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ABSTRACT
Getting new security features and protocols to be widely
adopted and deployed in the Internet has been a continuing
challenge. There are several reasons for this, in particular
economic reasons arising from the presence of network ex-
ternalities. Indeed, like the Internet itself, the technologies
to secure it exhibit network effects: their value to individual
users changes as other users decide to adopt them or not.
In particular, the benefits felt by early adopters of security
solutions might fall significantly below the cost of adoption,
making it difficult for those solutions to gain attraction and
get deployed at a large scale.

Our goal in this paper is to model and quantify the impact
of such externalities on the adoptability and deployment of
security features and protocols in the Internet. We study a
network of interconnected agents, which are subject to epi-
demic risks such as those caused by propagating viruses and
worms, and which can decide whether or not to invest some
amount to deploy security solutions. Agents experience neg-
ative externalities from other agents, as the risks faced by an
agent depend not only on the choices of that agent (whether
or not to invest in self-protection), but also on those of the
other agents. Expectations about choices made by other
agents then influence investments in self-protection, result-
ing in a possibly suboptimal outcome overall.

We present and solve an analytical model where the agents
are connected according to a variety of network topologies.
Borrowing ideas and techniques used in statistical physics,
we derive analytic solutions for sparse random graphs, for
which we obtain asymptotic results. We show that we can
explicitly identify the impact of network externalities on the
adoptability and deployment of security features. In other
words, we identify both the economic and network proper-
ties that determine the adoption of security technologies.
Therefore, we expect our results to provide useful guidance
for the design of new economic mechanisms and for the de-
velopment of network protocols likely to be deployed at a
large scale.
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1. INTRODUCTION
Negligent users who do not protect their computer by reg-

ularly updating their antivirus software and operating sys-
tem are clearly putting their own computers at risk. But
such users, by connecting to the network a computer which
may become a host from which viruses can multiply and
spread, also put (a potentially large number of) computers
on the network at risk. In this situation, users and com-
puters on the network face epidemic risks. Epidemic risks
are risks which depend on the behavior of other entities in
the network (such as whether or not those entities invest
in security solutions to minimize their likelihood of being
infected). Our goal is to analyze the strategic behavior of
agents facing such epidemic risks. In particular, we charac-
terize the incentives for agents to buy and deploy security
technologies.

Understanding and optimizing the behavior of agents fac-
ing epidemic risks is an important problem, because epi-
demic risks are common and their impact severe. Epidemic
risks have been faced by Internet users for some time now,
and they are propagated by a variety of malware such as
viruses and worms [22]. Worms in particular have been
the subject of much attention since the Morris worm [17]
in 1988 (with subsequent high-profile worms such as Code
Red in July 2001 [15] focusing renewed attention on the
problem) because they can propagate extremely fast [18],
so fast that signature-based detection and prevention sys-
tems cannot build and update signatures in time to block
the worms.

A key characteristic of an Internet worm is self-propagation.
That is, active worms can spread rapidly by infecting com-
puter systems and by using infected hosts to disseminate
the worms in an automated fashion. There exist a wide va-
riety of worms [21], but most of them can be conveniently



divided into two types, namely scan-based and topology-
based worms.

A scan-based or scanning worm finds new victims by scan-
ning Internet addresses and then attacking whatever is at a
target address. A scanning worm might probe the entire IP
address space, or a subset (considered optimal by the worm
in some fashion), or the routable address space. When a
target address is found, the worm sends out a probe to in-
fect it. After the target is compromised, the worm transfers
a copy of itself to that host, and the newly infected host
then begins to run the worm program and attempts to com-
promise further targets. Worms can propagate extremely
rapidly: for example, the Slammer worm, one of the fastest
scanning worm observed, exploited Microsoft’s SQL server
with a single 376-byte UDP packet and infected more than
90% of vulnerable hosts in 10 minutes on January 25, 2003
[15].

A topology-based worm spreads through topological neigh-
bors. For example, the Morris worm [17] retrieved the neigh-
bor list from local Unix files /ect/hosts.equiv and /.rhosts
and from .forward and .rhosts files. Another topological
worm is a SSH worm, which locates new targets by search-
ing its current host for the names and addresses of other
hosts which are likely to be susceptible to infection. Email
worms are another example of topological worms, they use
the address book to send copies of themselves to other email
addresses.

The propagation of worms and viruses, but also many
other phenomena in the Internet such as the propagation of
alerts and patches or of routing updates, can be modeled
using epidemic spreads through a network (e.g. [23, 20]).
As a result, there is now a vast body of literature on epi-
demic spreads over a network topology from an initial set
of infected nodes to susceptible nodes (see for example [7]).
However, much of that work has focused on modeling and un-
derstanding the propagation of the epidemics proper, without
considering the impact of network effects and externalities.

Recent work which did model such effects has been limited
to the simple case of two agents, i.e. a two-node network.
Specifically, reference [11] proposes a parametric game theo-
retic model for such a situation. In the model, agents decide
whether or not to invest in security and agents face a risk of
infection which depends on the state of other agents. The
authors show the existence of two Nash equilibria (all agents
invest or none invests), and suggest that taxation or insur-
ance would be ways to provide incentives for agents to invest
(and therefore reach the ”good” Nash equilibrium). How-
ever, their approach does not scale to the case of n agents,
and does not handle various network topologies connecting
those agents. Our work specifically addresses those limita-
tions.

We make three contributions in this paper.
First, we develop a model which captures both the propa-

gation of epidemic risks and the existence of network exter-
nalities.

Second, we introduce sophisticated new techniques, such
as recursive tree processes and recursive distributional equa-
tions [1], to tackle and solve the economic study of epidemic
risks on large networks with arbitrary topologies.

Third, we show how to compute the price of anarchy to
compare equilibria. Our results provide useful guidance for
the design of new economic mechanisms and for the devel-
opment of network protocols likely to be deployed at a large

scale.
The rest of the paper is organized as follows. In Section

2, we describe our model, starting with the epidemic model,
then the economic model for the agents, and finally the com-
bined economic model for epidemic risks. In Section 3, we
consider the 2-agents model and present known results for
optimal self-protection. We also introduce the price of an-
archy and the price of stability in our model. In Section 4,
we show how the local weak convergence introduced by Al-
dous and Steele [2] allows us to analyze our model for sparse
random graphs. We treat the case of Erdös-Rényi graphs
in details. In Section 5, we apply the results obtained to
compute asymptotics, as the population grows, of the price
of anarchy and the price of stability of our system. We also
show the existence of a tipping or cascading phenomenon,
which leads to very practical advice on how to increase the
overall security of networks. In Section 6, we explain how
our results can be generalized to other graphs structures and
conclude the paper.

2. A MODEL FOR EPIDEMIC RISKS

2.1 Epidemic model
We first describe our model for the spread of a worm, or of

an attack in general. This model may seem simplistic at first
but the reader must remember that we will have to construct
and analyze, in a second step, an economic model on top of
this epidemic model. Furthermore, our goal is not to capture
the minutia of worm propagation, but to obtain a (hopefully
mathematically tractable) model which captures the salient
features of malware propagation in the Internet and provide
actionable insights for network and security architects.

To simplify our analysis, we consider one-period proba-
bilistic models for the risk, in which all decisions and out-
comes occur in a simultaneous instant.

Let G = (V, E) be a graph on a countable vertex set V .
Agents are represented by vertices of the graph. For i, j ∈ V ,
we write i ∼ j if (i, j) ∈ E and we say that agents i and j are
neighbours. The state of agent i is represented by Xi; agent
i is infected (respectively healthy) iff Xi = 1 (respectively
Xi = 0). Then any infected agent contaminates neighbours
independently of each others with probability q. There is no
recovery.

It is convenient to introduce a proper probability space
Ωe for random variables describing the epidemic. We take
Ωe =

Q

(i,j)∈N×N
{0, 1}, points of which are represented as

ωe = (Bij , (i, j) ∈ N × N). For i ∼ j, the value Bij =
1 corresponds to possible contagion between agents i and
j, and Bij = 0 corresponds to the absence of contagion
between these agents. If (i, j) /∈ E, then the value of Bij

is irrelevant to the problem. We assume that the sequence
(Bij , i < j) is a sequence of i.i.d. Bernoulli random variables
with parameter q: P(Bij = 1) = q = 1 − P(Bij = 0). We
define also for i > j, Bij = Bji.

In order to completely describe the epidemic, we need
to specify the ’initial condition’: the set of agents that are
sick before the contagion process takes place. This initial
state is represented by a vector χ; site i is sick (respectively
healthy) before the contagion process takes place iff χi =
1 (respectively χi = 0). Then the fundamental recursion



satisfied by the vector X = (Xi, i ∈ V ) is

1 − Xi = (1 − χi)
Y

j∼i

(1 − BijXj). (1)

Note that the topology of the underlying graph G is arbi-
trary. We will discuss different specific cases for G in Sec-
tions 4 and 6.1.

For now, we need to specify the vector χ. Each χi is
related to the economic decision of agent i concerning its
investment in security and this decision depends on the be-
havior of other entities in the network. So the vector χ is
responsible for the modeling of the network externalities. It
is crucial a crucial part of our model, in fact what makes
this model unique. We discuss it in detail next.

2.2 Economic model for the agents
Some economic background on the expected utility model

and risk aversion is given in Appendix 8.1. The crucial no-
tion of risk premium (denoted by π) is also defined in Ap-
pendix 8.1.

Investments in security involve either self-protection (to
reduce the probability of a loss) and/or self-insurance (to
reduce the size of a loss). For example, intrusion detection
and prevention systems are mechanisms of self-protection.
Denial-of-service mitigation systems, traffic engineering so-
lutions, overprovisioning, and public relations companies are
mechanisms of self-insurance (overprovisioning to reduce the
impact of overloads or attacks, PR firms to reduce the im-
pact of security attack on a company stock price with crafty
messages to investors). It is somewhat artificial to distin-
guish mechanisms that reduce the probability of a loss from
mechanisms that reduce the size of the loss, since many
mechanisms do both. Nevertheless, we focus on self-protection
mechanisms only.

Consider an economy in which each economic agent is en-
dowed with an initial wealth w and faces a potential loss
ℓ. An agent’s utility u(y) is a function of final wealth y.
The utility function is increasing and strictly concave, i.e.
agents are risk-averse (see Appendix 8.1). The agents max-
imize their expected utility of final wealth.

We first look at the problem of optimal self-protection for
only one agent. We denote by c the cost of self-protection
and by p(c) the corresponding probability of loss. We expect
larger investments in self-protection to translate into a lower
likelihood of loss, and therefore we reasonably assume that
p is a non-increasing function of c. The optimal amount of
self-protection is given by the value c∗ which maximizes

p(c)u(w − ℓ − c) + (1 − p(c))u(w − c). (2)

Consider the simple case where the loss probability is either
one of two values, namely p(c) = pN if c < ct or p(c) = pS if
c > ct, with pN > pS. The optimization problem (2) above
becomes easy to solve: indeed, the optimal expenditure is
either 0 or ct.

In the rest of the paper, we assume that the choice of an
agent regarding self-protection is a binary choice: either the
agent does not invest, or it invests ct which will be denoted
c for simplicity. There are two possible economic states for
agent i: if it decides to invest in self-protection, we say that
agent is in state S (as in Safe or Secure). If it decides not
to invest in self-protection, we say that agent i is in state N
(as in Not safe). In state N , the expected utility is pNu(w−
ℓ) + (1 − pN)u(w); whereas in state S, the expected utility

is pSu(w − ℓ− c) + (1− pS)u(w − c). Using the definition of
risk premium in Appendix 8.1, we see that these quantities
are equal to u(w−pNℓ−π(pN)) and u(w− c−pSℓ−π(pS)),
respectively. Therefore, the optimal strategy is for the agent
to invest in self-protection only if the cost for self-protection
is less than the threshold

c < (pN − pS)ℓ + π(pN) − π(pS). (3)

We now return to our multi-agents setting. We first in-
troduce some notations: for agent i, wi is the initial wealth,
ℓi is the potential loss and ci is the cost for self-protection.
Also we denote by πi the risk premium associated to the
initial wealth wi and the utility function of agent i. Then if
pN

i and pS
i are the loss probabilities depending on whether

agent i invests in self-protection or not, as in (3), the op-
timal strategy is for the agent i to invest in self-protection
only if

ci < (pN
i − pS

i )ℓi + πi(p
N
i ) − πi(p

S
i ). (4)

We denote Di = 11(ci < (pN
i − pS

i )ℓi + πi(p
N
i ) − πi(p

S
i )), so

that Di = 1 if the optimal strategy for agent i is to invest
in self-protection and Di = 0 if his optimal strategy is not
to invest. We assume agents apply best-response updates,
Di = 1 if agent i is in state S and Di = 0 if he is in state N .

2.3 Epidemic risks for interconnected agents
We now have a model for epidemic propagation between

agents and an economic model for those agents. We next
present a combined economic model for epidemic risks for
interconnected agents.

There are several ways in which we could combine the
propagation and economic models presented earlier. We
present here a natural way which depends on two param-
eters p− and p+, 0 ≤ p− < p+ ≤ 1. Note that there are
two possible ways in which a loss can occur: it can either be
caused directly by an agent itself (direct loss), or indirectly
by contagion via the actions of others (indirect loss). The
variable χi (above in Section 2.1) is equal to 1 when a direct
loss occurs to agent i and 0 if no direct loss occurs; the vari-
able Xi is equal to 1 when a direct or indirect loss occurs to
agent i and 0 otherwise.

For our model, we define the probability of direct loss
as follows: if an agent invests in self-protection, then the
probability of direct loss is p−. If an agent does not invest in
self-protection, then the probability of direct loss is p+ ≥ p−.
Formally, we have

χi = BS
i Di + BN

i (1 − Di), (5)

where (BS
i , i ∈ N) and (BN

i , i ∈ N) are sequences of i.i.d.
Bernoulli random variables independent of everything else
with respective parameters p− and p+.

Note that the quantities pN
i and pS

i are given by

pN
i = E[Xi|Di = 0]

pN
i = 1 − E

"

(1 − BN
i )
Y

j∼i

(1 − BijXj)

#

(6)

and

pS
i = E[Xi|Di = 1]

pS
i = 1 − E

"

(1 − BS
i )[
Y

j∼i

(1 − BijXj)

#

(7)



Our model is defined by the graph G (of arbitrary topol-
ogy) and the set of Equations (1,5,6,7). Let us now specify
the probability space, we are working on. We already de-
fined Ωe which describes the propagation of the epidemic
given the graph G and the vector χ. We now need to define
the probability space describing the economic behavior of
agents, specifically we need to specify the variables appear-
ing in the definition of χi in (5). In the rest of this paper,
we will make a simplifying assumption, namely we consider
a heterogeneous population where agents differ only in self-
protection cost and loss sizes. The cost of protection should
not exceed the possible loss, hence 0 ≤ ci ≤ ℓi. The cost ci

and the possible loss ℓi are known to agent i and vary among
the population. Hence we model this heterogeneous popu-
lation by taking the sequence (ci, ℓi, i ∈ N) as a sequence
of i.i.d. random variables in R

2 independent of everything
else. We also assume that the function πi(x) = π(x) does not
depend on i. We can now introduce the probability space
Ωs =

Q

i∈N
{0, 1}2 × R

2, points of which are represented

as ωs = (BS
i , BN

i , ci, ℓi, i ∈ N). The probability measure
taken on Ωs has been described above. Finally, we define
Ω = Ωe × Ωs equipped with the standard product σ-field
and with probability the product of the measures defined on
Ωe and Ωs. Points of Ω are called configuration and repre-
sented as ω = (Bij , B

S
i , BN

i , ci, ℓi, i, j ∈ N).

Summary of notations:

• ci and ℓi are the cost of self-protection and the amount
of loss for agent i;

• π is the risk premium of the agents;

• p− = P(BS
i = 1) is the probability of direct loss when

investing in self-protection;

• p+ = P(BN
i = 1) is the probability of direct loss when

not investing in self-protection;

• q = P(Bij = 1) is the probability of contagion;

• Equation (1) is:

1 − Xi = (1 − χi)
Y

j∼i

(1 − BijXj)

• Equation (5) is:

χi = BS
i Di + BN

i (1 − Di)

• Equations (6) and (7) are

pN
i = 1 − E

"

(1 − BN
i )
Y

j∼i

(1 − BijXj)

#

pS
i = 1 − E

"

(1 − BS
i )[
Y

j∼i

(1 − BijXj)

#

;

• Di = 11(ci < (pN
i − pS

i )ℓi + π(pN
i ) − π(pS

i )) is one if
agent i is in state S and zero otherwise.

So far, we have not yet specified the underlying graph G.
We will look at cases where G is random but in all cases,
the graph G is independent of the configuration ω. It is

important to specify precisely Ω since it will allow us to
consider natural couplings between two different graphs say
G1 and G2 coupled by the same configuration ω.

3. INEFFICIENCY OF EQUILIBRIA
This section relates our model to existing models of the

economic, computer science and statistical physics litera-
ture. We show how some notions introduced in those areas
do translate into our framework. We then analyze in de-
tail our model with 2 agents (this corresponds to the model
introduced in [11] for interdependent risks) using standard
tools from game theory. However, it turns out that those
tools are limited to problems with only a few agents and
that new methods are required to study the general case of
arbitrarily large networks and large populations of agents.
Those methods will be described in Section 4.

3.1 Nash equilibria and price of anarchy
There is a clear analogy between our model and disordered

systems studied in statistical physics. Equation (1) describes
the ’microscopic’ interactions between agents, Equation (5)
describes the individual action of each agent and Equations
(6) and (7) introduce a coupling among these agents. From
those equations we try to compute ’macroscopic’ quanti-
ties such as the fraction of the population investing in self-
protection or the probability of being infected averaged over
the population. Goals are similar in statistical physics and
our techniques are largely inspired from tools of that do-
main. We refer to [14] for a discussion of similarities and
differences between systems of interacting players maximiz-
ing their individual payoffs and particles minimizing their
interaction energy.

In the framework of statistical physics, the distribution of
a vector (Xi, i ∈ G) satisfying our model equations would be
called a Gibbs measure (or equilibrium measure). It is well-
known that some interactions have multiple Gibbs measures
and we will see in the next section that for a certain range
of parameters, our model with only two agents (i.e. with
a graph G = ({1, 2}, (1, 2))) has two possible Gibbs mea-
sures. In economic terms, these two measures correspond
to two Nash equilibria. Recall that a Nash equilibrium is
a strategy vector s ∈

Q

i
{Si, Ni} such that no player i can

change its chosen strategy from Si to Ni or Ni to Si and
thereby improve its payoff, assuming that all other players
stick to the strategies they have chosen in s. In this paper,
we consider only pure strategy equilibria where each agent
deterministically plays its chosen strategy [8].

When two equilibria are possible, then it is natural to try
to compare their efficiency. A metric for this purpose is par-
ticularly useful when the outcome of rational behavior by
self-interested agents can be inferior to a centrally designed
outcome. Indeed, a key question then is by how much the
distributed outcome differs from the centrally designed out-
come. The price of anarchy, the most popular measure of
the inefficiency of equilibria, is defined as the ratio between
the worst objective function value of an equilibrium of the
game and that of an optimal outcome (possibly centralized
in which case it will not be described by the model intro-
duced above). The method introduced in Section 4 lets us
compute the price of anarchy for large systems. In our set-
ting, the cost incurred to agent i is ci + pS

i ℓi + πi(p
S
i ) if he

invests in security and pN
i ℓi + πi(p

N
i ) otherwise. So for a

given equilibrium, we can compute the total cost incurred



Table 1: Probability of states

S N
S p(S1, S2) = 0 p(S1, N2) = pq
N p(N1, S2) = p p(N1, N2) = p + (1 − p)pq

to the population. The price of anarchy is the ratio of the
largest (among all equilibria) such cost divided by the opti-
mal cost. The price of anarchy is at least 1 and a value close
to 1 indicates that the given outcome is approximately opti-
mal. We refer to [16] for an introduction to the inefficiency
of equilibria (in particular chapter 17).

A game with multiple equilibria has a large price of an-
archy even if only one of its equilibria is highly inefficient.
The price of stability is a measure of inefficiency designed
to differentiate between games in which all equilibria are in-
efficient and those in which some equilibrium is inefficient.
Formally, the price of stability is the ratio between the best
objective function value of one of the equilibria and that of
an optimal outcome. For a game with multiple equilibria (as
it will be the case here), its price of stability is at least as
close to 1 as its price of anarchy and it can be much closer
(as we will see).

3.2 Interdependent risks
Reference [11] was the first to introduce a model for in-

terdependent security (IDS), specifically a model for two
agents faced with interdependent risks, and it proposed a
parametric game-theoretic model for such a situation. We
now describe it: consider a network of 2 agents sharing one
link. We assume that the cost of investing in self-protection
is c1 = c2 = c, and that a direct loss can be avoided with
certainty when the agent invests in self-protection.

Four possible states of final wealth of an agent result:
without protection, the final wealth is w in case of no loss
and w − ℓ in case of loss. If an agent invests in protection,
his final wealth is w − c in case of no loss and w − c − ℓ in
case of loss (due to possible contagion).

There are four possible economic states denoted by (d1, d2),
where di ∈ {Si, Ni}, di describes the decision of agent i
where Si means that the agent i invests in self-protection,
and Ni means that the agent i does not invest in self-protection.
Kunreuther and Heal [11] examine the symmetric case when
the probability of a direct loss is p for both agents, where
0 < p < 1. Knowing that one agent has a direct loss, the
probability that a loss is caused indirectly by this agent to
the other is q, where 0 ≤ q ≤ 1. To completely specify their
model, they assume that direct losses and contagions are in-
dependent events. Hence with the notations of our model,
we have p− = 0, p+ = p and q is the probability of conta-
gion. The matrix p(d1, d2) describing the probability of loss
for agent 1, in state (d1, d2), is given in Table 2.

The simplest situation of interdependent risks, involving
only two agents, can be analyzed using a game-theoretic
framework. We now derive the payoff matrix of expected
utilities for agents 1 and 2. If both agents invest in self-
protection, the expected utility of each agent is u(w − c).
If agent 1 invests in self-protection (S1) but not agent 2
(N2), then agent 1 is only exposed to the indirect risk pq
from agent 2. Thus the expected utility for agent 1 is (1 −
pq)u(w − c) + pqu(w − c − ℓ) and the expected utility for
agent 2 is (1−p)u(w)+pu(w−ℓ). If neither agent invests in

self-protection, then both are exposed to the additional risk
of contamination from the other. Therefore, the expected
utilities for both agents are pu(w− ℓ)+ (1−p)(pqu(w− ℓ)+
(1 − pq)u(w)). Table 2 summarizes these results and gives
the expected utility of agent 1 for the different choices of the
agents. Note that there is a minor difference with [11] due to
our use of the concave function u which models the fact that
the agents are risk adverse. To recover the model of [11], we
just have to take u(x) = x (and drop the assumption that
agents are risk adverse), in which case we get π(x) = 0.

Assuming that both agents decide simultaneously whether
or not to invest in self-protection, there is no possibility to
cooperate. For investment in self-protection to be a domi-
nant strategy, we need

u(w − c) ≥ (1 − p)u(w) + pu(w − ℓ) and

(1 − pq)u(w − c) + pqu(w − c − ℓ) ≥

pu(w − ℓ) + (1 − p)(pqu(w − ℓ) + (1 − pq)u(w))

With the notations introduced earlier, the inequalities above
become:

c ≤ pℓ + π(p) =: c1,

c ≤ p(1 − pq)ℓ + π(p + (1 − p)pq) − π(pq) =: c0.

Note that in the particular case of non risk adverse agents,
i.e. when π ≡ 0, we have c0 = p(1−pq)ℓ < c1 = pℓ. In most
practical cases, one expects that c0 < c1 still holds, and the
tighter second inequality reflects the possibility of damage
caused by the other agent. Therefore, the Nash equilibrium
for the game is in the state (S1, S2) if c ≤ c0 and (N1, N2) if
c > c1. If c0 < c ≤ c1, then both equilibria are possible and
the solution to the game is indeterminate. More precisely,
the situation corresponds to a coordination game.

3.3 Price of anarchy: the 2-agent case
To summarize, we see that the IDS model of [11] fits in

our model and that even in the simple case of two agents,
different cases have to be considered. We continue the anal-
ysis of this simple example and interpret previous results in
our framework.

Proposition 1. Assume that c0 < c1, then we have

1. if c < c0, there exists an unique solution to our model.
Both agents invest in self-protection and the expected
utility is u(w − c).

2. if c > c1, there exists an unique solution to our model.
Both agents do not invest in self-protection and the
expected utility is u(w−pNℓ−π(pN)) with pN = p(1+
q − pq).

3. if c0 ≤ c ≤ c1, both solutions of points 1 and 2 are
valid for our model and they are the only ones.

4. for any c, the price of anarchy is given by:

Pa(c) = 1 ∨ 11(c ≥ c0)
pNℓ + π(pN)

c
.

5. the price of stability is given by:

Ps(c) = 1 ∨ 11(c ≥ c1)Pa(c).

Proof. We already proved points 1, 2 and 3. We only
need to compute the expected utility. Note that by symme-
try, we have pN

1 = pN
2 and pS

1 = pS
2 so that the vector χ is



Table 2: Expected payoff matrix for agent 1

S2 N2

S1 u(w − c) (1 − pq)u(w − c) + pqu(w − c − ℓ)
N1 (1 − p)u(w) + pu(w − ℓ) pu(w − ℓ) + (1 − p)(pqu(w − ℓ) + (1 − pq)u(w))

either (0, 0) or (Ber1(p), Ber2(p)) where Ber1(p) and Ber2(p)
are Bernoulli random variables with parameter p. The first
case corresponds to (S1, S2) and the second one to (N1, N2).
In case c < c0, the solution to our model is X1 = X2 = 0,
there is no loss and hence the expected utility is just u(w−c).
In the case c > c1, (S1, S2) is not valid and the solution to
our model is (N1, N2) and we have

P((X1, X2) = (1, 1)) = q(1 − (1 − p)2) + (1 − q)p2

P((X1, X2) = (0, 1)) = p(1 − p)(1 − q),

P((X1, X2) = (0, 0)) = (1 − p)2.

Hence we have pN = P(X1 = 1) = p(1 + q − pq) and the
expected utility is (1 − pN)u(w) + pNu(w − ℓ) which corre-
sponds to point 2.

The last points follow from the fact that by symmetry we
have only to compare states (S1, S2) and (N1, N2).

Let simplify our model by dropping the risk adverse as-
sumption as in [11]. Hence, we have π ≡ 0 and c0 =
p(1 − pq)ℓ < c1 = pℓ. Figure 1 shows the corresponding
price of anarchy as a function of the cost for self-protection
c.

1

1 + q

1−pq

c1c0

c

Pa

Figure 1: Price of anarchy: 2-agents case

Note that the amplitude of the price of anarchy is rela-
tively small, of order 1 + q. It will be different in the net-
work setting. Also note that for c0 ≤ c ≤ c1, the price of
stability Ps(c) equals one and is strictly smaller than the
price of anarchy Pa(c). It corresponds to the case where
both Nash equilibra are possible and only one of them is
socially optimal, namely the situation where both agents
choose to invest in self-proctection. When there is only one
Nash equilibrium, there are some situations where the in-
vestment choices are efficient so that the decision by each of
the individual agents are socially optimal. When the costs
for self-protection are sufficiently low c < c0, each agent
wants to invest in self-protection. Also if the costs are very
high c > pℓ + pq(1 − p)ℓ, then it is efficient for no one to
incur them. However for c1 < c < pℓ + pq(1− p)ℓ, the price
of stability is strictly larger than one. In this case there is

only one Nash equilibrium (corresponding to the case where
both agents do not invest in self-protection) and this equi-
libirum is not socially otpimal. The costs are high enough
that each agent does not want to invest in self-protection,
but it would be better for society if all of them did so.

4. EPIDEMIC RISKS ON A RANDOM NET-
WORK

In this section we analyze our model on a large sparse
random graph: G(n) = G(n, λ/n) on n nodes {0, 1, . . . , n −
1}, where each potential edge (i, j), 0 ≤ i < j ≤ n − 1 is
present in the graph with probability λ/n, independently
for all n(n − 1)/2 edges. Here λ > 0 is a fixed constant
independent of n. It corresponds to the case of the Erdös-
Rényi graph which has received considerable attention in
the past [10]. The results of this section are not restricted
to this class of graphs and the analysis can be carried out
for graphs with asymptotic given degree or uniform regular
graphs. The main features of the solution are still valid in
these different cases. We will discuss different extensions of
our model in Section 6.1.

We denote by G(n) the set of graphs on n nodes {0, 1, . . . , n−

1}. Our basic workspace is Ω×G(n) and we denote by X
(n)
i

and χ
(n)
i the random variables satisfying recursions (1, 5, 6,

7) on the random graph G(n) ∈ G(n). First note that by
exchangeability, we have for any fixed n and i 6= j:

pN (n) := E[X
(n)
i |Di = 1] = E[X

(n)
j |Dj = 1], and (8)

pS(n) := E[X
(n)
i |Di = 0] = E[X

(n)
j |Dj = 0]. (9)

We will compute the possible limits (pN , pS) for the se-
quence (pN(n), pS(n)). In Section 4.1, we define a stochastic
(tree-indexed) process Y = (Yi) which allows to construct
the limiting object (as n tends to infinity) of the process

(X
(n)
i , i ∈ G(n)). We explain in Section 4.2 the required

notion of convergence, namely the local weak convergence
introduced by Aldous and Steele [2]. We show that it allows
to compute pN and pS rigorously.

4.1 Exact results for trees
In this section, we suppose that G = T is a tree with nodes

Ø, 1, . . . , n, with a fixed root Ø. For a node i, we denote by
gen(i) ∈ N the generation of i, i.e. the length of the minimal
path from Ø to i. Also we denote i → j if i is a children
of j, i.e. gen(i) = gen(j) + 1 and j is on the minimal path
from Ø to i.

Also, we fix pN and pS so that the random variables χi

defined in (5) are i.i.d. Bernoulli random variables with
parameter κ(γ) = p−γ + p+(1 − γ) where

γ = P((pN − pS)ℓ + π(pN) − π(pS) ≥ c1).

For an edge (i, j) ∈ E with i → j, we denote by Ti→j

the sub-tree of T with root i when deleting edge (i, j) from
T . Here the formal probability space introduced in Section
2.3 will be useful: we have a family of trees Ti→j and we



run the epidemic model according to equation (1) with the
same configuration ω = (Bij , B

S
i , BN

i , ci, ℓi, i, j ∈ N) on each
tree. For a given configuration ω, we say that node i is
infected from Ti→j if the node i is infected in Ti→j on the
same configuration ω. We denote by Yi the corresponding
indicator function with value 1 if i is infected from Ti→j and
0 otherwise. A simple induction shows that the recursion
(1) becomes:

1 − Yi = (1 − χi)
Y

k→i

(1 − BkiYk) . (10)

Note that we can compute all the Yi recursively starting
from the leaves with Yℓ = χℓ for any leaf ℓ. As a consequence
(and it is the main difference with (1) that makes the model
on a tree tractable), the random variables Yk with k →
i in the right-hand term of (10) are independent of each
others and independent of the Bki. For any node i ∈ T , we
just defined Yi and the family (Yi, i ∈ T ) is a tree-indexed
process.

We now consider trees of specific types. Given a constant
λ > 0, a depth-d Poisson tree T (λ, d) with parameter λ and
depth d is constructed as follows: the root node has a degree
which is a random variable distributed according to a Pois-
son distribution with parameter λ. All the children of the
root have out-degrees which are also random, distributed
according to a Poisson λ distribution. We continue this pro-
cess until either the process stops at some depth d′ < d,
where no nodes in level d′ has any children or until we reach
level d. In this case, all the children of nodes in level d are
deleted and the nodes in level d become leaves. For d = ∞,
we just denote by T (λ) the Poisson tree.

Then Equation (10) defines a tree-indexed process (Yi, i ∈
T (λ, d)), called a Recursive Tree Process (RTP) in [1]. We
also introduce the associated Recursive Distributional Equa-
tion (RDE):

Y
d
= 1 − (1 − χ)

N
Y

k=1

(1 − BkYk), (11)

where N has a Poisson λ distribution, χ has a Bernoulli dis-
tribution with parameter κ(γ), Bk are i.i.d. Bernoulli ran-
dom variables with parameter q, Y and Yk are i.i.d. copies
and all random variables are independent of each others.
RDE for RTP plays a similar role as the equation µ = µK
for the stationary distribution of a Markov chain with kernel
K, see [1].

Proposition 2. For γ < 1 or p− > 0, the RDE (11) has
a unique solution: P(Y = 1) = 1 − P(Y = 0) = h, with
h = h(p+, p−, γ, q, λ) the unique solution in [0, 1] of

h = 1 − (1 − κ(γ))e−λqh,

where κ(γ) = p−γ + p+(1 − γ).

Proof. Simple calculations give

1 − h = P(Y = 0)

= P((1 − χ)

N
Y

k=1

(1 − BkYk) = 1)

= P(χ = 0)

 

X

n

P(N = n)P(B1Y1 = 0)n

!

= (1 − κ(γ))
∞
X

n=0

e−λ λn

n!
(1 − qh)n

= (1 − κ(γ))e−λqh.

It follows from Lemma 1 (in Appendix) that this fixed-point
equation has a unique solution in [0, 1]. Similar calculation

for h′ = P(Y = 1) shows that h′ = (1 − κ(γ))e−λq(1−h′), so
that h + h′ = 1 and the proposition follows.

As a consequence, we see that it is possible to construct
an invariant version of the RTP on the tree T (λ) (which
is possibly infinite for λ > 1) where for each k ≥ 0, the
sequence (Yi, i ∈ T (λ), gen(i) = k) is a sequence of i.i.d.
Bernoulli random variables with parameter h, see [1].

Corollary 1. For the invariant RTP (Yi, i ∈ T (λ)), we
have

E[YØ|DØ = 1] = 1 − (1 − p−)e−λqh,

E[YØ|DØ = 0] = 1 − (1 − p+)e−λqh,

where h is defined in Proposition 2.

Proof. The random variables (Yi, i ∈ T (λ), gen(i) = 1)
are independent Bernoulli random variables with parameter
h. Hence the same calculation as in the proof of Proposition
2 gives the desired result.

We introduce the fixed point equation:

pN = 1 − (1 − p+)e−λqh(γ), (12)

pS = 1 − (1 − p−)e−λqh(γ), (13)

γ = P((pN − pS)ℓ1 + π(pN) − π(pS) ≥ c1). (14)

We end this section with the following easy property:

Proposition 3. For any solution (pN , pS, γ) of the fixed
point equation (12,13,14), the corresponding invariant RTP
is a solution of our model on T (λ).

We will study the fixed point equation in Section 5. Before
that, we show that this fixed point equation characterize the
limiting behaviors of the process on the finite graph G(n) as
n → ∞.

4.2 Asymptotics for Erdos-Renyi graphs
In this section, we consider the process (X

(n)
i , i ∈ {0, . . . , n−

1}) satisfying (1) on G(n). To simplify the analysis, we as-
sume that for any (pN , pS, γ) solution of the fixed point
equation (12,13,14), there exists ǫ > 0, such that for any
(x, y) ∈ B((pN , pS), ǫ) (where B((pN , pS), ǫ) ⊂ R

2 is the
disk of center (pN , pS) and radius ǫ),

P((x − y)ℓ1 + π(x) − π(y) ≥ c1) (15)

= P((pN − pS)ℓ1 + π(pN) − π(pS) ≥ c1).



This assumption on the distribution of the ci’s and ℓi’s will
be satisfied in the examples treated in Section 5. The fol-
lowing proposition is the main technical result of this paper
and explain the introduction of the RTP in previous section.
Its proof relies on the Objective Method [2] and will not be
needed for later analysis.

Proposition 4. For any solution (pN , pS, γ) of the fixed

point equation (12,13,14), there exists a process (X
(n)
i , i ∈

{0, . . . , n−1}) on G(n) satisfying the equations of our model
such that

pN = lim
n→∞

E[X
(n)
0 |D0 = 0],

pS = lim
n→∞

E[X
(n)
0 |D0 = 1].

Proof. The proof will be as follow: fix (pN , pS, γ) so-
lution of the fixed point equation. Consider the process

(X̃
(n)
i , i ∈ {0, . . . , n − 1}) on G(n) satisfying the equations

of our model but with χ
(n)
i replaced by χi which are i.i.d

Bernoulli with parameter κ(γ), where γ is given by (14).
We will show that

lim
n→∞

E[X̃
(n)
0 |D0 = 0] = pN , (16)

lim
n→∞

E[X̃
(n)
0 |D0 = 1] = pS. (17)

It is then easy to see that thanks to (15), for n sufficiently

large the process (X̃
(n)
i , i ∈ {0, . . . , n − 1}) satisfy the equa-

tions of our model.
Let us fix a large positive integer d and let Nd(0, G(n))

denotes the neighborhood of radius d about the root 0:
Nd(0, G(n)) is the collection of nodes form G(n) which are
connected to 0 by paths with length ≤ d. For fixed d, we

have as n tends to infinity Nd(0, G(n))
d
→ T (λ, d), where

T (λ, d) is a depth-d Poisson tree [19].
By the Skorohod representation theorem, we may suppose

the random variables Nd(0, G(n)), T (λ, d) are all defined on
a common probability space and that with probability one,
there is a finite random variable N such that Nd(0, G(n)) =
T (λ, d) for all n ≥ N .

We now define two depth-d RTPs as follows: let ∂T (λ, d)

denote the leaves of T (λ, d). Define L
(d)
i = χi and U

(d)
i = 1

for i ∈ ∂T (λ, d). Then we use (10) recursively to define

(L
(d)
i , i ∈ T (λ, d)) and (U

(d)
i , i ∈ T (λ, d)). Since for all i ∈

∂T (λ, d), we have L
(d)
i ≤ X̃

(n)
i ≤ U

(d)
i , the monotonicity of

(10) implies that for n ≥ N ,

L
(d)
Ø ≤ X̃

(n)
0 ≤ U

(d)
Ø .

The L
(d)
i for gen(i) = 1 are independent and by Lemma 2

(proved in Appendix 8.2) converge in distribution to Bernoulli
random variables with parameter h(γ). As a consequence we

have for L
(d)
Ø :

lim
d→∞

E[L
(d)
Ø |DØ = 1]

= 1 − lim
d→∞

P

 

(1 − BS
Ø)
Y

i∼Ø

(1 − BiØY
(d)

i ) = 1

!

= 1 − (1 − p−)e−λqh(γ) = pS.

The same argument holds for the process U , hence there
exists a function ǫ(d) with ǫ(d) → 0 as d → ∞ and such

that

pS − ǫ(d) ≤ E[X̃
(n)
0 |D0 = 1] ≤ pS + ǫ(d).

We proved (16) and the proof of (17) is similar.

5. PRICE OF ANARCHY: THE NETWORK
CASE

In this section, we discuss the intuition behind, and the
impact of the mathematical results obtained in the previous
section. We compare the results for a network of n intercon-
nected agents with the case of the 2-agent network described
in Section 3.3. We also show the existence of a cascading
phenomenon, and derive practical insight for malware pro-
tection in the Internet.

5.1 Interpretation of the mathematical results
We first discuss the intuition behind the various quantities

computed in Section 4.
Consider a solution (pN , pS, γ) of the fixed point equa-

tion (12,13,14). By Proposition 3, this solution corresponds
to an equilibrium of the game played on the random tree
T (λ). The aim of the results shown in Section 4.2 is to
prove that, to any such equilibrium, one can associate an
equilibrium for the game played on the (finite) Erdös-Réyni

graph G(n) such that asymptotically in n, the characteris-
tics of this equilibrium are given by that of the equilibrium
on T (λ) (see Proposition 4). In particular, the quantity γ
corresponds exactly to the limit, as the population size n
tends to infinity, of the fraction of the population investing
in self-protection for the equilibrium of the game played on
the Erdös-Rényi graph G(n). Then we have the following
interpretations:

• γ is the (asymptotic) fraction of the population invest-
ing in self-protection;

• pN is the (asymptotic) probability of loss for an agent
not investing in self-protection;

• pS is the (asymptotic) probability of loss for an agent
investing in self-protection.

Hence the average (over the population) probability of loss
is given by

lim
n→∞

E[X
(n)
0 ] = γpS + (1 − γ)pN

= h(γ)

given by Proposition 2. The fact that h corresponds exactly
to the probability of loss is a special feature of Erdös-Rényi
graphs; for other graphs, the probability of loss is given by
γpS + (1 − γ)pN . Now the average incurred cost to the
agents in the equilibrium associated to (pN , pS, γ) is given
by γE[c] + h(γ)E[ℓ]. The first term corresponds to the cost
incurred by the investment in self-protection by a fraction
γ of the population and the second term corresponds to the
expected cost of losses.

If there are multiple solutions to the fixed point equation
(12,13,14), these solutions correspond to different equilibria

of the game on G(n). Then the quantities computed above
allow us to compare these equilibria. We consider this in the
sections below.



5.2 Case of Erdos-Renyi graphs
In this section, we consider the case where G(n) = G(n, λ/n).

Note that our results concerning the network case are asymp-
totic results as n → ∞. Thus, when we write ”for a certain
range of parameters, all agents invest in self-protection”, we
mean that the fraction of agents investing in self-protection
in our model on a graph with n agents tends to 1 as n tends
to infinity. Similarly, the price of anarchy is the limit of the
price of anarchy for the model with n agents when n → ∞.

For simplicity, we drop the risk adverse condition so that
we have π ≡ 0 and we assume that the cost for self-protection
ci = c and the possible loss ℓi = ℓ are non random parame-
ters. Then Equation (14) becomes

γ = 11
“

(pN − pS)ℓ ≥ c
”

.

We define

c0 :=
1 − h(0)

1 − p+
(p+ − p−)ℓ,

c1 :=
1 − h(1)

1 − p−
(p+ − p−)ℓ,

where h(γ) solves the fixed point equation of Proposition 2.

Proposition 5. We have c0 ≤ c1. Furthermore

1. If c < c0 then every agent in the network invests in
self-protection.

2. If c > c1 then no agent invests in self-protection.

3. If c0 ≤ c ≤ c1 then both equilibria are possible.

4. The price of anarchy is given by

Pa(c) = 1 ∨ 11(c0 < c)
h(0)ℓ

c + h(1)ℓ
.

5. The price of stability is given by

Ps(c) = 1 ∨ 11(c1 < c)
h(0)ℓ

c + h(1)ℓ
.

Proof. Recall that pN and pS are functions of γ, and we
will therefore use the notation pN,γ and pS,γ . We have by
Proposition 4 and Equations (12) and (13),

cγ :=
“

pN,γ − pS,γ
”

ℓ = ℓ(p+ − p−)e−λqh(γ),

so that by Lemma 1, the map γ 7→ cγ is non-decreasing
and c0 ≤ c1. Also by symmetry, there are only two possible
equilibria: S := (S1, S2, . . . ) or N := (N1, N2, . . . ). If c ≤
c0, then we have 11(cγ ≥ c) = 1 and γ = 1 is the only
solution, which corresponds to the state S. Moreover in
state S (and with γ = 1), the probability of loss is given by

pS,1 = 1 − (1 − p−)e−λqh(1) = h(1).

Similarly, if c ≥ c1, the only solution is γ = 0 which
corresponds to state N . In state N (and with γ = 0), the
probability of loss is given by

pN,0 = 1 − (1 − p+)e−λqh(0) = h(0).

If c ∈ (c0, c1) then both γ = 1 and γ = 0 are solutions.
For a given γ ∈ [0, 1], the average probability of loss is given
by

E[YØ] = γpS,γ + (1 − γ)pN,γ = h(γ).

Hence the average cost incurred to agents is given by ξγ :=
γc+h(γ)ℓ which, by Lemma 1, is a concave function of γ. In
particular, we have infγ ξγ = min(ξ0, ξ1). Note that ξ1 ≤ ξγ

iff c(1 − γ) ≤ (h(γ) − h(0))ℓ so that by concavity of h, we
have ξ1 ≤ ξγ iff c ≤ (h(0)−h(1))ℓ. Simple calculations show
that

c0 < c1 < (h(0) − h(1))ℓ.

Points 4 and 5 follow easily.

This proposition is similar to (and extends) Proposition 1
for the 2-agent case, and a curve similar to Figure 1 could
be plotted in the network (n-agent) case. In particular, our
model allows to compute the range of the parameters for
which the Nash equilibrium is, or is not, socially optimal.
However, there are some differences that we highlight now.
The main difference is in the amplitude of the price of an-
archy which is much higher here. Note that in Section 3.3,
we took p− = 0 and p+ = p. In that case, we have h(1) = 0
and

h(0) = 1 − (1 − p)e−λqh(0).

Corollary 2. As p → 0, we have

Pa(c) ∼
x∗ℓ

c
∨ 1,

where x∗ is the unique solution in (0, 1] of the fixed point
equation

1 − x∗ = e−λqx∗

. (18)

Proof. This corollary follows directly from Proposition 5
and the observation that as p → 0, the fixed point equation
satisfied by h(0) tends to (18).
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Figure 2: Price of anarchy as a function of λq with

ℓ/c = 10 and p → 0.

For a fixed cost c and a fixed amount of loss ℓ, Figure 2
shows the variation of the price of anarchy with λq in the
limit p → 0. We see that as λq → ∞, the price of anarchy
tends to ℓ/c which is much larger than one.

There is a qualitative interpretation of how x∗ arises in
our model:



• First, note that x∗ has a natural interpretation in term
of branching processes [4]. Consider a Poisson tree
T (λq). Then if λq ≤ 1, this tree is finite a.s. whereas
for λq > 1, there is a positive probability that the tree
is infinite. In any case, the probability that the tree is
infinite is equal to x∗. In particular, x∗ = 0 for λq ≤ 1.

• Consider now our model when every agent chooses to
not invest in self-protection with a small value of p > 0.
Then a fraction p of the population experiences direct
loss. From these individuals, the epidemic propagates
like a Poisson branching process with parameter λq
[19].

If λq < 1, this branching process eventually stops.
Hence, in this case, the infected population consists of
disjoint clusters with one initially infected agent per
cluster. As a result as p → 0, we decrease the num-
ber of initially infected agents, i.e. the number of final
clusters and the epidemics has asymptotically no im-
pact.

If λq > 1, there is a fraction x∗ of the nodes for which
the branching process ’lasts forever’ and those nodes
belong to a single ’giant component’. For any positive
value of p, an agent of this component will experience a
direct loss and then contaminate the whole component.
Hence we see that, as p → 0, the total cost of the
epidemic is of the order of x∗nℓ.

• Going back to the price of anarchy, consider the state
where all agents are in state S (in which case there is no
epidemic and the cost per agent is just c) and the state
where all agents are in state N (and the average cost
of the epidemic is x∗ℓ). This gives us again Corollary
2.

In other words, we have the following situation: nobody
invests in self-protection because the advantage for one agent
to invest is negligible; however if all agents had chosen to
invest then they would be much better off. The curve of
Figure 2 quantifies exactly by how much. Note that in this
case, the epidemic starts with a negligible fraction of the
population and eventually reaches a significant proportion
x∗ of the population which fits well the observed propagation
of worms [23].

5.3 Tipping phenomenon
We have shown in Section 5.2 that our model exhibits ex-

ternalities and that the equilibrium is not socially optimal:
there is a market failure. In order to resolve this market
failure, one can actually take advantage of a tipping (or cas-
cading) phenomenon.

We consider the framework of Section 5.2 and suppose
that the price for self-protection is such that c ∈ (c0, c1)
so that both equilibria where everybody or nobody invests
in self-protection are possible. Consider the case when the
population is ’trapped’ in the ’bad’ state. If one ’forces’ a
fraction of the population to invest in self-protection, that
initial core set of investors in self-protection can trigger a
cascading phenomenon of adoption (of self-protection) which
leads to the state where the entire population is in the ’good’
state.

In other words, a possible strategy to induce agents to
invest in self-protection would for example to give anti-virus
software for free to a fraction of the population - this will

eventually lower the probability of loss for all agents in the
network. Recall (see Equation (3)) that an agent decides
to invest in self protection if c < (pN − pS)ℓ. In particular
when γ increases, both pN and pS decrease but pN − pS

increases (according to (12) and (13)). Hence it is possible
to increase γ in order to give an incentive to others to invest
in self-protection for a fixed cost c.

Now the crucial question is to determine the minimal pro-
portion of the population that would trigger such a cascade
of adoption. The answer is given by the curve on Figure
3. For example, if c/ℓ ∼ 0.14 then if a fraction γ ∼ 0.2 of
the population is protected, a cascading phenomenon will
automatically induce the rest of the population to invest in
self-protection.
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Figure 3: Tipping phenomenon: p− = 0, p+ = 0.1,
q = 0.5 and λ = 10.

More formally, assume we are in the framework of Section
5.2, namely π ≡ 0 and c and ℓ are deterministic. Then for a
ratio c/ℓ fixed the corresponding minimal value of γ which
will trigger a cascading effect is given by

arg min
γ

{c/ℓ < pN,γ − pS,γ}

Then the results of Section 4 give the curve of Figure 3.
A similar cascading effect, although appearing in a dif-

ferent context, is modeled and analyzed in [3] for a differ-
ent diffusion process where social interactions are local only.
Also in [5] and [13], we study the question of whether in-
surance could be a mechanism to induce agents to invest in
self-protection.

6. DISCUSSION

6.1 Extending the results to the general case
of sparse graphs: the Local Mean Field
model

The method developed in Section 4 relies heavily on the
local weak convergence introduced by Aldous and Steele and
surveyed in [2]. This method is not restricted to Erdös-Rényi
graphs and is successful whenever the underlying graph is
’locally’ a tree. Reference [12] presents a general framework
extending the model of the present paper and introduces the



Local Mean Field (LMF) model associated to our model for
a general sparse random graph.

We illustrate the approach with an example related to the
propagation of worms, as considered in this paper. A spe-
cific type of worm is a scan-based worm which (in first ap-
proximation) probes the entire IP address space. We can
model the propagation of a scan-based worm as follows:
each newly infected agent runs the worm program and tries
to compromise a random number (say I with distribution
F (k) = P(I ≤ k)) of other agents taken at random among
all the other agents, this with a probability of success q.
In this model, the limiting object is a RTP as in Section
4.1, where the underlying tree is a Galton-Watson branch-
ing process in which the root has offspring distribution F
and all other genitors have offspring distribution G where

for all k ≥ 1, G(k − 1) = kF (k)
P

k
kF (k)

(see Chapter 3 in [6]).

The recursion equation (10) is still valid, and one then has
to study the recursive distributional equation (11), however
with N distributed according to G. Once the solution of
the RDE is derived, it is easy to obtain the limits appearing
in Corollary 1 (by taking care of the distinct distribution
of the root). We then obtain the corresponding fixed point
equation for pN , pS and γ which allows to compute the price
of anarchy and other quantities as in previous sections. We
refer to [12] for a careful treatment of this case and for ex-
tensions of the model presented here.

6.2 Summary and Conclusion
We studied a network of interconnected agents subject to

epidemic risks and which can decide whether or not to invest
some amount to self-protect and deploy security solutions.
We introduced a general model which combines a model for
the propagation of epidemics among networked agents and
an economic model for agents. To the best of our knowl-
edge, our model is the first to include an arbitrary large and
structured network of agents, and to capture the situation
when an agent’s payoff depends on decisions made by (the
entire population of) other agents. We are able to solve
analytically our model which captures network externalities
arising in the economic problem of security systems. In par-
ticular, we show that there is a possible market failure and
we compute exactly the price of anarchy of this problem.
Furthermore, we give insights on the structure of the equi-
libria and show that cascading phenomena are possible and
could be the basis for developing strategies to increase the
adoptability of security features and protocols in networked
environments in general, and in the Internet in particular.
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8. APPENDIX

8.1 Expected utility model and risk aversion
The classical expected utility model is named thus be-

cause it considers agents that attempt to maximize some
kind of expected utility function u. In this paper, we as-
sume that agents are rational and that they are risk averse,
i.e. their utility function is concave (see Proposition 2.1 in
[9]). Risk averse agents dislike mean-preserving spreads in
the distribution of their final wealth.

We denote by w the initial wealth of the agent. The risk



premium π is the maximum amount of money that one is
ready to pay to escape a pure risk X, where a pure risk X
is a random variable such that E[X] = 0. The risk premium
corresponds to an amount of money paid (thereby decreasing
the wealth of the agent from w0 to w0 −π) which covers the
risk; hence, π is given by the following equation:

u(w − π) = E[u(w0 + X)]

Each agent faces a potential loss ℓ, which we take in this
paper to be a fixed (non-random) value. We denote by p the
probability of loss or damage. There are two possible final
states for the agent: a good state, in which the final wealth
of the agent is equal to its initial wealth w0, and a bad state
in which the final wealth is w − ℓ. If the probability of loss
is p > 0, the risk is clearly not a pure risk. The amount of
money m the agent is ready to invest to escape the risk is
given by the equation:

pu(w − ℓ) + (1 − p)u(w) = u(w − m) (19)

We clearly have m > pℓ thanks to the concavity of u. We
can actually relate m to the risk premium defined above:

m = pℓ + π[p].

8.2 Technical lemmas
For 0 ≤ p− < p+ < 1 and λq > 0, we define the function

f(x, γ) = 1 − (1 − p−γ − p+(1 − γ))e−λqx.

Lemma 1. For γ < 1 or p− > 0, the fixed point equation

h = f(h, γ)

has a unique solution in [0, 1] denoted h(γ). Moreover the
function γ 7→ h(γ) is non-increasing and concave.

Proof. The function x 7→ f(x, γ) is continuous, non-
increasing and concave. Note that f(0, γ) = p−γ + p+(1 −
γ) > 0 and f(1, γ) = 1−(1−p−γ−p+(1−γ))e−λq ≤ 1, hence
first point of the lemma follows. The monotonicity of h in
γ follows from the fact that the function f is non-increasing
in γ so that for γ1 < γ2, we have

f(h(γ1), γ2) < f(h(γ1), γ1) = h(γ1),

and iterating f , we get in the limit h(γ2) ≤ h(γ1). A direct
computation gives for the derivative of h:

h′(γ)
“

1 − λq(1 − p−γ − p+(1 − γ))e−λqh(γ)
”

= (p− − p+)e−λqh(γ),

so that we have 1 − λq(1 − p−γ − p+(1 − γ))e−λqh(γ) > 0.
Then for the second derivative of h, we get

h′′(γ)
“

1 − λq(1 − p−γ − p+(1 − γ))e−λqh(γ)
”

= −2λqh′(γ)(p− − p+)e−λqh(γ)

−(λqh′(γ))2(1 − p−γ + p+(1 − γ))e−λqh(γ),

hence h′′(γ) ≤ 0 and concavity follows.

We recall here the definition of the two depth-d RTPs
in the proof of 4: let ∂T (λ, d) denote the leaves of T (λ, d).

Define L
(d)
i = χi and U

(d)
i = 1 for i ∈ ∂T (λ, d). Then we use

(10) recursively to define (L
(d)
i , i ∈ T (λ, d)) and (U

(d)
i , i ∈

T (λ, d)).

Lemma 2. Assume the sequence χi is a sequence of in-
dependent Bernoulli random variables with parameter κ(γ).

Then both L
(d)
Ø

and U
(d)
Ø

converge in distribution as d → ∞
to a Bernoulli random variable with parameter h(γ) defined
in Proposition 2.

Proof. This lemma follows from an easy induction on d.
First consider d = 1, then we have

1 − h(1) = P(L
(1)
Ø = 0)

= P((1 − χØ)

N
Y

k=1

(1 − Bkχk) = 1)

= (1 − κ(γ))
∞
X

n=0

e−λ λn

n!
(1 − qκ(γ))n

= (1 − κ(γ))e−λqκ(γ).

Hence we have h(1) = f(κ(γ), γ). It is easy to see that

for d ≥ 1 if h(d) = 1 − P(L
(d)
Ø = 0), then we have h(d) =

fd(κ(γ), γ), where the composition of the function f is in
the first variable, γ being fixed.

Similarly if g(d) = 1−P(U
(d)
Ø = 0), we have g(d) = fd(1, γ).

Then Lemma 1 implies that h(d), g(d) → h(γ) and the lemma
follows.


