

s∈S

1(|I−→
∂s
| > 0) +

∑

c∈C

bc1

(

∑

s∈∂c

Ps→c(I) > bc

)

.

Then, we have

M(G,B) = inf
I=PG◦PG(I)

FS(I). (7)

We use the superscript S for the function FS to emphasize
the fact that FS actually depends only on messages incom-
ing to nodes in S. Indeed, if we denote by IC→S those
messages, applying once the operator PG to these messages
give a set of messages from nodes in S to nodes in C that we
denote with a slight abuse of notation: JS→C = PG(IC→S).
Now if I is a solution of the fixed point equation I = PG ◦
PG(I), we must also have PG(JS→C) = IC→S . For such



an I , if we consider the messages K ∈ {0, 1}
−→
E defined by:

KC→S = IC→S and KS→C = JS→C , we have K = PG(K).
Moreover since FS(K) depends only on KC→S , we have
FS(K) = FS(I). Hence we proved that

M(G,B) = inf
I=PG(I)

FS(I). (8)

But if I = PG(I), the expression of FS(I) simplifies to

FS(I) =
∑

s∈S

1
(

|I−→
∂s
| > 0

)

+
∑

c∈C

bc1
(

|I−→
∂c
| > bc

)

.

Now if the graph G is a finite tree, it is easy to see that
there is indeed a unique solution to the fixed point equation
I = PG(I), so that our Theorem 1 recovers Proposition 3
in [12]. However, extending this result to general bipartite
graphs is non-trivial and requires dealing with possibly mul-
tiple solutions to the fixed point equation. We give a full
proof in Section 4.3.

4.2 Asymptotics for large graphs
We now explain how the previous results allow to deal

with random graphs model as described in Section 2.2 in
the large n limit. We follow the approach of [12] based on
the objective method developed by Aldous and Steele [3]
and adapt it to our framework.

We are now given a sequence of bipartite graphs Gn =
(Cn∪Sn, En) with |Cn| = n and |Sn| = ⌊βn⌋ and a sequence
of vectors Bn = (bnc )c∈Cn . We are interested in computing
the limit

lim
n→∞

M(Gn, Bn)

|Sn|
.

Of course, this limit might exist only if the sequence of
graphs Gn does converge. In our case, sequences of ran-
dom graphs as described in Section 2.2 have been exten-
sively studied in the random graphs literature [6] and are
known to be locally tree-like: with high probability, there
is no cycle in a ball of fixed radius around a vertex chosen
at random. The notion of local weak convergence [3] makes
rigorous the fact that the sequence of graphs we consider in
this paper converges to trees. More precisely, pick a vertex
in Gn uniformly at random and call it the root. Then the
local neighborhood of the root converges for the local weak
convergence towards a probability distribution concentrated
on rooted (possibly infinite) trees.

We now need to adapt the analysis done for finite graphs
in Section 4.1 to the framework of possibly infinite graphs.
We start with the following simple observation: let A∗ be a
maximum allocation of a finite graph G with constraints B,
then

M(G,B)

|S|
=

1

|S|

∑

s∈S

1(s belongs to an edge of A∗).

Now the right-hand part has a very natural probabilistic in-
terpretaion. First consider the deterministic function map-
ping S to {0, 1}, defined by 1(s belongs to an edge of A∗).
Denote by R a node taken uniformy at random in S. We
can rewrite the expression as

M(G,B)

|S|
= E

S [1(R belongs to an edge of A∗)] , (9)

where ES is the expectation with respect to the uniform dis-
tribution over the set S. The local weak convergence directly

tells us that this expectation converges to the correspond-
ing expectation on the infinite graph provided the function
1(R belongs to an edge of A∗), which takes as input a bi-
partite graph G = (C ∪ S,E) rooted at R ∈ S and a vector
B, is continuous (with respect to the adequate topology for
local weak convergence). This fact is not at all obvious and
follows from [17] and [12]. Note first that the global operator
PG is perfectly well-defined for any locally finite graph, i.e.
a graph in which each node has a finite degree. However, in
an infinite setting the fixed point equation I = PG(I) might
not have a solution, so that it is not possible to extend the
expression (8) to the infinite framework. However, Proposi-
tion 5 in [12] shows that our Theorem 1 extends nicely to the
infinite framework as follows: dividing by |S| the expression
of FS , we get

FS(I) =
1

|S|
FS(I)

FS(I) = E
S
[

1(|I−→
∂R

| > 0)
]

+
|C|

|S|
E

C

[

bR1

(

∑

s∈∂R

Ps→R(I) > bR

)]

where E
S has been defined in (9) and E

C is the expectation
with respect to R being taken uniformly at random in the
set C. For the sequence of graph Gn that we are interested

in, we have |Cn|
|Sn|

→ 1
β

and E
Sn and E

Cn converges locally

weakly to E
S and E

C on the (possibly infinite) limit graph
G. We are now ready to extend Theorem 1 to the following
proposition:

Proposition 3. For a sequence of bipartite graphs Gn

converging locally weakly to a tree G with root R, we define

FS(I) = E
S [

1(|I−→
∂R

| > 0)
]

(10)

+
1

β
E

C

[

bR1

(

∑

s∈∂R

Ps→R(I) > bR

)]

Then we have

lim
n→∞

|M(Gn, Bn)|

|Sn|
= inf

I=PG◦PG(I)
FS(I), (11)

where the fixed point I should not depend on the root R of
G.

We can now use the markovian nature of the limiting tree
in our case to compute the right expression in (11). In-
deed, using the recursive structure of the tree, the fixed
point equation I = PG ◦PG(I) becomes a simple fixed point
equation on probability distributions. More precisely, since
G is now random, the variables Ix→y are also random and,
being {0, 1}-valued, are Bernoulli random variables. More-
over all the messages incoming to a vertex are independent
thanks to the branching property of the limiting tree G. For
simplicity, we consider the single class model, so that the
limiting tree is a simple branching process with two types of
nodes: nodes in S have a fixed degree d in the tree, while
nodes in C have a random degree following a Poisson dis-
tribution with mean dβ. In this case, we have two types of
messages -those going from a vertex in S to a vertex in C
and those going from a vertex in C to a vertex in S- and
we need to compute their probability distributions, i.e. the
corresponding parameter of the Bernoulli random variable
associated to each of these messages. We denote by IC→S



and IS→C Bernoulli random variables with respective pa-
rameter pC→S and pS→C corresponding to messages from C
to S and S to C respectively. The values of pC→S and pS→C

are now given by the fixed point equation I = PG ◦ PG(I)
which gives here the following fixed point equation for the
distributions of IC→S and IS→C:

IS→C d
= 1

(

d−1
∑

i=1

IC→S
i < 1

)

IC→S d
= 1





D̃
∑

i=1

IS→C
i < B̃



 ,

where the IC→S
i ’s (resp. IS→C

i ’s) are i.i.d. with the same

law as IC→S
i (resp. IS→C

i ), D̃ is a Poisson random variable

with parameter dβ (so that D̃ + 1 corresponds to the edge-

biased degree distribution of a random content) and B̃ is a
Poisson random variable with parameter λ (corresponding
to the number of requests for a content).

Taking the expectation of these equations give:

pS→C = (1− pC→S)
d−1

pC→S = P

(

Bin(D̃, pS→C) < B̃
)

,

where Bin(n, p) is a Binomial random variable with param-
eters n and p ∈ [0, 1]. We can now use (10) to compute the
function FS as follows:

FS(I) = E [1(Bin(d, pC→S) > 0)]

+
1

β
E

[

B1
(

Bin(D̃, pS→C) > B̃
)]

,

where we used the same notation as above and used the fact
that the degree of a node in S (resp. C) is d (resp. a random
Poisson variable with mean dβ). It is convenient at this stage
to introduce the following function from [0, 1]2 → R:

FS(p, q) = E [1(Bin(d, p) > 0)]

+
1

β
E

[

B1
(

Bin(D̃, q) > B̃
)]

,

so that FS(I) = FS(pC→S, pS→C). We can now specialize
Proposition 3 to our setting and obtain:

Theorem 2. For a sequence of random graphs Gn as de-
scribed in Section 2.2, we have

lim
n→∞

M(Gn, Bn)

|Sn|
= inf FS(p, q),

where the infimum is taken over pairs (p, q) satisfying

p = P

(

Bin(D̃, q) < B̃
)

q = (1− p)d−1,

where (D̃+1, B̃) is distributed as the edge-biased joint num-

ber of (replicas, request) of a random content, i.e. (D̃+1, B̃)
is distributed as the joint number of (replicas, request) of
the content adjacent to an edge chosen uniformly at random
among all edges of the graph.

4.3 Proof of Theorem 1
The proof of Theorem 1 requires a basic result of graph

theory. Note that in Equation (7), the left-hand side is the
maximum size of an allocation whereas the right-hand side

is a minimum. This kind of min-max relations is ubiquitous
in matching theory [13]. In particular, for finite bipartite
graphs, the size of a maximum allocation equals the mini-
mum weight of a vertex cover. Recall that a vertex cover
of a graph G = (V,E) is a set of vertices U ⊂ V such that
any edge of G is incident to at least one vertex in U . The
weight of a vertex cover is simply the sum of the weights of
the vertices (in our case, the weights are the bv’s, equal to 1
if v ∈ S and to bc if v = c ∈ C.). The Koenig-Hall’s theorem
[13] for bipartite graphs states

M(G,B) = min
X⊆C



|∂X|+
∑

c∈X

bc



 (12)

where ∂X is the set of vertices with a neighbor in X and
X = C \ X. Clearly isolated vertices do not contribute to
M(G,B) and can be ignored so that X∪∂X is a vertex cover
of G (because ∂X ⊂ ∂(X)) with weight |∂X|+

∑

c∈X bc.
The proof of Theorem 1 follows then from the two fol-

lowing steps: we first show how to construct from I =
PG(I) a vertex cover with weight FS(I) which is by previ-
ous min-max relation an upper bound for M(G,B). Then,
we show how to construct from a particular maximum al-
location A a fixed point IA = PG(I

A) such that FS(IA) =
|A| = M(G,B), so that M(G,B) is an upper bound for
infI=PG(I) F

S(I).

4.3.1 To each fixed point a vertex cover
For any I ∈ {0, 1}

−→
E , we consider the following subset V I

of vertices of G: for s ∈ S, c ∈ C,

s ∈ V I ⇔ |I−→
∂s
| > 0

c ∈ V I ⇔ |I−→
∂c
| > bc.

Lemma 2. If I = PG(I), then the associated subset of
vertices V I defined above is a vertex cover of G.

Proof. Towards a contradiction, suppose there exists an
edge (cs) ∈ E, with c ∈ C and s ∈ S, which is not covered by
V I , i.e. such that s /∈ V I and c /∈ V I . From the definition
of V I , the fact that s /∈ V I implies that |I−→

∂s
| = 0 so that in

particular Ic→s = 0 and then, using the fact that I = PG(I),
we get Is→c = 1(|I−→

∂s
| − Ic→s < 1) = 1. On the other hand,

c /∈ V I implies that |I−→
∂c
| ≤ bc so that Ic→s = 1(|I−→

∂c
| −

Is→c < bc) = 1, a contradiction.

It only remains to check that the weight of V I is equal
to FS(I). This is easily obtained by noting that the term
∑

s∈S 1
(

|I−→
∂s
| > 0

)

in FS(I) is the total weight of the ver-

tices in S∩V I , and the term
∑

c∈C bc1
(

|I−→
∂c
| > bc

)

in FS(I)

is the total weight of the vertices in C ∩ V I . Since for finite
bipartite graphs, the weight of any vertex cover is an upper
bound on M(G,B), it follows that :

M(G,B) ≤ inf
I=PG(I)

FS(I) (13)

4.3.2 To a maximum allocation a fixed point
In this section we want to find an I ∈ {0, 1}

−→
E that is

invariant by PG and such that FS(I) = M(G,B).
We start with equation (12). Note that there are no edges

between vertices in X and ∂X (but there are possibly edges

between X and ∂X). In particular, if AX (resp. AX) is an
allocation on G[X ∪ ∂X] (resp. G[X ∪ ∂X]), the induced



graph of G on the set of vertices X ∪ ∂X (resp. X ∪ ∂X),

then AX ∩ AX = ∅ so that A = AX ∪ AX is an allocation
of G. Let X be a subset of C that achieves the minimum in
equation (12). Let AX (resp. AX) be a maximum allocation
on G[X ∪ ∂X] (resp. G[X ∪ ∂X]). Then |AX | ≤ |∂X| and

|AX | ≤
∑

c∈X bc. There is a vertex cover of G[X ∪∂X] with

weight |AX | and a vertex cover of G[X ∪ ∂X] with weight

|AX |. The union of these vertex covers is a vertex cover of G,

so that |AX |+ |AX | ≥ M(G,B) and finally |AX | = |∂X| and

|AX | =
∑

c∈X bc. Hence we defined a maximum allocation

A such that with IAc→s = IAs→c = 1((cs) ∈ A), we have

∀s ∈ ∂X,
∑

c∈∂s

IAc→s = 1

∀c ∈ X,
∑

s∈∂c

IAs→c = bc,

and for u ∈ X and v ∈ ∂X, we have

IAu→v = IAv→u = 0. (14)

We now define the sequence of messages IA,k along the
directed edges of G in the following manner: IA,0 = IA and
for k ≥ 0, IA,k+1 = PG(I

A,k).

Lemma 3. For all u ∈ ∂X ∪X, the sequences (IA,k
u→v) are

non-increasing in k for all v. For all u ∈ X ∪ ∂X, the
sequences (IA,k

u→v) are non-decreasing in k for all v.

Proof. Note that if u ∈ ∂X ∪ X , then |IA−→
∂u

| = bu so

that IA,1
u→v = 1

(

|IA−→
∂u

| − IAv→u < bu
)

= IAv→u = IAu→v. Now

if u ∈ X ∪ ∂X, then we simply have IA,1
u→v ≥ IAu→v. In

particular if u ∈ X and v ∈ ∂X, we have IA,1
u→v = IA,1

v→u =
IAu→v = IAv→u = 0. The lemma follows then by induction on
k. Indeed, the induction hypothesis implies that for u ∈ X
and v ∈ ∂X, we have IA,k

u→v = IA,k
v→u = 0 by (14). Hence

the (k+ 1)-th messages from u ∈ ∂X ∪X to v are obtained
from the k-th messages from v ∈ X ∪ ∂X by applying the
decreasing map PG and vice-versa.

Lemma 3 allows to define IA,∞ = limk I
A,k and to get the

following inequalities:

∀u ∈ ∂X ∪X, IA,∞
u→v ≤ IAu→v,

∀u ∈ X ∪ ∂X, IA,∞
u→v ≥ IAu→v.

Moreover we clearly have IA,∞ = PG(I
A,∞). We now com-

pute FS(IA,∞) that we decompose in two terms:

Σ1 =
∑

s∈S

1
(

|IA,∞
−→
∂s

| > 0
)

= |∂X|+
∑

s∈∂X

1
(

|IA,∞
−→
∂s

| > 0
)

,

and

Σ2 =
∑

c∈C

bc1
(

|IA,∞
−→
∂c

| > bc
)

=
∑

c∈X

bc1
(

|IA,∞
−→
∂c

| > bc
)

.

Note that for any c ∈ X, we have |IA,∞
−→
∂c

| ≥ bc. Indeed if

|IA,∞
−→
∂c

| > bc, then IA,∞
c→s = 0 for all s, whereas if |IA,∞

−→
∂c

| = bc,

then IA,∞
c→s = IA,∞

s→c . Hence we have
∑

c∈X

bc1
(

|IA,∞
−→
∂c

| = bc
)

=
∑

s∈∂X

1
(

|IA,∞
−→
∂s

| > 0
)

so that we get,

Σ1 + Σ2 = |∂X|+
∑

c∈X

bc1
(

|IA,∞
−→
∂c

| ≥ bc
)

= |∂X|+
∑

c∈X

bc = M(G,B).

As a consequence, we directly get

M(G,B) ≥ inf
I=PG(I)

FS(I),

which with (13) concludes the proof.

5. PERFORMANCE OF REPLICATION
POLICIES

We now apply the previous result to the model with K
content classes, where class i contains a fraction αi of all
contents and the number of requests for each content in this
class is Poisson with parameter λi. Recall that d is the
degree of all servers and β is the ratio of number of servers
to number of contents.

We consider here the couple (G,B), of the infinite graph G
together with the corresponding vector of number of requests
B, that is the limit in local weak sense of sequences of graphs
drawn from the multi-class model presented in Section 2.2.
Hence, we assume that the number of replicas for each type i
content is also Poisson, with parameter dβi for non-negative
βi verifying

∑K
i=1 αiβi = β. A particular example is the

proportional replication strategy mentioned in Section 3, for
which βi = λi/ρ.

We express performance in terms of the asymptotic inef-
ficiency γG,B := min(ρ, 1) − f , where f is the limiting frac-
tion of matched servers in a maximum allocation. Indeed,
the asymptotic behavior of γGn,Bn for (Gn, Bn) following
the multi-class model will almost surely be given by γG,B,
according to Theorem 2.

The explicit expression for γG,B can be obtained straight-
forwadly from Theorem 2, however it is hard to gain insights
from the expression obtained. Thus, we look at the behavior
as d tends to infinity, as we did in Section 3 for the candidate
strategies:

Proposition 4. Under the multi-class model, in which
within class i the number of requests is Poisson with mean
λi and the number of replicas is Poisson with mean dβi, and
assuming that βi > 0 for all i ∈ 1, . . . ,K, the asymptotic
inefficiency γG,B verifies

log(γG,B)

d
d→∞
→



















− infi βi if ρ < 1,

log
(

∑K
i=1

αiβi
β

e−λi

)

if ρ > 1,

max
(

− infi βi, log
(

∑K
i=1

αiβi
β

e−λi

))

if ρ = 1.
(15)

First-of-all, it is quite remarkable in the proposition above
that the asymptotic inefficiency as d → ∞ is explained only
by very local and individual situations. Indeed, exp(−dβi)
is the probability that a content of class i is not replicated



in any server cache, and similarly
(

∑K
i=1 θie

−λi

)d

is the

probability that a server stores only replicas of contents
which have not been requested at all. Hence, asymptotically,
the only noticeable cause for inefficiencies in under-loaded
regime (when anyway not all servers can be busy) is con-
tents that are stored nowhere; in over-loaded regime (when
it is not possible to satisfy all requests) the only visible in-
efficiency comes from servers that store only unrequested
contents; and in critically loaded systems, inefficiency is due
almost only to the dominant of these two effects.

Let us then first comment the implications of this result
before turning to its proof. First, we observe an exponential
decay of the inefficiency in d for any positive βi’s, even at
criticality. This is in sharp contrast with the performance
of online matching as discussed in Section 3, for which in-
efficiency decays polynomially in d for ρ = 1. It is also a
robustness property, in that this qualitative behaviour does
not depend on the precise values of the βi’s.

Second, it is possible to pick replication ratios βi that im-
prove upon proportional replication (for which βi = λi/ρ).
Indeed, it follows at once from (15) that in under-load ρ < 1,
for large d, inefficiency is minimized by setting βi ≡ β for
all i, i.e. by not discriminating replication between classes.
It is also easy to show that in over-load ρ > 1, the corre-
sponding exponent in (15) is minimized by shifting replicas
towards the most popular class i∗ such that λi∗ = maxi λi.
As for the critical case, it can be shown that the correspond-
ing exponent is minimized by equalizing all the coefficients
βi for i 6= i∗ in such a way that the two expressions − infi βi

and log(
∑

i(αiβi)/βe
−λi) are equal. We summarize these

statements by the following

Corollary 1. Under the multi-class model, we have the
following optimal asymptotic inefficiencies:

lim
d→∞

1

d
log(γG,B) =







−β if ρ < 1,
− supi λi if ρ > 1,
−β− if ρ = 1,

(16)

where β− is the unique solution x in [0, β] to the equation

x = β
e−x − e−λi∗

∑

i αi (e−λi − e−λi∗ )
·

The corresponding optimal replication factors βi are given
by

βi ≡ β if ρ < 1,

βi∗ = β
αi∗

, βi = 0, i 6= i∗ if ρ > 1,

βi∗ = β−β−(1−αi∗ )

αi∗
, βi = β−, i 6= i∗ if ρ = 1.

(17)

Figure 1 illustrates the inefficiency exponents for various
replication policies in a two-class scenario, with two classes
of equal sizes (α1 = α2), respective popularities λ1 = 3
and λ2 = 1, and the content/server ratio therefore governs
the load of the system according to ρ = 2/β. the fraction
of replicas that correspond to a content of class i is given
by θi = αiβi/β. As we vary θ1, we span replication policies
from uniform at θ1 = 1/2 to proportional at θ1 = 0.75 to ex-
treme unbalance at θ1 = 1. The curves represent the ineffi-
ciency exponents for various values of d, namely d = 2, 5, 15.
We also represent the optimal value of θ1 and the corre-
sponding exponent in the limit d → ∞, as characterized in
the previous corollary.

We observe in particular how the optimal value for fi-
nite d approaches this limiting value: for d as small as 15,
the asymptotic evaluations are already reasonably accurate.
Note however that for the super-critical case, one should not
take θ2 = 0 for any finite d, as is illustrated by the drop in
the exponent of the right-most curve.

Proof. (of Proposition 4): The fraction of matched ser-
vers is given by Theorem 2 and we need to explicitely com-
pute the function FS(p, q) in our setting. We still denote by

(D̃+1, B̃) the edge-biased joint number of (replicas,requests)
of a random content. Under the present assumptions, with
probability αi, the pair (D̃ + 1, B̃) is distributed as two in-
dependent Poisson random variables with respective means
(βid, λi). Hence a simple computation shows that

FS(p, q) = 1− (1− q)d

+
∑

i
αiλi
β

P(Poi(βidp) ≥ Poi(λi) + 2),
(18)

where Poi(λ) is a Poisson random variable with mean λ and
all Poisson random variables appearing in the expression are
independent. The fraction of matched servers is given by
taking the infimum of this expression over p and q satisfying:

q = (1− p)d−1, (19)

and

p =
1

β

∑

i

αiβiP(Poi(βidq) < Poi(λi)). (20)

We now consider the fixed points of (19,20) in the regime
of large d. First, if p is bounded away from zero, by (19), q
is exponentially small in d. Plugging this into (20), we find
that there is indeed a fixed point such that

p ∼
∑

i
αiβi
β

(

1− e−λi
)

,

q ∼
(

∑

i
αiβi
β

e−λi

)d(1+o(1))

.
(21)

Next consider the case where p goes to zero with d. Then
necessarily by (20), qd is large, and p = e−Θ(qd). Plugging
this into (19) we obtain

q = (1− e−Θ(qd))d−1.

Assume then that qd = O(log(d)). This would entail that
q → 0, and hence (1−p)d → 0; the corresponding evaluation
(18) would be equivalent to 1 +

∑

i αiλi/β which is larger
than 1, and hence cannot be the minimal evaluation. We
can thus assume qd ≫ log(d). Then by (20), it follows that
p = o(1/d), so that by (19), q ∼ 1. Thus the only other
meaningful fixed point to consider satisfies

p =
∑

i
αiβi
β

e−βid(1+o(1)) = e− infi βid(1+o(1)),

q = 1− e− infi βid(1+o(1)).
(22)

It remains to evaluate Expression (18) at the two meaningful
fixed points (21,22). Considering first (21), the last term in
(18) is of order (dq)2, which is negligible compared to the
first term (1− p)d. This yields the first evaluation

f1 = 1− exp

(

d log(
∑

i

αiβi

β
e−λi)

)

. (23)

Considering next plugging (22) into (18). The term (1− p)d

and the last term of (18) are equivalent to 1 and ρ respec-

tively, up to corrections of order e−d infi βi(1+o(1)). This con-
cludes the proof.
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Figure 1: Inefficiency exponential-decay exponents as a function of the fraction of storage space allocated to

contents of the first class in under-loaded, critical, and over-loaded regimes.

6. RELATED WORK
The question of how to replicate content in distributed

systems is related to the general problem of facility loca-
tion (see e.g. Vazirani [22] Chapter 24). The latter has
received considerable attention from the standpoint of algo-
rithmic complexity and approximability. The version that
we consider here is atypical in that it features capacity con-
straints on the locations (the servers), and stochastic de-
mand. Also, we aim at characterizing simple, easily im-
plementable strategies with good performance for practical
workloads rather than placement algorithms with low worst-
case complexity.

There is a rich literature on cache management strategies
motivated by server memory and web cache management,
one abstract version of which is the so-called paging problem
(see e.g. Albers [2]). In this context, the main focus has been
on characterization of hit rates, focusing on the temporal
properties of streams of requests. Capacity limits at the
servers are typically not considered in these models, while
they are essential for the application scenarios we consider.

Our present motivation, namely efficient use of servers’
bandwidth through adequate replication, has been consid-
ered in the specific context of Peer-to-Peer systems, in a
number of recent papers [21, 8, 18, 19, 23, 24]. In [21, 8],
an argument is made for the proportional replication policy
based on the analysis of delay in a queueing model of perfor-
mance. More recently, [19] also argue in favour of propor-
tional replication by considering a loss network model of per-
formance. [18] and [8] propose replication policies that are
oblivious to content popularity. The first considers stochas-
tic delay performance models, and the second deterministic
conditions on request arrivals to guarantee feasibility of ser-
vice. The two articles [23, 24] are closer to our motivation
in that they revisit the proportional placement strategy, to
which they propose alternatives. Their modeling approach
however significantly differs from ours.

The main result on asymptotic characterization of match-
ing density, Theorem 2, is a direct consequence of the re-
cent paper [12], itself building on recent works [7, 17] on
the rigorous use of the so-called cavity method of statistical

physics for the characterization of asymptotics in large ran-
dom graphs. The version we provide for finite graphs, The-
orem 1, is novel and sheds new light on the particular form
of the formula in Theorem 2. It also hints at possible gener-
alizations of the cavity method to bipartite graphs, whereas
it has been rigorously applied in the context of matchings
only to tree-like graphs so far.

Finally, there is a rich body of literature on load balanc-
ing algorithms, which in our context would correspond to
the question of forming a particular matching, given con-
tent replication. One strand of research has considered sim-
ple one shot comparisons of several assignments, e.g. the
power of two choices paradigm as surveyed in [14]. A more
recent strand [9], [10], has considered the so-called Cuckoo-
hashing method, by which requests get assigned irrespective
of whether the target server is free or not; if not, the cur-
rent job at the server is pushed to another server, and so
on. These two approaches are in a sense intermediate be-
tween the online method we considered in Section 3 and an
optimal assignment as characterized and discussed in Sec-
tions 4-5. Their performance has however not been studied
in contexts with heterogeneity both in the replications and
numbers of requests. We view such a study as a promising
future work, which could build on our present analysis of
optimal matching density .

7. CONCLUSION
Motivated by the performance of large-scale distributed

server systems, we developed an analysis of optimal match-
ing performance for heterogeneous loads and replication poli-
cies. Our results show (i) robustness of optimal matching
performance to replication strategies, with an inefficiency
that is exponentially small in the server storage capacity;
(ii) possibility to improve upon proportional replication, with
explicit identification of target replication strategies, depend-
ing on the criticality of the system load; and (iii) the need
to go beyond simple greedy matching in order to approach
these ideal matching inefficiencies. On the methodological
side, we build on recent advances on the so-called cavity
method, and use it to obtain novel performance formulas.



Moreover, we extend previous characterizations of maximum
matchings from finite trees to finite bipartite graphs. This
points the way to further extensions of the cavity method.
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10. APPENDIX:

Online algorithm analysis
Letting u = dβ−x

1−y
, we obtain

u̇ = ue−u + de−u − d (24)

γ = ρ ∧ 1− 1 +
u(λ)

dβ
(1− y(λ))

To find a good surrogate for u, note first that u is a de-
creasing function, because euu̇ = u+ d − deu ≤ −(d− 1)u.
Also, the term ue−u is always small compared to the others
when d is large.

It suggests that the behavior of u for large d should be
captured by the solution to the following equation:

v̇ = d(e−v − 1) (25)

v(0) = u(0) = dβ

A change of variables leads to

v(t) = log
(

1 + ed(β−t)(1− e−dβ)
)

Note that, at all time, we have v ≤ u, because the functions
are continuous and v̇ ≤ u̇ whenever v = u.

We then have

Lemma 4. In the regime ρ < 1, the solution of equa-
tions (4)-(5) satisfies

γ ≤ ρ(β + 1)e−dβ(1−ρ)

Proof. At all time, dβ ≥ u ≥ dβ(1 − ρ), thus u̇ ≤

d
(

(β + 1)e−dβ(1−ρ) − 1
)

. We immediately obtain

u(λ) ≤ dβ(1− ρ) + dλ(β + 1)e−dβ(1−ρ)

γ = ρ− 1 +
1

dβ
u(λ)(1− y(λ)) ≤ ρ(β + 1)e−dβ(1−ρ)

Lemma 5. In the regime ρ = 1, the solution of equa-
tions (4)-(5) satisfies

γ ≤
log 2

dβ
+ o (1/d)

Proof. Let c > 1. u(0) = dβ so there exists 0 < Td ≤ λ
such that u ≥ c log d on [0, Td] and u ≤ c log d on (Td, λ] for
large enough d. Furthermore, u̇ ≥ −d, so we always have
Td ≥ β− c log d

d
for d large enough. Then, on [0, Td], we have

u̇ ≤ βd1−c + d(e−u − 1) ≤ βd1−c + v̇

and, on (Td, ρ],

u̇ ≤ c log d+ v̇

We obtain an upper-bound on u(λ):

u(λ) ≤ v(λ) + Tdβd
1−c + (λ− Td)c log d

≤ log (2− e−dβ) + βd1−cλ+
c2 log2 d

d

As c > 1,

γ ≤
log 2

dβ
+ d−cρ+

c2 log2 d

d2β2

=
log 2

dβ
+ o(1/d)

Lemma 6. In the regime ρ = 1, the solution of equa-
tions (4)-(5) satisfies

γ ≥
log 2

dβ
+ o (1/d)

Proof. As y + x ≤ λ, it follows that y ≤ βγ ≤ log 2
d

+
o(1/d). Hence,

γ ≥
1

dβ
log (2− e−dβ)

(

1−
log 2

d
+ o(1/d)

)

=
log 2

dβ
+ o(1/d)

As upper- and lower-bound coincide, we actually have that
γ = log 2

dβ
+ o( 1

d
) ∼d∞ v(λ).

Lemma 7. In the regime ρ > 1, the solution of equa-
tions (4)-(5) satisfies

γ ≤
log 2

d2β
e−(d−1)β(ρ−1)(1 + o(1))

Proof. We already know that u(β) = log 2
dβ

+o( 1
d
), so we

can focus on the time interval [β, λ]. For d large enough and
for all t ≥ β, as u is decreasing, u is strictly less than 1.
Then,

u̇ ≤ u+ d(1− u+
u2

2
− 1) = −(d− 1)u+ d

u2

2

As u is actually much smaller than 1 in the range [β, λ],
we can guess that the influence of the term in u2 will be
small compared to that of the term in u, and that we did
not lose much by neglecting higher order terms.

Let z such that z(β) = u(β) and ż = −(d− 1)z+ d z2

2
. At

u = z, we have u̇ ≤ ż, so u ≤ z on [β, λ], and z is decreasing
on [β, λ] for d large enough.

As long as z 6= 0 and z 6= 2(1− 1
d
),

ż = −(d− 1)z + d
z2

2
⇔

ż

d− 1

(

1

z − 2(1− 1
d
)
−

1

z

)

= 1

Integrating from λ to β, we obtain

1

d− 1

[

log (z − 2(1−
1

d
))

]λ

β

−
1

d− 1
[log z]λβ = λ− β

1

d− 1
log

1− z(λ)

2(1− 1
d
)

1− u(β)

2(1− 1
d
)

+
1

d− 1
log

u(β)

z(λ)
= λ− β

As 0 < z(λ) < u(β) = log 2
d

+ o( 1
d
), the first term is o(1).

Thus, we obtain

u(λ) ≤ z(λ) = u(β)e−(d−1)β(ρ−1)+o(1)

=
log 2

d
e−(d−1)β(ρ−1)(1 + o(1))

and also

γ ≤
log 2

d2β
e−(d−1)β(ρ−1)(1 + o(1))


