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Abstract We analyze the behavior of Generalized Processor Sharing (GPS) queues
with heavy-tailed service times. We compute the exact tail asymptotics of the sta-
tionary workload of an individual class and give new conditions for reduced-load
equivalence and induced burstiness to hold. We also show that both phenomena can
occur simultaneously. Our proofs rely on the single big event theorem and new fluid
limits obtained for the GPS system that can be of interest by themselves.
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1 Introduction

Empirical evidence of the presence of heavy tails in network traffic has stimulated
the analysis of queueing systems with subexponential service times. Although the
presence of heavy-tailed traffic is widely acknowledged [26], the practical implica-
tions for network performance and traffic engineering remain to be fully resolved.
The importance of scheduling in the presence of heavy tails was first recognized by
Anantharam in [3]. The present paper specifically examines the effectiveness of Gen-
eralized Processor Sharing (GPS, precisely described in Sect. 2.1) with subexponen-
tial service times. We compute the exact tail asymptotics of the stationary workload
process of each class. Our framework is restricted to instantaneous inputs and extends
results of Borst, Boxma and Jelenković [11]. Also our proof is new and inspired by
the recent work of Baccelli and Foss [6], which has been applied to a variety of
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networks [7, 8, 12, 20]. All these studies deal with networks which belong to the
monotone separable framework. In our GPS system, a single class does not belong
to this framework, hence we will need to adapt ideas of [6]. Moreover, we will see
that we are able to remove some of the assumptions made in [6] on the service time
distribution. To do so, we will need a slight extension of Pakes [23] or Veraverbeke’s
Theorem [25, 27] which we state as Theorem 3. We will also need to derive the fluid
limit of the GPS system in the same way as [17] derived fluid limits for generalized
Jackson networks as a first step towards tail asymptotics [8]. Such analysis has been
done by Dupuis and Ramanan [13] based on a Skorokhod problem formulation of
the GPS model. We choose to give here a probabilistic proof based on a coupling
argument. For stationary and ergodic inputs, this proof allows us to construct the sta-
tionary workload processes of the stable classes when the system is overloaded, i.e.
ρ > 1. To the best of our knowledge, Theorem 1 is new and extends [13]. Our main
result is Theorem 2 which gives the exact tail asymptotics in a unified way: reduced-
load equivalence and induced burstiness results of [11] are recovered and extended.
Moreover the proof is generic and relies on an extension of the ‘single-big-event
theorem,’ well known for isolated queues [6, 24, 28]. The heuristic can be stated as
follows: a large workload in one queue of the GPS system occurs when one large ser-
vice time has taken place at one of the queues, while all other service times are close
to their means. In the case of subexponential service times, we precisely identify the
range of the parameters of the system for which this heuristic can be made rigor-
ous. As observed in [18] (see Sect. 4.4.4), our results also show that in some cases,
this heuristic is not valid and gives only an upper bound on the tail asymptotics. We
should also stress that the monotone separable framework has recently been shown
to be an efficient tool to derive large deviation results for light-tailed distributions
[19, 21, 22] and we expect that this approach will give new results for GPS system
extending [9] to more than 2 classes.

The paper is structured as follows. In Sect. 2, we introduce GPS system and con-
struct the stationary GPS system by a coupling argument. We also derive the fluid
limits that will be useful for the derivation of the tail asymptotics. In Sect. 3, we state
our main result and compare it with the literature. Its proof is given in Sect. 4.

Notation

Here and later in the paper, for positive functions f and g, the equivalence f (x) ∼
dg(x) with d > 0 means f (x)/g(x) → d as x → ∞. By convention, the equivalence
f (x) ∼ dg(x) with d = 0 means f (x)/g(x) → 0 as x → ∞, this will be written
f (x) = o(g(x)).

The tail of the distribution function F is denoted F(x) = 1 − F(x). For a distrib-
ution function F on the positive real line with finite first moment M = ∫ ∞

0 F(u)du,
the integrated tail distribution F s of F is defined by

F
s
(x) := 1 − F s(x) = min

{

1,

∫ ∞

x

F (u)du

}

.

We recall here some definitions
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Definition 1 A distribution function F on R+ is called subexponential if F ∗2(x) ∼
2F(x).

For basic properties of subexponential distribution see [14–16].

Definition 2 A positive measurable function f on [0,+∞) is called regularly vary-
ing with index α ∈ R (f ∈ R(α)) if limx→∞ f (tx)

f (x)
= tα for all t > 0.

Definition 3 A positive measurable function h on [0,+∞) is called rapidly varying
(h ∈ R(−∞)) if limx→∞ h(tx)

h(x)
= 0 for all t > 1.

For example, Weibull or log-normal random variables have tail distributions that
are rapidly varying.

2 Fluid limits for GPS queues

In this section, we construct the stationary workload at each queue of a GPS system
under general stochastic assumptions, namely stationarity and ergodicity. Then we
use this result to derive the fluid limits for GPS queues when a big service time
occurs.

2.1 Construction of the stationary regime

Consider the following model of N coupled G/G/FIFO queues. The queues are
served in accordance with the Generalized Processor Sharing (GPS) discipline, which
operates as follows. Queue j is assigned a weight φj , with

∑N
j=1 φj = 1. If all queues

are backlogged, then queue j is served at speed φj . If some of the queues are empty,
then the excess capacity is redistributed among the backlogged queues in proportion
to their respective weights. All customers within each queue are served in a FIFO
order.

More formally we can construct the workload of each queue as follows. We first
introduce some notation: customer n arrives in the queue cn at time Tn and its service
time is σn. We will say that this customer is of class cn ∈ {1, . . . ,N} and denote by
τn = Tn+1 − Tn > 0 the inter-arrival times. The evolution of the workload processes
of each class is given by the following equations:

Wj(Tn) = Wj(Tn−) + σn1{cn=j}, (1)

dWj

dt
(t) = −rj (t) for Tn ≤ t < Tn+1, (2)

rj (t) =
⎧
⎨

⎩

φj
∑

�/∈I (t) φ� , j /∈ I (t),

0, j ∈ I (t);
(3)

I (t) = {
i, W i(t) = 0

}
. (4)
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For any initial condition Y ∈ R
N+ , we define the workload of each class W

j
Y (t) for

t ≥ 0 according to (1)–(4). We also denote by W(t) = ∑
j Wj (t) the total workload

of the system. Since the GPS discipline is work-conserving, i.e. it serves at the full
rate whenever any of the classes is backlogged, the process W(t) is the standard
workload process of a single server queue fed by the process {Tn,σn}n∈Z.

Assume that the random variables {τn, σn, cn} are defined on a common proba-
bility space (Ω,F,P, θ) where θ is an ergodic, measure-preserving shift transfor-
mation, such that (τn, σn, cn) ◦ θ = (τn+1, σn+1, cn+1). Let λ = E[τ0]−1 be the in-
tensity of arrival process and ρ = λE[σ0] be the traffic intensity. For example, the
process {Tn,σn, cn} can be obtained by the superposition of independent renewal
point processes of finite intensity (see Sect. 1.4.2 of [5]) as will be considered in
Sect. 3.

If ρ < 1, it is easy to construct the stationary workload process of each class. Let
{W(t)}, t ∈ R, be the unique stationary workload process of a single server queue
with input {Tn,σn}n∈Z. The point process E defined by

E(B) =
∑

n∈Z

1{Tn∈B}1{W(Tn−)=0},

counts the points Tn at which an arriving customer finds an empty system. Let {Un},
n ∈ Z, be the sequence of points of E, with the usual convention U0 ≤ 0 < U1. Then
we can construct the unique stationary workload process {(W 1(t), . . . ,WN(t))} of
the GPS queues using (1)–(4) on each cycle [Un,Un+1) with initial condition 0.

In the case ρ > 1, it is possible that some classes of the GPS system are still stable.
We first give the definition of stability that we consider in this paper.

Definition 4 A stochastic process X(t) is stable if there is an infinite number of
negative and positive subscripts n such that X(Tn−) = 0.

Let λ� be the intensity of the arrival process {T �
n } that counts the points of {Tn}

with mark cn = �. Let ρ� = λ�
E[σ0|c0 = �] be the traffic intensity of class �. We have

ρ = ∑N
�=1 ρ�, see Sect. 1.4.3 of [5]. We assume without loss of generality (w.l.o.g.)

that

ρ1

φ1
≤ · · · ≤ ρN

φN
. (5)

We define

Rk = 1 − ∑k−1
j=1 ρj

∑N
j=k φj

, K = max
k=1,...,N

{

k : ρk

φk
< Rk

}

,

S = {1, . . . ,K}, R = 1
∑

j /∈S φj

(

1 −
∑

j∈S

ρj

)

.

(6)

We will show that S is the set of stable queues. This set is empty if and only if
ρ1/φ1 ≥ 1, in this case we take the convention: K = 0 and R = 1.
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Remark 1 The quantities in (6) were defined in [11]. We will see in Sects. 2.2 and 3
that these quantities are crucial for the computation of the tail asymptotics.

For any k, we will consider the GPS system indexed by k where classes i > k are
always backlogged, i.e. for all j ≤ k,

dW̄ j,[k]

dt
(t) = −rj,[k](t) for Tn ≤ t < Tn+1, (7)

W̄ j,[k](Tn) = W̄ j,[k](Tn−) + σn1{cn=j}, (8)

rj,[k](t) =
⎧
⎨

⎩

φj
∑

�/∈I [k](t) φ� , j /∈ I [k](t),

0, j ∈ I [k](t),
(9)

I [k](t) = {
i ≤ k, W̄ i,[k](t) = 0

}
. (10)

Note that for all � > k, we have � /∈ I [k](t) for all t , i.e. classes larger or equal to k +1
are always backlogged.

Theorem 1 Under previous conditions on the input process {τn, σn, cn}, we have the
following properties:

• there exists a unique stationary stable workload process {(W̄ 1,[K](t), . . . ,
W̄K,[K](t))} satisfying (7)–(10) for all t ∈ R with k = K defined by (6).

• if K + 1 ≤ N , under the additional condition ρK+1

φK+1 > R, there exists no finite

stationary workload process {Wi(t)}, t ∈ R, for any i ≥ K + 1. For any finite
initial condition Y ∈ R

N+ , we can define the workload of each queue for t ≥ 0,
following (1)–(4), and we have for i ≥ K + 1

Wi
Y (t) ∼ (

ρi − φiR
)
t as t → ∞.

Remark 2 Note that the condition K+1 ≤ N implies R ≤ ρK+1

φK+1 , so that the additional
condition in the second bullet item ensures that the queues i ≥ K + 1 are ‘strictly’
unstable.

Proof If ρ < 1, then K = N and the result follows from previous construction on the
cycles.

We assume now that 1 ≤ K ≤ N − 1. The proof will proceed by induction
on k ≤ K : we show that there exists a unique stationary stable workload process
(W̄ 1,[k](t), . . . , W̄ k,[k](t)) which corresponds to a GPS system where queues k +
1, . . . ,N are always backlogged. Moreover

∑
i≤k W̄ i,[k](t) is also a stable process.

For t ≥ 0, we will denote by W̄
[k]
Y (t) = (W̄

1,[k]
Y (t), . . . , W̄

k,[k]
Y (t)) the process satis-

fying (7)–(10) for t ≥ 0 and with initial condition W̄
i,[k]
Y (0) = Y i . For any u ∈ R,

we define W̄
[k]
Y,u(t) similarly but with initial condition W̄

[k]
Y,u(u) = Y (in particular

W̄
[k]
Y,0(t) = W̄

[k]
Y (t)).
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The first step is easy. We have 1 ∈ S, hence ρ1 < φ1 and W̄ 1,[1](t) is simply the
workload of a standard G/G/1 queue.

For k ≤ N , we assume that (W̄ 1,[k−1](t), . . . , W̄ k−1,[k−1](t)) are given. We con-
sider the random variable

r̃k(t) = 1
∑N

j=1 φj1{j /∈I [k−1](t)}
.

We have by construction

k−1∑

j=1

φj r̃k(t)1{W̄ j,[k−1](t)>0} + r̃k(t)

N∑

j=k

φj = 1, (11)

and since φj r̃k(t) is exactly the service rate of queue W̄ j,[k−1], we have

E
[
φj r̃k(t)1{W̄ j,[k−1](t)>0}

] = ρj . (12)

In particular, from (11) and (12), we have E
[
r̃k(t)

] = Rk . For any Y ≥ 0, we consider
the following G/G/1 queue:

W̃ k
Y (t) = Y,

W̃ k
Y (t) =

(

W̃ k
Y

(
T k

n −) + σk
n − φk

∫

[T k
n ,t)

r̃k(u) du

)+
, t ∈ [

T k
n , T k

n+1

)
.

By standard Palm calculus (see Sect. 1.3.1 in [5]), we have

E

[∫

[T k
0 ,T k

1 )

r̃k(u) du

]

= Rk

λk

,

hence we have k ∈ S implies that W̃ k(t) is the workload process of a stable G/G/1
queue. Clearly by looking at the service rates, we have that for all i ≤ k − 1,

W̄
i,[k]
0,−t (0) ≤ W̄

i,[k−1]
0,−t (0)

t→∞−−−→ W̄ i,[k−1](0), (13)

W̄
k,[k]
0,−t (0) ≤ W̃ k

0,−t (0)
t→∞−−−→ W̃ k(0). (14)

We are now able to construct a stationary workload process W̄ i,[k] of the GPS system
where queues k, . . . ,N are always backlogged: note that W̄

i,[k]
0,−t (0) are increasing in t ,

hence we can take the limit as t → −∞ (standard coupling from the past) and the
limit is finite due to (13) and (14). We now prove uniqueness of this stationary process
by a coupling argument. Consider any finite variables (Z1, . . . ,Zk). Then we have

k∑

i=1

W̄
i,[k]
0 (t) ≤

k∑

i=1

W̄
i,[k]
Zi

(t) ≤
k−1∑

i=1

W̄
i,[k−1]
Zi

(t) + W̃ k
Zk

(t).
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Let

ν = inf

{

t ≥ 0,

k−1∑

i=1

W̄
i,[k−1]
Zi

(t) + W̃ k
Zk

(t) = 0

}

.

We clearly have P(ν < ∞) = 1 because

lim
t→∞

1

t

∫ t

0

(
k−1∑

i=1

ri,[k−1](u) + φkr̃k(u)

)

du =
k−1∑

i=1

ρi + φkRk >

k∑

i=1

ρi.

The random time ν (which depends on the Zi ’s) is a coupling time: for all t ≥ ν, we
have W̄

i,[k]
0 (t) = W̄

i,[k]
Zi

(t). Also by taking Zi = W̄ i,[k](0) constructed above, we see

that the processes W̄
i,[k]
0 and W̄ i,[k] couple and the uniqueness follows.

It remains to show that queues that are not in S are unstable under the addi-

tional condition ρK+1

φK+1 > R. First assume that K = N − 1. In this case ρN

φN > R im-

plies that ρ > 1, since ρ − 1 = ρN − φNR. Now for any finite workload process
(W1(t), . . . ,WN(t)) of queues 1, . . . ,N for t ≥ 0, we have for all i ≤ N − 1,

Wi (t) ≤ W̄
i,[N−1]
Wi (0)

(t), ∀t ≥ 0.

Moreover, a standard result for the single server queue gives:
∑N

i=1 Wi (t) ∼ (ρ −1)t .
This shows that WN(t) → ∞ as t → ∞ and WN(t) ∼ (ρ − 1)t = (ρN − φNR)t . In
this case, the proposition follows.

We assume now that ρK+1

φK+1 > R (with the possible value 0 for K , in which case
R = 1). This ensures that ρ > 1. Due to the ordering of the subscripts, we have

∑N
i=K+1 ρi

∑N
i=K+1 φi

> R.

If we replace the classes K + 1, . . . ,N by a unique virtual class with weight∑N
i=K+1 φi and we assume that this virtual class is always claiming its full share

of the service rate. The service rate received by this virtual class is clearly an upper
bound for the sum of the service rates received by the classes K + 1, . . . ,N . Note
that the system with this virtual class is the same as the one described above. Hence
this virtual class receives mean service rate

∑N
i=K+1 φiR and we have for any finite

workload process (W1(t), . . . ,WN(t)) defined on R+ (we denote I(t) = {i, Wi (t) =
0} ⊂ {1, . . . ,K}),

lim sup
t→∞

1

t

∫ t

0

φK+1 + · · · + φN

∑
j∈I(u) φ

j
du ≤

N∑

i=K+1

φiR.

In particular, we have

lim sup
t→∞

1

t

∫ t

0

1
∑

j∈I(u) φ
j

du ≤ R.
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Hence for i ≥ K + 1, we have

lim sup
t→∞

1

t

∫ t

0

φi

∑
j∈I(u) φ

j
du ≤ φiR < ρi.

Hence we have Wi (t) → ∞ as t → ∞ for i ≥ K + 1 so that we actually have

the equality: limt→∞ 1
t

∫ t

0
φi

∑
j∈I(u) φj du = φiR, and then Wi (t) ∼ (ρi − φiR)t as

t → ∞. �

Remark 3 1. We assumed ρK+1

φK+1 > R in order to avoid the critical case (corresponding
to ρ = 1 in the single server queue).

2. In the work of Borst, Boxma and Jelenković [11], stability issues are also con-
sidered (see their Lemma 4.1). However their notion of stability is weaker than our
Definition 4 and it corresponds to the fact that the mean service rate is equal to the
rate of the input (see their Remark 4.1). Also, they assume the existence of the mean
service rates for each class (see their Appendix A) and then derive the equations they
must solve. Our Theorem 1 shows that for stationary ergodic inputs, these mean ser-
vice rates exist and are equal to ρi for the stable classes (i.e. for i ∈ S) and to φiR

otherwise. This strong result was not needed in [11] for the derivation of the tail
asymptotics.

In what follows it will be convenient to consider a GPS system with weights
φ1, . . . , φN (not satisfying condition (5)) but with greedy classes, i.e. the classes
K + 1, . . . ,N are continuously claiming their full share of the service rate. The other
classes behave “normally”, i.e. the input processes {T �

n , σn} satisfy the stationary er-
godic conditions. The following result is a direct consequence of Theorem 1.

Proposition 1 For any finite initial conditions Y ∈ R
N+ , the process

∑K
i=1 Wi

Y (t) is
stable if

K
max
j=1

ρj

φj
<

1 − ∑K
i=1 ρi

1 − ∑K
i=1 φi

:= R. (15)

Moreover there exists a mean service rate for the greedy queues, in the following
sense: for any finite initial condition Y , let IY (t) = {i ≤ K, Wi

Y (t) = 0}, then we
have

lim
t→∞

1

t

∫ t

0

1
∑K

i=1 φi1i /∈IY (u) + ∑N
i=K+1 φi

= R.

Hence the mean service rate of greedy queue j is φjR.

In the case maxj
ρj

φj > R, at least one of the queues 1, . . . ,K is not stable.

2.2 Rare events in GPS queues

In this section we consider a stable GPS system with ρ < 1. W.l.o.g. we assume
that the ordering (5) holds. We are interested in the effect of a very big service time
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of size σ arriving in queue j at time T
j

0 . Hence we consider the workload process

given by (1)–(4) for t ≥ T
j

0 , with initial condition (W 1(T
j

0 −), . . . ,WN(T
j

0 −)), i.e.
in the stationary regime but we replace σ0 by a deterministic value σ . We assume
w.l.o.g. that T

j

0 = 0 and we denote W {j}(σ, t) = (W 1,{j}(σ, t), . . . ,WN,{j}(σ, t)) the
corresponding workload process.

Let T (σ ) > 0 be the first time for queue j to empty. On the interval [0, T (σ )], the
queue j is always backlogged. Hence we are exactly in the situation of Proposition 1
with queue j as a greedy queue and if

max
i �=j

ρi

φi
>

1 − ∑
i �=j ρi

1 − ∑
i �=j φi

,

then at least one queue i �= j begins to grow on this period of time. Hence the situation
at time T (σ ) is that some queues are very big and will remain backlogged for a long
period of time. Indeed we are still in the situation of Proposition 1 but this time with
a set of greedy queues. We need to introduce some notations in order to describe the
situation. Given a set D = {d1, . . . , dn} ⊂ {1, . . . ,N}, with d1 ≤ · · · ≤ dn, consider a

GPS system in which queues {1, . . . ,N}\D are greedy. We still have ρd1

φd1
≤ · · · ≤ ρdn

φdn
.

Hence results of previous section apply (set ρi = ∞ for i /∈ D) and we denote

K(D) = max
i=1,...,n

{

i : ρdi

φdi
<

1 − ∑i−1
�=1 ρd�

∑n
�=i φ

d� + ∑
j /∈D φj

}

,

S(D) = {d1, . . . , dK(D)},

R(D) = 1
∑

j /∈S(D) φ
j

(

1 −
∑

j∈S(D)

ρj

)

,

with the convention
∑0

−1 = ∑
∅ = 0. In words, if queues that are not in D continu-

ously claim their full share of the service rate, then di ∈ S(D) implies that class di

is stable and for a class i /∈ D, it will receive a service rate of φiR(D). In the case
D = {j}, we will use the notation (j) instead of ({j}). It is easy to see that:

N∑

i=1

ρi < 1 ⇒ R(j)φj > ρj . (16)

Also if

ρi

φi
< R(j), (17)

then queue i is insensitive to queue j in the sense that it will remain stable for any
value of ρj . Note that it is always the case if ρi < φi .

We now analyze the effect of a very big service time in class j when condition
(17) is not satisfied. We will attach a superscript .{j} to the constants that are cal-
culated in this case. We first describe the intuitive picture that will be made rig-
orous using fluid limits. Because of (16), the output rate of class j is bigger than
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the input rate. Hence queue j will empty at a time T (σ ) which is approximately
σ

φj R(j)−ρj . We denote f
{j}
1 = 1

φj R(j)−ρj . Moreover, during this time queues of the
classes k ∈ {1, . . . ,N}\(S(j) ∪ {j}) start to build up and reach an approximate level
σz

k,{j}
1 at time T (σ ) where we have:

z
k,{j}
1 =

∫ f
{j }
1

0

(
ρk − γ k,{j}(u)

)+
du,

γ k,{j}(t) = φkR(j)1{t≤f
{j }
1 }.

We also denote:

I1 = {1, . . . ,N}\(S(j) ∪ {j}), i
{j}
1 = j.

At time T (σ ), queues k ∈ I1 are backlogged and will receive a service rate φkR(I1),
whereas other queues including j are stable. Hence for � ≥ 1, we define:

f
{j}
�+1 = min

i∈I�

{
z
i,{j}
�

φiR(I�) − ρi

}

+ f
{j}
� ,

{
i
{j}
�+1

} = arg min
i∈I�

{
z
i,{j}
�

φiR(I�) − ρi

}

,

I�+1 = I�\
{
i
{j}
�

}
,

γ k,{j}(t) = φkR(I�)1{f {j }
� <t≤f

{j }
�+1},

z
k,{j}
�+1 =

∫ f
{j }
�+1

0

(
ρk − γ k,{j}(u)

)+
du.

The interpretation is the following: at time f
{j}
�+1σ , queues {i{j}

�+1} empty whereas

queues in I�+1 reach levels z
k,{j}
�+1 σ . During the time period (f

{j}
� σ, f

{j}
�+1σ), classes

in I� are continuously backlogged.
For all k ∈ {1, . . . ,N}, we defined a function γ k,{j}(t) for t ≤ σ/(1 − ρ) and we

now extend it for values of t > σ/(1 − ρ) by setting: γ k,{j}(t) = ρk . We can now
define the function

wk,{j}(σ, t) =
∫ t

0

(
ρk − γ k,{j}(u/σ)

)+
du ∀j �= k,

wj,{j}(σ, t) =
(

σ +
∫ t

0

(
ρj − φjR(j)

)
du

)+
.

Let w{j}(σ, t) = (w1,{j}(σ, t), . . . ,wN,{j}(σ, t)) be the multidimensional function.
Since the sequence of sets {I�} is decreasing, it is easy to see that R(I�+1) > R(I�).
Figure 1 illustrates the shape of functions w{j}(σ, ·) for a given σ .
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Fig. 1 Functions w{j}(σ, ·) for
fixed σ

Proposition 2 If ρ < 1, we have for any constant α,β > 0, as n → ∞,

sup
σ>nα,t≤β

∣
∣
∣
∣
W {j}(σ,nt) − w{j}(σ,nt)

n

∣
∣
∣
∣ → 0, a.s.

The proof of this proposition is deferred to Appendix. It will be our main tool
for the computation of the tail asymptotics presented below. It plays a similar role
as Proposition 5.1 in [17] in the study of tail asymptotics for generalized Jackson
networks [8].

3 Tails in GPS queues with subexponential service time distributions

3.1 Stochastic assumptions and main results

In this section, we restrict the framework of Sect. 2: we assume that each arrival
process {T j

n }n∈Z is a renewal process which is independent of the arrival processes
of classes i �= j . We also assume that the sequence of service times of classj denoted
by σ

j
n is a sequence of i.i.d. random variables with finite mean. Recall that for each

j ∈ {1, . . . ,N}, we have E[T j

1 − T
j

0 ] = 1
λj < ∞, ρj = λj

E[σ j

0 ] and ρ = ∑N
j=1 ρj .

We assume moreover that for any i �= j , we have ρi �= R(j)φi . Recall that this is
always true in the case i = j since ρ < 1 see (16).

We will consider two cases concerning the distribution of the service times.

Assumption 1 The distribution of the service times of class i, P(σ i
0 > x) = Fi(x), is

such that F s
i is subexponential.

The other case considered is the following:

Assumption 2 There exists a distribution function F on R+ such that:

1. F has finite first moment M .
2. The integrated distribution F s is subexponential.
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3. The following equivalence holds when x tends to ∞:

P
(
σ

j

0 > x
) ∼ djF (x),

for all j = 1, . . . ,N with
∑N

j=1 dj > 0.

Remark 4 Note that in both cases, we did NOT assume that F is subexponential.

We take the notation of Sect. 2.2 to define the following domains indexed by i, j ∈
{1, . . . ,N}:

�i,{j}(x) = {
(σ, t) ∈ R

2+, wi,{j}(σ, t) > x
}
.

We are now able to state the main result

Theorem 2 Consider a stable GPS system of N queues. We assume that one of the
following conditions holds:

• Assumption 1 is satisfied and ρi < φi ;
• Assumption 2 is satisfied.

Let Wi be the stationary workload of queue i. When x → ∞, we have

P
(
Wi > x

) =
N∑

j=1

λj

∫ ∫

{(σ,t)∈�i,{j }(x)}
P
(
σ j ∈ dσ

)
dt + o

(
F

s
(x)

)
. (18)

We will prove Theorem 2 in Sect. 4. As an intermediate result, we will prove the
following theorem which extends Pakes’ Theorem [23] to a more general setting and
might be of interest by itself.

Theorem 3 Let W be the stationary workload of a single server queue fed by the
superposition of N independent GI/GI processes with Assumption 2 satisfied. Then
we have

P(W > x) ∼ λ

1 − ρ
P
(
σS > x

)
,

where λ is the intensity of the arrival process, ρ is the traffic intensity and the distri-
bution of σS is the integrated tail of the (Palm) distribution of the service time.

Remark 5 This result extends Theorem 4.1 of Asmussen, Schmidli and Schmidt [4],
in which the arrival process is the superposition of renewal processes but the service
times are supposed to be i.i.d.

3.2 Reduced-load equivalence and induced burstiness

We now comment on our main Theorem 2 and show how it extends existing results
in the literature. The main results in the literature (see [1] for a survey) reveal a
dichotomy in the qualitative behavior, depending on the traffic intensities and the
weight values of the various classes:
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• Reduced-load equivalence occurs when an individual class with subexponential
characteristics is served at a constant rate, which is determined by the average
rates of the other classes.

• Induced burstiness occurs when an individual class is strongly affected by exces-
sive activity of ‘heavier’-tailed classes and inherits their traffic characteristics.

The term reduced-load equivalence was first coined in the context of fluid queues with
subexponential activity periods [2] and the term induced burstiness first appeared
in [10]. We will show that our results allow us to consider mixed cases where both
phenomena come into play.

We first give some conditions for reduced-load equivalence to hold.

Proposition 3 We denote by Wi,c the stationary workload of a single server queue
fed by arrivals of class i with constant service rate c. If one of the following conditions
holds:

(a) ρi < φi and Assumption 1 holds;
(b) Assumption 2 holds with dj = 0 for all j �= i;
(c) Assumption 2 holds with di > 0 and F

s ∈ R(−∞);

then the following reduced-load equivalence holds: P(Wi > x) ∼ P(Wi,φiR(i) > x).

This proposition follows easily from Theorem 2 and corresponds (with slightly
different conditions) to the reduced-load equivalence proved in [11], Theorems 3.1
and 4.1. Proposition 3 states that the workload of the class i is asymptotically equiv-
alent to that in an isolated system where class i would be served at constant rate
φiR(i), which is the average rate that class i receives when it continuously claims its
full share of the service rate. Asymptotically, the workload of class i is only affected
by the traffic characteristics of the other classes through their average rates. In other
words, temporary instability caused by other classes (possibly heavier) does not sub-
stantially influence the workload of class i. Condition (a) ensures stability of class
i regardless of the activity of the other classes. Condition (b) ensures that class i is
the ‘heaviest’-tailed class. In the case of condition (c), the distribution F s is not suf-
ficiently ‘heavy’ for other classes to impact asymptotically class i. This case extends
results of [11] and is new.

We now give some cases of induced burstiness.

Proposition 4 If Assumption 2 holds with di = 0 and if F
s ∈ R(−α) with 0 <

α < ∞, then the following induced burstiness holds: P(Wi > x) ∼ CiF
s
(x), where

the constant Ci depends only on the parameters ρj , λj , dj , for j ∈ {1, . . . ,N}
and α.

This proposition follows directly from Theorem 2. We now treat an example in
detail.

Example 1 We suppose N = 2 and Assumption 2 holds with d2 = 0, d1 = 1 and

F
s ∈ R(−α). We also assume that ρ1

φ1 < 1 <
ρ2

φ2 . The first inequality is implied by
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Fig. 2 GPS with two classes:
big service in class 1

the stability condition ρ < 1 and we are in the following case: a big service time of
class 1 induces an instability of queue 2. The corresponding fluid limits are depicted
in Fig. 2.

As stated by Proposition 4, we are in the situation where there is induced burstiness
for class 2. The corresponding domain is easy to compute,

�2,{1}(x) =
{

(σ, t), t >
x

ρ2 − φ2
, σ > x + (1 − ρ)t

}

.

Then we can apply Theorem 2 and we get

P
(
W 2 > x

) ∼ λ1
∫ ∞

x

ρ2−φ2

P
(
σ 1 > x + (1 − ρ)t

)
dt

∼ λ1

1 − ρ
F

s
(

x(1 − ρ1)

ρ2 − φ2

)

∼ λ1

1 − ρ

(
1 − ρ1

ρ2 − φ2

)−α

F
s
(x).

The computations done in the previous example can be made for any value of N

and we see that any class that makes the queue i temporary unstable, will contribute
to the tail asymptotics of the workload of class i in a non-trivial way given by the
shape of the domains. In our framework, Theorem 5.1 of [11] corresponds to cases
where only one class can make queue i temporarily unstable and the corresponding
domain has a shape similar to the one of �2,{1}(x) in the previous example. Our
Theorem 2 does not require any condition on the shape of the domains and as soon
as N ≥ 3, these domains can have quite intricate shapes (see Lemma 3 in the next
section) and more than one class can make class i temporarily unstable.

We now consider a case where service times have similar characteristics in both
classes and neither reduced-load equivalence nor induced burstiness happens.
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Example 2 Consider Example 1 but with d1 = d2 = 1. Then by Theorem 2, we have

P
(
W 2 > x

) ∼ λ1
∫ ∞

x

ρ2−φ2

F
(
x + (1 − ρ)t

)
dt + λ2

∫ ∞

0
F

(
x + (1 − ρ)t

)
dt

∼
(

λ1

1 − ρ

(
1 − ρ1

ρ2 − φ2

)−α

+ λ2

1 − ρ

)

F
s
(x).

The first part of the right-hand term is exactly the same as in Example 1. The second
part of the right-hand term corresponds to a reduced-load equivalence: class 2 receiv-
ing a service rate of φ2R(2) = 1 −ρ1. We see that in this case both phenomena come
into play.

If Assumption 2 holds, we call the set {i, di > 0}, the set of dominant classes. In
summary, we see that

1. if ρi < φi , reduced-load equivalence occurs (provided class i is heavy-tailed);
2. if class i is a dominant class and the corresponding integrated tail is rapidly vary-

ing, then reduced-load equivalence occurs;
3. if class i is not a dominant class and the integrated tail of the dominant classes is

regularly varying, then induced burstiness occurs;
4. if class i is a dominant class and the integrated tail of the dominant classes is reg-

ularly varying, then the tail asymptotics of class i are the sum of two contributions
corresponding to both phenomena.

Points 1, 2 and 3 are in accordance with results of [11]. Point 4 is new for a GPS
system (similar results were obtained for a queue with unit capacity fed by several
on–off flows [29]).

4 Proof of the tail asymptotics

The GPS system does not fit exactly in the framework of [6]. If we consider the
global workload (which is a G/G/1 queue), we have a monotone separable network,
but the service times are not i.i.d. and it is not possible to directly apply the results
of [6]. Hence we need to adapt the argument to our framework in order to derive the
single-big-event theorem for our GPS system. Except in Sect. 4.4, we assume that
Assumption 2 holds.

4.1 The single-big-event theorem

We first construct an upper bound for W . We consider N virtual GI/GI/1 queues
with respective input process {T j

n , σ
j
n }n∈Z and with server capacity r̃ j = ρj + 1−ρ

N
.

We denote by W̃ j the workload at time 0 of these single server queues and W̃ =
W̃ 1 + · · · + W̃N . More formally, we define

ξ
j
n = σ

j
n − r̃ j τ

j
n , S

j
−n =

0∑

i=−n

ξ
j
i , Mj = sup

n≥0
S

j
−n.
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With these definitions, we have W̃ j = (Mj + r̃ j T
j

0 )+, where T
j

0 < 0 is the last arrival
time of class j before time t = 0.

We have [23, 25]: P(W̃ j > x) ∼ Nλj dj

1−ρ
F

s
(x). Moreover the random variables W̃ j

are independent of each other, hence we have

P(W̃ > x) ∼
N∑

j=1

P(W̃ j > x) ∼
N∑

j=1

Nλjdj

1 − ρ
F

s
(x). (19)

The following corollary follows the line of Corollary 5 of [6].

Corollary 1 For any x and j = 1, . . . ,N , let {Kj
n,x} be a sequence of events such

that

1. for any n, the event K
j
n,x and the random variables (σ−n, c−n) are independent;

2. infn≥Nx P(K
j
n,x) → 1 as x → ∞.

For any sequence ηn → 0, let

A
j
n,x = K

j
n,x ∩

{

σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

}

,

Ax =
N⋃

j=1

⋃

n≥Nx

A
j
n,x .

Then, as x → ∞,

P(W̃ > x) ∼ P(W̃ > x,Ax) ∼ P(Ax) ∼
N∑

j=1

∑

n≥Nx

P
(
A

j
n,x

)
. (20)

Proof The proof follows the one of Corollary 5 of [6]. First note that

N∑

j=1

∑

n≥Nx

P
(
A

j
n,x

) =
N∑

j=1

∑

n≥Nx

P
(
K

j
n,x

)
P

(

σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

∼
N∑

j=1

∑

n≥Nx

λj

λ
P

(

σ
j
−n > x + n

(
1 − ρ

Nλ
+ ηn

))

∼
N∑

j=1

λj

λ

Nλ

1 − ρ
djF

s
(x) =

N∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Thus, if the sequences {Kn,x} and {ηn} are such that, for all sufficiently large x,

1. the events A
j
n,x are disjoint for all n ≥ Nx ;

2. A
j
n,x ⊂ {W̃ > x} for all n ≥ Nx ;
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then

P(W̃ > x) ≥ P(W̃ > x,Ax) = P(Ax)

=
N∑

j=1

∑

n≥Nx

P
(
A

j
n,x

) ∼
N∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Combining with (19), we get the equivalence (20).
We now construct two specific sequences {Kj

n,x} and {ηn} satisfying conditions 1
and 2 above and the conditions of the corollary.

We define the following function Cj (n) = ∑0
k=−n 1{ck=j} − 1. On the event

{c−n = j}, we have T−n = T
j

−Cj (n)
, σ−n = σ

j

−Cj (n)
. We can find a non-increasing

sequence εn → 0 such that nεn → ∞ and such that the probabilities of the following
events tend to 1 as n → ∞,

Ln,x =
{∣
∣
∣
∣
S

j
−k

k
− ρ − 1

Nλj

∣
∣
∣
∣ ≤ εk, Nx ≤ k ≤ Cj (n − 1), 1 ≤ j ≤ N

}

,

M
j
n =

{∣
∣
∣
∣
Cj (n − 1)

n
− λj

λ

∣
∣
∣
∣ ≤ εn

}

,

N
j
n =

{
∣
∣T j

0

∣
∣ ≤ nεn

r̃j

}

.

Hence the event K
j
n,x = Ln,x ∩ M

j
n ∩ N

j
n satisfies the conditions of the corollary.

Moreover on the event {c−n = j}, we have Cj (n) = Cj (n − 1) + 1 and, S
j

−Cj (n)
=

σ−n + S
j

−Cj (n−1)
.

Now if we take ηn = √
εn, we have

W̃ ≥ S
j

−Cj (n)
− nεn

> x + n

(
1 − ρ

Nλ
+ ηn

)

+ n

(
λj

λ
− εn

)(
ρ − 1

Nλj
− ε(λj /λ)n−1

)

− nεn,

and we see that for sufficiently large n, we have W̃ > x. The fact that the events
A

j
n,x are disjoint follows from the fact that for sufficiently large x, we have εNx ≤

(1 − ρ)/(Nλj ). Indeed on the event A
j
n,x , we have S

j

−Cj (n)
> x and S

j

−Cj (n)+1
≤

(Cj (n)−1)((ρ −1)/(Nλj )+εNx ) ≤ 0. The events {Sj
n > x}∪{Sj

n−1 ≤ 0} are clearly

disjoint in n. It is also easy to see that the events A
j
n,x are disjoint in j . The end of the

proof, i.e. showing that the corollary is true for any sequence K
j
n,x follows exactly

the line of the proof of Corollary 5 of [6] and is omitted. �

From this corollary we derive the following proposition

Proposition 5 For any x and j = 1, . . . ,N , let {Kj
n,x} be a sequence of events such

that
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1. for any n, the event K
j
n,x and the random variables (σ−n, c−n) are independent;

2. infn≥Nx P(K
j
n,x) → 1 as x → ∞.

For any sequence ηn → 0, let

A
j
n,x = K

j
n,x ∩

{

σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

}

,

Ax =
N⋃

j=1

⋃

n≥Nx

A
j
n,x .

Then for any random variable W ≤ W̃ , we have as x → ∞,

P(W > x) = P(W > x,Ax) + o
(
F

s
(x)

)
(21)

=
N∑

j=1

∑

n≥Nx

P
(
W > x,A

j
n,x

) + o
(
F

s
(x)

)
. (22)

Proof We have

P(W > x) = P(W > x,Ax) + P
(
W > x,Ac

x

)

≤ P(W > x,Ax) + P
(
W̃ > x,Ac

x

)
,

but due to the previous corollary we have that P(W̃ > x,Ac
x) = o(F

s
(x)). Hence we

have

P(W > x,Ax) ≤ P(W > x) ≤ P(W > x,Ax) + o
(
F

s
(x)

)
,

which gives (21). The end of the proof is the same as the one of the last corollary. �

4.2 Proof of Theorem 3

First note that W̃ ≥ W . Hence we can apply the previous proposition, with

K
j
n,x =

{∣
∣
∣
∣
S−k

k
− ρ − 1

λ

∣
∣
∣
∣ ≤ εk, Nx ≤ k ≤ n − 1, |T0| ≤ nεn

}

,

where S−k = ∑0
i=−k σi − τi . On the event A

j
n,x , we have W = σ−n + S−n+1 + T A

0 ,
hence

N∑

j=1

∑

n≥Nx

P
(
W > x,A

j
n,x

) ∼
N∑

j=1

∑

n≥Nx

P

(

σ−n > x + n

(
1 − ρ

λ
+ 2εn

)

, c−n = j

)

∼ λ

1 − ρ
F

s
(x).



Queueing Syst

4.3 Computation of the exact asymptotics when Assumption 2 holds

We have to find a sequence of events {Kj
n,x} in order to compute the following sum

Si,{j} =
∑

n≥Nx

P

(

Wi > x,K
j
n,x, σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

.

The first case is easy: when queue i remains stable even if queue j is continuously
backlogged.

Lemma 1 Assume that

ρi

φi
< R(j). (23)

Then we have Si,{j} = o(F
s
(x)).

Proof Under condition (23), we know due to Proposition 1 that the stationary work-
load of queue i exists when queue j is continuously backlogged. We denote this
workload Wi(j). We have Wi ≤ Wi(j) < ∞, and Wi(j) is clearly independent of
(T

j
n , σ

j
n ). Hence we have

Si,{j} =
∑

n≥Nx

P

(

Wi > x,K
j
n,x, σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

≤ P
(
Wi(j) > x

) ∑

n≥Nx

P

(

σ−n > x + n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

= o
(
F

s
(x)

)
. �

We consider now the case ρi

φi > R(j). In this case when queue j experiences a
long backlog (due to a very big service time), queue i is no longer stable and the fluid
limit corresponding to this queue is no longer 0. The remaining steps of the proof of
Theorem 2 are similar to those of Sect. 3 in [8].

Let εn be some sequence of positive real numbers, we define

K
j
n =

{

sup
σ>n

1−ρ
Nλ

t≤2a

∣
∣
∣
∣
W {j}(σ,T−n + nt) − w{j}(σ,nt)

n

∣
∣
∣
∣ ≤ εn,

∣
∣
∣
∣
T−n

n
+ a

∣
∣
∣
∣ ≤ εn

}

.

Due to the results of Sect. 2.2, we have the following lemma

Lemma 2 Let {Kj
n } be the sequence of events defined above. K

j
n and the random

variables σ−n and c−n are independent. There exists a sequence εn → 0 such that we
have P(K

j
n ) → 1 as n → ∞.
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On the event K
j
n ∩ {σ−n > x + n(

1−ρ
Nλ

), c−n = j}, we have (due to the continuity
of wi,{j}),

Wi = wi,{j}(σ−n, na) + nηn, with ηn a r.v. such that |ηn| ≤ εn.

We will need the following lemma on the shape of the domain �i,{j}(x).

Lemma 3 There exist constants {αi,{j}
k , β

i,{j}
k , γ

i,{j}
k }0≤k≤� with α

i,{j}
0 < α

i,{j}
1 <

· · · < α
i,{j}
� , β

i,{j}
k ≤ 1, such that

�i,{j}(x) =
�⋃

k=0

{

α
i,{j}
k x ≤ t < α

i,{j}
k+1 , σ >

x

β
i,{j}
k

+ tγ
i,{j}
k

}

,

with α
i,{j}
�+1 = +∞. Moreover, we have

�i,{i}(x) = {
σ > x + (

φiR(i) − ρi
)
λt

}
.

This lemma follows directly from the definition of the function wi,{j}.
Following exactly the steps of the proof of Theorem 2.1 in [8], we can show that

Si,{j}(x) ∼
�∑

k=0

∑

α
i,{j }
k x≤na<α

i,{j }
k+1 x

P

(

σ−n >
x

β
i{j}
k

+ naγ
i,{j}
k , c−n = j

)

= λj

λa

�∑

k=0

∑

α
i,{j }
k x≤n<α

i,{j }
k+1 x

P

(

σ j >
x

β
i{j}
k

+ nγ
i,{j}
k

)

= λj

�∑

k=0

∑

α
i,{j }
k x≤n<α

i,{j }
k+1 x

P

(

σ j >
x

β
i,{j}
k

+ nγ
i,{j}
k

)

. (24)

This term is of order djF
s
(x/β

i,{j}
0 ) and hence o(F

s
(x)) as soon as F s is rapidly

varying. Summing over j , we obtain the equality (18) of the theorem, which con-
cludes the proof.

4.4 Tail asymptotics when Assumption 1 holds

The stationary workload of the GI/GI/1 queue with input process {T i
n, σ i

n}n∈Z and
service rate φi is clearly a stable upper-bound for Wi . The proof then follows from
the same arguments as above.

Acknowledgements I am thankful to the referee for useful suggestions and to François Baccelli and
Serguei Foss for initiating me to this topic.
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Appendix: Proof of Proposition 2

We consider a sequence σn such that σn > nα. We suppose that σn

n
→ σ ≤ +∞. We

will show that

sup
0≤t≤β

∣
∣
∣
∣
W {j}(σ n,nt) − w{j}(σ n,nt)

n

∣
∣
∣
∣ → 0,

which is sufficient to prove the proposition. For simplicity, we denote W
{j}
n (t) =

W {j}(σ n, t) and w
{j}
n (t) = w{j}(σ n, t).

We first assume that σ < ∞. Let T n
1 be the first positive time at which queue j

becomes empty, i.e. queue j is backlogged on [0, T n
1 ]. Hence we have due to the

result on the mean service rate of Proposition 1,

lim
n→∞

W
j,{j}
n (T n

1 )

n
= σ + (

ρj − φjR(j)
)
(

lim
n→∞

T n
1

n

)

= 0,

from which we derive limn→∞
T n

1
n

= σ/(φjR(j) − ρj ). Now for 0 ≤ t ≤ T n
1 /n, we

can apply Proposition 1 and we have

W
�,{j}
n (nt)

n
→ (

ρ� − φ�R(j)
)+

t, ∀� �= j,

W
j,{j}
n (nt)

n
→ σ + (

ρj − φjR(j)
)
t.

We have shown in the case σ < ∞ that for all j ,

sup
0≤t≤f

{j }
1 σ

∣
∣
∣
∣
W

{j}
n (nt) − w

{j}
n (nt)

n

∣
∣
∣
∣ → 0.

Moreover, we see that at time T n
1 , the queues k ∈ I1 are backlogged. Define T 2

n as the
first time at which one of these queues becomes empty. Using Proposition 1 in the
same manner, we obtain that T n

2 /n → σf
{j}
2 and that

sup
0≤t≤f

{j }
2 σ

∣
∣
∣
∣
W

{j}
n (t) − w

{j}
n (nt)

n

∣
∣
∣
∣ → 0.

Hence in the case σ < ∞, the proposition follows by iterating the same kind of argu-
ments.

In the case σ = +∞, since T n
1 ≥ σn, we have for sufficiently large n that T n

1 ≥ nβ .
Hence for all k �= j , we have with the same argument as above that

sup
0≤t≤β

∣
∣
∣
∣
W

k,{j}
n (nt) − w

k,{j}
n (nt)

n

∣
∣
∣
∣ → 0,
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and for k = j , we have for all t ≤ β ,

W
j,{j}
n (nt) − σn

n
→ (

ρj − φjR(j)
)
t.

This concludes the proof.
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