Two examples of queueing networks

Susceptible-Infective Epidemic propagation models

Laurent Massoulié

MSR-Inria Joint Centre

October 6, 2015

- R customer types
- Infinite queue, single server with unit capacity
- Policy: always serve customer with highest priority (lowest class index)

Interrupt lower priority service upon higher priority arrival Resume interrupted service where it was stopped (FIFO per class)

• Poisson λ_r arrivals in class r; Exponential μ_r service times Loads: $\rho_r := \lambda_r / \mu_r$

- $X_r(t)$: number of class-r customers present at time t
- A Markov jump process with only non-zero rates

$$q_{x,x+e_r} = \lambda_r, \quad q_{x,x-e_r} = \mu_r \mathbb{I}_{x_r > 0} \mathbb{I}_{x_1 = \dots = x_{r-1} = 0}$$

Proposition

Process ergodic if $\rho := \sum_{r} \rho_r < 1$, transient if $\rho > 1$

Assume $\mu_r \equiv \mu$ and ergodicity. Then mean number of customers at equilibrium:

$$\mathbb{E}(X_r) = \frac{\rho_r}{(1 - \sum_{s < r} \rho_s)(1 - \sum_{s \leq r} \rho_s)}$$

A B M A B M

• Process clearly irreducible non-explosive Foster's criterion with $V(x) := \sum_r x_r / \mu_r \Rightarrow$ ergodic if $\rho < 1$

- Process clearly irreducible non-explosive Foster's criterion with $V(x) := \sum_r x_r / \mu_r \Rightarrow$ ergodic if $\rho < 1$
- $\rho > 1$: with X(0) = 0, $X_r(t) = N_r(t) D_r(t)$ (arrivals minus departures)

Work spent on class r by time t: $W_r(t) \ge \sum_{m=1}^{D_r(t)} \sigma_{r,m}$ for i.i.d. service times $\sigma_{r,m}$

- Process clearly irreducible non-explosive Foster's criterion with $V(x) := \sum_r x_r / \mu_r \Rightarrow$ ergodic if $\rho < 1$
- $\rho > 1$: with X(0) = 0, $X_r(t) = N_r(t) D_r(t)$ (arrivals minus departures)

Work spent on class r by time t: $W_r(t) \ge \sum_{m=1}^{D_r(t)} \sigma_{r,m}$ for i.i.d. service times $\sigma_{r,m}$

• Law of large numbers for Poisson processes: almost surely, $\lim_{t\to\infty} N_r(t)/t = \lambda_r$

- Process clearly irreducible non-explosive Foster's criterion with $V(x) := \sum_r x_r / \mu_r \Rightarrow$ ergodic if $\rho < 1$
- $\rho > 1$: with X(0) = 0, $X_r(t) = N_r(t) D_r(t)$ (arrivals minus departures)

Work spent on class r by time t: $W_r(t) \ge \sum_{m=1}^{D_r(t)} \sigma_{r,m}$ for i.i.d. service times $\sigma_{r,m}$

- Law of large numbers for Poisson processes: almost surely, $\lim_{t\to\infty} N_r(t)/t = \lambda_r$
- If for some r, $D_r(t) \le \lambda_r t/2$ then $X_r(t) \ge \lambda_r t/2 + o(t)$ Else, by Law of large numbers for $\sigma_{r,m}$, $\forall r, W_r(t) \ge D_r(t)/\mu_r + o(t)$

- 4 E 6 4 E 6

- Process clearly irreducible non-explosive Foster's criterion with $V(x) := \sum_r x_r / \mu_r \Rightarrow$ ergodic if $\rho < 1$
- $\rho > 1$: with X(0) = 0, $X_r(t) = N_r(t) D_r(t)$ (arrivals minus departures)

Work spent on class r by time t: $W_r(t) \ge \sum_{m=1}^{D_r(t)} \sigma_{r,m}$ for i.i.d. service times $\sigma_{r,m}$

- Law of large numbers for Poisson processes: almost surely, $\lim_{t\to\infty} N_r(t)/t = \lambda_r$
- If for some r, $D_r(t) \le \lambda_r t/2$ then $X_r(t) \ge \lambda_r t/2 + o(t)$ Else, by Law of large numbers for $\sigma_{r,m}$, $\forall r, W_r(t) \ge D_r(t)/\mu_r + o(t)$
- Since $\sum_{r} W_{r}(t) \leq t$, implies

$$\sum_{r} X_{r}(t)/\mu_{r} \geq \rho t - t + o(t)$$

In both cases $\max_r X_r(t) \to \infty$ almost surely

4 B K 4 B K

- Linear network with *L* unit capacity links, *L* + 1 classes. Class
 0 uses all links, class *r* uses only link *r*, *r* ≥ 1
- Poisson ν_r arrivals, Exponential μ_r service times, loads $\rho_r = \nu_r/\mu_r$
- x_r: number of ongoing type r transfers

- Linear network with *L* unit capacity links, *L* + 1 classes. Class
 0 uses all links, class *r* uses only link *r*, *r* ≥ 1
- Poisson ν_r arrivals, Exponential μ_r service times, loads $\rho_r = \nu_r/\mu_r$
- x_r: number of ongoing type r transfers
- Proportionally fair allocations: service rate to class $0: \Lambda_0 = x_0/[x_0 + y]$ where $y = \sum_{r=1}^{L} x_r$; service to class $r \ge 1: \Lambda_r = y/(y + x_0)\mathbb{I}_{x_r > 0}$

- Linear network with *L* unit capacity links, *L* + 1 classes. Class
 0 uses all links, class *r* uses only link *r*, *r* ≥ 1
- Poisson ν_r arrivals, Exponential μ_r service times, loads $\rho_r = \nu_r/\mu_r$
- x_r: number of ongoing type r transfers
- Proportionally fair allocations: service rate to class $0: \Lambda_0 = x_0/[x_0 + y]$ where $y = \sum_{r=1}^{L} x_r$; service to class $r \ge 1: \Lambda_r = y/(y + x_0)\mathbb{I}_{x_r > 0}$

See Problem 2, PC 3: proportionally fair shares at "macroscopic" (transmission) level result from simple processor sharing at "microscopic" (data packet) level () ()

• Markov jump process with non-zero rates

 $q_{x,x+e_r} = \nu_r, \ q_{x,x-e_r} = \mu_r \Lambda_r$

(E)

• Markov jump process with non-zero rates

 $q_{x,x+e_r} = \nu_r, \ q_{x,x-e_r} = \mu_r \Lambda_r$

• reversible process for measure $\pi(x) := \binom{y+x_0}{y} \prod_{r>0} \rho_r^{x_r}$

• Markov jump process with non-zero rates

 $q_{x,x+e_r} = \nu_r, \ q_{x,x-e_r} = \mu_r \Lambda_r$

• reversible process for measure $\pi(x) := \begin{pmatrix} y+x_0 \\ y \end{pmatrix} \prod_{r \ge 0} \rho_r^{x_r}$

Negative binomial formula: $\sum_{x_0 \ge 0} {y \choose y} \rho_0^{x_0} = (1 - \rho_0)^{-y-1}$

 Markov jump process with non-zero rates
 q_{x,x+e_r} = ν_r, q_{x,x-e_r} = μ_rΛ_r
 reversible process for measure π(x) := (^{y+x₀}) ∏_{r≥0} ρ^{x_r}_r
 Negative binomial formula: Σ_{x₀>0} (^{y+x₀}) ρ^{x₀}₀ = (1 - ρ₀)^{-y-1}

 $\begin{array}{l} \Rightarrow \pi \text{ summable (hence process ergodic) if and only if} \\ \rho_0 + \rho_r < 1, r = 1, \ldots, L \text{ yielding stationary distribution} \\ \pi(x) = \binom{y + x_0}{x_0} (1 - \rho_0)^{-L+1} \prod_{r=1}^L (1 - \rho_0 - \rho_r) \prod_{r=0}^L \rho_r^{x_r} \end{array}$

 Markov jump process with non-zero rates
 q_{x,x+e_r} = ν_r, q_{x,x-e_r} = μ_rΛ_r
 reversible process for measure π(x) := (^{y+x₀}) ∏_{r≥0} ρ^{x_r}/_r
 Negative binomial formula: Σ_{x₀>0} (^{y+x₀}) ρ^{x₀}₀ = (1 − ρ₀)^{-y-1}

 $\Rightarrow \pi \text{ summable (hence process ergodic) if and only if } \\ \rho_0 + \rho_r < 1, r = 1, \dots, L \text{ yielding stationary distribution} \\ \pi(x) = \binom{y+x_0}{x_0} (1-\rho_0)^{-L+1} \prod_{r=1}^L (1-\rho_0-\rho_r) \prod_{r=0}^L \rho_r^{x_r}$

• Generating function (*z*-transform): $\mathbb{E} \prod_{r=0}^{L} z_{r}^{X_{r}} = \frac{(1-\rho_{0}z_{0})^{L-1}}{(1-\rho_{0})^{L-1}} \prod_{r=1}^{L} \frac{1-\rho_{0}-\rho_{r}}{1-\rho_{0}z_{0}-\rho_{r}z_{r}}$

 Markov jump process with non-zero rates
 q_{x,x+e_r} = ν_r, q_{x,x-e_r} = μ_rΛ_r
 reversible process for measure π(x) := (^{y+x₀}) ∏_{r≥0} ρ^{x_r}_r
 Negative binomial formula: Σ_{x₀>0} (^{y+x₀}) ρ^{x₀}₀ = (1 − ρ₀)^{-y-1}

 $\begin{array}{l} \Rightarrow \pi \text{ summable (hence process ergodic) if and only if} \\ \rho_0 + \rho_r < 1, r = 1, \ldots, L \text{ yielding stationary distribution} \\ \pi(x) = \binom{y + x_0}{x_0} (1 - \rho_0)^{-L+1} \prod_{r=1}^L (1 - \rho_0 - \rho_r) \prod_{r=0}^L \rho_r^{x_r} \end{array}$

- Generating function (*z*-transform): $\mathbb{E} \prod_{r=0}^{L} z_{r}^{X_{r}} = \frac{(1-\rho_{0}z_{0})^{L-1}}{(1-\rho_{0})^{L-1}} \prod_{r=1}^{L} \frac{1-\rho_{0}-\rho_{r}}{1-\rho_{0}z_{0}-\rho_{r}z_{r}}$
- Yields explicit formulas for per class generating functions, e.g. X_r Geometric $(\rho_r/(1-\rho_0))$ for $r \ge 1$, and

$$\begin{split} \mathbb{E}(X_r) &= \frac{\rho_r}{1-\rho_0-\rho_r}, \ r \ge 1, \\ \mathbb{E}(X_0) &= \frac{\rho_0}{1-\rho_0} \left[1 + \sum_{r=1}^{L} \frac{\rho_r}{1-\rho_0-\rho_r} \right] & \text{ is a set } \text{ is } \rho_0 \text{ or } p_r \text{ for } \rho_0 \text{ for$$

- Graph G = (V, E) with *n* nodes (V = [n])
- Infected node makes infection attempts at instants of Poisson λ process, towards graph neighbor chosen uniformly at random
- Keeps attempting forever

- Graph G = (V, E) with *n* nodes (V = [n])
- Infected node makes infection attempts at instants of Poisson λ process, towards graph neighbor chosen uniformly at random
- Keeps attempting forever

⇒ Average time to total infection? Fluctuations around average? Impact of graph topology?

- Graph G = (V, E) with *n* nodes (V = [n])
- Infected node makes infection attempts at instants of Poisson λ process, towards graph neighbor chosen uniformly at random
- Keeps attempting forever

⇒ Average time to total infection? Fluctuations around average? Impact of graph topology?

• Variant: each node = origin of its own specific epidemics; each propagation: forwards all epidemics currently held

- Graph G = (V, E) with *n* nodes (V = [n])
- Infected node makes infection attempts at instants of Poisson λ process, towards graph neighbor chosen uniformly at random
- Keeps attempting forever

⇒ Average time to total infection? Fluctuations around average? Impact of graph topology?

 Variant: each node = origin of its own specific epidemics; each propagation: forwards all epidemics currently held
 ⇒Time till everyone heard from everyone else ("all-to-all" broadcast)?

• Running assumption: complete graph

- Running assumption: complete graph
- System description: X_t = number of infected nodes at time t

- Running assumption: complete graph
- System description: X_t = number of infected nodes at time t
- Rate at which new attempts made when in state x: superposition of x Poisson λ processes
 Success probability of infection attempt: (n - x)/(n - 1)

- Running assumption: complete graph
- System description: X_t = number of infected nodes at time t
- Rate at which new attempts made when in state x: superposition of x Poisson λ processes
 Success probability of infection attempt: (n - x)/(n - 1)

 \Rightarrow next infection time: first time of Poisson $x\lambda$ process, thinned with probability (n - x)/(n - 1) of retaining points: Exponential $\lambda x(n - x)/(n - 1)$ random variable

.

- Running assumption: complete graph
- System description: X_t = number of infected nodes at time t
- Rate at which new attempts made when in state x: superposition of x Poisson λ processes
 Success probability of infection attempt: (n - x)/(n - 1)

⇒ next infection time: first time of Poisson $x\lambda$ process, thinned with probability (n - x)/(n - 1) of retaining points: Exponential $\lambda x(n - x)/(n - 1)$ random variable

 $\Rightarrow X_t$ a Markov jump process with non-zero jump rate $q_{x,x+1} = \lambda x(n-x)/(n-1)$

高 と く ヨ と く ヨ と

Let E_x : i.i.d. Exponential(1) random variables, T_n : time to total outbreak

Then $T_n = \sum_{x=1}^{n-1} \frac{1}{q_x} E_x$, with $q_x = \lambda x (n-x)/(n-1)$

A B > A B >

3

Let E_x : i.i.d. Exponential(1) random variables, T_n : time to total outbreak

Then $T_n = \sum_{x=1}^{n-1} \frac{1}{q_x} E_x$, with $q_x = \lambda x (n-x)/(n-1)$

$$\mathbb{E}(T_n) = \sum_{x=1}^{n-1} \frac{1}{q_x} = \frac{n-1}{n} \frac{1}{\lambda} \sum_{x=1}^{n-1} \left(\frac{1}{x} + \frac{1}{n-x}\right) \\ = \frac{n-1}{n} \frac{2}{\lambda} H(n-1) \\ = \frac{2}{\lambda} [\ln(n) + \gamma + o(1)]$$

where H(k): k-th Harmonic number, and $\gamma \approx 0.577$: Euler's constant

同 ト イヨ ト イヨ ト ヨ うくや

Let E_x : i.i.d. Exponential(1) random variables, T_n : time to total outbreak

Then $T_n = \sum_{x=1}^{n-1} \frac{1}{q_x} E_x$, with $q_x = \lambda x (n-x)/(n-1)$

$$\mathbb{E}(T_n) = \sum_{x=1}^{n-1} \frac{1}{q_x} = \frac{n-1}{n} \frac{1}{\lambda} \sum_{x=1}^{n-1} \left(\frac{1}{x} + \frac{1}{n-x}\right) \\ = \frac{n-1}{n} \frac{2}{\lambda} H(n-1) \\ = \frac{2}{\lambda} [\ln(n) + \gamma + o(1)]$$

where H(k): k-th Harmonic number, and $\gamma \approx 0.577$: Euler's constant

Similarly, for 0 < a < b < 1: $\mathbb{E}(T_{bn} - T_{an}) \rightarrow \frac{1}{\lambda} \ln\left(\frac{b}{1-b}\frac{1-a}{a}\right)$

Let E_x : i.i.d. Exponential(1) random variables, T_n : time to total outbreak

Then $T_n = \sum_{x=1}^{n-1} \frac{1}{q_x} E_x$, with $q_x = \lambda x (n-x)/(n-1)$

$$E(T_n) = \sum_{x=1}^{n-1} \frac{1}{q_x} = \frac{n-1}{n} \frac{1}{\lambda} \sum_{x=1}^{n-1} \left(\frac{1}{x} + \frac{1}{n-x} \right) \\ = \frac{n-1}{n} \frac{2}{\lambda} H(n-1) \\ = \frac{2}{\lambda} [\ln(n) + \gamma + o(1)]$$

where H(k): k-th Harmonic number, and $\gamma \approx 0.577$: Euler's constant

Similarly, for 0 < a < b < 1: $\mathbb{E}(T_{bn} - T_{an}) \rightarrow \frac{1}{\lambda} \ln\left(\frac{b}{1-b}\frac{1-a}{a}\right)$ Heuristic inversion: starting from $X_0 = an$, $X_t \approx n \frac{ae^{\lambda t}}{1-a+ae^{\lambda t}}$ \Rightarrow The celebrated **logistic function**, or S-curve

A 3 6 A 3 6 6

Time to total infection order-optimal (logarithmic in number of targets) despite random target selection

A 10

A B > A B >

э

• Markov's inequality: random variable $X \ge 0$, $a > 0 \Rightarrow \mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$

A B > A B >

3

- Markov's inequality: random variable $X \ge 0$, $a > 0 \Rightarrow \mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$
- Bienaymé-Tchebitchev's inequality: random variable
 X ∈ ℝ: P(|X − E(X)| ≥ a) ≤ Var(X)/a²

· • E • • E • E

- Markov's inequality: random variable $X \ge 0$, $a > 0 \Rightarrow \mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$
- Bienaymé-Tchebitchev's inequality: random variable
 X ∈ ℝ: P(|X − E(X)| ≥ a) ≤ Var(X)/a²
- Exponential version: for θ > 0, P(X ≥ t) ≤ E(e^{θX})e^{-θt} i.e. finite exponential moments yield exponentially decaying control of tail probabilities

A 3 6 A 3 6 6

- Markov's inequality: random variable $X \ge 0$, $a > 0 \Rightarrow \mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$
- Bienaymé-Tchebitchev's inequality: random variable
 X ∈ ℝ: P(|X − E(X)| ≥ a) ≤ Var(X)/a²
- Exponential version: for θ > 0, P(X ≥ t) ≤ E(e^{θX})e^{-θt} i.e. finite exponential moments yield exponentially decaying control of tail probabilities

Variable $S_n := \lambda(T_n - \mathbb{E}(T_n))$ satisfies for all $\theta \in [0, 1/2]$ $\mathbb{E}(\exp(\theta S_n)) \le \exp(4\pi^2\theta^2/3) =: C_{\theta} < +\infty$ hence $\mathbb{P}(\lambda(T_n - \mathbb{E}(T_n)) \ge t) \le C_{\theta}e^{-\theta t}$ (fluctuations small compared to mean)

伺 と く ヨ と く ヨ と …

- Markov's inequality: random variable $X \ge 0$, $a > 0 \Rightarrow \mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$
- Bienaymé-Tchebitchev's inequality: random variable
 X ∈ ℝ: P(|X − E(X)| ≥ a) ≤ Var(X)/a²
- Exponential version: for θ > 0, P(X ≥ t) ≤ E(e^{θX})e^{-θt} i.e. finite exponential moments yield exponentially decaying control of tail probabilities

Variable $S_n := \lambda(T_n - \mathbb{E}(T_n))$ satisfies for all $\theta \in [0, 1/2]$ $\mathbb{E}(\exp(\theta S_n)) \le \exp(4\pi^2\theta^2/3) =: C_{\theta} < +\infty$ hence $\mathbb{P}(\lambda(T_n - \mathbb{E}(T_n)) \ge t) \le C_{\theta}e^{-\theta t}$ (fluctuations small compared to mean)

Proof: For $r_{x} = x(n-x)/(n-1) = q_{x}/\lambda$, $\mathbb{E}e^{\theta S_{n}} = \prod_{x=1}^{n-1} \frac{r_{x}}{r_{x}-\theta} e^{-\theta/r_{x}}$ For $u \in (0, 1/2], \frac{e^{-u}}{1-u} \le 1+2u^{2}$, hence: $\mathbb{E}e^{\theta S_{n}} \le \prod_{x=1}^{n-1} [1+2(\theta/r_{x})^{2}] \le e^{\sum_{x=1}^{n-1} 2(\theta/r_{x})^{2}} \le e^{8\theta^{2}\sum_{x\geq 1} x^{-2}}$

Application: All-to-all scenario (one epidemic per user)

Lemma

Let random variables $S^1, ..., S^n$ be such that for some a, b > 0: $\forall t > 0, \forall i \in [n], \mathbb{P}(S^i \ge t) \le ae^{-bt}$ Then $\mathbb{E}(\sup_i S^i) \le \mathbb{E}((\sup_i S^i)^+) \le \frac{\ln(an)+1}{b}$

Lemma

Let random variables $S^1, ..., S^n$ be such that for some a, b > 0: $\forall t > 0, \forall i \in [n], \mathbb{P}(S^i \ge t) \le ae^{-bt}$ Then $\mathbb{E}(\sup_i S^i) \le \mathbb{E}((\sup_i S^i)^+) \le \frac{\ln(an)+1}{b}$

Proof: Write $\mathbb{E}((\sup_i S^i)^+) = \int_0^\infty \mathbb{P}(\sup_i S^i \ge t) dt$ Then upper-bound $\mathbb{P}(\sup_i S^i \ge t)$ by nae^{-bt} for $t \ge \ln(an)/b$ (**union bound**) and by 1 otherwise.

Lemma

Let random variables $S^1, ..., S^n$ be such that for some a, b > 0: $\forall t > 0, \forall i \in [n], \mathbb{P}(S^i \ge t) \le ae^{-bt}$ Then $\mathbb{E}(\sup_i S^i) \le \mathbb{E}((\sup_i S^i)^+) \le \frac{\ln(an)+1}{b}$

Proof: Write $\mathbb{E}((\sup_i S^i)^+) = \int_0^\infty \mathbb{P}(\sup_i S^i \ge t) dt$ Then upper-bound $\mathbb{P}(\sup_i S^i \ge t)$ by nae^{-bt} for $t \ge \ln(an)/b$ (**union bound**) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all $\theta \in (0, 1/2]$ $\mathbb{E}T \leq \frac{1}{\lambda} \left[2(\ln(n) + \gamma) + o(1) + \frac{\ln(C_{\theta}n) + 1}{\theta} \right] = O(\ln(n)),$ same order still

く 戸 と く ヨ と く ヨ と …

Lemma

Let random variables $S^1, ..., S^n$ be such that for some a, b > 0: $\forall t > 0, \forall i \in [n], \mathbb{P}(S^i \ge t) \le ae^{-bt}$ Then $\mathbb{E}(\sup_i S^i) \le \mathbb{E}((\sup_i S^i)^+) \le \frac{\ln(an)+1}{b}$

Proof: Write $\mathbb{E}((\sup_i S^i)^+) = \int_0^\infty \mathbb{P}(\sup_i S^i \ge t) dt$ Then upper-bound $\mathbb{P}(\sup_i S^i \ge t)$ by nae^{-bt} for $t \ge \ln(an)/b$ (**union bound**) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all $\theta \in (0, 1/2]$ $\mathbb{E}T \leq \frac{1}{\lambda} \left[2(\ln(n) + \gamma) + o(1) + \frac{\ln(C_{\theta}n) + 1}{\theta} \right] = O(\ln(n)),$ same order still

Indeed: T = supremum of n propagation times corresponding each to single epidemic propagation

Towards Susceptible-Infective-Removed (SIR) epidemics: Galton-Watson branching process (1873)

Offspring distribution $\{p_k\}_{k \in \mathbb{N}}$ Z_k number of individuals per generation: $Z_0 = 1, Z_k = \sum_{m=1}^{Z_{k-1}} X_{m,k}$ where $\{X_{m,k}\}_{m,k \ge 0}$: i.i.d., $\sim \{p_k\}_{k \in \mathbb{N}}$

Quantities of interest: probability of extinction; in case of extinction, total population size

Extinction probability p_{ext} : smallest root in [0,1] of $z = \phi(z)$ where $\phi(z) = \mathbb{E}(z^X) = \sum_{k \ge 0} p_k z^k$ If $\mu := \mathbb{E}(X) < 1$ then $p_{ext} = 1$ If $\mu = 1$ and $p_0 > 0$ then $p_{ext} = 1$ If $\mu > 1$ then $p_{ext} < 1$

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Extinction probability p_{ext} : smallest root in [0,1] of $z = \phi(z)$ where $\phi(z) = \mathbb{E}(z^X) = \sum_{k \ge 0} p_k z^k$ If $\mu := \mathbb{E}(X) < 1$ then $p_{ext} = 1$ If $\mu = 1$ and $p_0 > 0$ then $p_{ext} = 1$ If $\mu > 1$ then $p_{ext} < 1$

Proof: $\{Z_k = 0\} \nearrow \{\text{Extinction}\}; \mathbb{P}(Z_k = 0) = \phi_k(0) \text{ where } \phi_k(z) = \mathbb{E}(z^{Z_k})$ By induction $\phi_k(z) = \phi \circ \phi_{k-1}(z)$ hence $\mathbb{P}(Z_k = 0) = \phi(\mathbb{P}(Z_{k-1} = 0))$ \Rightarrow by monotonicity of ϕ and $\mathbb{P}(Z_0 = 0) = 0$, sequence increases to (necessarily smallest) fixed point.

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Extinction probability p_{ext} : smallest root in [0, 1] of $z = \phi(z)$ where $\phi(z) = \mathbb{E}(z^X) = \sum_{k \ge 0} p_k z^k$ If $\mu := \mathbb{E}(X) < 1$ then $p_{ext} = 1$ If $\mu = 1$ and $p_0 > 0$ then $p_{ext} = 1$ If $\mu > 1$ then $p_{ext} < 1$

Proof: $\{Z_k = 0\} \nearrow \{\text{Extinction}\}; \mathbb{P}(Z_k = 0) = \phi_k(0) \text{ where } \phi_k(z) = \mathbb{E}(z^{Z_k})$ By induction $\phi_k(z) = \phi \circ \phi_{k-1}(z)$ hence $\mathbb{P}(Z_k = 0) = \phi(\mathbb{P}(Z_{k-1} = 0))$ \Rightarrow by monotonicity of ϕ and $\mathbb{P}(Z_0 = 0) = 0$, sequence increases to (necessarily smallest) fixed point. μ : slope of ϕ at 1⁻. By convexity of ϕ , only fixed point: 1 if $\mu < 1$ By continuity of ϕ , \exists fixed point < 1 if $\mu > 1$ For $\mu = 1$, if $p_0 > 0$ then ϕ strictly convex hence only fixed point: 1; if $p_0 = 0$ then $p_{ext} = 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Extinction probability p_{ext} : smallest root in [0, 1] of $z = \phi(z)$ where $\phi(z) = \mathbb{E}(z^X) = \sum_{k \ge 0} p_k z^k$ If $\mu := \mathbb{E}(X) < 1$ then $p_{ext} = 1$ If $\mu = 1$ and $p_0 > 0$ then $p_{ext} = 1$ If $\mu > 1$ then $p_{ext} < 1$

Proof: $\{Z_k = 0\} \nearrow \{\text{Extinction}\}; \mathbb{P}(Z_k = 0) = \phi_k(0) \text{ where }$ $\phi_{k}(z) = \mathbb{E}(z^{Z_{k}})$ By induction $\phi_k(z) = \phi \circ \phi_{k-1}(z)$ hence $\mathbb{P}(Z_k = 0) = \phi(\mathbb{P}(Z_{k-1} = 0))$ \Rightarrow by monotonicity of ϕ and $\mathbb{P}(Z_0 = 0) = 0$, sequence increases to (necessarily smallest) fixed point. μ : slope of ϕ at 1⁻. By convexity of ϕ , only fixed point: 1 if $\mu < 1$ By continuity of ϕ , \exists fixed point < 1 if $\mu > 1$ For $\mu = 1$, if $p_0 > 0$ then ϕ strictly convex hence only fixed point: 1; if $p_0 = 0$ then $p_{ext} = 0$ Fundamental example of phase transition Special case $X \sim \text{Poisson}(\mu)$: $p_{ext} = e^{-\mu(1-p_{ext})}$ as the set of p_{ext} Two examples of queueing networks Susceptible-Infective Epide Laurent Massoulié

Random walk exploration of Galton-Watson tree

Sequentially pick *active* node (whose children have not yet been sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)

Random walk exploration of Galton-Watson tree

Sequentially pick *active* node (whose children have not yet been sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)

- Dynamics of A_t , number of active nodes at step t: Random walk $A_t = A_{t-1} - 1 + X_t$ where X_t independent of past exploration $\{A_s, X_s, s < t\}$ and distributed according to $\{p_k\}_{k \ge 0}$
- Time T at which exploration stops, i.e. $A_T = 0$ gives size of tree. Indeed $A_t = 1 t + X_1 + \ldots + X_t$ and $A_T = 0$ yield $T = 1 + X_1 + \ldots + X_T$.
- Random walk can be pursued after time T

ヨッ イヨッ イヨッ

Random walk exploration of Galton-Watson tree

Sequentially pick *active* node (whose children have not yet been sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)

- Dynamics of A_t , number of active nodes at step t: Random walk $A_t = A_{t-1} - 1 + X_t$ where X_t independent of past exploration $\{A_s, X_s, s < t\}$ and distributed according to $\{p_k\}_{k \ge 0}$
- Time T at which exploration stops, i.e. $A_T = 0$ gives size of tree. Indeed $A_t = 1 t + X_1 + \ldots + X_t$ and $A_T = 0$ yield $T = 1 + X_1 + \ldots + X_T$.
- Random walk can be pursued after time T

 $\Rightarrow \text{ Bound on population size: for continued RW } \{A_t\}_{t \ge 0}, \\ \mathbb{P}(T > t) = \mathbb{P}(A_0, \dots, A_t > 0) \le \mathbb{P}(A_t > 0) = \mathbb{P}(\sum_{s=1}^t (X_s - 1) \ge 0)$

Chernoff's inequality and bounds on population size

Theorem

For i.i.d. X_s , $\mathbb{P}(\sum_{s=1}^{t} X_s \ge at) \le e^{-th(a)}$ where $h(a) := \sup_{\theta > 0} [\theta a - \ln(\mathbb{E}(e^{\theta X_1}))]$

A B > A B >

Chernoff's inequality and bounds on population size

Theorem

For i.i.d. X_s , $\mathbb{P}(\sum_{s=1}^{t} X_s \ge at) \le e^{-th(a)}$ where $h(a) := \sup_{\theta > 0} [\theta a - \ln(\mathbb{E}(e^{\theta X_1}))]$

Non-trivial exponential bound when $a > \mathbb{E}(X_1)$ and $\exists \epsilon > 0 : \mathbb{E}e^{\epsilon X_1} < +\infty$

A B + A B +

Chernoff's inequality and bounds on population size

Theorem

For i.i.d. X_s , $\mathbb{P}(\sum_{s=1}^{t} X_s \ge at) \le e^{-th(a)}$ where $h(a) := \sup_{\theta > 0} [\theta a - \ln(\mathbb{E}(e^{\theta X_1}))]$

Non-trivial exponential bound when $a > \mathbb{E}(X_1)$ and $\exists \epsilon > 0 : \mathbb{E}e^{\epsilon X_1} < +\infty$ Application to Galton-Watson process: $\mathbb{P}(T > t) \le e^{-th(1)}$ exponentially decaying if $\mathbb{E}(X_1) < 1$ and X_1 admits finite exponential moments.

(*) *) *) *)

For i.i.d. X_s , $\mathbb{P}(\sum_{s=1}^{t} X_s \ge at) \le e^{-th(a)}$ where $h(a) := \sup_{\theta > 0} [\theta a - \ln(\mathbb{E}(e^{\theta X_1}))]$

Non-trivial exponential bound when $a > \mathbb{E}(X_1)$ and $\exists \epsilon > 0 : \mathbb{E}e^{\epsilon X_1} < +\infty$

Application to Galton-Watson process:

 $\mathbb{P}(T > t) \le e^{-th(1)}$ exponentially decaying if $\mathbb{E}(X_1) < 1$ and X_1 admits finite exponential moments.

Case of Poisson random variables, parameter $\mu > 0$, $a > \mu$: $h_{\mu}(a) = \sup_{\theta > 0} [\theta a - \mu(e^{\theta} - 1)]$ Gives $\theta = \ln(a/\mu)$, $h_{\mu}(a) = \mu h_1(a/\mu)$ with $h_1(x) = x \ln(x) - x + 1$

□ ▶ ▲ Ξ ▶ ▲ Ξ ▶

- Epidemic spread in logarithmic time for single propagation and for all-to-all propagation
- Same order as if infection attempts were optimized
- Motivates "epidemic algorithms" for information dissemination
- Exponential versions of Markov's inequality (in particular Chernoff's inequality): powerful tool, will be used in analysis of SIR epidemics and random graphs

4 3 5 4 3 5