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@ R customer types
@ Infinite queue, single server with unit capacity

@ Policy: always serve customer with highest priority (lowest
class index)
Interrupt lower priority service upon higher priority arrival
Resume interrupted service where it was stopped (FIFO per
class)

@ Poisson A, arrivals in class r; Exponential p, service times
Loads: p, := A/ /1y
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@ X,(t): number of class-r customers present at time t

@ A Markov jump process with only non-zero rates

Ax,x+e = Ar, Qx,x—e = Mr]Ix,>0]Ix1:~~-:x,_1:0

Proposition
Process ergodic if p:= )", p, < 1, transient if p > 1

Assume u, = p and ergodicity.
Then mean number of customers at equilibrium:

Pr

(1 _ 25<r pS)(]' _ Esgr pS)

E(Xr) =
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Proof elements — priority queue

@ Process clearly irreducible non-explosive
Foster's criterion with V/(x) := )" x,/u, = ergodicif p <1
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Proof elements — priority queue

@ Process clearly irreducible non-explosive
Foster's criterion with V/(x) := )" x,/u, = ergodicif p <1
e p > 1: with X(0) =0, X.(t) = N.(t) — D.(t) (arrivals minus
departures)
Work spent on class r by time t: W,(t) > ZD’_(tl Trm
for i.i.d. service times o,
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Proof elements — priority queue

@ Process clearly irreducible non-explosive
Foster's criterion with V/(x) := )" x,/u, = ergodicif p <1
e p > 1: with X(0) =0, X.(t) = N.(t) — D.(t) (arrivals minus
departures)
Work spent on class r by time t: W,(t) > ZD’_(tl Trm
for i.i.d. service times o,
@ Law of large numbers for Poisson processes: almost surely,
lim:oo Nr(t)/t = A,
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Proof elements — priority queue

@ Process clearly irreducible non-explosive
Foster's criterion with V/(x) := )" x,/u, = ergodicif p <1
e p > 1: with X(0) =0, X.(t) = N.(t) — D.(t) (arrivals minus
departures)
Work spent on class r by time t: W,(t) > ZD’_(tl Trm
for i.i.d. service times o,
@ Law of large numbers for Poisson processes: almost surely,
lim:oo Nr(t)/t = A,
o If for some r, D,(t) < A\;t/2 then X.(t) > A\ t/2 + o(t)
Else, by Law of large numbers for o/,
Vr, W,(t) > D,(t)/pr + o(t)

Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epide



Proof elements — priority queue

@ Process clearly irreducible non-explosive
Foster's criterion with V/(x) := )" x,/u, = ergodicif p <1
e p > 1: with X(0) =0, X.(t) = N.(t) — D.(t) (arrivals minus
departures)
Work spent on class r by time t: W,(t) > ZD’_(tl Trm
for i.i.d. service times o,
@ Law of large numbers for Poisson processes: almost surely,
lim:oo Nr(t)/t = A,
o If for some r, D,(t) < A\;t/2 then X.(t) > A\ t/2 + o(t)
Else, by Law of large numbers for o/,
Vr, W,(t) > D,(t)/pr + o(t)
@ Since >, W, (t) < t, implies

SoXA0) e = ot o(1)

In both cases max, X,(t) — oo almost surely

Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epide



Exactly solvable bandwidth sharing network

Routeo 1 =
Route 1 Route 2

@ Linear network with L unit capacity links, L + 1 classes. Class
0 uses all links, class r uses only link r, r >1
@ Poisson v, arrivals, Exponential p, service times, loads

Pr = Vr/lr
@ x,. number of ongoing type r transfers
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Exactly solvable bandwidth sharing network

c=1 c=1

Route 1 Route 2

Route 0

@ Linear network with L unit capacity links, L + 1 classes. Class
0 uses all links, class r uses only link r, r >1

@ Poisson v, arrivals, Exponential p, service times, loads
Pr = Vr/lr

@ x,. number of ongoing type r transfers

@ Proportionally fair allocations: service rate to class
0: Ao =x0/[x0+ y] where y = Zle X,; service to class
r>1:A = y/(y + x0)Tg>0
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Exactly solvable bandwidth sharing network

c=1 c=1

L

Route 1 Route 2

Route 0

@ Linear network with L unit capacity links, L + 1 classes. Class
0 uses all links, class r uses only link r, r >1

@ Poisson v, arrivals, Exponential p, service times, loads
Pr = Vr/lr

@ x,. number of ongoing type r transfers

@ Proportionally fair allocations: service rate to class
0: Ao =x0/[x0+ y] where y = Zle X,; service to class
r>1:A = y/(y + x0)Tg>0

See Problem 2, PC 3: proportionally fair shares at
“macroscopic” (transmission) level result from simple
processor sharing at “microscopic’ (data packet) level
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates
Ax,x+e, = Vry Qx,x—e, = prl\r
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates

Ax,x+er = Vry Qx,x—e, = e\

@ reversible process for measure 7(x) := (yJ;XO) [Tr=0r"
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates

Ax,x+er = Vry Qx,x—e, = e\

@ reversible process for measure 7(x) := (yJ;XO) [Tr=0r"

Negative binomial formula: 37 -, (ytxo)pgo =(1—po) !
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates

Ax,x+e, = Vry Qx,x—e, = prl\r
@ reversible process for measure 7(x) := (yJ;XO) [500F

Negative binomial formula: »° -, (yJ;Xo)pgo =(1—po) ¥t
= 7 summable (hence process ergodic) if and only if
po+pr<l,r=1,..., L yielding stationary distribution

X( — L
m(x) = ("10) (1 = po) " Tra (1 = po — pr) [0 P

X0
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates
Ax,x+e, = Vry Qx,x—e, = prl\r
o reversible process for measure m(x) := (*7°) [, o}

y
e = (1= po)

Negative binomial formula: >_ -, (
= 7 summable (hence process ergodic) if and only if
po+pr<l,r=1,..., L yielding stationary distribution

m(x) = (1) (L = po) " Ty (1 = po — o) TTro P

° Generating function (z transform):

_ (1—poz0)" 1—po—pr
]EHr 0 r - (1- PO)L 1 Hr 1 1—pozo—przr
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Exactly solvable bandwidth sharing network

@ Markov jump process with non-zero rates
Ax,x+e, = Vry Qx,x—e, = prl\r

@ reversible process for measure 7(x) := (yJ;XO) [Tr=0r"

Negative binomial formula: 37 -, (y+X°)pS° =(1—po) !

= 7 summable (hence process ergodic) if and only if

po+pr<l,r=1,..., L yielding stationary distribution
X( — L L

ﬂ-(X) = (y;to 0)(1 - pO) bl Hr:l(l - pPo — pf) Hr:O p)r<r

° Generating function (z transform):
Bz = (el o it
@ Yields explicit formulas for per class generating functions, e.g.
X, Geometric (p,/(1 — po)) for r > 1, and
E(X) == r=1
E(X) = 1+ 3 g

Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epide



Susceptible-Infective epidemic propagation

~Infection rate A
-

e Graph G = (V, E) with n nodes (V = [n])

@ Infected node makes infection attempts at instants of Poisson
A process, towards graph neighbor chosen uniformly at random

o Keeps attempting forever
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Susceptible-Infective epidemic propagation

~Infection rate A
-

e Graph G = (V, E) with n nodes (V = [n])

@ Infected node makes infection attempts at instants of Poisson
A process, towards graph neighbor chosen uniformly at random

o Keeps attempting forever

=- Average time to total infection? Fluctuations around
average? Impact of graph topology?
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Susceptible-Infective epidemic propagation

~Infection rate A
-

e Graph G = (V, E) with n nodes (V = [n])

@ Infected node makes infection attempts at instants of Poisson
A process, towards graph neighbor chosen uniformly at random

o Keeps attempting forever

=- Average time to total infection? Fluctuations around
average? Impact of graph topology?

@ Variant: each node = origin of its own specific epidemics;
each propagation: forwards all epidemics currently held
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Susceptible-Infective epidemic propagation

~Infection rate A
-

e Graph G = (V, E) with n nodes (V = [n])

@ Infected node makes infection attempts at instants of Poisson
A process, towards graph neighbor chosen uniformly at random

o Keeps attempting forever

=- Average time to total infection? Fluctuations around
average? Impact of graph topology?

@ Variant: each node = origin of its own specific epidemics;
each propagation: forwards all epidemics currently held
=Time till everyone heard from everyone else (“all-to-all”
broadcast)?
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Susceptible-Infective epidemic propagation

@ Running assumption: complete graph

Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epide



Susceptible-Infective epidemic propagation

@ Running assumption: complete graph

@ System description: X;= number of infected nodes at time t
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Susceptible-Infective epidemic propagation

@ Running assumption: complete graph
@ System description: X;= number of infected nodes at time t

@ Rate at which new attempts made when in state x:
superposition of x Poisson \ processes
Success probability of infection attempt: (n — x)/(n— 1)
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Susceptible-Infective epidemic propagation

@ Running assumption: complete graph
@ System description: X;= number of infected nodes at time t
@ Rate at which new attempts made when in state x:

superposition of x Poisson \ processes
Success probability of infection attempt: (n — x)/(n— 1)

= next infection time: first time of Poisson x\ process,
thinned with probability (n — x)/(n — 1) of retaining points:
Exponential Ax(n — x)/(n — 1) random variable
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Susceptible-Infective epidemic propagation

@ Running assumption: complete graph
@ System description: X;= number of infected nodes at time t

@ Rate at which new attempts made when in state x:
superposition of x Poisson \ processes
Success probability of infection attempt: (n — x)/(n— 1)

= next infection time: first time of Poisson x\ process,
thinned with probability (n — x)/(n — 1) of retaining points:
Exponential Ax(n — x)/(n — 1) random variable

= X; a Markov jump process with non-zero jump rate
Ax,x+1 = )\X(n - X)/(n - 1)
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Time to total infection

Let E.: i.i.d. Exponential(1) random variables, T,: time to total
outbreak
Then T, = S""1 LE  with g, = Ax(n—x)/(n—1)

x=1 gy
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Time to total infection

Let E.: i.i.d. Exponential(1) random variables, T,: time to total

outbreak

Then T, =>""1 LE,, with g = Ax(n — x)/(n — 1)

X= 1 Jx
B(T,) =yid =iyt (14k)
= ;;1§H(n— 1)

= x[In(n) +~ + o(1)]

where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s
constant
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Time to total infection

Let E.: i.i.d. Exponential(1) random variables, T,: time to total
outbreak

Then T, =>""1 LE,, with g = Ax(n — x)/(n — 1)

X= 1 Jx
B(T,) =yid =iyt (14k)
= ;;1§H(n— 1)

= x[In(n) +~ + o(1)]

where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s
constant

a

Similarly, for 0 < a < b < 1: E(Tp, — Tan) — %In (% 1_a>

Laurent Massoulié Two examples of queueing networks Susceptible-Infective Epide



Time to total infection

Let E.: i.i.d. Exponential(1) random variables, T,: time to total
outbreak
Then T, = 3077 2E,, with g = Ax(n —x)/(n — 1)

B(T,) =Xoid ==yt (+0k)
= 212H(n—-1)
= 2lin(n) +~ + o(1)]
where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s
constant

Similarly, for 0 < a < b < 1: E(Tp, — Tan) — %In (% 1;a>
a

Heuristic inversion: starting from Xy = an, X; ~ n
= The celebrated logistic function, or S-curve
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«Optimal diffusion» (without
failed attempts)

250,000

3 200,000

=
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s 100,000

& ’ Logistic curve
§ 50,000 (Verhulst 1838)

0

2 4 6 8 10 12 14 16 18 20
Hour of the day

Exponential growth

# of scans Predicted # of scans

Time to total infection order-optimal
(logarithmic in number of targets) despite random target selection
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Controlling fluctuations

e Markov’'s inequality: random variable X > 0,
a>0=DP(X >a) <E(X)/a
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Controlling fluctuations

e Markov’s inequality: random variable X > 0,
a>0=DP(X >a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable
X € R: P(|X — E(X)| > a) < Var(X)/a?
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Controlling fluctuations

e Markov’'s inequality: random variable X > 0,
a>0=DP(X >a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable
X € R: P(|X — E(X)| > a) < Var(X)/a?

o Exponential version: for § >0, P(X > t) < E(eX)e " i.e.
finite exponential moments yield exponentially decaying
control of tail probabilities
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Controlling fluctuations

e Markov’'s inequality: random variable X > 0,
a>0=DP(X >a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable
X € R: P(|X — E(X)| > a) < Var(X)/a?

o Exponential version: for § > 0, P(X > t) < E(e?X)e % i.e.
finite exponential moments yield exponentially decaying
control of tail probabilities

Variable S, := A\(T, — E(T,)) satisfies for all § € [0,1/2]
E(exp(6S,)) < exp(47262/3) =: C@ < +oo
hence P(\(T, — E(T,)) > t) < Cye % (fluctuations small

compared to mean)
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Controlling fluctuations

e Markov’'s inequality: random variable X > 0,
a>0=DP(X >a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable
X € R: P(|X — E(X)| > a) < Var(X)/a?

o Exponential version: for § > 0, P(X > t) < E(e?X)e % i.e.
finite exponential moments yield exponentially decaying
control of tail probabilities

Variable S, := A\(T, — E(T,)) satisfies for all § € [0,1/2]
E(exp(6S,)) < exp(47262/3) =: C@ < +oo
hence P(\(T, — E(T,)) > t) < Cye % (fluctuations small

compared to mean)

Proof: For r, = x(n—x)/(n—1) = gx/\,
Eegsn _ Hn,1 rxee—e/rx

For u € (0,1/2], £ <1+ 2u?, hence:
Ee’> < [Ti_1[1+ 2(9/rx) ] < X 200/n) < B XX
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Application: All-to-all scenario (one epidemic per user)

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™ "t
Then E(sup; S') < E((sup; S')*) < %
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Application: All-to-all scenario (one epidemic per user)

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™ "t
Then E(sup; S') < E((sup; S')*) < %

Proof: Write E((sup; $')") = [;~ P(sup; S > t)dt
Then upper-bound ]P(sup, 5’ > t) by nae~?* for t > In(an)/b
(union bound) and by 1 otherwise.
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Application: All-to-all scenario (one epidemic per user)

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™ "t
Then E(sup; S') < E((sup; S')*) < %

Proof: Write E((sup; $')") = [;~ P(sup; S > t)dt
Then upper-bound ]P(sup, 5’ > t) by nae~?* for t > In(an)/b
(union bound) and by 1 otherwise.

All-to-all propagation time T satisfies for all 6§ € (0,1/2]
n(Cgn

ET < & [2(In(n) +7) + o(1) + "&2] = O(in(n)),

same order still
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Application: All-to-all scenario (one epidemic per user)

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™ "t
Then E(sup; S') < E((sup; S')*) < %

Proof: Write E((sup; $')") = [;~ P(sup; S > t)dt
Then upper-bound ]P(sup, 5’ > t) by nae~?* for t > In(an)/b
(union bound) and by 1 otherwise.

All-to-all propagation time T satisfies for all 6§ € (0,1/2]
n(Cgn

ET < & [2(In(n) +7) + o(1) + "&2] = O(in(n)),

same order still

Indeed: T = supremum of n propagation times corresponding each
to single epidemic propagation
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Towards Susceptible-Infective-Removed (SIR) epidemics:

Galton-Watson branching process (1873)

Ancestor (generation 0)
Generation 1

Generation 2

Offspring distribution {px }ken
Z, number of individuals per generation:
Z .
Zo=1,2Z; = 501 Xk where { X ktmi>o: 10.d., ~ {pk}ken

Quantities of interest: probability of extinction; in case of
extinction, total population size
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Extinction probability pex:: smallest root in [0,1] of z = ¢(z)
where §(z) = E(2*) = 3450 PkZ®

If p:=E(X) < 1 then pext = 1

If p =1 and py > 0 then pex; = 1

If > 1 then pexr < 1
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Extinction probability pex:: smallest root in [0, 1] of z = ¢(z)
where ¢(z) = E(zX) = 3,0 Pkz¥

If i := E(X) < 1 then pex = 1

If u =1 and py > 0 then pexr = 1

If > 1 then pexr < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where

o (z) = B(z%)

By induction ¢x(z) = ¢ o ¢x_1(z) hence

P(Z = 0) = ¢(P(Zx_1 = 0))

= by monotonicity of ¢ and IP(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.
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Extinction probability pex:: smallest root in [0, 1] of z = ¢(z)
where ¢(z) = E(zX) = 3,0 Pkz¥

If i := E(X) < 1 then pex = 1

If u =1 and py > 0 then pexr = 1

If > 1 then pexr < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where
o(z) = B(z%)

By induction ¢x(z) = ¢ o ¢x_1(z) hence

P(Zk = 0) = ¢(P(Zk-1 = 0))

= by monotonicity of ¢ and IP(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.

1 slope of ¢ at 17. By convexity of ¢, only fixed point: 1 if u <1
By continuity of ¢, 3 fixed point < 1if u > 1

For u =1, if pg > 0 then ¢ strictly convex hence only fixed point:
1; if pp = 0 then pexr =0
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Extinction probability pex:: smallest root in [0, 1] of z = ¢(z)
where ¢(z) = E(zX) = 3,0 Pkz¥

If i := E(X) < 1 then pex = 1

If u =1 and py > 0 then pexr = 1

If > 1 then pexr < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where
o(2) = E(z%)

By induction ¢x(z) = ¢ o ¢x_1(z) hence

P(Zk = 0) = ¢(P(Zk—1 = 0))

= by monotonicity of ¢ and IP(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.

1 slope of ¢ at 17. By convexity of ¢, only fixed point: 1 if u <1
By continuity of ¢, 3 fixed point < 1if u > 1

For u =1, if pg > 0 then ¢ strictly convex hence only fixed point:
1; if pp = 0 then pexr =0

Fundamental example of phase transition

Special case X ~ Poisson(t): pext = g H(1=pex)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been
sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been
sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)

@ Dynamics of A;, number of active nodes at step t:
Random walk A; = A;_1 — 1 4+ X; where X; independent of
past exploration {As, Xs,s < t} and distributed according to
{Pr}i=0

@ Time T at which exploration stops, i.e. AT = 0 gives size of
tree. Indeed Ay =1—t+ X1+ ...+ Xt and A7 = 0 yield
T:1—|—X1—|-...+XT.

@ Random walk can be pursued after time T
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been
sampled)

De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)

@ Dynamics of A;, number of active nodes at step t:
Random walk A; = A;_1 — 1 4+ X; where X; independent of
past exploration {As, Xs,s < t} and distributed according to
{Pr}i=0

@ Time T at which exploration stops, i.e. AT = 0 gives size of
tree. Indeed Ay =1—t+ X1+ ...+ Xt and A7 = 0 yield
T:1—|—X1—|-...+XT.

@ Random walk can be pursued after time T

= Bound on population size: for continued RW {A;}+>o,
P(T >t) =P(Ag,..., A >0) <P(A; >0) =P, (Xs —1) > 0)

s=1
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Chernoff's inequality and bounds on population size

Foriid. Xs, P(30L_; Xs > ) < e (3 where

h(a) —Supe>o[9a—|n( (e”9))]
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Chernoff's inequality and bounds on population size

Foriid. Xs, P(30L_; Xs > ) < e (3 where
h(a) —Supe>o[93—|n( (e”9))]

Non-trivial exponential bound when a > E(X;) and
Je > 0: Ee™ < 400
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Chernoff's inequality and bounds on population size

For i.id. Xs, IP(Z;ZI Xs > at) < e~ t"(3) where
h(a) := supg=glfa — In(IE(e(’Xl))]

Non-trivial exponential bound when a > E(X;) and

Je > 0: Ee < +o00

Application to Galton-Watson process:

P(T > t) < e 1) exponentially decaying if E(X;) < 1 and X;
admits finite exponential moments.
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Chernoff's inequality and bounds on population size

Foriid. Xs, P(30L_; Xs > ) < e (3 where

h(a) —Supe>o[9a—|n( (e”9))]

Non-trivial exponential bound when a > E(X;) and

Je > 0: Ee < +o00

Application to Galton-Watson process:

P(T > t) < e (1) exponentially decaying if E(X;) < 1 and X;
admits finite exponential moments.

Case of Poisson random variables, parameter y > 0, a > u:
h.(a) = suppsglfa — p(e? —1)]

Gives 6 = In(a/p), h,(a) = phi(a/p)

with h1(x) = xIn(x) — x +1
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Takeaway messages

@ Epidemic spread in logarithmic time for single propagation
and for all-to-all propagation

Same order as if infection attempts were optimized

Motivates “epidemic algorithms” for information dissemination

Exponential versions of Markov's inequality (in particular
Chernoff’s inequality): powerful tool, will be used in analysis
of SIR epidemics and random graphs
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