
Algorithms for Networked Information

TD4

October 12, 2015

Exercise 1 Cheeger Inequality

In this exercise, let G be a simple d-regular graph. We define the connectivity of a cut by:

φ(S)=
e(S,V −S)

d
|V | |S||V −S|

,

and the graph’s isoperimetric constant by: φ(G)=minS⊂V ,S 6=;,V φ(S).

The expansion of a cut is defined by:

h(S)=
e(S,V −S)

dmin{|S|, |V −S|}
,

and the graph’s expansion rate by: h(G) =minS⊂V ,S 6=;,V h(S). The computation of h(G) is NP-hard and the

best algorithm by Arora, Rao & Vazirani (2009) gives an O(
√

logn) approximation.

1. Show that

h(G)≤φ(G)≤ 2h(G).

We consider the normalized adjacency matrix M = 1
d
A of graph G with eigenvalues 1= λ1 ≥ λ2 ≥ ·· · ≥ λn. The

goal of this exercise is to show

1−λ2

2
≤ h(G)≤

√

2(1−λ2).

2. Show that

λ2 = sup
x∈Rn,‖x‖=1,x⊥1

xtMx,

λn = inf
x∈Rn,‖x‖=1

xtMx

3. Show that, for every vector x,

∑

i, j

Mi j(xi− x j)
2 = 2xtx−2xtMx.

Deduce that

1−λ2 = inf
x∈Rn,‖x‖=1,x⊥1

1

2

∑

i j

Mi j(xi− x j)
2,

and that λ2 = 1 if and only if G is not connected.
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4. Show that, for every vector x,
∑

i j

Mi j(xi+ x j)
2 = 2xtx+2xtMx.

Deduce that λn =−1 if and only if one connected component of G is bipartite.

5. Show that

φ(G)= min
x∈{0,1}V−{0,1}

∑

i j Mi j|xi− x j|2
1
n

∑

i j |xi− x j|2

6. Show that

1−λ2 = min
x∈RV−R1

∑

i j Mi j|xi− x j|2
1
n

∑

i j |xi− x j|2
.

7. Deduce that 1−λ2 ≤φ(G)≤ 2h(G).

To show the converse inequality, we introduce the following algorithm:

Spectral Partition

• Input: graph G = (V ,E) and a vector x ∈R
V .

• Order the nodes by decreasing order of entries in x, i.e., V = {v1, . . . ,vn} with xv1 ≤ xv2 ≤ ·· · ≤ xvn .

• Let i ∈ {1, . . . ,n−1} such that h({v1, . . . ,vi}) is minimal.

• Output: S = {v1, . . . ,vi}.

Given a graph G and a vector x ∈R, we define:

δ=
∑

i, j Mi j|xi− x j|2
1
n

∑

i, j |xi− x j|2
,

where M is the normalized adjacency matrix. We will show that, if S is the algorithm’s output, then h(S) ≤p
2δ.

To simplify notation, we assume that V = {1, . . . ,n} and that x1 ≤ x2 ≤ ·· · ≤ xn, so that our goal is to show

that there is an i such that h({1, . . . , i})≤
p
2δ. For that, we will use the probabilistic method.

8. Show that we can assume x⌊n/2⌋ = 0 and x2
1
+ x2n = 1 without loss of generality.

9. Let T be a random variable with values in [x1,xn] such that P(a ≤ t ≤ b)=
∫b
a 2|t|dt for x1 ≤ a ≤ b ≤ xn.

Let ST = {i, xi ≤ T}. Show that

E[min{|ST |, |V −ST |}]=
∑

i

x2i .

10. Show that

P
(

(i, j) is cut by (ST ,V −ST )
)

≤ |xi− x j|
(

|xi|+ |x j |
)

.

11. Deduce that

1

d
E [e(ST ,V −ST )]≤

1

2

√

∑

i, j

Mi j(xi− x j)
2

√

∑

i, j

Mi j

(

|xi|+ |x j|
)2

12. Show that
∑

i, j Mi j(xi−x j)
2 ≤ 2δ

∑

i x
2
i
and that

∑

i, j Mi j

(

|xi|+ |x j|
)2 ≤ 4

∑

i x
2
i
. Deduce that 1

d
E [e(ST ,V −ST )]≤p

2δ
∑

i x
2
i
.

13. Deduce that there is an S of the form {1, . . . , i} such that h(S)≤
p
2δ.

14. Deduce that h(G)≤
√

2(1−λ2).
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