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Priority queue

server…

1

2

<
<

𝑅

R customer types

Infinite queue, single server with unit capacity

Policy: always serve customer with highest priority (lowest
class index)
Interrupt lower priority service upon higher priority arrival
Resume interrupted service where it was stopped (FIFO per
class)

Poisson λr arrivals in class r ; Exponential µr service times
Loads: ρr := λr/µr
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Xr (t): number of class-r customers present at time t

A Markov jump process with only non-zero rates

qx ,x+er = λr , qx ,x−er = µrIxr>0Ix1=···=xr−1=0

Proposition

Process ergodic if ρ :=
∑

r ρr < 1, transient if ρ > 1

Assume µr ≡ µ and ergodicity.
Then mean number of customers at equilibrium:

E(Xr ) =
ρr

(1−
∑

s<r ρs)(1−
∑

s≤r ρs)
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Proof elements – priority queue

Process clearly irreducible non-explosive
Foster’s criterion with V (x) :=

∑
r xr/µr ⇒ ergodic if ρ < 1

ρ > 1: with X (0) = 0, Xr (t) = Nr (t)− Dr (t) (arrivals minus
departures)

Work spent on class r by time t: Wr (t) ≥
∑Dr (t)

m=1 σr ,m
for i.i.d. service times σr ,m
Law of large numbers for Poisson processes: almost surely,
limt→∞Nr (t)/t = λr
If for some r , Dr (t) ≤ λr t/2 then Xr (t) ≥ λr t/2 + o(t)
Else, by Law of large numbers for σr ,m,
∀r ,Wr (t) ≥ Dr (t)/µr + o(t)

Since
∑

r Wr (t) ≤ t, implies∑
r

Xr (t)/µr ≥ ρt − t + o(t)

In both cases maxr Xr (t)→∞ almost surely
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Exactly solvable bandwidth sharing network

Route 0

Route 1 Route 2

C=1 C=1

Linear network with L unit capacity links, L + 1 classes. Class
0 uses all links, class r uses only link r , r ≥ 1
Poisson νr arrivals, Exponential µr service times, loads
ρr = νr/µr
xr : number of ongoing type r transfers

Proportionally fair allocations: service rate to class
0 : Λ0 = x0/[x0 + y ] where y =

∑L
r=1 xr ; service to class

r ≥ 1 : Λr = y/(y + x0)Ixr>0

See Problem 2, PC 3: proportionally fair shares at
“macroscopic” (transmission) level result from simple
processor sharing at “microscopic” (data packet) level
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Exactly solvable bandwidth sharing network

Markov jump process with non-zero rates
qx ,x+er = νr , qx ,x−er = µrΛr

reversible process for measure π(x) :=
(y+x0

y

)∏
r≥0 ρ

xr
r

Negative binomial formula:
∑

x0≥0

(y+x0
y

)
ρx0

0 = (1− ρ0)−y−1

⇒ π summable (hence process ergodic) if and only if
ρ0 + ρr < 1, r = 1, . . . , L yielding stationary distribution
π(x) =

(y+x0
x0

)
(1− ρ0)−L+1

∏L
r=1(1− ρ0 − ρr )

∏L
r=0 ρ

xr
r

Generating function (z-transform):

E
∏L

r=0 z
Xr
r = (1−ρ0z0)L−1

(1−ρ0)L−1

∏L
r=1

1−ρ0−ρr
1−ρ0z0−ρr zr

Yields explicit formulas for per class generating functions, e.g.
Xr Geometric (ρr/(1− ρ0)) for r ≥ 1, and

E(Xr ) = ρr
1−ρ0−ρr , r ≥ 1,

E(X0) = ρ0
1−ρ0

[
1 +

∑L
r=1

ρr
1−ρ0−ρr

]
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Susceptible-Infective epidemic propagation

s Infection rate 

Graph G = (V ,E ) with n nodes (V = [n])
Infected node makes infection attempts at instants of Poisson
λ process, towards graph neighbor chosen uniformly at random
Keeps attempting forever

⇒ Average time to total infection? Fluctuations around
average? Impact of graph topology?
Variant: each node = origin of its own specific epidemics;
each propagation: forwards all epidemics currently held
⇒Time till everyone heard from everyone else (“all-to-all”
broadcast)?
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Susceptible-Infective epidemic propagation

Running assumption: complete graph

System description: Xt= number of infected nodes at time t

Rate at which new attempts made when in state x :
superposition of x Poisson λ processes
Success probability of infection attempt: (n − x)/(n − 1)

⇒ next infection time: first time of Poisson xλ process,
thinned with probability (n − x)/(n − 1) of retaining points:
Exponential λx(n − x)/(n − 1) random variable

⇒ Xt a Markov jump process with non-zero jump rate
qx ,x+1 = λx(n − x)/(n − 1)
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Time to total infection

Let Ex : i.i.d. Exponential(1) random variables, Tn: time to total
outbreak
Then Tn =

∑n−1
x=1

1
qx
Ex , with qx = λx(n − x)/(n − 1)

E(Tn) =
∑n−1

x=1
1
qx

= n−1
n

1
λ

∑n−1
x=1

(
1
x + 1

n−x

)
= n−1

n
2
λH(n − 1)

= 2
λ [ln(n) + γ + o(1)]

where H(k): k-th Harmonic number, and γ ≈ 0.577: Euler’s
constant

Similarly, for 0 < a < b < 1: E(Tbn − Tan)→ 1
λ ln

(
b

1−b
1−a
a

)
Heuristic inversion: starting from X0 = an, Xt ≈ n aeλt

1−a+aeλt

⇒ The celebrated logistic function, or S-curve
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Logistic curve
(Verhulst 1838)

Exponential growth

Time to total infection order-optimal
(logarithmic in number of targets) despite random target selection

«Optimal diffusion» (without
failed attempts)
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Controlling fluctuations

Markov’s inequality: random variable X ≥ 0,
a > 0⇒ P(X ≥ a) ≤ E(X )/a

Bienaymé-Tchebitchev’s inequality: random variable
X ∈ R: P(|X −E(X )| ≥ a) ≤ Var(X )/a2

Exponential version: for θ > 0, P(X ≥ t) ≤ E(eθX )e−θt i.e.
finite exponential moments yield exponentially decaying
control of tail probabilities

Variable Sn := λ(Tn −E(Tn)) satisfies for all θ ∈ [0, 1/2]
E(exp(θSn)) ≤ exp(4π2θ2/3) =: Cθ < +∞
hence P(λ(Tn −E(Tn)) ≥ t) ≤ Cθe

−θt (fluctuations small
compared to mean)

Proof: For rx = x(n − x)/(n − 1) = qx/λ,
EeθSn =

∏n−1
x=1

rx
rx−θe

−θ/rx

For u ∈ (0, 1/2], e
−u

1−u ≤ 1 + 2u2, hence:

EeθSn ≤
∏n−1

x=1[1 + 2(θ/rx)2] ≤ e
∑n−1

x=1 2(θ/rx )2 ≤ e8θ2
∑

x≥1 x
−2
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Application: All-to-all scenario (one epidemic per user)

Lemma

Let random variables S1, . . .Sn be such that for some a, b > 0 :
∀t > 0, ∀i ∈ [n],P(S i ≥ t) ≤ ae−bt

Then E(supi S
i ) ≤ E((supi S

i )+) ≤ ln(an)+1
b

Proof: Write E((supi S
i )+) =

∫∞
0 P(supi S

i ≥ t)dt
Then upper-bound P(supi S

i ≥ t) by nae−bt for t ≥ ln(an)/b
(union bound) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all θ ∈ (0, 1/2]

ET ≤ 1
λ

[
2(ln(n) + γ) + o(1) + ln(Cθn)+1

θ

]
= O(ln(n)),

same order still

Indeed: T = supremum of n propagation times corresponding each
to single epidemic propagation
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Towards Susceptible-Infective-Removed (SIR) epidemics:
Galton-Watson branching process (1873)

Ancestor (generation 0)

Generation 1

Generation 2

Offspring distribution {pk}k∈N
Zk number of individuals per generation:

Z0 = 1,Zk =
∑Zk−1

m=1 Xm,k where {Xm,k}m,k≥0: i.i.d., ∼ {pk}k∈N

Quantities of interest: probability of extinction; in case of
extinction, total population size
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Theorem

Extinction probability pext : smallest root in [0, 1] of z = φ(z)
where φ(z) = E(zX ) =

∑
k≥0 pkz

k

If µ := E(X ) < 1 then pext = 1
If µ = 1 and p0 > 0 then pext = 1
If µ > 1 then pext < 1

Proof: {Zk = 0} ↗ {Extinction}; P(Zk = 0) = φk(0) where
φk(z) = E(zZk )
By induction φk(z) = φ ◦ φk−1(z) hence
P(Zk = 0) = φ(P(Zk−1 = 0))
⇒ by monotonicity of φ and P(Z0 = 0) = 0, sequence increases to
(necessarily smallest) fixed point.
µ: slope of φ at 1−. By convexity of φ, only fixed point: 1 if µ < 1
By continuity of φ, ∃ fixed point < 1 if µ > 1
For µ = 1, if p0 > 0 then φ strictly convex hence only fixed point:
1; if p0 = 0 then pext = 0
Fundamental example of phase transition
Special case X ∼ Poisson(µ): pext = e−µ(1−pext)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been
sampled)
De-activate it and add its children to active set
Stop when active set empty (tree exploration complete)

Dynamics of At , number of active nodes at step t:
Random walk At = At−1 − 1 + Xt where Xt independent of
past exploration {As ,Xs , s < t} and distributed according to
{pk}k≥0

Time T at which exploration stops, i.e. AT = 0 gives size of
tree. Indeed At = 1− t + X1 + . . .+ Xt and AT = 0 yield
T = 1 + X1 + . . .+ XT .

Random walk can be pursued after time T

⇒ Bound on population size: for continued RW {At}t≥0,
P(T > t) = P(A0, . . . ,At > 0) ≤ P(At > 0) = P(

∑t
s=1(Xs − 1) ≥ 0)
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Chernoff’s inequality and bounds on population size

Theorem

For i.i.d. Xs , P(
∑t

s=1 Xs ≥ at) ≤ e−th(a) where
h(a) := supθ>0[θa− ln(E(eθX1))]

Non-trivial exponential bound when a > E(X1) and
∃ε > 0 : EeεX1 < +∞
Application to Galton-Watson process:
P(T > t) ≤ e−th(1) exponentially decaying if E(X1) < 1 and X1

admits finite exponential moments.
Case of Poisson random variables, parameter µ > 0, a > µ:
hµ(a) = supθ>0[θa− µ(eθ − 1)]
Gives θ = ln(a/µ), hµ(a) = µh1(a/µ)
with h1(x) = x ln(x)− x + 1
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Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epidemic propagation models



Chernoff’s inequality and bounds on population size

Theorem

For i.i.d. Xs , P(
∑t

s=1 Xs ≥ at) ≤ e−th(a) where
h(a) := supθ>0[θa− ln(E(eθX1))]

Non-trivial exponential bound when a > E(X1) and
∃ε > 0 : EeεX1 < +∞
Application to Galton-Watson process:
P(T > t) ≤ e−th(1) exponentially decaying if E(X1) < 1 and X1

admits finite exponential moments.

Case of Poisson random variables, parameter µ > 0, a > µ:
hµ(a) = supθ>0[θa− µ(eθ − 1)]
Gives θ = ln(a/µ), hµ(a) = µh1(a/µ)
with h1(x) = x ln(x)− x + 1
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Takeaway messages

Epidemic spread in logarithmic time for single propagation
and for all-to-all propagation

Same order as if infection attempts were optimized

Motivates “epidemic algorithms” for information dissemination

Exponential versions of Markov’s inequality (in particular
Chernoff’s inequality): powerful tool, will be used in analysis
of SIR epidemics and random graphs
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